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Abstract. A time-dependent Poisson–Nernst–Planck system of nonlinear par-
tial differential equations of a mixed parabolic–elliptic type is considered. The
generalized model is supplemented by a positivity and volume constraints, by
dual entropy variables, and by nonlinear boundary conditions. The existence
theorem supported by a-priori estimates, the Lyapunov stability of the solu-
tion, and its uniqueness in a special case are proved.
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1. Introduction

In the paper we provide existence, uniqueness, and stability of a weak solution
for a mixed parabolic–elliptic system of nonlinear Poisson–Nernst–Planck (PNP)
equations.

The PNP system has many applications in bio– and electro–chemistry. The
modeling issues are considered in [5, 9, 10, 19] for multi-component coupled PNP
system, in particular, its application to battery models in [2, 15]. For the methods
used to prove existence of weak solutions, we refer to [6, 11, 16] in the dynamic case,
and to [3, 8] in the stationary case. The another important task is homogenization
of these models, see the related works by [1, 7, 18].

We consider a specific time-dependent PNP system consisting of two non-
linear parabolic equations coupled with a nonlinear elliptic equation. It describes
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electrokinetic phenomena in a two-component mixture of charged species. The
model contains also dual entropy variables, which are redundant and came into
our consideration from physical laws.

Below we point out the main specialities of our model and difficulties of its
mathematical analysis in the current paper.

First, we consider inhomogeneous, moreover, nonlinear boundary conditions.
In comparison, in the literature, see e.g. [11, 16], boundary conditions are assumed
to be homogeneous. The nonlinearity at the boundary claims supplementary dif-
ficulties of analysis.

Another difficulty is the presence of unilateral, positivity and volume balance
constraints, which do not allow to prove existence of the solution via classical
methods. For this task, two formulations, namely, the complete formulation with
constraints and the reduced one without constraints are employed. The equivalence
of two formulations under reasonable assumptions will be shown. As the result, we
prove the existence theorem, equipped with a-priori estimates, and the Lyapunov
stability of a weak solution. Because of the nonlinearity of the system we cannot
prove uniqueness of the solution in a general case. Nevertheless, we state the
uniqueness theorem in a special case with additional assumptions on the solution
regularity and for small boundary terms. The idea of the proof is similar to [11, 17].

In order to state well-posedness and stability of this problem, we use vari-
ational methods and derive a-priori estimates. Then the existence follows from
the Tikhonov–Schauder fixed point theorem. For Lyapunov stability we define the
Lyapunov entropy function following [4], and we prove the dissipation inequality
under additional assumptions on the boundary terms.

The structure of the paper is the following. In Section 2 we give, first, the
complete, and then the reduced formulations of the problem in the strong and
in the weak forms. In Section 3 there are proved the existence theorems, based
on three auxillary lemmas. At the end we establish the uniqueness theorem and
stability of the solution in the sense of Lyapunov.

2. Strong and weak formulations of the problem

We begin with a description of the geometry.

Let Ω be a bounded domain in Rd, d = {1, 2, 3}, with the Lipschitz boundary
∂Ω = Γ̄N ∪ Γ̄D consisted of two disjoint parts such that ΓN ∩ΓD = ∅, ΓD 6= ∅, and
let ν = (ν1, . . . , νd) be the unit normal vector on ΓN outward to Ω. For arbitrarily
fixed final time T > 0 we introduce the cylinder QT := (0, T )× Ω.

2.1. The strong formulation of the complete problem

For (t, x) ∈ QT we consider the unknown scalar function ϕ(t, x) and the vector-
function c := (c1, c2), consisted of two components c1(t, x) and c2(t, x). These
functions imply a solution of the Poisson–Nernst–Planck system of the mixed
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Figure 1. An example geometric domain

parabolic–elliptic type:

∂ci
∂t

= div(ci∇µi), i = 1, 2, in (0, T )× Ω; (2.1a)

−∆ϕ =
1

2
(c1 − c2) in (0, T )× Ω; (2.1b)

∇p = −1

2
(c1 − c2)∇ϕ in (0, T )× Ω; (2.1c)

µi = lnci + p+ ziϕ, i = 1, 2, in (0, T )× Ω. (2.1d)

The system (2.1) is written in the dimensionless form. Here c1 and c2 associate
the concentrations of two species with the charges z1 = 1 and z2 = −1, and ϕ
stands for the overall electrostatic potential in a pore medium. We note that the
equations (2.1a), after substitution here ∇p from (2.1c) and ∇µi from (2.1d) have
the entire form (2.12). They are coupled with (2.1b) by means of the nonlinear
terms in the right-hand sides. Equations (2.1c) and (2.1d) are redundant and serve
to determine the dual entropy variables µ1, µ2, which are associated to the quasi–
Fermi (electrochemical) potentials, and p standing for the pressure.

Next, the system (2.1) will be endowed with appropriate boundary and initial
conditions. We suggest nonlinear Neumann conditions:

(ci∇µi)>ν = gi(c, ϕ), i = 1, 2, on (0, T )× ΓN , (2.2)

where the nonlinear functions g1(c, ϕ) and g2(c, ϕ) are motivated by boundary
reactions in electrochemical mixtures and will be specified in Section 2.2; and

Robin condition: ∇ϕ>ν + ϕ = g on (0, T )× ΓN ; (2.3)

Dirichlet conditions: ϕ = 0, c1 = c2 = 1 on (0, T )× ΓD. (2.4)

In (2.3) the function g ∈ L∞(0, T ;L2(ΓN )) is given, and (2.4) implies non-dimensional
boundary data, where we normalize the positive concentrations c1 and c2 to one.
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The standard initial conditions are supposed:

c1(0, ·) = c01, c2(0, ·) = c02 as t = 0, (2.5)

where c01 and c02 are given functions in L2(Ω).
Additionally to the boundary and initial conditions, the system is subject to

the volume balance constraint:

c1 + c2 = 2 in (0, T )× Ω, (2.6a)

and the positivity constraint:

c1 > 0, c2 > 0 in (0, T )× Ω. (2.6b)

The value “2” in (2.6a) is due to the compatibility with the Dirichlet data (2.4),
such that c1 + c2 = 2 at (0, T )× ΓD. These constraints appear naturally from the
point of view of physical consistency, but they bring the principle difficulty in the
mathematical investigation of this problem.

2.2. Assumptions on the data

The following assumptions on the boundary terms g1(c, ϕ), g2(c, ϕ) ∈ L2((0, T )×
ΓN ) will be required further. Namely, the following three conditions are assumed:

continuity and the growth condition with uniformly bounded 0 6 G(c) 6 1 :∫ T

0

∫
ΓN

|gi(c, ϕ)|2 dx dt 6 (β1 + β2||ϕ||2L2(0,T ;H1(Ω)))G(c), i = 1, 2; (2.7a)

the mass conservation: g1(c, ϕ) + g2(c, ϕ) = 0 on (0, T )× ΓN ; (2.7b)

the positive production rate:

g1(c, ϕ)c−1 = g2(c, ϕ)c−2 = 0 on (0, T )× ΓN , for all c1, c2. (2.7c)

In (2.7c) the partition in the positive and the negative parts is defined by

c+i := max{0, ci}, c−i := −min{0, ci} (2.8a)

such that

ci = c+i − c
−
i , c+i , c

−
i > 0, c+i · c

−
i = 0, i = 1, 2. (2.8b)

We note that the condition (2.7c) appears as a consequence of tangential conditions
from quasi-linear ODE [6, Chapter 3].

Example. The functions g1(c, ϕ) =
c+1 c

+
2

(c+1 + c+2 )2
and g2(c, ϕ) = − c+1 c

+
2

(c+1 + c+2 )2
for

c1 + c2 = 2 fulfill all assumptions (2.7).
The initial data in (2.5) should also satisfy the constraints (2.6):

c01 + c02 = 2 in (0, T )× Ω; (2.9a)

c01 > 0, c02 > 0 in (0, T )× Ω. (2.9b)

The assumptions (2.7)–(2.9) will be employed for the existence theorems in
Section 3.1.



Solvability and Lyapunov stability of a two-component PNP 5

2.3. The weak formulation of the complete problem

We will endow the problem (2.1)–(2.5) with the weak formulation:
Find c1, c2, ϕ, µ1, µ2, p such that

c1, c2 ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (2.10a)

ϕ, p ∈ L∞(0, T ;H1(Ω)), (2.10b)

c1∇µ1, c2∇µ2 ∈ L2(QT ), (2.10c)

which satisfy the Dirichlet boundary conditions (2.4), the initial conditions (2.5),
the volume and the positivity constraints (2.6), as well as fulfill two dynamic and
one quasi-stationary variational equations for a time τ ∈ (0, T ):∫

Ω

cic̄i dx
∣∣∣τ
0
−
∫
Qτ

ci
∂c̄i
∂t

dx dt+

∫
Qτ

(ci∇µi)>∇c̄i dx dt

=

∫ τ

0

∫
ΓN

gi(c, ϕ)c̄i dSx dt, i = 1, 2, (2.11a)∫
Ω

(
∇ϕ>∇ϕ̄− 1

2
(c1 − c2)ϕ̄

)
dx+

∫
ΓN

ϕϕ̄ dSx =

∫
ΓN

gϕ̄ dSx, (2.11b)

for all test functions c̄1, c̄2 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and ϕ̄ ∈ H1(Ω),
such that c̄1 = c̄2 = ϕ̄ = 0 on ΓD.

The system (2.11) is completed with two identities (2.1c) and (2.1d) describ-
ing the dual entropy variables p and µ1, µ2 almost everywhere in (0, T )× Ω.

The main difficulty is the presence of the constraints (2.6) in the system.
Indeed, they cannot be guaranteed from the classic solution theory. By this reason,
in Section 2.4 we suggest a reduced formulation of the problem. In Lemma 3.4 in
Section 3 the equivalence of these two formulations under reasonable assumptions
will be proved, in this way providing solvability of the complete system.

2.4. The reduced system of equations

The reduced formulation excludes µ1, µ2 and p as well as the constraints (2.6).
First, with the help of (2.1c) and (2.1d) we exclude the dual entropy variables

from (2.1a) and write it in the equivalent form:

∂ci
∂t

= div(∇ci + zic1c2∇ϕ), i = 1, 2, in (0, T )× Ω. (2.12)

Second, we exclude constraints and restate the equations (2.12) and (2.1b) as

∂ci
∂t

= div
(
∇ci + Υi(c

+)∇ϕ
)
, i = 1, 2, in (0, T )× Ω; (2.13a)

−∆ϕ = Υ(c+) in (0, T )× Ω; (2.13b)

under the corresponding Neumann–Robin boundary conditions(
∇ci + Υi(c

+)∇ϕ
)>
ν = gi(c, ϕ), i = 1, 2, on (0, T )× ΓN ; (2.14a)

∇ϕ>ν + ϕ = g on (0, T )× ΓN ; (2.14b)
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the Dirichlet boundary conditions (2.4), and the initial conditions (2.5). In the
equations (2.13) and (2.14a) the following notations are used:

Υi(c
+) :=

4zic
+
1 c

+
2

(c+1 + c+2 )2
, Υ(c+) :=

c+1 − c
+
2

c+1 + c+2
, (2.15)

recalling the definition of the positive part given in (2.8).
The reason behind (2.15) is that, if the constraints (2.6) hold, then (2.15)

turns into expressions

Υ1(c+) = c1c2, Υ2(c+) = −c1c2, Υ(c+) =
1

2
(c1 − c2), (2.16)

which enter the right-hand sides of (2.12) and (2.1b).
For the reduced problem we give the weak formulation, which is similar to

(2.10) and (2.11): Find c1, c2, ϕ such that

c1, c2 ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (2.17a)

ϕ ∈ L∞(0, T ;H1(Ω)), (2.17b)

satisfying the Dirichlet boundary conditions (2.4), the initial conditions (2.5), and
the following variational equations:∫

Ω

cic̄i dx
∣∣∣τ
0
−
∫
Qτ

ci
∂c̄i
∂t

dx dt+

∫
Qτ

(
∇ci + Υi(c

+)∇ϕ
)>∇c̄i dx dt

=

∫ τ

0

∫
ΓN

gi(c, ϕ)c̄i dSx dt, (2.18a)∫
Ω

(
∇ϕ>∇ϕ̄−Υ(c+)ϕ̄

)
dx+

∫
ΓN

ϕϕ̄ dSx =

∫
ΓN

gϕ̄ dSx, (2.18b)

for all test functions c̄1, c̄2 ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and ϕ̄ ∈ H1(Ω),
such that c̄1 = c̄2 = ϕ̄ = 0 on ΓD.

Based on the reduced formulation, in the next section we will provide well-
posedness of the underlying problem.

3. Well-posedness of the problem

We start with the following preliminaries of functional analysis.

Trace theorem. Let u ∈ H1(Ω), then

k0||u||2H1(Ω) 6 ||u||
2
H1/2(∂Ω) 6 K0||u||2H1(Ω), (3.1)

where 0 < k0 6 K0, and the standard norms are:

||u||2
H1/2(∂Ω)

= ||u||2L2(∂Ω) +

∫
∂Ω

∫
∂Ω

|u(x)− u(y)|2

|x− y|d
dx dy,

||u||2H1(Ω) = ||u||2L2(Ω) + ||∇u||2L2(Ω)d .
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Poincaré inequality. Let u ∈ H1(Ω), u = 0 on ΓD or
∫

Ω
u dx = 0. Then

||u||2L2(Ω) 6 KP ||∇u||2L2(Ω)d , (3.2)

where KP > 0 depends on Ω and d. The Poincaré inequality implies that

1

1 +KP
||u||2H1(Ω) 6 ||∇u||

2
L2(Ω)d 6 ||u||

2
H1(Ω). (3.3)

3.1. The existence theorems

In this section we state two existence theorems and three auxillary lemmas. At
first, the absence of the constraints allows us to prove the existence of the solution
of the reduced problem based on a fixed-point iteration. Thereafter, we show that
this solution satisfies the volume balance and positivity conditions (2.6) under
reasonable assumptions. In this case, this fact guarantees the equivalence of two
formulations. The main result of this section is well-posedness of the generalized
Poisson–Nernst–Planck system in the complete formulation.

Theorem 3.1 (Existence of a weak solution of the reduced problem). Let the con-
tinuity and the growth conditions (2.7a) hold. Then there exists a weak solution
(2.17) of the reduced problem (2.18) under the boundary (2.4) and initial (2.5)
conditions.

Proof. The proof is based on the Schauder–Tikhonov fixed point theorem.
First, we choose an initialization

c
(0)
1 , c

(0)
2 ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

such that the following relations hold:

c
(0)
1 = c

(0)
2 = 1 on (0, T )× ΓD,

c
(0)
1 + c

(0)
2 = 2, c

(0)
1 > 0, c

(0)
2 > 0 in (0, T )× Ω.

For a fixed time τ ∈ (0, T ), we consider the sequence {(c(k+1)
1 , c

(k+1)
2 , ϕ(k+1))},

k ∈ N0, which is determined as an iterative solution of the linearized equations
(2.18) starting with k = 0:∫

Ω

(∇ϕ(k+1))>∇ϕ̄ dx+

∫
ΓN

ϕ(k+1)ϕ̄ dSx

=

∫
ΓN

gϕ̄ dSx +

∫
Ω

Υ
(
(c(k))+

)
ϕ̄ dx, (3.4)

∫
Qτ

∂c
(k+1)
i

∂t
c̄i dx dt+

∫
Qτ

(∇c(k+1)
i )>∇c̄i dx dt =

∫ τ

0

∫
ΓN

g
(k)
i c̄i dSx dt

−
∫
Qτ

Υi

(
(c(k))+

)
(∇ϕ(k+1))>∇c̄i dx dt, i = 1, 2, (3.5)

where g
(k)
i := gi(c

(k), ϕ(k+1)) for short. We emphasize that the equation (3.4)

has to be solved at the first step, and its solution ϕ(k+1) enters the right-hand
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side of the equations (3.5) to be solved at the second step. The existence of the
unique solution of this system follows from the standard linear theory of elliptic
and parabolic equations [14].

Second, we want to obtain subsequent estimations for ϕ(k+1) and c(k+1),
which are independent of the iteration number k.

Estimation for ϕ(k+1). Let us choose the test function ϕ̄ = ϕ(k+1) in the equation
(3.4) and estimate the following integral expression:

I(k+1)
ϕ :=

∫
Ω

|∇ϕ(k+1)|2 dx+

∫
ΓN

|ϕ(k+1)|2 dSx

=

∫
ΓN

gϕ(k+1) dSx +

∫
Ω

Υ
(
(c(k))+

)
ϕ(k+1) dx. (3.6)

Initially we estimate I
(k+1)
ϕ from above and, thereafter, from below by the norm

of ϕ(k+1).
We note that −1 < Υ

(
(c(k))+

)
< 1 is bounded uniformly, since its summands

in (2.15) satisfy:

0 <
(c

(k)
1 )+

(c
(k)
1 )+ + (c

(k)
2 )+

< 1, −1 < − (c
(k)
2 )+

(c
(k)
1 )+ + (c

(k)
2 )+

< 0.

Therefore, using Young’s inequality with an arbitrary β3 > 0 and Poincaré in-
equality (3.2), it follows boundedness of the second term in the right-hand side of
(3.6):∣∣∣∣∫

Ω

Υ
(
(c(k))+

)
ϕ(k+1) dx

∣∣∣∣ 6 ∫
Ω

|ϕ(k+1)| dx

6
1

2β3

∫
Ω

dx+
β3

2

∫
Ω

|ϕ(k+1)|2 dx 6 1

2β3
|Ω|+ β3KP

2

∫
Ω

|∇ϕ(k+1)|2 dx, (3.7)

where |Ω| denotes the Hausdorff measure of Ω in Rd. Now we estimate the first
term in the right-hand side of (3.6) using again the Young’s inequality with an
arbitrary constant β4 > 0:∣∣∣∣∫

ΓN

gϕ(k+1) dSx

∣∣∣∣ 6 1

2β4

∫
ΓN

g2 dSx +
β4

2

∫
ΓN

|ϕ(k+1)|2 dSx. (3.8)

Therefore, using (3.7) and (3.8), the upper bound in (3.6) holds:

I(k+1)
ϕ 6

1

2β3
|Ω|+ 1

2β4
||g||2L2(ΓN )

+
β3KP

2
||ϕ(k+1)||2H1(Ω) +

β4

2
||ϕ(k+1)||2L2(ΓN ). (3.9)

The lower bound of the integral I
(k+1)
ϕ :

1

1 +KP
||ϕ(k+1)||2H1(Ω) + ||ϕ(k+1)||2L2(ΓN ) 6 I

(k+1)
ϕ (3.10)
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follows from the consequence of (3.3) and the Poincaré inequality (3.2).

Collecting together (3.9) and (3.10) we estimate ϕ(k+1):

k1

(
||ϕ(k+1)||2H1(Ω) + ||ϕ(k+1)||2L2(ΓN )

)
6

1

2β3
|Ω|+ 1

2β4

∫
ΓN

g2 dSx,

where k1 := min
{ 1

1 +KP
− β3KP

2
, 1 − β4

2

}
. That means that k1 > 0 for β3, β4

chosen sufficiently small and there exists a constant K2(τ) > 0, such that

||ϕ(k+1)||2H1(Ω) + ||ϕ(k+1)||2L2(ΓN ) 6 K2(τ)

:=
1

2k1

(
1

β3
|Ω|+ 1

β4
||g||2L2(ΓN )

)
, (3.11)

for all indexes k ∈ N0. Taking the supremum over τ ∈ (0, T ) in (3.11), we obtain
the resulting estimate for ϕ(k+1):

||ϕ(k+1)||2L∞(0,T ;H1(Ω)) + ||ϕ(k+1)||2L∞(0,T ;L2(ΓN )) 6 Kϕ := sup
τ∈(0,T )

K2(τ). (3.12)

Estimation for c(k+1). Let us choose the test functions c̄i = c
(k+1)
i −1 for i = 1, 2 in

(3.5), which are zero at (0, T )× ΓD. Using the identities
∂c

(k+1)
i

∂t
=
∂(c

(k+1)
i − 1)

∂t
and ∇c(k+1)

i = ∇(c
(k+1)
i − 1), this yields:

1

2

∫
Qτ

∂

∂t
(c

(k+1)
i −1)2 dx dt+

∫
Qτ

|∇c(k+1)
i |2 dx dt =

∫ τ

0

∫
ΓN

g
(k)
i (c

(k+1)
i −1) dSx dt

−
∫
Qτ

Υi

(
(c(k))+

)
(∇ϕ(k+1))>∇c(k+1)

i dx dt, i = 1, 2. (3.13)

The right-hand side of (3.13) will be estimated by using the assumption of the
theorem and the previous result for ϕ(k+1).

We start by noting that the expression Υi

(
(c(k))+

)
is bounded uniformly:∣∣∣Υi

(
(c(k))+

)∣∣∣ =

∣∣∣∣∣4zi (c
(k)
1 )+(

(c
(k)
1 )+ + (c

(k)
2 )+

) (c
(k)
2 )+(

(c
(k)
1 )+ + (c

(k)
2 )+

)
∣∣∣∣∣ < 4, i = 1, 2.

Using Young’s inequality with the constants β5 > 0 and β6 > 0, Poincaré inequality
(3.2) and the trace theorem (3.1), the estimates of the terms in the right-hand side
of (3.13) follow:∣∣∣∣∫

Qτ

Υi

(
(c(k))+

)
(∇ϕ(k+1))>∇c(k+1)

i dx dt

∣∣∣∣ < ∣∣∣∣∫
Qτ

4(∇ϕ(k+1))>∇c(k+1)
i dx dt

∣∣∣∣
6

2

β5

∫
Qτ

|∇ϕ(k+1)|2 dx dt+ 2β5

∫
Qτ

|∇c(k+1)
i |2 dx dt, i = 1, 2, (3.14)
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and∣∣∣∣∫ τ

0

∫
ΓN

g
(k)
i (c

(k+1)
i − 1) dSx dt

∣∣∣∣ 6 ∫ τ

0

∫
ΓN

|g(k)
i c

(k+1)
i | dSx dt+

∫ τ

0

∫
ΓN

|g(k)
i | dSx dt

6
1

2
τ |ΓN |+

( 1

2β6
+

1

2

)∫ τ

0

∫
ΓN

|g(k)
i |

2 dSx dt+
β6K0

2
||c(k+1)
i ||2L2(0,τ ;H1(Ω)),

(3.15)

where K0 is the constant from the trace theorem (3.1).

With the help of assumptions (2.7a) applied to the boundary terms g
(k)
i and

the obtained estimate (3.12) of ϕ(k+1) we estimate the boundary term in the right-
hand side of (3.15) from above:∫ τ

0

∫
ΓN

|g(k)
i |

2 dSx dt 6
(
β1 + β2||ϕ(k+1)||2L2(0,T ;H1(Ω))

)
G(c(k)) 6 β1 + β2Kϕτ.

(3.16)
Summing up (3.14) and (3.15), using the following integration∫

Qτ

∂

∂t
(c

(k+1)
i − 1)2 dx dt =

∫
Ω

(c
(k+1)
i (τ)− 1)2 dx−

∫
Ω

(c0i − 1)2 dx,

and (3.12), from (3.13) it follows the inequalities below for i = 1, 2:

1

2

∫
Ω

(c
(k+1)
i (τ)− 1)2 dx+

∫
Qτ

|∇c(k+1)
i |2 dx dt

6
1

2
τ |ΓN |+

( 1

2β6
+

1

2

)
(β1 + β2Kϕτ) +

β6K0

2
||c(k+1)
i ||2L2(0,τ ;H1(Ω))

+
2

β5
Kϕτ + 2β5

∫
Qτ

|∇c(k+1)
i |2 dx dt+

1

2

∫
Ω

|c0i − 1|2 dx. (3.17)

Therefore, using the Poincaré inequality (3.3), we continue (3.17) further for i =
1, 2:

1

2

∫
Ω

(c
(k+1)
i (τ)− 1)2 dx+ k2||c(k+1)

i ||2L2(0,τ ;H1(Ω))

6
1

2
τ |ΓN |+

1

2

( 1

β6
+ 1
)

(β1 + β2Kϕτ) +
2

β5
Kϕτ +

1

2

∫
Ω

|c0i − 1|2 dx. (3.18)

In the left-hand side of (3.18), the constant k2 is positive:

k2 :=

(
1

1 +KP
− β6K0

2
− 2β5

)
>

1

2(1 +KP )
> 0 (3.19)

for β5 and β6 chosen sufficiently small.
For convenience, we define the function space W equipped with the norm

|||c|||2 :=

2∑
i=1

(
||ci||2L∞(0,T ;L2(Ω)) +

1

1 +KP
||ci||2L2(0,T ;H1(Ω))

)
. (3.20)
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Then, after summation over i = 1, 2 and taking the supremum over τ ∈ (0, T ) in
(3.18), we get:

|||c(k+1) − 1|||2 6 K̄c + γ̄cKϕ,

where K̄c := 2T |ΓN |+
2β1

β6
+

2∑
i=1

∫
Ω

|c0i − 1|2 dx and γ̄c := 2T
(β2

β6
+

4

β5

)
.

Consequently, applying the triangle inequality |||c(k+1)|||2 = |||c(k+1)− 1 + 1|||2 6

2|||c(k+1) − 1|||2 + 4
(
|Ω|+ |QT |

1 +KP

)
, we have the estimate for c(k+1):

|||c(k+1)|||2 6 Kc + γcKϕ, (3.21)

where Kc := 4
(
|Ω|+ |QT |

1 +KP

)
+ 2K̄c and γc := 2γ̄cKϕ.

The mapping M : (c(k), ϕ(k)) 7→ (c(k+1), ϕ(k+1)) defined by (3.4) and (3.5) is
continuous and maps the following set into itself:

S :={(c, ϕ) ∈ W × L∞(0, T ;H1(Ω)) :

|||c|||2 6 Kc + γcKϕ, ||ϕ||2L∞(0,T ;H1(Ω)) + ||ϕ||2L∞(0,T ;L2(ΓN )) 6 Kϕ}.

Therefore, the existence of a fixed point of M follows by the Schauder–Tikhonov
theorem. The proof is completed. �

In order to get the existence of the solution of the complete formulation,
we show the equivalence of the complete and the reduced formulations under the
assumptions (2.7b) and (2.7c). For this purpose we consider two auxiliary lemmas.

Lemma 3.2 (Volume conservation). Under the assumption (2.7b) holding at the
boundary, the volume balance c1 + c2 = 2 is satisfied a.e. in QT .

Proof. We denote the difference by σ := c1 + c2 − 2, and find that σ|t=0 = c01 +
c02 − 2 = 0. By summing up (2.18a) over i = 1, 2 tested with the function σ, due
to the mass conservation (2.7b), it follows∫

Qτ

∂σ

∂t
σ dx dt+

∫
Qτ

|∇σ|2 dx dt = 0. (3.22)

We integrate the first term in (3.22) over t ∈ (0, τ) and obtain

1

2

∫
Ω

σ2|t=τ dx+

∫
Qτ

|∇σ|2 dx dt =
1

2

∫
Ω

σ2|t=0 dx.

Since σ|t=0 = 0, we conclude that σ ≡ 0, then c1 + c2 ≡ 2, thus proving the
assertion. �

Lemma 3.3 (Weak maximum principle). If the boundary terms g1(c, ϕ) and g2(c, ϕ)
satisfy the assumption (2.7c), then the solution c > 0 is non-negative a.e. in QT
for all T . For small T , the solution c > 0 is positive by continuity.
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Proof. Inserting the test function c̄i = −c−i for i = 1, 2 in (2.18a) because c−i = 0
at (0, T )× ΓD due to (2.4), and using the decomposition ci = c+i − c

−
i , we get∫

Qτ

∂(c+i − c
−
i )

∂t
(−c−i ) dx dt+

∫
Qτ

(
∇(c+i − c

−
i ) + Υ(c+i )∇ϕ

)
∇(−c−i ) dx dt

=

∫ τ

0

∫
ΓN

gi(c, ϕ)(−c−i ) dSx dt, i = 1, 2.

After application of the pointwise orthogonality c−i c
+
i = 0, this results in the

following equality:

1

2

∫
Qτ

∂(c−i )2

∂t
dx dt+

∫
Qτ

|∇c−i |
2 dx dt = −

∫ τ

0

∫
ΓN

gi(c, ϕ)c−i dSx dt, i = 1, 2.

Since gi(c, ϕ)c−i = 0 by assumption (2.7c) and using the following integration by

parts
1

2

∫
Qτ

∂(c−i )2

∂t
dx dt =

1

2

∫
Ω

(c−i )2 dx
∣∣∣τ
0
, we have

1

2

∫
Ω

(
c−i (τ)

)2
dx+

∫
Qτ

|∇c−i |
2 dx dt =

1

2

∫
Ω

(
(c0i )

−)2 dx, i = 1, 2. (3.23)

After summation over i = 1, 2 and taking the supremum over τ ∈ (0, T ) in (3.23),
with the help of Poincaré inequality (3.3) we conclude:

1

2
|||c−|||2 6 1

2
||c−||2L∞(0,T ;L2(Ω)) +

1

1 +KP
||c−||2L2(0,T ;H1(Ω))

6 ||(c0)−||2L2(Ω). (3.24)

Since c0 > 0 according to (2.9b), it follows c− = 0 a.e. on QT . Then c = c+, thus
the solution is non-negative a.e. in QT . The lemma is proved. �

If Lemmas 3.2 and 3.3 hold, then the solution of the reduced problem satisfies
the constraint (2.6) and solves the complete problem. Rigorously this fact will be
proved in the following

Lemma 3.4 (Equivalence of two formulations). Under assumptions of Lemma 3.2
and Lemma 3.3, the complete problem and the reduced problem are equivalent.

Proof. First, we show that the equation (2.11) and the conditions (2.6) lead to
(2.18). Due to (2.6) we have

c1 = c+1 , c2 = c+2 , and c+1 + c+2 = 2. (3.25)

Therefore, from (2.11b) we obtain (2.18b) by using (3.25), which provides that:

1

2
(c1 − c2) =

c+1 − c
+
2

c+1 + c+2
= Υ(c+). (3.26)
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Using (3.25) again, after substitution of the expressions (2.1c) and (2.1d) in ∇µ1

and ∇µ2, with the help of (2.16) we can rewrite the following expressions equiva-
lently:

c1∇µ1 = c1

(∇c1
c1

+∇p+∇ϕ
)

= ∇c1 + c1c2∇ϕ = ∇c1 + Υ1(c+)∇ϕ, (3.27a)

c2∇µ2 = c2

(∇c2
c2

+∇p−∇ϕ
)

= ∇c2 − c2c1∇ϕ = ∇c2 + Υ2(c+)∇ϕ. (3.27b)

Consequently, from (2.11a) we arrive at equations (2.18a).

In return, if (2.18) holds, then it follows (2.11) and (2.6). Indeed, from Lemma
3.3 we have c1 > 0 and c2 > 0, and from Lemma 3.2 we get c1 + c2 = 2 a.e. in
QT , thus (2.6). This implies equalities (3.26) and (3.27), hence (2.11) holds. This
proves the assertion of the lemma. �

As a consequence of Lemma 3.4, it follows

Theorem 3.5 (Well-posedness of generalized Poisson–Nernst–Planck system). Let
assumptions (2.7) on the boundary data hold. Then there exists a weak solution of
the problem (2.11), satisfying a-priori estimates:

||ϕ||2L∞(0,T ;H1(Ω)) + ||ϕ||2L∞(0,T ;L2(ΓN )) 6 Kϕ, (3.28)

||c||2L∞(0,T ;L2(Ω)) + ||c||2L2(0,T ;H1(Ω)) 6 Kc + γcKϕ (3.29)

with the positive constants Kϕ from (3.12), γc and Kc from (3.21).

Proof. By Lemma 3.1 there exists a weak solution of the reduced problem (2.18).
Then by Lemma 3.4 it solves the complete problem (2.11), and estimates (3.12)
and (3.21) hold true for the solution of the complete formulation, too. �

3.2. The uniqueness of the solution

We emphasize that uniqueness of solutions of nonlinear systems cannot be proved
generally. In fact, to prove the uniqueness of the solution of the underlying problem,
additional smoothness of ϕ and smallness of g1(c, ϕ), g2(c, ϕ) are claimed.

Theorem 3.6 (Uniqueness). Let the solution component ϕ be smooth such that

ϕ ∈ L∞(QT ), ∇ϕ ∈ L∞(QT )d, (3.30)

and let there exist 0 < Kg(c, ϕ,∇ϕ) < β7 and 0 < δ < 1:∫
ΓN

gi(c, ϕ)c̄ dSx 6
Kg(c, ϕ,∇ϕ)

β7

∫
Ω

c̄2 dx+ β7

∫
Ω

|∇c̄|2 dx, i = 1, 2, (3.31)

for all c̄, c and for all β7 ∈ (0, δ). Then the weak solution (2.10) of the problem
(2.11) with the boundary (2.4) and initial (2.5) conditions is unique.
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Proof. Let us assume that there exist two different solutions (c
(1)
1 , c

(1)
2 , ϕ(1)) and

(c
(2)
1 , c

(2)
2 , ϕ(2)) of the problem (2.18) marked by indexes m = 1, 2:

∫
Ω

∂c
(m)
i

∂t
c̄i dx+

∫
Ω

Υi(c
(m))∇c̄i dx

=

∫
ΓN

gi(c
(m), ϕ(m))c̄i dSx, i = 1, 2; (3.32)

∫
Ω

∇(ϕ(m))>∇ϕ̄ dx+

∫
ΓN

ϕ(m)ϕ̄ dSx =

∫
ΓN

gϕ̄ dSx +

∫
Ω

Υ(c(m))ϕ̄ dx, (3.33)

where (3.32) is obtained from (2.18a) by differentiation with respect to τ . In the
following, the difference between these solutions will be denoted by ϕ̃ = ϕ(1)−ϕ(2),

c̃i = c
(1)
i − c

(2)
i , and g̃i = gi(c

(1), ϕ(1))− gi(c(2), ϕ(2)) for i = 1, 2.

Estimation for ϕ̃. Subtracting the equations (3.33) for m = 1 and m = 2 and
substituting the test function ϕ̃, we obtain∫

Ω

|∇ϕ̃|2 dx+

∫
ΓN

ϕ̃2 dSx =

∫
Ω

(
Υ(c(1))−Υ(c(2))

)
ϕ̃ dx. (3.34)

Applying to (3.34) Young’s inequality with a constant β8 > 0 and the Poincaré
inequality (3.2), it follows the upper bound∣∣∣∣∫

Ω

(
Υ(c(1))−Υ(c(2))

)
ϕ̃ dx

∣∣∣∣ 6 1

2

∫
Ω

|c̃1 − c̃2||ϕ̃| dx

6
1

4β8

2∑
i=1

∫
Ω

c̃2i dx+
β8K0

4

∫
Ω

|∇ϕ̃|2 dx. (3.35)

Henceforth, from the above estimates (3.34) and (3.35) we derive(
1

1 +KP
− β8K0

4

)
||∇ϕ̃||2L2(Ω) + ||ϕ̃||2L2(ΓN ) 6

1

4β8

2∑
i=1

∫
Ω

c̃2i dx, (3.36)

and for small β8 we get equivalently

||∇ϕ̃||2L2(Ω) + ||ϕ̃||2L2(ΓN ) 6 K̃ϕ

2∑
i=1

||c̃i||2L2(Ω), (3.37)

with the positive factor

K̃ϕ :=
1

4β8 min{1, 1
1+KP

− β8K0

4 }
> 0.
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Estimation for c̃. Next, we consider the difference between two solutions of (3.32)
with the test function c̃i and sum it over i = 1, 2 to obtain

2∑
i=1

{
d

dt

[
1

2

∫
Ω

c̃i(t)
2 dx

]
+

∫
Ω

|∇c̃i(t)|2 dx
}

=

2∑
i=1

{Ii1 + Ii2},

Ii1 :=

∫
ΓN

g̃ic̃i dSx, Ii2 := −
∫

Ω

(
Υi(c

(1))∇ϕ(1) −Υi(c
(2))∇ϕ(2)

)>∇c̃i dx.
According to the assumption (3.31) on gi(c, ϕ) we estimate Ii1:

|Ii1| =
∣∣∣∣∫

ΓN

g̃ic̃i dSx

∣∣∣∣ 6 Kg

β7

∫
Ω

c̃2i dx+ β7

∫
Ω

|∇c̃i|2 dx.

On the other hand, the integral Ii2 can be rewritten equivalently as

Ii2 = −
∫

Ω

zi(c
(1)
1 c

(1)
2 ∇ϕ(1) − c(2)

1 c
(1)
2 ∇ϕ(1) + c

(2)
1 c

(1)
2 ∇ϕ(1) − c(2)

1 c
(2)
2 ∇ϕ(1)

+ c
(2)
1 c

(2)
2 ∇ϕ(1) − c(2)

1 c
(2)
2 ∇ϕ(2))>∇c̃i dx,

and estimated using Young’s inequality with β9 > 0:

|Ii2| 6
∣∣∣∣∫

Ω

zi(c̃1c
(1)
2 ∇ϕ(1) + c

(2)
1 c̃2∇ϕ(1) + c

(2)
1 c

(2)
2 ∇ϕ̃)>∇c̃i dx

∣∣∣∣.
Then, applying Cauchy–Schwarz inequality, it follows:

|Ii2| 6
β9

2
||∇c̃i||2L2(Ω) +

1

2β9

{
||c̃1||2L2(Ω)||c

(1)
2 ||2L∞(Ω)||∇ϕ

(1)||2L∞(Ω)

+ ||c(2)
1 ||2L∞(Ω)||c̃2||

2
L2(Ω)||∇ϕ

(1)||2L∞(Ω)

+ ||c(2)
1 ||2L∞(Ω)||c

(2)
2 ||2L∞(Ω)||∇ϕ̃||

2
L2(Ω)

}
.

The assumption (3.30) implies that there exists K3 > 0 such that ||∇ϕ(1)||2L∞(Ω) 6

K3. Taking conditions (2.6) into account, we have ||c(2)
1 ||2L∞(Ω) < 2, ||c(1)

2 ||2L∞(Ω) <

2 and ||c(2)
2 ||2L∞(Ω) < 2. Denoting by γ := ((18/β9)) max{K2, 4K̃ϕ,Kg/β7}, and

with the help of (3.37), it follows

2∑
i=1

{
d

dt

[∫
Ω

c̃i(t)
2 dx

]
+ 2(1− β7 − β9)||∇c̃i(t)||2L2(Ω)

}

6 γ
2∑
i=1

||c̃i(t)||2L2(Ω). (3.38)
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Therefore, choosing β7, β9 sufficiently small such that 1−β7−β9 > 0, from (3.38)
we infer

d

dt

2∑
i=1

||c̃i(t)||2L2(Ω) 6 γ
2∑
i=1

||c̃i(t)||2L2(Ω). (3.39)

Finally, from (3.39) by Grönwall’s inequality we have

2∑
i=1

||c̃i(t)||2L2(Ω) 6
2∑
i=1

||c̃i(0)||2L2(Ω)e
γt = 0,

since c̃i(0) = 0. This implies that c̃1 ≡ 0 and c̃2 ≡ 0. Henceforth, ϕ̃ ≡ 0 in (3.37)
thus proving uniqueness of the solution and the assertion of the theorem. �

3.3. The Lyapunov stability and the entropy estimate

For positive concentrations we can define a Lyapunov function:

S : R+ → R+, S(t) :=

2∑
i=1

∫
Ω

ci ln ci dx,

which associates the entropy. This function is non-negative, since ξ ln ξ > ξ− 1 for
all ξ > 0 and using the mass conservation (2.6a) it follows:

S =

2∑
i=1

∫
Ω

ci ln ci dx >
2∑
i=1

(ci − 1) = 0.

The Lyapunov stability is characterized by the non-negativeness of the so-
called dissipation function:

D : R+ → R, D(t) := −dS
dt

= −
2∑
i=1

∫
Ω

∂ci
∂t

(ln ci + 1) dx, (3.40)

which can be expressed with the help of the entropy estimate below.

Theorem 3.7 (Lyapunov stability). The entropy dissipation defined in (3.40) has
the following equivalent expression:

D = D1 +D2;

D1 :=

2∑
i=1

∫
Ω

(
2|∇(
√
ci)|
)2
dx+

∫
Ω

(c1 − c2)2 dx;

D2 :=

∫
ΓN

(g − ϕ)(c1 − c2) dSx −
2∑
i=1

∫
ΓN

gi(c, ϕ) ln ci dSx.

(3.41)

By this, D1 > 0 and the dissipation inequality D > 0 holds for D2 either non–
negative or sufficiently small.
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Proof. We consider a quasi-stationary version of the system (2.11) written without
integration over time, which depends on t ∈ (0, T ] as a parameter. Let t be fixed.

Choosing the test function c̄i = ln ci, since ln ci = ln 1 = 0 at the bound-
ary (0, T ) × ΓD, using the equation for the pressure (2.1c) and for electrostatic
potentials (2.1d), it follows from (2.11a) that:∫

Ω

∂ci
∂t

ln ci dx+

∫
Ω

(
∇ci + Υi(c)∇ϕ

)∇ci
ci

dx =

∫
ΓN

gi(c, ϕ) ln ci dSx. (3.42)

After summation of (3.42) over i = 1, 2, and inserting the first expression from
(2.15) here, we obtain

2∑
i=1

∫
Ω

∂ci
∂t

ln ci dx+

2∑
i=1

∫
Ω

|∇ci|2

ci
dx+

∫
Ω

∇ϕ>∇(c1 − c2) dx

=

2∑
i=1

∫
ΓN

gi(c, ϕ) ln ci dSx. (3.43)

In (3.43) the volume balance (2.6a), (2.16), and the following transformation were
used:

2∑
i=1

Υi(c)
∇ci
ci

= c2∇c1 − c1∇c2 =
1

2

(
2∇c1 − c1∇(c1 + c2)

)
+

1

2

(
c2∇(c1 + c2)− 2∇c2

)
= ∇(c1 − c2).

On the other hand, from (2.11b) with the test function ϕ̄ = c1 − c2, which is
zero at (0, T )× ΓD, we have∫

Ω

∇ϕ>∇(c1 − c2) dx− 1

2

∫
Ω

(c1 − c2)2 dx =

∫
ΓN

(g − ϕ)(c1 − c2) dSx. (3.44)

Subtracting (3.44) from (3.43), with the help of the identity
|∇ci|2

ci
=
(
2|∇(
√
ci)|
)2

we infer

2∑
i=1

∫
Ω

∂ci
∂t

ln ci dx+

2∑
i=1

∫
Ω

(
2|∇(

√
ci)|
)2
dx+

∫
Ω

(c1 − c2)2 dx

=

2∑
i=1

∫
ΓN

gi(c, ϕ) ln ci dSx −
∫

ΓN

(g − ϕ)(c1 − c2) dSx. (3.45)

Noting that

2∑
i=1

∂ci
∂t

=
∂

∂t

2∑
i=1

ci =

2∑
i=1

∂

∂t
2 = 0, it holds

2∑
i=1

∫
Ω

∂ci
∂t

ln ci dx =

2∑
i=1

∫
Ω

∂ci
∂t

(ln ci+1) dx = −D, and (3.45) leads to the formula (3.41). This justifies

the assertion of the theorem. �
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Discussion. First, the two-component dimensionless model can be generalized to
the multi-phase model following [12, 13]. Second, physical parameters and matrices
should be introduced into the system. In the latter case we have to assume special
conditions for coefficient matrices in order to prove existence of the solution. We
can prove that the solution is non-negative only if rather strong assumptions hold.
Namely, the coefficient matrices in the parabolic system for the vector c should be
diagonal, such that the system is decoupled. Otherwise, under weaker assumptions
the solution guarantees to be non-negative only locally in time for small T > 0.
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