
P4 Identification of parametric energy functionals from linearly
constrained evolutions of critical points
(K. Bredies, M. Fornasier) → AO, NS, IS

This doctoral project aims at the identification of the energies governing certain time-dependent
phenomena from data collected by observing the evolution of their critical points driven by time
dependent linear constraints. We are particularly focusing on energies in continuum mechanics
modeling fracture initiation and evolution.

State of the art. In the IGDK project “P 4: Lagrangian methods for constrained nonconvex
minimizations and applications in fracture mechanics”, we investigated robust and efficient
numerical simulations of fracture evolution in brittle materials. The evolution is driven by the
realization of the Griffith principle of energy balance between elastic energy and a fictitious crack
energy under time dependent forcing conditions

u(t) ∈ arg min
z ∈ SBV (Ω),
z|ΩD

= g(t)|ΩD

∫
Ω\Sz

|∇z|2dx+ κHN−1(Sz), (1)

where ΩD ⊂ Ω is the domain of the force g, κ a suitable constant, and Su is the jump set of
the function u ∈ BV (Ω), modeling the fracture region, see [1] for an introduction to such free-
discontinuity problems. The main advantage of this model proposed by Francfort and Marigo in
[11] is that the functional setting in SBV does not require a pre-defined crack path. However, the
minimization of the nonconvex and nonsmooth functional involving unknown functions and sets
makes the numerical realization of (1) very challenging. A smooth phase field Γ-approximation of
the energy functional is given by the Ambrosio and Tortorelli functional

Jε(u, v) =
∫

Ω
(v2 + η)|∇u|2dx+ κ

∫
Ω

[ 1
4ε(1− v)2 + ε|∇v|2

]
dx. (2)

for 0 < η � ε� 1. The near-zero set of the minimizing function v ∈ H1(Ω) can be interpreted
as an approximation to the jump set Su. The minimization of the approximating functional (2)
can be realized now by an alternating minimization. Bourdin, Francfort, and Marigo showed
in [7] that the discretization of such an alternating minimization can produce reliable fracture
simulation only by using very fine grids, with consequent very large computational time, or meshes
designed according to the expected crack evolution. Indeed any discretization is likely to produce
a bias towards a proper fracture propagation. More recently Burke, Ortner, and Süli [8] proposed
a fully adaptive scheme based on isotropic mesh refinements, leading though to the generation of
extremely fine adapted meshes as reported in their paper. The results we obtained in the first
phase of the IGDK, and included in the papers [2, 3, 4], are building upon the work [8], but using
adaptive anisotropic remeshing. Relevant features of the adaptive anisotropic remeshing method
are: 1. The number of degrees of freedom and the computational times are dramatically reduced,
despite the remeshing; 2. The remeshing does not alter the energy profile evolution; 3. On the
crack tip the automatically generated mesh is nearly isotropic and does not constitute an artificial
bias for the crack evolution. As a consequence of 2. and 3. we obtain always physically acceptable
crack evolutions beyond state of the art simulations. It remains still open to provide rigorous
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proofs for the improved complexity 1. as well as for the more fundamental properties 2. and 3. In
[9] the approximation (2) has been extended

JA,F,G(u, v) =
∫

Ω
(F (v) + η)A(∇u)dx+

∫
Ω

(ε−1G(v) + ε|∇v|2)dx. (3)

to include more general (possibly nonlinear) elastic tensors A, a smooth increasing function F
with F (0) = 0 and F (1) = 1, and a smooth nonnegative function G such that G(z) = 0 if and
only if z = 1. This new parametric energy is modeling different nonlinear elastic properties of a
material as well as its fracture potential.

Thesis project to be supervised by Massimo Fornasier. Accurate simulations of fracture initia-
tion and evolution need to have at disposal a reliable physical model. Despite the many attempts
of deriving reasonable mathematical descriptions of fracture evolution (see [10] and references
therein), the problem of validating the model with data from real-life evolutions remains a crucial
step for future reliable simulations. In this project we build upon our robust numerical approach
based on anisotropic mesh refinements [2, 3, 4] towards the identifications of the function param-
eters A,F,G appearing in (3). After discretization we can describe the problem of recovering
A,F,G as follows. First of all we need to define a proper notion of evolution of critical points.
Given two Euclidean spaces E ' Rn, F ' Rm for m ≤ n, and an energy function J : E → [0,+∞),
we define a linear operator A : E → F , and an absolutely continuous function f : [0, T ]→ F . A
linearly constrained evolution of critical points relative to the energy function J and the linear
constraint pair (A, f) is a bounded measurable time-dependent map u : [0, T ] → E , with the
following properties

• Au(t) = f(t), range(A∗) ∩ ∂J(u(t)) 6= 0, for a.e. t ∈ [0, T ],

• there exists a bounded measurable function q : [0, T ]→ F such that A∗q(t) ∈ ∂J(u(t)),

• and the energy inequality

J(u(t)) ≤ J(u(0)) +
∫ t

0
〈q(s), ḟ(s)〉ds, for almost every t ∈ [0, T ],

holds. See [5, Section 4.3] for instances of such evolutions.

Let us now assume that the energy J = J [a] depends on a unknown parameter function a : Rd → R

(d can just 1 or be also very large as for (3) where a is modeling A,F,G) and we are allowed
to observe evolutions of critical points of J [a] relative to a linear constraint pair (A, f) where
f : [0, T ]→ F might also be unknown.
In this project we want to study the properties of the following adaptive algorithm to recover the
function parameter a. Given an evolution of critical points u(t) := u[a](t), compute for Λn ⊂ Λn+1

(approximating subspaces for the solution space of a)

a` = arg min
a∈Λ`

∫ T

0
dist(range(A∗), ∂J [a](u(t)))2dt, ` = n, n+ 1.

Then we retain from Λn+1 only those degrees of freedom λ ∈ Λn+1 \ Λn such that

‖an+1
λ − anλ‖ ≥ ε > 0.
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This method gets inspiration from the work [6] by Binev, Cohen, Dahmen, and DeVore on adaptive
methods for approximating nonlinear regression functions with underlying probability distributions
on the data. Notice the following properties:

• This adaptive refinement Λn → Λn+1 works as a regularization method towards the identifi-
cation of a, see [12] for more about regularization by discretization;

• The discretization is adapted both to the amount of information on the parameter a extracted
along the trajectory t→ u[a](t) and to the smoothness of a.

There are plenty of issues to be addressed: For a given initial condition u(0) of the evolution of
critical points, how much information can be captured and recovered by the adaptive algorithm
on the unknown function a? If we are allowed to pick initial conditions at random or according to
a best strategy, how is our recovery of a improving? How the initial discretization of the problem
to reduce it to a finite dimensional evolution of critical points does affect the approximation of
a?

Further topics. Beside the identification of energies (3) in fracture mechanics, such a method
finds additional potential applications also in

• Magnetic resonance fingerprinting (⇒ Kristian Bredies);

• Optical flow in video processing: in this case the time-dependent force field f transporting
an image snapshot to the next needs to be determined;

• Social dynamics: the energy J represents social interaction potentials and a the “social
forces” to be identified from observation of group dynamics;

• Optimal control: the parameters a or f are used as a control for the evolution of critical
points.

We used this technique already for the identification of social interactions in multiagent systems,
with exceptionally robust results.
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