Reaction-Diffusion Equations

Lecturer:	Prof. Dr. Klemens Fellner
Time and Room:	Mo 10:00 - 11:30 SR 11.33
	Mi 15:00-16:30 SR 11.33

Content:

Chapter 1: Modelling with continuum equations, selected application described by Reaction-Diffusion (RD) equations

Chapter 2: existence theory for RD equations (local/global existence, weak/mild/classical solutions) Chapter 3: Qualitative and large-time analysis: stationary states, Lyapunov- and entropy methods Chapter 4: Pattern and Waves: Fisher-KPP, stability of travelling waves, pattern formation, Turing instability.

Full lecture notes will be available. The exercises will out of analytical and numerical (MatLab) examples as well as some chemical demonstrations.

Previous knowledge expected:

Some basic knowledge of measure theory (Lebesgue integrals), functional analysis (Lebesgue spaces) and ordinary differential equations would be desirable but will not be necessary.

Objective:

The course presents reaction-diffusion equations both as partial differential equations featuring highly interesting mathematical phenomena as well as mathematical models of prominent applications in biology, life-sciences, chemistry, population dynamics, ... The aim is to introduce the fundamental ideas of the existence theory of solutions and to describe the techniques which analyse the qualitative and the large-time behaviour of solutions in terms of selected model applications.

Course language: English