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We propose a generalized Suzuki–Trotter (GST) type method for the so-
lution of an optimal control problem for quantum molecular systems. The
control of such systems gives rise to a minimization problem with constraints
given by a system of coupled Schrödinger equations. The bottleneck of
the corresponding minimization methods is the solution of time-dependent
Schrödinger equations. To solve the Schrödinger equations we use the GST
framework to obtain an explicit polynomial approximation of the matrix ex-
ponential function. The GST method almost exclusively uses the action of
the Hamiltonian and is therefor efficient and easy to implement for a vari-
ety of quantum systems. Following a first-discretize-then-optimize approach
we derive the correct discrete representation of the gradient and the Hes-
sian. The derivatives can naturally be expressed in the GST framework and
can therefor be efficiently computed. By recomputing the solutions of the
Schrödinger equations instead of saving the whole time evolution, we are
able to significantly reduce the memory requirements of the method at the
cost of additional computations. This makes first and second order optimiza-
tion methods viable for large scale problems. In numerical experiments we
compare the performance of different first and second optimization methods
using the GST method. We observe fast local convergence of second order
methods.

1 Introduction

One of the goals of quantum control is to steer a quantum system with an external control
from an initial to a target configuration [5]. Applications range from the manipulation
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of chemical reactions [16] to the experimental realization of quantum computers [4].
In this paper we consider a problem in molecular control, i.e. the design of a laser
pulse that changes the configuration of atomic nuclei by inducing transitions in the
electronic structure [10]. Mathematically this process can be described by a system
of coupled Schrödinger equations. In many cases it is known that there exist controls
which accomplish the control goal [21, 2] and the qualitative behavior of those controls
is known in some simple limiting cases [3]. Nevertheless, the shape of the pulse for
realistic problems is extremely difficult to guess. To overcome this difficulty the quantum
control problem typically is reformulated as an optimal quantum control problem, that
is equivalent to an optimization problem with PDE constraints [15, 9, 23]. We study two
cases of control costs using L2 and H1

0 norms [22], which correspond to the penalization of
the laser energy and the penalization of strong oscillations of the laser field, respectively.

The bottleneck for the numerical solution of the optimal quantum control prob-
lem is the solutions of the time-dependent Schrödinger equation. The evaluation of
the functional of the optimal quantum control problem, the associated gradient, and
the evaluation of the action of the Hessian require multiple solutions of the time-
dependent Schrödinger equation. Therefor a fast solution method for the time-dependent
Schrödinger equation is of major importance. The time evolution operator of a quantum
system is essentially the exponential of the Hamiltonian of the quantum system. The
classical Suzuki–Trotter method approximates an exponential operator with a product
ansatz of computationally simple exponential operators [19, 18]. The generalized Suzuki–
Trotter (GST) method instead uses a product ansatz of lower order approximations of
the exponential operator for the construction of the higher order approximation of the ex-
ponential operator [11]. Thus computationally inexpensive linear approximations for the
exponential operator can be used as building blocks for the generalized Suzuki–Trotter
method. The resulting explicit scheme then generates a polynomial approximation of
the exponential operator. In practice only the action of the Hamiltonian is required to
construct an approximation for the time evolution operator. Therefore the GST method
is easily applicable to a wide variety of Schrödinger operators.

The optimal quantum control problem is typically solved using a gradient based
method [15, 8] or self-consistent iterations like the monotonic method [24, 12, 9]. Sec-
ond order methods like Newtons method are less frequently used [23, 7]. A problem of
second order methods is that evaluation of the action of the Hessian involves the so-
lution of inhomogeneous Schrödinger equations. Inhomogeneous Schrödinger equations
are typically not of physical relevance and thus most standard solvers do not support
this setting. We shall outline a simple approach to tackle this problem.

For our numerical experiments we implemented a first-discretize-then-optimize (DTO)
approach using the GST method. It is similar to the calculus for directional derivatives
in [13]. We derived expressions for the first and second order derivatives of the time
stepping scheme with respect to the control. These expressions fit naturally within the
GST framework and thus can be computed efficiently. In particular the inhomogeneous
Schrödinger equation for the action of the Hessian can be computed efficiently using the
GST method.

In the spirit of a low memory implementation for the functional, gradient, and Hessian
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evaluation the algorithms do not store the whole time evolution of the wave function
in memory, but instead employ additional solutions of the Schrödinger equation when
required. The huge decrease in memory requirements, at the cost of additional solutions
of the Schrödinger equation, is a crucial step to make the algorithm practical for large
scale problems.

We conducted numerical experiments with different first and second order optimization
methods using the functional, gradient, and Hessian evaluation implemented in the GST
framework. The problem setting for the optimal quantum control problem are two
coupled one-dimensional Schrödinger equations and a cost functional including either
an L2 or H1

0 norm penalization of the laser pulse. Comparing the DTO with the OTD
approach we found that DTO generates better approximations of the derivatives of the
cost functional and is therefore more reliable in generating descent directions. This fact
also justifies the increased cost of gradient and Hessian evaluations in the DTO approach.
For our example we observed fast local convergence of the trust region globalized Newton
method. The norm of the gradient at the calculated optimum was several orders of
magnitude smaller compared to only first order gradient based methods. However, the
gradient based methods were faster in reaching a small neighborhood of a local optimum
compared to the trust region globalized Newton method. It might be useful to use a
hybrid method to combine the advantages of both methods in future investigations.

For our model problem the choice of the cost term has a major influence on the qual-
itative behavior of the resulting optimal control function. Comparing the frequency
spectrums of the controls for the L2 and H1

0 cost terms we see that the controls trig-
ger different physical mechanisms. In the L2 case the desired oscillating behavior that
induces transitions in the electronic structure was visible. For the H1

0 case the control
only contains low frequency components and does not exploit the coupling in the system
of Schrödinger equations. This effect might also be sensitive to the choice of the cost
parameter. Using a H1

0 cost term might therefor be unfeasible for the model problem.
The paper is structured as follows. In Section 2 we give a precise formulation of

the optimal quantum control problem and derive representations for derivatives and
optimality conditions in the continuous setting. The generalized Suzuki–Trotter (GST)
method will be introduced and analyzed in Section 3 and we also state the fully discrete
problem and carry out the DTO approach. In Section 4 we present the results of the
numerical experiments.

2 Optimal Quantum Control Problem

We will first introduce the optimal quantum control problem for a coupled system of
Schrödinger equations for the description of molecules and then motivate the typical
optimal control formulation as a minimization problem with a cost functional using L2

or H1
0 norms for the control penalization. We will then present expressions for the first

and second order derivatives of the functional.

3



2.1 Model Quantum System

The time evolution of a molecule in a laser field can be described by a time-dependent
Schrödinger equation. The full molecular Schrödinger equation is very high dimensional,
even for small molecules and therefore the equation is approximated in a suitable way.
The standard approach is a multilevel Born–Oppenheimer approximation: For each of a
small number M of low electronic states, an effective d-dimensional Schrödinger equation
is derived for the nuclei, where the electrons create an effective potential, the potential
energy surface (PES). The nuclei move on these PES. This leads to a system of coupled
Schrödinger equations.

The equations are coupled due to intersections of the potential energy surfaces and the
dipole coupling of the time-dependent electric field of the laser. The usual ground state
approximation, which corresponds to M = 1, is not appropriate in this setting, since
excited electronic states might become populated in the presence of the laser interaction.
However, we will assume that the field intensity is small enough to allow for a first order
approximation of the field–matter coupling, see [5] for a justification and [20] for higher
order approximations.

The equation for the nuclei on M PESs then reads

i∂tψ(t) = (T̂ + V̂ + u(t)µ̂)ψ(t), ψ(0) = ψ0.

Here, ψ(t) = (ψ1(t), . . . , ψM (t))T and ψ0 = (ψ0,1, . . . , ψ0,M )T are vectors of complex

functions describing the wave functions on the different PESs, T̂ = diag(T, . . . , T ) is an
operator-valued diagonal matrix of kinetic energies, V̂ = (Vij) is an operator-valued ma-
trix of potentials, µ̂ = (µij) is the operator-valued matrix of transition dipole operators
of the electric field of the laser and u(t) is the real-valued electric field strength.

In the following we will use the abstract formulation

i∂tψ(t) = (H0 + u(t)H1)ψ(t), ψ(0) = ψ0. (1)

for this initial value problem. Here ψ and ψ0 are vectors of complex functions and H0

and H1 are self-adjoint matrices of operators in some Hilbert space. The uncontrolled
system is governed by the Hamiltonian H0 and u introduces an additional coupling via
the transition operator H1. In the context of optimal control, (1) is referred to as state
equation. Solutions of (1) exist under reasonable assumptions on H0, H1 and u, see [1,
Theorem 2.5].

2.2 Control Problem

A typical goal in molecular quantum control is to steer a system from an initial state ψ0

into a subspace X, which consists of states with a desired property. Interesting choices
for X include subspaces of common electronic structure or localization in space. The
corresponding control problem can be formulated as follows: Find a control u in a set of
admissible controls U such that the corresponding solution of (1) satisfies ψ(T ) ∈ X for
some T > 0. The bilinear structure of this control problem allows for a rich mathematical
theory. Unfortunately, in general this problem does not have a solution, see [1] for the
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fundamental negative result on controllability in infinite dimensions. Even in cases where
it is known that suitable controls exist, the shape of the controls often cannot be derived
analytically. The large time behavior of the control system, however, highlights the
importance of particular frequencies in the control [3]. One obtains Bohr’s frequency
law, which states that the frequencies in the control are proportional to energy differences
in the quantum system. For finite time horizons the problem is more complicated. We
will therefor reformulate the control problem as an optimal control problem. It can
be derived as follows. As a first step we fix the final time T > 0 and consider the
minimization of dist(ψ(T ), X) where ψ and u solve (1). This can equivalently be written
as

Minimize
1

2
〈ψ(T ),Oψ(T )〉 s. t. (1), (2)

where O = I − PX and PX is the orthogonal projection on X. This problem is still not
well-posed, by the same argument as above.

There are several ways to guarantee the existence of solutions for problem (2). Among
them are constraints on the admissible controls U like thresholds for the amplitude or
restriction to finitely many degrees of freedom. We will instead regularize the problem
with a Tikhonov term. This means that we add a term to the cost functional that
penalizes the growth of the control in a suitable way. Then the problem reads

Minimize J(ψ, u) =
1

2
〈ψ(T ),Oψ(T )〉+

α

2
‖u‖2U s. t. (1). (3)

Here U is equipped with a scalar product 〈·, ·〉U and ‖u‖U =
√
〈u, u〉U is the norm in U ,

and α > 0 is a regularization parameter. The norm in U should penalize unfavorable
behavior of the control u. Problem (3) has solutions under appropriate assumptions, see
[9]. Here O can also be a more general observable.

The observable O and a time horizon T are typically given by the concrete application.
But there is some freedom in the choice of the control space U and the regularization
parameter α. Restrictions on U might be of physical nature or address issues of the
experimental implementation. We will consider the two cases U = L2 and U = H1

0 . The
regularization with an L2 cost term goes back to the first papers on optimal control for
quantum molecular systems [15]. It is used for its simplicity and seeming naturalness.
The term ‖u‖2L2 is proportional to the energy of the electric field. Its boundedness
is a physical necessity. However, optimal pulses computed for this choice of the cost
term seem to suffer from a highly irregular shape and from oscillations which prohibit
direct implementations in experiments. The H1

0 regularization does not suffer from these
oscillations since it penalizes them. Additionally, controls in H1

0 satisfy homogeneous
Dirichlet boundary conditions that are suitable for a laser pulse that gets switched on
and off. A modified H1

0 norm is related to the physical work done in the system [7].
An H1

0 cost term is successfully applied in applications [8]. However, for the problem at
hand, it introduces an undesired behavior of the control in the sense that high frequencies
are penalized even though they are desirable due to Bohr’s law. In the next section we
will formally derive the optimality systems for the L2 and H1

0 case.
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Instead of the constrained optimization problem (3) we can equivalently study the
unconstrained problem

Minimize j(u) = J(ψ(u), u), (4)

where ψ(u) denotes the solution of (1) for a given control u. In this context, j is called
reduced cost functional since the explicit dependence of the cost functional on ψ is
dropped. Unconstrained problems are sometimes easier to study from a theoretical point
of view. From the numerical point of view, it also reduces the degrees of freedoms of the
problem and it is possible to directly apply techniques from unconstrained optimization
theory. Note, however, that although equation (1) is linear in the state and linear in the
control, the resulting bilinear control problem is non-convex. In the next section we will
study derivatives and the optimality system for the reduced problem.

2.3 Derivatives and Optimality Conditions

In this subsection we will give optimality conditions for the problem (4) and provide
representations of the gradient and Hessian of the reduced cost functional j. We will
see that the different choices of the control space U will lead to a different qualitative
behavior of the local optimizers. The explicit representations of the derivatives of j can
be used to set up an optimization method using a first-optimize-then-discretize approach.

Representations for the derivatives of j can formally be derived using a Lagrange
ansatz, see [23]. We will only summarize the results. To start we denote by ϕ(u) the
unique solution of

i∂tϕ(t) = (H0 + u(t)H1)ϕ(t), ϕ(T ) = Oψ(T ). (5)

It can be understood as an equation backwards in time with a terminal value provided by
ψ(u). The function ϕ is called adjoint state and (5) is refered to as adjoint equation. We
will also need the derivatives of the state and adjoint state with respect to the control.
One can derive the following formulas for ψ′(u)(δu) and ϕ′(u)(δu), see [1]. They are the
solutions of the inhomogeneous equations

i∂tψ
′ = (H0 + uH1)ψ

′ + δuH1ψ, ψ′(0) = 0, (6)

i∂tϕ
′ = (H0 + uH1)ϕ

′ + δuH1ϕ, ϕ′(T ) = Oψ′(T ), (7)

The derivatives of j can now be expressed in terms of ψ, ϕ, ψ′ and ϕ′.

Proposition 1. Let u, δu, τu ∈ U . The first and second derivative of j are given by

j′(u)(δu) =

∫ T

0
〈(−iH1)

∗(ϕ(u)
)
(t),

(
ψ(u)

)
(t)〉Hδu(t) dt+ α〈u, δu〉U (8)

and

j′′(u)(δu, τu) =

∫ T

0

(
〈(−iH1)

∗(ϕ′(u)(δu)
)
(t),

(
ψ(u)

)
(t)〉H

+〈(−iH1)
∗(ϕ(u)

)
(t),
(
ψ′(u)(δu)

)
(t)〉H

)
τu(t) dt

+ α〈δu, τu〉U .

(9)
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The form of the gradient and the action of the Hessian depend on the Hilbert space
structure of U . Let us first consider the case U = L2(0, T ). Then (8) implies

∇j(u) = αu+ 〈(−iH1)
∗ϕ(u), ψ(u)〉H, (10)

and in the optimum ū we have

ū = − 1

α
〈(−iH1)

∗ϕ(ū), ψ(ū)〉. (11)

For the action of the Hessian we obtain

∇2j(u) · δu = αδu+ 〈(−iH1)
∗ϕ′(u)(δu), ψ(u)〉H + 〈(−iH1)

∗ϕ(u), ψ′(u)(δu)〉H. (12)

For the case U = H1
0 (0, T ) we get∫ T

0
∂t(∇j(u)− αu)∂tδudt =

∫ T

0
〈(−iH1)

∗ϕ(u), ψ(u)〉Hδudt

for all δu ∈ H1
0 . This means that z = ∇j(u)− αu is the weak solution of

−∆z = 〈(−iH1)
∗ϕ(u), ψ(u)〉H,

z(0) = z(T ) = 0,
(13)

and in the optimum ū we have

−∆ū = − 1

α
〈(−iH1)

∗ϕ(ū), ψ(ū)〉H,

ū(0) = ū(T ) = 0.
(14)

For the action of the Hessian we obtain∫ T

0
∂t(∇2j(u) · δu− αδu)∂tτu dt =

∫ T

0
〈(−iH1)

∗ϕ′(u)(δu), ψ(u)〉Hτu
+〈(−iH1)

∗ϕ(u), ψ′(u)(h1)〉Hτu dt

for all τu ∈ U . This means that z = ∇2j(u) · δu− αδu is the weak solution of

−∆z = 〈(−iH1)
∗ϕ′(u)(δu), ψ(u)〉H + 〈(−iH1)

∗ϕ(u), ψ′(u)(δu)〉H,
z(0) = z(T ) = 0.

(15)

Comparing (11) and (14) we see the smoothing effect of the H1
0 regularization compared

to the L2 regularization. The function 〈(−iH1)
∗ϕ(ū), ψ(ū)〉H typically oscillates in time.

In (11) we can see that the optimal control for U = L2 inherits those oscillations.
Equation (14) implies that for U = H1

0 the optimal control is a smoothed version of
the oscillating function. In our application where oscillating controls are expected and
necessary this can lead to undesirable optimal controls that have large low frequency
contributions.
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3 Numerical Approach

We discuss the numerical approach for the solution of the optimal quantum control
problem. The first part introduces the generalized Suzuki–Trotter (GST) method and in
the second part the structural properties of the GST method itself as well as its behavior
under differentiation with respect to the control are presented. Then we discretize the
optimal control problem and derive representations of the discrete derivatives that are
efficiently computable. We close with a discussion of optimization algorithms.

3.1 Generalized Suzuki–Trotter Method

The generalized Suzuki–Trotter method was introduced in [11] and is an extension of
the approximation scheme for the exponential operator presented in [19, 18]. The main
idea of the method is to approximate the exponential operator in a recursive scheme as a
product of lower order approximations in the context of a Banach algebra B. Throughout
this section B denotes a C∗ algebra.

Definition 2. Let B ∈ BC×Uh
, uh ∈ Uh, z ∈ C and m ∈ N then the generalized Suzuki–

Trotter (GST) operator Qm : BC×Uh → BC×Uh
is recursively defined by

Q1(B)(z, uh) = B(z, uh),

Qm(B)(z, uh) = Qm−1(B)(pmz, u
h) · Qm−1(B)(p̄mz, u

h), m > 1,

where the coefficients pm ∈ C satisfy the relations

pm + p̄m = 1, pmm + p̄mm = 0 . (16)

The equations for the coefficients pm in Definition 2 can be solved analytically with

pm =
1

1 + e−iπ/m
=

1

2
+
i

2
tan(π/2m) . (17)

The operator Qm can also be defined on BC and then extended pointwise to BC×Uh

by Qm(B)(z, uh) = Qm(B(·, uh))(z). In practice we will not use the GST method with
z ∈ C but only for t ∈ R. However, for the theory it is sometimes useful to allow complex
time steps. The GST operator can be written as a product,

Qm(B)(z, uh) =
2m−1∏
k=1

B(αkz, u
h), (18)

where αk is the (m − 1)-fold product of the coefficients pj or pj with 1 < j ≤ m. The
following result states the fundamental approximation property of the GST method.

Theorem 3. Let A ∈ BU
h
, B ∈ BC×Uh

, uh ∈ Uh, z ∈ C and m ∈ N. If the map
z 7→ B(z, uh) is analytic and

B(z, uh)− exp(zA(uh)) = o(z)
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then the map z 7→ Qm(B)(z, uh) is analytic and

Qm(B)(z, uh)− exp(zA(uh)) = o(zm).

A proof of the theorem is given in [11]. A good choice for the first order approximation
operator B is obviously the linear approximation

B(z, uh) := I + zA(uh). (19)

For the linear approximation we obtain an explicit error bound for the approximation of
the exponential, as well as a restriction on the norm of the argument for the polynomial
approximation.

Proposition 4. Let A ∈ BUh
, B ∈ BC×Uh

and B(z, uh) := I + zA(uh) a linear approx-
imation and m ∈ N. If s := 3

2m−1 ‖zA(uh)‖ < 1 then

‖Qm(B)(z, uh)− exp(zA(uh))‖ ≤ (exp(2m−1
∞∑

k=m+1

sk

k
)− 1)(1 + s)m−1.

For specific operators A this leads to a restriction of the step size t ∈ R of the explicit
time stepping scheme as well as on the size of the control uh. Since Qm generates
approximations of the exponential operator, it also approximately satisfies the group
property. For even m we obtain an enhanced approximation.

Lemma 5. Under the assumptions of Theorem 3 with m even we have

Qm(B)(−z, uh) · Qm(B)(z, uh)− I = o(zm+1).

The next lemma states that the equivalence of taking the adjoint and reversing time
is preserved by the GST scheme.

Lemma 6. Let B ∈ BC×Uh
, uh ∈ Uh and m ∈ N. If B satisfies the symmetry condition

B(z, uh)∗ = B(−z̄, uh) (20)

for all z ∈ C, then
Qm(B)(z, uh)∗ = Qm(B)(−z̄, uh).

Proof. The result follows by induction over m using Definition 2.

This result is important for the computation of the adjoint state. The adjoint action of
the time stepping scheme can be computed by using a negative time step. For the linear
approximation (19) the symmetry condition (20) for B is equivalent to the condition
A(uh)∗ = −A(uh) for A. For our application we have A(uh) = −iH(uh) for some self-
adjoint H(uh), thus the condition is satisfied. For general approximations the condition
on B is stronger than the skew-adjointness of A. In general Qm(B)(t, uh) with t ∈ R
will not be unitary. However, under the assumptions of Lemma 5 and 6 we obtain

Qm(B)(t, uh)∗ · Qm(B)(t, uh)− I = o(tm+1) .
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In the context of optimal control we need to differentiate the time stepping scheme
with respect to the control. A naive differentiation of the product in (18) leads to the
inefficient expression

Q′m(B)(z, uh)(δuh)

=

2m−1∑
k=1

(
k−1∏
l=1

B(αlz, u
h)

)
B′(αkz, u

h)(δuh)

 2m−1∏
l=k+1

B(αlz, u
h)


with complexity O(22m−2). Exploiting the multiplicative structure of the algorithm,
we will follow a different approach that will give the same complexity O(2m−1) as the
original product. The approach can be understood as a modification of the result from
[13]. For an analytic function F and square matrices B and δB we have

F

(
B 0
δB B

)
=

(
F (B) 0

F ′(B)(δB) F (B)

)
.

That is, the directional derivative of F can be obtained by applying the function to a
matrix with special structure. For general directional derivatives with respect to a pa-
rameter the matrix gets more complicated. We introduce the notation Ds

δuh
(B)(z, uh) =

B(s)(z, uh)(δuh)s for the directional derivative, the space

Crδuh = { B ∈ BC×Uh
:

z 7→ Ds
δuh(B)(z, uh) analytic for each 0 ≤ s ≤ r, uh ∈ Uh }

of differentiable functions, and the nilpotent (r+1)×(r+1)-matrixN , given byNs,s+1 = 1
and zero otherwise.

Definition 7. The operator D(r)
δu : Cr

δuh
→ (B⊗r+1)C×U

h
is defined by

D(r)

δuh
(B) =

r∑
s=0

1

s!
N s ⊗Ds

δuB.

This operator generates a matrix of derivatives in the direction δu up to order r. It

can also formally be understood as D(r)

δuh
(B) = exp(N ⊗Dδu)(I ⊗ B). More explicitely,

we have

D(r)

δuh
(B)(z, uh) =

B(z, uh) 0 · · · · · · · · · 0
1
1!D

1
δuB(z, uh) B(z, uh) 0 · · · · · · 0

1
2!D

2
δuB(z, uh) 1

1!D
1
δuB(z, uh)(δu) B(z, uh) 0 . . . 0

...
...

. . .
. . .

...
...

...
. . . 0

1
r!D

r
δuB(z, uh) 1

(r−1)!D
r−1
δu B(z, uh) · · · · · · · · · B(z, uh)


.
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Alternatively, the operator D(r)

δuh
could also be defined on differentiable functions in BU

h

first and then extended pointwise to Cr
δuh

by D(r)

δuh
(B)(z, uh) = D(r)

δuh
(B(z, ·))(uh). We

obtain the following crucial property for D
(r)

δuh
.

Lemma 8. For A,B ∈ Cr
δuh

,

D(r)

δuh
(A ·B) = D(r)

δu (A) · D(r)
δu (B).

Proof. Using the general Leibniz rule we obtain

D(r)

δuh
(A ·B) =

r∑
s=0

∑
k+l=s

N s ⊗ 1

k!l!
Dk
δuhA ·D

l
δuhB.

On the other hand

D(r)

δuh
(A) · D(r)

δuh
(B) =

r∑
k=0

r∑
l=0

Nk+l ⊗ 1

k!l!
Dk
δuhA ·D

l
δuhB.

Since Nk+l = 0 for k + l > r the two double sums on the right coincide.

This result can be interpreted as multiplicativity of the differential operator D
(r)

δuh
,

which is of course not true for the directional derivative itself. The multiplicativity
implies the following commutativity relation of differentiation and the GST scheme.

Theorem 9. Let δuh ∈ Uh and r,m ∈ N. Then

Qm ◦ D(r)

δuh
= D(r)

δuh
◦ Qm.

Proof. We proof the result by induction over m. For m = 1 we have Q1(B) = B for all
B ∈ Cr

δuh
and the claim holds. Let the result be true for m−1. We will use the preceding

lemma and the multiplicative structure of Qm. Let z ∈ C, uh ∈ Uh and B ∈ Cr
δuh

. Using
the definition of Qm, Lemma 8, the induction hypothesis, and the definition of Qm again
we obtain

D(r)

δuh
(Qm(B))(z, uh) = D(r)

δuh

(
Qm−1(B)(pmz, ·) · Qm−1(B)(pmz, ·)

)
(uh)

= D(r)

δuh

(
Qm−1(B)(pmz, ·)

)
(uh) · D(r)

δuh

(
Qm−1(B)(pmz, ·)

)
(uh)

= Qm(D(r)

δuh
(B))(pmz, δu

h) · Qm(D(r)

δuh
(B))(pmz, δu

h)

= Qm(D(r)

δuh
(B))(z, uh).

Since z, uh and B were arbitrary we obtain D(r)

δuh
◦ Qm = Qm ◦ D(r)

δuh
.
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The theorem says that we can obtain a matrix of derivatives of the higher order time
stepping operators by applying the GST operator to a matrix of derivatives of the first
order time stepping operator. In the case r = 1 we get

Qm
(

B(uh) 0
B′(uh)(δuh) B(uh)

)
=

(
Qm(B)(uh) 0

Qm(B)′(uh)(δuh) Qm(B)(uh)

)
.

Second derivatives can be obtained in two ways. For derivatives in the same direction
one can use Theorem 9 for r = 2. This yields

Qm

 B(uh) 0 0
B′(uh)(δuh) B(uh) 0

1
2B
′′(uh)(δuh, δuh) B′(uh)(δuh) B(uh)


=

 Qm(B)(uh) 0 0
Qm(B)′(uh)(δuh) Qm(B)(uh) 0

1
2Qm(B)′′(uh)(δuh, δuh) Qm(B)′(uh)(δuh) Qm(B)(uh)

 .

For second derivatives in different directions one can use

Qm ◦ D(r)

δuh
◦ D(r)

τuh
= D(r)

δuh
◦ D(r)

τuh
◦ Qm (21)

which follows immediately from Theorem 9. We obtain

Qm


B(uh) 0 0 0

B′(uh)(δuh) B(uh) 0 0
B′(uh)(τuh) 0 B(uh) 0

B′′(uh)(δuh, τuh) B′(uh)(τuh) B′(uh)(δuh) B(uh)



=


Qm(B)(uh) 0 0 0

Qm(B)′(uh)(δuh) Qm(B)(uh) 0 0
Qm(B)′(uh)(τuh) 0 Qm(B)(uh) 0

Qm(B)′′(uh)(δuh, τuh) Qm(B)′(uh)(τuh) Qm(B)′(uh)(δuh) Qm(B)(uh)

 .

Using this approach we do not compute the derivatives themselves, but always actions
of a lower triangular operator matrix as in(

Qm(B)(uh) 0
Qm(B)′(uh)(δuh) Qm(B)(uh)

)(
xh

yh

)
.

Often the whole expression is needed, as we will see in Lemma 12. The derivative
Qm(B)′(uh)(δuh)xh together withQm(B)(uh)yh can be obtained by computing the right-
hand side of(

Qm(B)(uh)xh

Qm(B)′(uh)(δuh)yh

)
=

(
I 0
−I I

)(
Qm(B)(uh) 0

Qm(B)′(uh)(δuh) Qm(B)(uh)

)(
xh

yh

)
,

see Algorithm 5 and 6 for specific implementations.
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3.2 Discrete Optimization Problem

When solving otimal control problems one has to distinguish two approaches. One
possibility is a first-optimize-then-discretize (OTD) approach where we discretize the
continuous functional as well as the continuous equations for the derivatives. Another
possibility is a first-discretize-then-optimize (DTO) approach where we first write down
a discrete version of the cost functional and then the correct discrete derivatives for this
function. In the subsequent discussion we will carry out a DTO analysis for optimal
control problem (4) with the GST method. In order to obtain a discrete optimization
problem we need to approximate the functional j by a discrete version jh. The main
ingredient will be the approximation of the state ψ by a discrete state ψh. To tackle the
time-dependent problem with unbounded operators we proceed in three steps.

First we approximate the state equation (1) by a semi-discrete equation. To this end
we approximate the Hilbert space H by a discrete space Hh, and the control space U
by a discrete control space Uh. We define discrete versions Hh

0 and Hh
1 of the operators

H0 and H1. We also approximate the initial state ψ0 by ψh0 ∈ Hh. The continuous evo-
lution group S(t, s;u) is approximated by the semi-discrete evolution group Sh(t, s;uh).
Examples for this step include approximation with finite differences or finite elements,
as well as spectral representations.

As a second step we approximate the action of the evolution group Sh by a product of
solutions for time-independend problems. That is we introduce a time grid (tn)Nn=0 and
approximate Sh(t + tn−1, tn−1;u

h) by exp(tAn(uh)). Here An is obtained by a Magnus
expansion for the time-dependent Hamiltonian.

The third step consists of approximating the exponential with the GST method. That
is exp(tAn(uh)) ≈ Qm(Bn)(t, uh) for some first order approximation Bn of exp(tAn(uh)).
This step is justified in Section 3.1. The discrete state ψh is then given by

ψhn(uh) =
n∏
p=1

Qp(u
h)ψh0 , n = 1, . . . , N, (22)

where
Qp(u

h) = Qm(Bp)(tp − tp−1, uh)

is the discrete time stepping operator. Here and in the following we use the convention∏k
i=j Qi = Qk · · ·Qj .
In addition to the discrete state we also need a discrete version Oh of the observable
O. The discrete version of (4) then reads

Minimize jh(uh) =
1

2
〈ψhN (uh),OhψhN (uh)〉Hh +

α

2
‖uh‖2Uh , (23)

where ψhN is given by (22).
Following the OTD approach we discretize equations (1), (5), (6), and (7) to compute

approximations of the derivatives of j according to the continuous equations (8) and (9).
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For the adjoint equation (5) we obtain

ϕhj (uh) =

 N∏
i=j+1

Qi(u
h)

∗OhψhN (uh), j = 1, . . . , N, (24)

but it is not obvious at all how the inhomogeneous equations (6) and (7) can be dis-
cretized. Another problem with a naive OTD approach is that the gradient will not be
consistent and in addition the approximated Hessian will in general be not symmetric.

Following the DTO approach we have to derive expressions for the derivatives of jh.
This typically requires more work in setting up the equations, but it is constructive ap-
proach in the sense that we know how to correctly discretize (6) and (7). We will see that
the correct discretization of the scalar products in (8) lead to additional computations.
In Section 4.2 we will numerically compare the results of the two approaches.

We now analyze the derivatives of jh. To shorten the notation we will sometimes drop
the explicit dependence on the control. In paricular we will write ψhj , ϕhj , ψh′j and ϕh′j
for ψhj (uh), ϕhj (uh), ψh′j (uh)(δuh) and ϕh′j (uh)(δuh), respectively. The DTO version of
Proposition 1 then reads:

Proposition 10. Let uh, δuh, τuh ∈ Uh. The first and second derivative of jh are given
by

jh′(uh)(δuh) =

N∑
n=1

〈Q′n(uh)(δuh)∗ϕhn, ψ
h
n−1〉Hh + α〈uh, δuh〉Uh (25)

and

jh′′(uh)(δuh, τuh) =

N∑
n=1

〈Q′n(uh)(τuh)∗ϕh′n , ψ
h
n−1〉Hh

+〈Q′n(uh)(τuh)∗ϕhn, ψ
h′
n−1〉Hh

+〈Q′′n(uh)(δuh, τuh)∗ϕhn, ψ
h
n−1〉Hh

+ α〈δuh, τuh〉Uh

(26)

Proof. By the product rule applied to (22) we obtain

ψh′N (uh)(δuh) =

N∑
n=1

N∏
p=n+1

Qp(u
h)Q′n(uh)(δuh)

n−1∏
p=1

Qp(u
h)ψh0 .

Therefore, using (22) and (24),

j′(uh)(δuh) = 〈OhψhN (uh), ψh′N (uh)(δuh)〉Hh + α〈uh, δuh〉Uh

=

N∑
n=1

〈Q′n(uh)(δuh)∗ϕhn(uh), ψhn−1(u
h)〉Hh + α〈uh, δuh〉Uh .

Differentiating this expression again and using the symmetry of the derivative in δuh

and τuh concludes the proof.
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Let us now compare the results of the preceding proposition to the approximation
of derivatives in an OTD approach. For this bilinear problem the important differ-
ence between DTO and OTD is the discretization of the product 〈(−iH1)

∗ϕ,ψ〉. Naive
discretization of (8) results in an expression of the form

N∑
n=1

(tn − tn−1)〈(−iH1)
∗ϕn, ψn〉Hh + 〈u, δu〉Uh .

This means that Q′∗n in the DTO approach corresponds to (tn − tn−1)(−iH1)
∗Q∗n in

the OTD approach. For the Hessian we obtain an additional term Q′′∗ that has no
counterpart in the continuous case.

For a fixed basis (hk) of Uh we can derive expressions for the coordinates of the
gradient and Hessian-vector product. The coordinates Z of an element uh ∈ Uh are
determined by the equation uh =

∑
k Zkhk. Let the mass matrix M of Uh with respect

to the basis (hk) be given by Mkl = 〈hk, hl〉Uh . Then the coordinates of the gradient
and Hessian-vector product can be obtained from the directional derivatives by solving
a linear system of equations.

Corollary 11. Let uh, δuh ∈ Uh, and let Z be the coordinates of ∇jh(uh)− αuh. Then
Z solves

MZ = X (27)

with

Xk =
N∑
n=1

〈Q′n(uh)(hk)
∗ϕhn, ψ

h
n−1〉Hh .

Let Z be the coordinates of ∇2jh(uh)(δuh)− αδuh. Then Z solves

MZ = Y (28)

with

Yk =
N∑
n=1

〈Q′n(uh)(hk)
∗ϕh′n , ψ

h
n−1〉Hh

+〈Q′n(uh)(hk)
∗ϕhn, ψ

h′
n−1〉Hh

+〈Q′′n(uh)(δuh, hk)
∗ϕhn, ψ

h
n−1〉Hh .

Proof. Test (25) with δuh = hk and (26) with τuh = hk.

For different spaces Uh we have different mass matrices M . This effects the gradient
and Hessian-vector product similar to the effect of U in Section 2.3. For M , being the
finite element mass matrix, equations (27) and (28) result in a discrete version of (10)
and (13). Having M equal to the finite element masss matrix in the H1

0 scalar product,
i.e. the stiffness matrix for the Poisson equation, leads to discrete versions of (12) and
(15).

The main cost in computing gradients or Hessian actions is in assembling X and
Y . This splits into the computation of discrete solutions of PDEs and the action of
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the operators Q′j and Q′′j . For the computation of the derivatives of Qn we can use
Theorem 9. The following lemma addresses the iterative computation of the states and
their derivatives.

Lemma 12. Let uh, δuh ∈ Uh. Then ψhn, ψh′n , ϕhn, ϕh′n satisfy the forward and backward
recursions (

ψh0
ψh′0

)
=

(
ψh0
0

)
,

(
ψhn
ψh′n

)
=

(
Qn(uh) 0

Q′n(uh)(δuh) Qn(uh)

)(
ψhn−1
ψh′n−1

)
and, respectively,(

ϕhN
ϕh′N

)
=

(
OhψhN
Ohψh′N

)
,

(
ϕhn
ϕh′n

)
=

(
Qn+1(u

h)∗ 0
Q′n+1(u

h)(δuh)∗ Qn+1(u
h)∗

)(
ϕhn+1

ϕh′n+1

)
.

Proof. The definitions of ψhn(uh) and ϕhn(uh) imply

ψhn(uh) = Qn(uh)ψhn−1(u
h)

and
ϕhn(uh) = Qn+1(u

h)∗ϕhn+1(u
h).

Differentiation of the equations in the direction δuh yields

ψh′n (uh)(δuh) = Q′n(uh)(δuh)ψhn(uh) +Qn(uh)ψh′n−1(u
h)(δuh)

and
ϕh′n (uh)(δuh) = Q′n+1(u

h)(δuh)∗ϕhn+1(u
h) +Qn+1(u

h)∗ϕh′n+1(u
h)(δuh).

Additionally we have ψh′0 (uh) = 0, ϕhN (uh) = OhψhN (uh) and ϕh′N (uh)(δuh) = Ohψh′N (uh)(δuh).
Writing those equations in matrix and vector form gives the first two results.

To reduce the memory requirements [6, 17] we use a trick already used in the beginning
of quantum control. We will not save the whole history of quantum states (ψhn)n and
(ϕhn)n and their derivatives computed in a forward and backward iteration, and thereafter
set up the vectors X and Y to compute the gradient and Hessian actions. Instead, we
will save only the current iterates and assemble X and Y on the fly during the backwards
iteration. This method introduces an additional backwards solve of the forward equation
for the state and its derivative and an additional error due to the non-unitarity of the time
stepping scheme. The following lemma tells us that we can indeed compute solutions
of the (inhomogeneous) forward equations for ψh (and ψh′) backwards in time with a
reasonable error.

Lemma 13. Let uh, δuh ∈ Uh, let Bn satisfy the symmetry condition (20) and the
additional approximation property

D1
δuh

(
Bn(z, uh)− exp(zAn(uh))

)
= o(z) .

Then ψhn and ψh′n satisfy the backward recursion(
ψhn
ψh′n

)
=

(
Qn+1(u

h)∗ 0
Q′n+1(u

h)(δuh)∗ Qn+1(u
h)∗

)(
ψhn+1

ψh′n+1

)
+ o(∆tm+1

n+1 ),

where ∆tn = tn − tn−1.
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Proof. We will use the result for the forward recursion from Lemma 12 and combine
it with the approximate group property in Lemma 5 and the relation between taking
adjoints and inverting time from Lemma 6. We have(

ψhn+1

ψh′n+1

)
=

(
Qn+1 0
Q′n+1 Qn+1

)(
ψhn
ψh′n

)
.

Therefore we get(
Q∗n+1 0
Q′∗n+1 Q∗n+1

)(
ψhn+1

ψh′n+1

)
=

(
Q∗n+1 0
Q′∗n+1 Q∗n+1

)(
Qn+1 0
Q′n+1 Qn+1

)(
ψhn
ψh′n

)
. (29)

Under the additional assumption on An+1 and Bn+1 we have(
Bn+1(∆tn+1, u

h) 0
B′n+1(∆tn+1, u

h)(δuh) Bn+1(∆tn+1, u
h)

)
= I + ∆tn+1

(
An+1(u

h) 0
A′n+1(u

h)(δuh) An+1(u
h)

)
+ o(∆tn+1).

This implies(
Bn+1(∆tn+1, u

h) 0
B′n+1(∆tn+1, u

h)(δuh) Bn+1(∆tn+1, u
h)

)
−

exp ∆tn+1

(
An+1(u

h) 0
A′n+1(u

h)(δuh) An+1(u
h)

)
= o(∆tn+1).

Thus, we can use Lemma 6 and 5 to obtain(
Q∗n+1 0
Q′∗n+1 Q∗n+1

)(
Qn+1 0
Q′n+1 Qn+1

)
=

[
Qm

(
Bn+1 0
B′n+1 Bn+1

)
(−∆tn+1, u

h)

] [
Qm

(
Bn+1 0
B′n+1 Bn+1

)
(∆tn+1, u

h)

]
= I + o(∆tm+1

n+1 )

for even m. Plugging this into (29) concludes the proof.

The additional approximation property in the preceding lemma is satisfied for the
linear approximation since there we have

D1
δuh

(
Bn(z, uh)− exp(zAn(uh))

)
= zA′n(uh)(δuh)− exp(zAn(uh))zA′n(uh)(δuh) = o(z) .

In fact it is satisfied for all polynomial approximations.
The scheme for computations of gradients and Hessian actions are given by Algo-

rithm 1 and 2. The subroutines for the assembly of the right-hand side are in their
most general form given by Algorithm 3 and 4. In every step they modify the vectors
X and Y , respectively, and evolve the states.
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Data: uh

Result: vh

ψh ← ψh0 ;
X ← 0;
for n = 1, . . . , N do

ψh ← Qn(uh)ψh;
end

ϕh ← Ohψh;
for n = N, . . . , 1 do

ψh, ϕh, X ← assemble rhs gradient(uh, n; ψh, ϕh, X);
end
solve for Z: MZ = X;

vh ←
∑K

k=1 Zkhk + αuh;

Algorithm 1: Compute the gradient

Data: uh, δu
Result: wh(
ψh

ψh′

)
←
(
ψh0
0

)
;

Y ← 0;
for n = 1, . . . , N do(

ψh

ψh′

)
←
(

Qn(uh) 0
Q′n(uh)(δuh) Qn(uh)

)(
ψh

ψh′

)
;

end(
ϕh

ϕh′

)
←
(
Ohψh
Ohψh′

)
;

for n = N, . . . , 1 do
ψh, ψh′, ϕh, ϕh′, Y ← assemble rhs hessian(uh, n; ψh, ψh′, ϕh, ϕh′, Y );

end
solve for Z: MZ = Y ;

wh ←
∑K

k=1 Zkhk + αδuh;

Algorithm 2: Apply the Hessian to a vector δuh

Data: uh, n, ψh, ϕh, X
Result: ψh, ϕh, X
ψh ← Qn(uh)∗ψh;
for k = 1, . . . ,K do

Xk ← Xk + 〈Q′∗n (uh)(hk)ϕ
h, ψh〉Hh ;

end

ϕh ← Qn(uh)∗ϕh;

Algorithm 3: assemble rhs gradient for DTO and general controls
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Data: uh, n, ψh, ψh′, ϕh, ϕh′, Y
Result: ψh, ψh′, ϕh, ϕh′, Y(
ψh

ψh′

)
←
(

Qn(uh)∗ 0
Q′n(uh)(δuh)∗ Qn(uh)∗

)(
ψh

ψh′

)
;

for k = 1, . . . ,K do

Yk ← Yk + 〈Q′n(uh)(hk)
∗ϕh′, ψh〉Hh + 〈Q′n(uh)(hk)

∗ϕh, ψh′〉Hh

+ 〈Q′′n(uh)(δuh, hk)
∗ϕh, ψh〉Hh

;

end(
ϕh

ϕh′

)
←
(

Qn(uh)∗ 0
Q′n(uh)(δuh)∗ Qn(uh)∗

)(
ϕh

ϕh′

)
;

Algorithm 4: assemble rhs hessian for DTO and general controls

Different control discretizations give rise to different assemble rhs gradient and as-
semble rhs hessian routines. For piecewise linear controls and a magnus expansion of
order two using the midpoint rule we obtain Algorithm 5 and 6. There the loop over k
reduces to a common update of just two entries of X and Y , respectively. Notice how
these algorithms compute the derivatives of the time stepping via Theorem 9 and reuse
results from the action of the large operator matrices. The second derivatives for the
Hessian action are computed using equation (21). In contrast to the DTO approach, for
the OTD approach the updates of X and Y in Algorithm 7 and 8 are computed in the
same way as the continuous derivatives in Section 2.

Data: uh, n, ψh, ϕh, X
Result: ψh, ϕh, X
ψh ← Qn(uh)∗ψh;

χh ← ϕh;(
ϕh

χh

)
←
(

Qn(uh)∗ 0
Q′n(uh)(δuh)∗ Qn(uh)∗

)(
ϕh

χh

)
;

χh ← χh − ϕh;

δX ← 〈χh, ψh〉Hh ;
Xn ← Xn + δX;
Xn−1 ← Xn−1 + δX;

Algorithm 5: assemble rhs gradient for DTO piecewise linear controls

Comparing the computational complexity of assemble rhs gradient we see that the
DTO approach has roughly 1.5 times the cost of the OTD approach. We need an
application of a 2×2 time stepping matrix instead of just an application of the ordinary
time stepping operator. For assemble rhs hessian the cost increases roughly by a factor
2. Here we need an additional application of the 4× 4 time stepping matrix.
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Data: uh, n, ψh, ψh′, ϕh, ϕh′, Y
Result: ψh, ψh′, ϕh, ϕh′, Y(
ψh

ψh′

)
←
(

Qn(uh)∗ 0
Q′n(uh)(δuh)∗ Qn(uh)∗

)(
ψh

ψh′

)
;

;

χh2 ← ϕh′;

χh3 ← ϕh′;(
ϕh′

χh2

)
←
(

Qn(uh)∗ 0
Q′n(uh)(hn)∗ Qn(uh)∗

)(
ϕh′

χh2

)
;

χh2 ← χh2 − ϕh′;
ϕh′ ← χh3 ;
;

χh1 ← ϕh;
ϕh

ϕh′

χh1
χh3

←


Qn(uh)∗ 0 0 0
Q′n(uh)(δuh)∗ Qn(uh)∗ 0 0
Q′n(uh)(hn)∗ 0 Qn(uh)∗ 0

Q′′n(uh)(δuh, hn)∗ Qn(uh)(hn)∗ Q′n(uh)(δuh)∗ Qn(uh)∗



ϕh

ϕh′

χh1
χh3

;

χh1 ← χh1 − ϕh;

χh3 ← χh3 − ϕh′ − χh2 ;
;

δY ← 〈χh1 , ψh′〉Hh + 〈χh2 , ψh〉Hh + 〈χh3 , ψh〉Hh ;
Yn ← Yn + δY ;
Yn−1 ← Yn−1 + δY ;

Algorithm 6: assemble rhs hessian for DTO and piecewise linear controls

Data: uh, n, ψh, ϕh, X
Result: ψh, ϕh, X
δX ← 〈(−iHh

1 )∗ϕh, ψh〉Hh ;
Xn ← Xn + δX;

ψh ← Qn(uh)∗ψh;

ϕh ← Qn(uh)∗ϕh;

Algorithm 7: assemble rhs gradient for OTD and piecewise linear controls
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Data: uh, n, ψh, ψh′, ϕh, ϕh′, Y
Result: ψh, ψh′, ϕh, ϕh′, Y
δY ← 〈(−iH1)

∗ϕh, ψh′〉Hh + 〈(−iH1)
∗ϕh′, ψh〉Hh ;

Yn ← Yn + δY ;(
ψh

ψh′

)
←
(

Qn(uh)∗ 0
Q′n(uh)(δuh)∗ Qn(uh)∗

)(
ψh

ψh′

)
;(

ϕh

ϕh′

)
←
(

Qn(uh)∗ 0
Q′n(uh)(δuh)∗ Qn(uh)∗

)(
ϕh

ϕh′

)
;

Algorithm 8: assemble rhs hessian for OTD and piecewise linear controls

3.3 Optimization Method

The optimization problem is often solved with methods based on computing the gradient
of the reduced cost functional j (OTD) or its discrete version jh (DTO). Since our ap-
proach makes second derivatives of jh easily accessible we are able to apply second order
methods based on the Hessian like Newton’s method. Since our problem is nonconvex
we need a globalization strategy to make the Newton method globally convergent. To
this end we choose a trust region globalization with a Steihaug conjugate gradient (CG)
method to solve the trust region subproblems, see [14]. The main trust region loop is
presented in Algorithm 9. The method solves a quadratic model problem in a neighbor-
hood of size r and updates the neighborhood depending on the model fidelity ρ. The
main computational cost in the optimization routine comes from the iterative solution
of the Newton equation in the trust region subproblems described in Algorithm 10. The
algorithm requires the action of the Hessian in each iteration step which results in the
solution of several PDEs as described by Algorithm 4 and 6. Since we use a CG method
to solve the Newton equation, symmetry of the Hessian is needed. This is in general not
the case for the Hessian approximation resulting from the OTD approach. For the DTO
approach where the state evolution is stored in memory the Hessian is symmetric. For
the memory efficient approximation we use the Hessian is not exactly symmetric with an
error controlled by Proposition 12. The only preconditioning we use for the CG method
is the implicit preconditioning through the scalar product of Uh.

To understand how the GST method performs in the context of optimal control we
test it with different optimization methods. In particular we compare the performance of
Newton’s method with different gradient based methods. For this comparison we choose
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, its memory efficient version
L-BFGS, both with a strong Wolfe line search, and the Barzilai–Borwein (BB) method
with a non-monotone line search. The BFGS method is expected to be the fastest of
the three. Due to its large memory requirements it is not applicable to problems with
a large number of control parameters. The BB method is supposedly less prone to end
up in non-global minima due to its non-monotone line search, which might be useful for
nonlinear problems.
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Data: uh0
Result: ūh

uh ← uh0 ;
ρ← 1;
r ← 1;

jh ← functional(uh);

vh ← gradient(uh);

while ‖vh‖ ≥ TOL∇ do
δuh ← subproblem(uh, vh, r);

jhnew ← functional(uh + δuh);

wh ← hessian(uh, δuh);

ρ← (jh − jhnew)/〈δuh,−vh − 0.5wh〉Uh ;
if ρ < 0.25 then

r ← 0.25r;
end
if ρ ≥ 0 then

uh ← uh + δuh;

jh ← jhnew;

vh ← gradient(uh);
if ρ ≥ 0.8 then

r ← 2r;
end

end

end

Algorithm 9: Trust Region Newton
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Data: uh, vh, r
Result: δuh

p← 0;

res← −vh;
d← res;
while ‖res‖ > TOL∇2 do

wh ← hessian(uh, d);

s← 〈d,wh〉Uh ;
if s ≤ 0 then

find τ such that ‖p+ τd‖ = r;
p← p+ τd;
break;

end
α← ‖res‖/s;
if ‖p+ αd‖ > r then

find τ ≥ 0 such that ‖p+ τd‖ = r;
p← p+ τd;
break;

end
p← p+ αd;

β ← ‖res− αwh‖2/|res‖2;
res← res− αwh;
d← res+ βd;

end

δuh ← p;

Algorithm 10: Trust Region Newton Subproblem with Steihaug CG
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Figure 1: On the left: the two potential energy surfaces. On the right: the initial state
(solid) and the final states for regularization with U = L2 (dashed) and U = H1

0

(dashdotted).

4 Numerical results

To test the GST method we choose a system of two one-dimensional Schrödinger equa-
tions. For this example we analyze the consistency of the derivatives generated by the
GST method. We compare the performance of Newton’s methods with different gradi-
ent based methods. We also study the qualitative behavior of solutions for L2 and H1

0

regularization for our model problem.

4.1 Problem Setting and Discretization

As a test example we consider the optimal control of a system of one-dimensional
Schrödinger equations on two potential energy surfaces. We consider the model quantum
system from Section 2 with d = 1 and M = 2. The toy problem resembles a 1D version
of the problem studied in [10]. We assume the particle mass of a proton and give all
quantities in atomic units. The potential energy surfaces are plotted in Figure 1. The
control objective is to reach the potential well on the right starting from the potential
well on the left. This is modeled by the observation operator O, being the projection
on the complement of functions with support on the lower energy surface to the right of
the potential barrier. The initial state ψ0 is given by a Gaussian located in the potential
lower well, depicted in Figure 1. The energy differences between the two potential energy
surfaces measured at the local minima of the lower surface are around 0.074 and 0.048.
Considering Bohr’s law we expect the control to contain the two frequencies ω1 ≈ 0.074
and ω2 ≈ 0.048. We chose a time horizon of T = 3000. The time horizon was chosen
large enough to allow for sufficiently many oscillations with the Bohr frequencies ω1 and
ω2, and for sufficient movement of the wave packet in space. The spatial domain of
each potential energy surface is [−4, 4]. For the control space we considered the cases
U = L2(0, T ) and H1

0 (0, T ).
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We discretized the state space H by a nodal basis on a uniform grid with 256 points.
The discrete drift Hamiltonian Hh

0 is given by a simple finite difference stencil and a
pointwise multiplication operator at the grid points. The coupling Hamiltonian Hh

1 is
also a pointwise multiplication operator at the grid points. For the time-discretization
scheme we defined a uniform grid (tn)Nn=0 with N = 2048 points. We applied linear finite
elements on this grid as discrete controls in Uh.

For the first order approximation operator within the GST method we used the linear
approximation

Bn(z, uh) = I + zAn(uh)

where An is given by the midpoint rule,

An(uh) = −i
(
Hh

0 +
uh(tn−1) + uh(tn)

2
Hh

1

)
.

Then Bn is an analytical first order approximation of the exponential function and
satisfies the symmetry condition Bn(z, uh)∗ = Bn(−z̄, uh) and the additional assumption
D1
δuh

(Bn(z, uh) − exp(zAn(uh))) = o(z) from Lemma 12. Using the GST scheme we
increased the order of the approximation of the exponential function to m = 4. The grid
sizes in time and space have been chosen appropriately to satisfy the stability condition
of Proposition 4. Here we found s = 3 ∗ 23∆t‖An(uh)‖ ≈ 0.3 to be sufficient for the
controls uh appearing in the optimization method.

The derivatives of the discrete cost functional can then efficiently be computed by the
GST method using the calculus in of Section 3. In particular we use Algorithm 1 and 2
to compute the gradient and Hessian, respectively. The subroutines for assembling the
right-hand sides in the case of linear finite elements are then given by Algorithm 5 and 6.

As initial guess for the control in the optimization procedure we chose a function con-
taining the frequencies ω1 and ω2 that only achieved about 3% of the control goal. The
regularization parameter was chosen to be α = 0.0005. The optimization method termi-
nates if the norm of the gradient falls below TOL∇ = 10−12 or the number of iteration
exceeds 1.5∗104. The TRN and (L-)BFGS methods terminate when the functional does
not decrease any more for a minimal step size.

4.2 Results

In this section we focus on three comparisons: First we compare the memory efficient
discretize-then-optimize approach with its memory inefficient version and an optimize-
then-discretize approach. Then we study the performance of different Hessian and gra-
dient based methods where the derivatives are provided by the GST method. Third we
compare the qualitative behavior of solutions for L2 and H1

0 regularization for our model
problem.

First we compare the consistency of the derivatives generated by the memory efficient
DTO approach with the derivatives generated by the memory inefficient DTO and the
OTD approaches. That means we study how well the approximations of the derivatives
match the actual derivatives of the cost functional j. To this end we compare the
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Figure 2: The difference between finite differences and the different approximation of the
gradient using the adjoint calculus for U = L2(0, T ) (left) and U = H1

0 (0, T )
(right).

approximations obtained through the calculus in Section 2 and 3 to finite difference
approximations of the derivatives with varying step size h. In Figure 2 we plotted the
absolute value of the difference divided by h against h. Comparing finite differences to
a good approximation of the derivatives results in a V shape. The right-hand side of the
V corresponds to the convergence of the finite differences with decreasing h and the left-
hand side results from numerical cancellations for very small h. The gradient and Hessian
computed by the exact but memory inefficient DTO approach show this behavior since
they are the exact derivatives up to rounding errors. We see that the memory efficient
DTO approach leads to an approximation comparable to the exact DTO approach and
is much better than the OTD approach. A better approximation of the derivatives can
lead to more robustness of the optimization method. With the OTD gradient we often
got stuck at suboptimal controls, because the computed gradient direction did not lead
to a decrease of the functional. Using an OTD or the memory efficient DTO approach
the Hessian will in general be non-symmetric. The conjugate gradient (CG) method
we chose to solve the Newton equations relies on the symmetry of the Hessian. We
observed that using the non-symmetric matrix from the OTD approach leads to much
larger number of CG iterations for the solution of the Newton equation. Although we
observed a slowdown by a factor two for the memory efficient approach compared the
the memory inefficient DTO approach, the problem was much less pronounced compared
to the OTD approach. This justifies using the memory efficient DTO implementation in
the context of the GST method.

We will now compare the performance first and second order optimization methods,
with derivatives provided by the GST method. In Figure 3 we plotted the norm of
the gradient against the iteration step and against the computation time for different
optimization methods and the two cases of L2 and H1

0 costs. The norm of the gradient
is used as a measure of optimality, faster decrease means faster convergence to the
optimum. For all methods the gradient norms oscillate which makes it difficult to analyze
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Figure 4: The optimal control fields (left) and their Fourier coefficients (right) for U =
L2(0, T ) (solid) and U = H1

0 (0, T ) (dashed).

the results. We observed that TRN needs an order of magnitude less steps before it
terminates compared to the second fastest method BFGS. For large scale problems the
comparison to the limited memory version L-BFGS is, however, more appropriate. The
L-BFGS method needs about 50 times more steps until termination. The BB method
was by far the slowest method. The final gradient norm for TRN was much smaller
in our experiments compared to the other methods. The BFGS and L-BFGS method
terminated due to lack of decrease in the functional, whereas the BB method reached
the maximum number of iterations. Comparing the decrease in the gradient norm with
the computation time, the situation changes in favor of the first order methods. This
might be due to the fact that it takes many steps in the TRN method to reach the
region of fast local convergence. Solving the Newton equations without preconditioning
and additionally with a matrix that is not perfectly symmetric might also contribute to
the slowdown. Using a hybrid method to combine fast local convergence of Newton’s
method with the nice global behavior of L-BFGS might be of advantage. The L2 and
the H1

0 cases behave very similarly with respect to the speed of convergence where the
H1

0 proved to be a bit faster.
In Figure 4 we show solutions of the optimal control problem for the control spaces
U = L2(0, T ) and U = H1

0 (0, T ). The structure of the controls is quite different. Whereas
the control for the L2 case contains major frequency contributions around ω1 and ω2, the
control for the H1

0 case contains one main frequency which is much lower. In Figure 1
one can see the two different densities of the final states. In fact a detailed analysis of the
state evolution showed that the two controls trigger two different control mechanisms.
The L2 control, containing the Bohr frequencies ω1 and ω2, induces a coupling of the two
Schrödinger equations which corresponds to transitions in the electronic structure. The
H1

0 control forces the state to oscillate left and right in the lower potential well, like in a
resonantly driven oscillator, until it crosses the potential barrier to the upper well. It is
not surprising that the H1

0 control contains less high frequency components compared to
the L2 control since fast oscillations are penalized by the H1

0 norm. It is interesting that
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the choice of the cost term can have a significant influence on the control mechanism.
In our application, however, it is desired to induce transition in the electronic structure.
Therefor the H1

0 norm might not be the ideal choice for this kind of application.

5 Conclusion

In summary, we have shown how a generalized Suzuki-Trotter type method can be suc-
cessfully applied to quantum optimal control problems. First and second order deriva-
tives of the resulting discrete functional can be computed efficiently within the GST
framework. This makes higher order methods like Newton’s method applicable. In
a numerical test example with a system of one-dimensional Schrödinger equations we
compared the performance of several optimization methods. The memory efficient im-
plementation of the Schrödinger solver makes the future extension of the method to two
and three dimensions feasible. Additionally, we observed that the choice of the cost term
in the optimal control formulation can have a significant impact on the optimal control
function. Choosing an appropriate cost term for our model system thus deserves further
attention.
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