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Abstract

This paper deals with optimal control problems constrained by linear elliptic partial
differential equations. The case where the right-hand side of the Neumann boundary is
controlled, is studied. The variational discretisation concept for these problems is applied
and discretisation error estimates are derived. On polyhedral domains one has to deal with
edge and corner singularities which reduce the convergence rate of the discrete solutions,
i.e., one can not expect convergence order two for linear finite elements on quasi-uniform
meshes in general. As a remedy a local mesh refinement strategy is presented and a priori
bounds for the refinement parameters are derived such that convergence with optimal rate
is guaranteed. As a by-product finite element error estimates in the H1(Ω)-, L2(Ω)- and
L2(Γ)-norm for the boundary value problem are obtained, where the latter one turned
out to be the main challenge.
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1 Introduction

Local mesh refinement for the numerical solution of boundary value problems is a well known
technique to compensate lower convergence rates due to singularities contained in the solution
of those problems, and has intensively been studied in the literature, see e. g. [9, 33]. On
polyhedral domains several papers exploit a priori knowledge about singularities occurring
at edges and corners [3, 7, 12, 25]. The error estimates proven for graded meshes can also
be used to derive error bounds for certain discretisation concepts applied to optimal control
problems. It is the purpose of this paper to derive such an a priori error estimate especially for
boundary control problems governed by pure Neumann conditions. In contrast to distributed
control problems, finite element error estimates on the boundary for the Neumann boundary
value problem have to be proven. Using standard techniques, e. g. a trace theorem or the
Aubin-Nitsche method, when deriving such error estimates will yield suboptimal convergence
rates only. Thus, we extend the techniques from [6] to the three-dimensional case.

There are several publications which deal with error estimates for Neumann boundary
control problems in two-dimensional polygonal domains. In most cases one is interested in
the convergence rate of the discrete control variable in the L2(Γ)-norm. For convex domains
the results of Hinze/Matthes [21] imply the convergence rate max{min{2, π/ω} − ε, 3/2} on
quasi-uniform meshes using the variational discretisation approach, where ε > 0 is an arbitrary
real number and ω the largest interior angle at the corner points of the polygon. However,
the proven convergence rate is suboptimal. This result was improved by Mateos/Rösch [26]
who were able to show the convergence rate min{2, 1 + π/(2ω), 1/2 + π/ω} − ε for convex
and even non-convex domains. This estimate is sharp for domains with ω < 90◦ or ω > 180◦.
Apel/Pfefferer/Rösch [5] used a mesh grading technique which ensures convergence order 3/2
for non-convex domains. Later on, Apel/Pfefferer/Rösch [6] proved that one can expect a
convergence rate 2 up to a logarithmic factor if ω < 120◦. For larger interior angles they used
mesh grading to retain this convergence rate. The aforementioned results are also established
for the postprocessing approach in [5, 6, 26].

To our knowledge, there are no publications that deal with error estimates on the bound-
ary of polyhedra so far. Solely in [23] optimal error estimates on quasi-uniform meshes for the
normal derivative are proven. However, estimates in the domain have been studied for various
mesh refinement strategies. For instance Apel/Sändig/Whiteman [7] considered an isotropic
refinement strategy for polyhedra with the restriction that the same mesh refinement param-
eter is used for all singular points. A more general strategy which allows to use a different
strength of refinement for each edge and corner has been investigated by Lubuma/Nicaise [25].
Advanced refinement strategies using anisotropic mesh grading at singular edges have been
intensively studied by Apel/Sirch [8] for prismatic domains, where only edge singularities oc-
cur, and on general polyhedra by Apel/Lombardi/Winkler [3] and Băcuţă/Nistor/Zikatanov
[12]. For all these approaches the required error estimates on the boundary still have to be
proven.

The aim of this paper is to derive a bound for the parameters used in the isotropic refine-
ment strategy from [7] in order to guarantee an optimal convergence rate in H1(Ω)-, L2(Ω)-
and L2(Γ)-norm. Using these estimates we are then able to prove an optimal convergence
rate for the variational discretization approach [20] applied to a Neumann control problem.

Let Ω be a polyhedron with boundary Γ. We consider the following elliptic Neumann
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boundary control problem:

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Γ) → min! (1.1)

subject to
−∆y + y = f in Ω, ∂ny = u on Γ, (1.2)

u ∈ Uad := {u ∈ L2(Γ) : a ≤ u ≤ b a. e. on Γ}, (1.3)

with a given function f ∈ L2(Ω), regularisation parameter α > 0 and constant control bounds
a, b ∈ R. It is known that the state equation (1.2) possesses a unique solution y ∈ H3/2+εreg(Ω)
with some fixed εreg ∈ (0, 1

2 ] depending on the geometry of Ω [14, Corollary 23.5]. We
assume that the desired state is Hölder-continuous, i.e. yd ∈ C0,σ(Ω), with a Hölder exponent
σ ∈ (0, 1).

The analysis of the continuous problem (1.1)–(1.3) is well developed (cf. [22, Section
1.5],[36, Section 2.5]). There exists a unique solution ū ∈ L2(Γ), and a necessary and sufficient
optimality condition is given by

−∆ȳ + ȳ = f in Ω −∆p̄+ p̄ = ȳ − yd in Ω,

∂nȳ = ū on Γ ∂np̄ = 0 on Γ,
(1.4)∫

Γ
(p̄(x) + αū(x))(u(x)− ū(x))dsx ≥ 0 ∀u ∈ Uad,

where ȳ and p̄ denote the state and adjoint state related to ū. Note that the boundary value
problems in (1.4) have to be understood in the weak sense. The variational inequality is
equivalent to the projection formula

ū = Πad

(
−α−1p̄|Γ

)
, (1.5)

where p̄|Γ denotes the trace of p̄ on Γ and

[Πad v](x) := max{a(x),min{b(x), v(x)}} a. e. on Γ

denotes the L2(Γ)-projection onto the set of admissible controls.
The paper is structured as follows: In Section 2 we consider the variational discretisation

approach applied to the problem (1.1)–(1.3). An analogue to Formula (1.5) will give a relation
between the discrete adjoint state and the discrete control. We refer to the books of Tröltzsch
[36] and Hinze et al. [22] for a detailed discussion of optimality conditions and discretisation
approaches for optimal control problems. The regularity of the solution of the state equation
(1.2) is discussed in Section 3. There, weighted Sobolev spaces are introduced that allow to
acquire the singular parts in the solution more accurately. Finally, a modified shift-theorem
in these spaces is presented. Section 4 approaches the finite element error estimates for the
state equation required to show the estimates for the optimal control problem (1.1)–(1.3).
More precisely, we derive estimates in L2(Ω)-, H1(Ω)- and L2(Γ)-norm, where the latter one
is the first main result of this paper. The second main result – an optimal error estimate for
the Neumann control problem – is presented in Section 5 which is confirmed numerically in
Section 6.
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2 Discretisation of the optimal control problem

For the discretisation of our optimal control problem (1.1)–(1.3) a couple of approaches exist.
In this paper we will consider the variational discretisation approach [20] only. This approach
employs discretization of the state and adjoint state variable but not of the control. The
latter one is discretised implicitly by means of a discrete version of the projection formula
(1.5).

In the following, the boundary value problems in (1.4) are considered in the weak sense.
Hence, we define the bilinear form

a(v, w) :=

∫
Ω

[∇v(x) · ∇w(x) + v(x)w(x)] dx

and the inner products (·, ·)Γ in L2(Γ) and (·, ·)Ω in L2(Ω), respectively. The weak form of
the state equation (1.2) is then given by

a(y, v) = (f, v)Ω + (u, v)Γ ∀v ∈ V := H1(Ω). (2.1)

It is well-known that the Lax-Milgram lemma states the existence and uniqueness of a solution
in H1(Ω).

We are going to discretise problem (2.1) with continuous and piecewise linear finite ele-
ments. To this end, let {Th}h<1 be a family of conforming tetrahedral meshes of Ω which
are assumed to be shape regular. The mesh parameter h denotes the maximal diameter of all
elements in Th, i. e.

h := max
T∈Th

diamT.

The ansatz space for state and adjoint state is defined by

Vh :=
{
vh ∈ C(Ω): vh|T ∈ P1(T ) for all T ∈ Th

}
. (2.2)

Discretising the optimality system (1.4) yields now
Find (ȳh, ūh, p̄h) ∈ Vh × Uad × Vh:

a(ȳh, vh) = (f, vh)Ω + (ūh, vh)Γ ∀vh ∈ Vh,
a(vh, p̄h) = (ȳh − yd, vh)Ω ∀vh ∈ Vh, (2.3)

ūh = Πad(−α−1p̄h|Γ).

This is a finite-dimensional system which possesses a unique solution and can be solved e. g.
with the primal-dual active set strategy, the semi-smooth Newton method or the projected
gradient algorithm [22, 36].

In the following, S : L2(Γ) → L2(Ω) stands for the control-to-state mapping which maps
a given control u ∈ L2(Γ) to the solution of the state equation (1.2) and we write y = Su.
The operator Sh : L2(Γ) → Vh ⊂ L2(Ω) stands for its discrete version defined by Shu := yh.
Moreover, let S∗ and S∗h denote the adjoint operators to S and Sh, respectively. This allows
us to write

p̄|Γ := S∗(Sū− yd) and p̄h|Γ := S∗h(Shūh − yd). (2.4)

The following convergence result for the variational discretisation concept is proven in [21]:
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Lemma 1. Let ū be the solution of the continuous optimal control problem (1.1)–(1.3) and
ūh the solution of the discrete problem given by

Jh(u) := J(Shu, u)→ min! s. t. u ∈ Uad. (2.5)

Then, (2.3) forms a necessary optimality system for (2.5), and there exists a constant c > 0
such that

‖ū− ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) ≤ c
(
‖(S − Sh)ū‖L2(Ω) + ‖(S∗ − S∗h)(ȳ − yd)‖L2(Γ)

)
. (2.6)

It remains to derive error estimates for the two terms on the right-hand side of (2.6)
which will be done in Section 4. For the first term it is well-known that the convergence rate
2 is achieved on convex polyhedra [19] and we will see that this rate can be achieved with
appropriate mesh refinement also for non-convex domains. The second error term in (2.6) is
the finite element error for the adjoint equation evaluated on the boundary Γ only. Estimates
of this kind are rather less standard and require very technical proofs. This will be considered
in the second part of Section 4.

Remark 2. Another often-used discretisation approach is the post-processing concept [29,
26]. The idea is to approximate state and adjoint state as usual by linear finite elements
and the control variable by piecewise constant functions. The obtained solution ūh of the
finite-dimensional problem can be improved by an application of the projection formula ũh :=
Πad(−α−1p̄h). Using the new estimates of the present paper it should be possible to improve
the convergence order for this concept either. Since several other terms have to be estimated,
a complete proof would exceed the scope of this paper and is subject of a forthcoming one. In
two space-dimensions optimal error estimates can be found in [6] which rely on the optimal
finite element error estimates in L2(Γ) as well.

3 Regularity of weak solutions

Let us first specify some notation. Throughout the paper, Ω is an open bounded polyhedron
with corners x(j), j ∈ C := {1, . . . , d′}, edges Mk, k ∈ E := {1, . . . , d}, and plane faces F`,
` ∈ F := {1, . . . , d∗}. Furthermore, let Xj := {k : x(j) ∈Mk} be the index set of all edges Mk

having an endpoint in x(j). The boundary of Ω is denoted by Γ.
The aim of this section is to collect some regularity results for the solution of the boundary

value problem
−∆y + y = f in Ω, ∂ny = g on Γ. (3.1)

It is well known that if the input data satisfy f ∈ L2(Ω) and g ∈ H1/2(Γ), the solution
possesses the regularity y ∈ H2(Ω) provided that the boundary of Ω is smooth or convex
and polyhedral, but this is not the case for domains with reentrant corners and edges. As
a remedy one can use weighted Sobolev spaces, because these spaces contain weights that
compensate the singularities that occur at corners and edges. Later, our assumptions upon
the finite element mesh and the weights will depend on the singular exponents of the occurring
singularities. Therefore, we associate to each edge Mk such an exponent λek and to each corner

x(j) an exponent λcj , and summarise them to vectors ~λe ∈ Rd and ~λc ∈ Rd′ , respectively. In
case of the differential operator −∆ + I and pure Neumann boundary conditions the edge
singular exponents λek are explicitly given by λek := π/ωk (cf. [18, Section 2.5]), where ωk
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denotes the interior angle between the two faces intersecting at Mk. It is known that the
occurring singularities can be described in cylinder coordinates (rk, ϕk, zk) where the zk-axis
coincides with Mk and ϕk = 0 on one of the faces:

Sek(rk, ϕk, zk) := r
λek
k cos(λekϕk).

Obviously, the singular functions are independent of the zk-direction. However, the corner sin-
gularities are described in spherical coordinates (ρj , ϕj , θj) around x(j) and have the structure
[18, Theorem 2.6.3]

Scj (ρj , ϕj , θj) := ρ
λcj
j Fj(ϕj , θj), where λcj := −1/2 +

√
λ
c,(2)
j + 1/4.

Here, λ
c,(2)
j is the second-smallest eigenvalue (the first one is always zero for the Neumann

problem) and Fj the corresponding eigenfunction of the Laplace-Beltrami operator −∆Gj ,

where Gj denotes the intersection of the polyhedral cone corresponding to the corner x(j)

and the unit sphere centred at x(j). We thus have to assume that the corners have at least
distance two from each other which can be achieved with appropriate scaling. More precisely,(
λ
c,(2)
j , Fj

)
solves the eigenvalue problem

−∆GjF = λF in Gj , ∂nF = 0 on ∂Gj . (3.2)

For further details we refer to [18, Section 2.6].

Remark 3. The eigenvalue problem (3.2) can be computed exactly for special cases only. We

want to mention Stephan and Whiteman [35] who derived λ
c,(2)
j = 40/9 (⇒ λcj = 5/3) for

the three-dimensional L-shape domain which is considered in the numerical experiments in
Section 6.

In general, the eigenvalue λ
c,(2)
j has to be computed approximately. Walden and Kellogg

[38] and Beagles and Whiteman [10] present a way to solve (3.2) numerically using a finite
difference method combined with Rayleigh quotient minimisation for the discrete eigenvalue
problem. In the latter reference this technique was applied to the “Fichera domain” which
denotes a domain around a corner at the intersection of three mutually orthogonal planes. In
the numerical experiments of this reference the exponent λcj ∈ (0.4335, 0.4576) was computed
approximately for the Dirichlet problem. However, the exponent λcj depends on the type of
boundary condition. For a pure Neumann boundary we have computed λcj ≈ 0.84 with the
software package CoCoS [30, 31].

We introduce now weighted Sobolev spaces and use the definition of Maz’ya and Rossmann
[28]. Let Uj , j ∈ C, be a covering of Ω with

d′⋃
j=1

Uj ⊃ Ω̄ and Ūj ∩ M̄k = ∅ if k /∈ Xj .

By rk(x) we denote the distance of x to the edge Mk and by ρj(x) the distance to the corner

x(j). For some given weights ~β ∈ Rd′ , ~δ ∈ Rd and a non-negative integer ` ∈ N0 we define the
space W `,p

~β,~δ
(Ω) as the closure of C∞0 (Ω̄\{x(1), . . . , x(d′)}) with respect to the norm

‖v‖
W `,p
~β,~δ

(Ω)
:=

 d′∑
j=1

∫
Ω∩Uj

∑
|α|≤`

ρj(x)p(βj−`+|α|)
∏
k∈Xj

(
rk
ρj

(x)

)pδk
|Dαv(x)|pdx


1/p

, (3.3)
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if p ∈ [1,∞), and

‖v‖
W `,∞
~β,~δ

(Ω)
:=
∑
|α|≤`

max
j∈C

ess sup
x∈Ω∩Uj

ρj(x)βj−`+|α|
∏
k∈Xj

(
rk
ρj

(x)

)δk
|Dαv(x)|. (3.4)

if p =∞. Corresponding semi-norms of W `,p
~β,~δ

(Ω) are given by

|v|
W `,p
~β,~δ

(Ω)
:=

 d′∑
j=1

∫
Ω∩Uj

∑
|α|=`

ρj(x)pβj
∏
k∈Xj

(
rk
ρj

(x)

)pδk
|Dαv(x)|pdx


1/p

,

|v|
W `,∞
~β,~δ

(Ω)
:=
∑
|α|=`

max
j∈C

ess sup
x∈Ω∩Uj

ρj(x)βj
∏
k∈Xj

(
rk
ρj

(x)

)δk
|Dαv(x)|.

The related trace spaces W
`−1/p,p
~β,~δ

(Γ) are induced by the natural norm

‖v‖
W
`−1/p,p
~β,~δ

(Γ)
:= inf{‖u‖

W `,p
~β,~δ

(Ω)
: u|Γ\{x(1),...,x(d′)} = v}. (3.5)

In this paper we will frequently use the weighted Sobolev spaces W `,p
~β,~δ

(G) on some subset

G ⊂ Ω. These are defined analogously except that the weights contained in the norm definition
are still related to the corners and edges of Ω. Note that the weights related to corners and
edges far away from G may be omitted.

The regularity of the weak solution of problem (3.1) in weighted Sobolev spaces is proven
in [1, 13, 28].

Theorem 4. Let be given some functions f ∈W 0,p
~β,~δ

(Ω) and g ∈W 1−1/p,p
~β,~δ

(Γ) with p ∈ (1,∞).

Assume that the edge and corner weights ~δ and ~β satisfy

2− 2/p−min{2, λek} < δk < 2− 2/p for all k ∈ E ,
2− 3/p−min{1, λcj} < βj < 3− 3/p for all j ∈ C.

Then, the weak solution y ∈ H1(Ω) of the boundary value problem (3.1) satisfies

Dαy ∈W 1,p
~β,~δ

(Ω) ∀|α| = 1.

Moreover, if ~β, ~δ ≥ 0, the a priori estimate∑
|α|=1

‖Dαy‖
W 1,p
~β,~δ

(Ω)
+ ‖y‖Lp(Ω) ≤ c

(
‖f‖

W 0,2
~β,~δ

(Ω)
+ ‖g‖

W
1−1/p,p
~β,~δ

(Γ)

)
(3.6)

holds.

Proof. The desired assertion is stated in Theorem 8.1.10 of [28] under the additional assump-
tion that λ = −1 and λ = 0 are the only eigenvalues of the problem

−∆Gjv = λ(λ+ 1)v in Gj , ∂nv = 0 on ∂Gj ,
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that are contained in the strip −1 ≤ Reλ ≤ 0. Note, that this eigenvalue problem is the same
as (3.2) when inserting the definition of λcj (compare also [24, Equation (2.3.3)]). That this
strip indeed contains only the eigenvalues 0 and −1 in our situation, and, that algebraic and
geometric multiplicity are equal, has been discussed in [24, Section 2.3.1].

It remains to prove the a priori estimate (3.6) which is not directly stated in [28], but
in the following, we outline how this estimate can be concluded. To this end, introduce the
space

H :=
{
v ∈ Lp(Ω): Dαv ∈W 1,p

~β,~δ
∀|α| = 1

}
with the naturally induced norm as stated on the left-hand side of (3.6), and the operator

A :=

(
−∆ + I
∂n

)
: H →W 0,2

~β,~δ
(Ω)×W 1−1/p,p

~β,~δ
(Γ).

It is easy to observe that the operator A is linear and bounded since the estimates

‖ −∆u‖
W 0,p
~β,~δ

(Ω)
≤ c|u|

W 2,2
~β,~δ

(Ω)
,

‖u‖
W 0,p
~β,~δ

(Ω)
≤ c‖u‖Lp(Ω),

‖∂nu‖W 1−1/p,p
~β,~δ

(Ω)
≤ c

∑
|α|=1

‖Dαu‖
W 1,p
~β,~δ

(Ω)
,

hold for arbitrary u ∈ H. More precisely, the first estimate follows directly from the norm
definition (3.3), the second one from a trivial embedding taking into account that ~β, ~δ ≥ 0,
and the third one from the definition of the trace space (3.5). We also confirm that A is
bijective which is equivalent to the existence and uniqueness of a solution in H and follows
from the first part of this theorem and the Lax-Milgram Lemma. From the bounded inverse
theorem [16, Theorem 3.7] we conclude that the inverse mapping A−1 is also continuous which
is equivalent to (3.6).

The above theorem excludes p =∞, but this case is needed since we have to exploit reg-
ularity in W 2,∞

~β,~δ
(Ω) in order to obtain optimal error estimates on the boundary. To overcome

this issue we apply regularity results in weighted Hölder spaces.

Theorem 5. Let be given a function f ∈ C0,σ(Ω) with some σ ∈ (0, 1) and let g ≡ 0. Assume
that the weights ~β ∈ Rd′ and ~δ ∈ Rd satisfy

δk ≥ 0, 2− λek < δk < 2 for all k ∈ E ,
βj ≥ 0, 2− λcj < βj for all j ∈ C.

Then, the weak solution y ∈ H1(Ω) of (3.1) satisfies

Dαy ∈W 1,∞
~β,~δ

(Ω) ∀|α| = 1.

Proof. Let us first introduce the weighted Hölder spaces defined in [28, Section 8.2]. We
denote by Uj,k := {x ∈ Uj ∩ Ω: rk < 3ρj(x)/2} for k ∈ Xj a covering of Uj . Furthermore, a

Hölder exponent σ ∈ (0, 1), a non-negative integer ` ∈ N0 and some weights ~β ∈ Rd′ , ~δ ∈ Rd
with δk ≥ 0 (k ∈ E) are given. To each edge we associate the integer mk := [δk − σ] + 1.
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The weighted Hölder space C`,σ~β,~δ
(Ω) denotes the space of ` times continuously differentiable

functions on Ω̃ := Ω \ (
⋃
k∈EMk) with finite norm

‖u‖
C`,σ
~β,~δ

(Ω)
:=

d′∑
j=1

∑
|α|≤`

sup
x∈Uj

ρj(x)βj−`−σ+|α|
∏
k∈Xj

(
rk(x)

ρj(x)

)max{0,δk−`−σ+|α|}
|(Dαu)(x)|

+
d′∑
j=1

∑
k∈Xj

∑
|α|=`−mk

sup
x,y∈Uj,k

|x−y|<ρj(x)/2

ρj(x)βj−δk
|(Dαu)(x)− (Dαu)(y)|
|x− y|mk+σ−δk

(3.7)

+
d′∑
j=1

∑
|α|=`

sup
x,y∈Uj

|x−y|<ρj(x)/2

ρ
βj
j (x)

∏
k∈Xj

(
rk(x)

ρj(x)

)δk |(Dαu)(x)− (Dαu)(y)|
|y − x|σ .

We introduce weights ~β′ := ~β + σ and ~δ′ := ~δ + σ and observe that the inequalities

‖f‖
C0,σ
~β′,~δ′

(Ω)
≤ c‖f‖

C0,σ

~σ,~0
(Ω)
≤ c‖f‖C0,σ(Ω)

hold, where the first inequality is a consequence of the embedding theorem [28, Lemma 8.2.1]
which holds for arbitrary β′j ≥ σ (j ∈ C) and δ′k ≥ 0 (k ∈ E), and the second one can be
confirmed when inserting βj = σ and δk = 0 in the definition of the norm (3.7).

The assumptions upon ~β and ~δ imply that

2− λek < δ′k − σ < 2, k ∈ E , and 2− λcj < β′j − σ, j ∈ C, (3.8)

and with the regularity result from [27, Theorem 5.1 and Remark 5.1] we obtain Dαy ∈
C1,σ
~β′,~δ′

(Ω) for all |α| = 1. It remains to show that

‖Dαu‖
W 1,∞
~β,~δ

(Ω)
≤ c‖Dαu‖

C1,σ
~β′,~δ′

(Ω)
∀|α| = 1.

It suffices to bound the W 1,∞
~β,~δ

(Ω)-norm by the first row in the norm definition (3.7). Obviously,

when inserting βj = β′j − σ, the corner weights coincide. Inserting δk = δ′k − σ ≥ 0 yields for
the edge weights (

rk
ρj

)δk
=

(
rk
ρj

)δ′k−σ
≤ c

(
rk
ρj

)max{0,δ′k−σ−1+|α|}
,

where we exploited δ′k − σ ≥ max{0, δ′k − σ − 1 + |α|} for all |α| ≤ 1. Consequently, we have
shown (3.8) and the assertion can be concluded.

In order to derive finite element error estimates we have to apply several embeddings
which are summarized in the following lemma. A proof can e. g. be found in Lemma 8.1.1
and Lemma 8.1.2 of [28].

Lemma 6. Let be G ⊂ Ω. The following embeddings hold:

1. Let 1 < q < p ≤ ∞. Assume that the weights satisfy βj + 3/p < β′j + 3/q for j ∈ C, and
0 < δk + 2/p < δ′k + 2/q for k ∈ E. Then the continuous embedding

W `,p
~β,~δ

(G) ↪→W `,q
~β′,~δ′

(G)

holds.
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2. Assume that p ∈ [1,∞), βj ≤ 1 + β′j for j ∈ C, and δk ≤ 1 + δ′k, such as δk, δ
′
k > −2/p

for k ∈ E. Then the continuous embedding

W `+1,p
~β,~δ

(G) ↪→W `,p
~β′,~δ′

(G)

holds. In case of βj < 1 + β′j, j ∈ C, and δk < 1 + δ′k, k ∈ E, the embedding is even
compact.

Remark 7. In [28] the case p =∞ was excluded for the first part of Lemma 6. However, by
consideration of the Hölder inequality one can easily confirm the validity of this assertion for
p =∞.

4 Finite element error estimates for the boundary value prob-
lem

In this section, we will derive finite element error estimates for the boundary value problem

−∆y + y = f in Ω, ∂ny = g on Γ. (4.1)

Let us recall, e. g. from [7], the family of graded meshes we are going to investigate. Denote
the distance of T ∈ Th to the edge Mk by rk,T := dist(T,Mk) and the minimum distance to
all singular points by rT := mink∈E rk,T . For a given mesh grading parameter µ ∈ (0, 1] and
refinement radius R > 0 the triangulation has to satisfy the condition

hT ∼


h1/µ, if rT = 0,

hr1−µ
T , if 0 < rT < R,

h, if R ≤ rT ,
(4.2)

for all T ∈ Th. This is a natural refinement condition which ensures that adjacent elements
have approximately the same size. In case of a quasi-uniform mesh we simply set µ = 1.
The smaller this parameter is, the stronger the mesh is refined locally. If a mesh is refined
according to (4.2), the number of elements contained in the triangulation is of order O(h−3)
unless µ < 1/3, compare also the discussions of Apel et al. [7].

Remark 8. The reader will already find L2(Ω)-error estimates for the refinement strategy
(4.2) in [7], but this reference deals only with Dirichlet and certain mixed problems. The
techniques used in this reference do not apply in our case since usually for the Dirichlet
problem different weighted Sobolev spaces are employed to describe the regularity, see e.g. [28]
for more sophisticated discussions.

The first step is to derive some local interpolation error estimates that are used later
to prove the convergence order of the finite element method both in the domain and on
the boundary. We will use two different interpolation operators. For approximation errors
in L∞(Ω), the usual Lagrange interpolant Ih : C(Ω̄) → Vh is the preferred operator due
to its stability in L∞(Ω). However, the Lagrange interpolant is not always sufficient for
our purposes. Thus, at some places we apply the quasi-interpolant Zh : W 1,p(Ω) → Vh,
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p ∈ [1,∞], as originally introduced by Scott and Zhang [34], which is defined even for non-
smooth functions in Sobolev spaces W 1,p(Ω) by

[Zhv](x) :=
n∑
i=1

aiϕi(x).

Here, the functions ϕi denote the nodal basis functions. More precisely, when {xi}ni=1 are the
nodes of the triangulation Th, we have ϕi(xj) = δi,j for all i, j = 1, . . . , n. The difference to the
Lagrange interpolant is the choice of the coefficients ai which are defined by ai := (Πσiv)(xi)
with

Πσi : L
2(σi)→ P1(σi), (v −Πσiv, wh)L2(σi) = 0 ∀wh ∈ P1(σi).

It remains to specify the subsets σi. We will follow the choice used already in [34]:

• If xi is an interior node, we choose σi = T with some T ∈ Th containing xi.

• If xi is a boundary node, we choose σi = F ⊂ Γ where F 3 xi is a face of some T ∈ Th.

An essential advantage of Zh over the usual Lagrange interpolant is the better stability prop-
erty which is proved in [34]:

Lemma 9. For some T ∈ Th let ST denote the patch of elements around T , i.e.

ST := int
⋃

T ′∈Th
T̄ ′∩T̄ 6=∅

T ′.

Then, for any integer ` ≥ 1, p, q ∈ [1,∞], and non-negative integer m, the following stability
estimate holds:

‖Zhv‖Wm,q(T ) ≤ c|T |1/q−1/ph−mT

∑̀
j=0

hjT |v|W j,p(ST ) ∀v ∈W `,p(ST ). (4.3)

Let T̂ be the standard reference tetrahedron having vertices (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1) (see Figure 1a). We denote by FT the affine linear transformation from T̂ to a world
element T ∈ Th. The weighted Sobolev spaces on a reference setting are defined analogous to
W `,p
~β,~δ

(Ω) with slight modifications of the weight functions that we define by

ρ̂ := |x̂|, r̂(x̂) := dist(x̂, M̂),

where M̂ := {te3 : t ∈ (0, 1)} is the reference edge. For simplification we assume throughout
this paper that each element T touches at most one corner of Ω and has at most one edge
which is contained in an edge of Ω. If an element violates this condition it has to be bisected
appropriately. Analogous to (3.3) we define a norm of W `,p

β,δ(T̂ ) with β, δ ∈ R by

‖û‖
W `,p
β,δ(T̂ )

:=

∑
|α|≤`

∫
T̂
ρ̂(x̂)p(β−`+|α|)

(
r̂

ρ̂
(x̂)

)pδ
|D̂αû(x̂)|pdx̂

1/p

.
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x̂ŷ

F−1
T
(y)

M̂

x̂1

x̂2

x̂3

T̂

ĉ

(a) Reference element

c

x

M

T

r(x)
y

(b) Element touching an
edge and a corner

x

M

Tr(x)
y
c

(c) Element touching
an edge in a single point

Figure 1: The reference element T̂ and the different positions of the original element T .

Let us briefly discuss the relation between the weights in the reference setting and the original
weights. In the following x̂ ∈ T̂ is arbitrary and we set x = FT (x̂). For the case illustrated in
Figure 1b that one edge of T is contained in an edge M of Ω, we define the points

y = arg min
z∈M

|x− z|, ŷ = arg min
ẑ∈M̂

|x̂− ẑ|.

Note that y and FT (ŷ) are in general different points. For the transformation from T̂ to T
we have to exploit the property

r(x) = |x− y| ∼ hT |x̂− F−1
T (y)| ∼ hT |x̂− ŷ| = hT r̂(x̂), (4.4)

where the second equivalence holds due to the assumed shape regularity of Th. Moreover, if
T touches also the corner c := x(j), we observe that

ρ(x) = |x− c| ∼ hT |x̂− ĉ| = hT ρ̂(x̂), (4.5)

since c = FT (ĉ). The case illustrated in Figure 1c where T touches the edge M only in a
single point c is treated slightly different. Here, we get the property

r(x) = |x− y| ∼ |x− c| ∼ hT |x̂− ĉ| = hT ρ̂(x̂), (4.6)

and the edge weight becomes a corner weight in the reference setting. Note, that we did not
consider weights related to corners and edges that are not touched by T , since these weights
are not needed for our analysis.

In order to prove interpolation error estimates, the key step is the application of the
Bramble-Hilbert Lemma on a reference element and we will need the following version in
weighted Sobolev spaces.

Lemma 10. Let be given some function v ∈ W `,q
β,δ(T̂ ) with q ∈ (1,∞), a positive integer `,

and weights β, δ ∈ R satisfying

β < 4− 3/q, −2/p < δ < 3− 2/q. (4.7)
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Then, a polynomial p ∈ P`−1(T̂ ) of order `− 1 and some c > 0 exist such that

‖v − p‖
W `,q
β,δ(T̂ )

≤ c|v|
W `,q
β,δ(T̂ )

holds.

Proof. It suffices to show that the norm equivalence

‖u‖
W `,q
β,δ(T̂ )

∼ |u|
W `,q
β,δ(T̂ )

+
∑
|α|≤`−1

∣∣∣∣∫
T̂
Dαu(x)dx

∣∣∣∣ . (4.8)

holds and to insert u = v − p with some p ∈ P`−1(T̂ ) such that the second part on the right-
hand side vanishes. In Lemma 2.2 of [8] the equivalence (4.8) has been shown for a slightly
different space. However, the key steps of the proof therein are the embeddings

W `,q
β,δ(T̂ )

c
↪→W `−1,q

β,δ (T̂ ) and W 1,q
β,δ (T̂ ) ↪→W 1,1

1,1 (T̂ ) ↪→ L1(T̂ ). (4.9)

The first embedding is stated in part two of Lemma 6 and holds under the assumption
−2/q < δ. The second embedding in (4.9) is also a consequence of Lemma 6 and holds under
the assumption (4.7).

The local interpolation error estimates depend on the position of the element T ∈ Th
wherefore we introduce the quantities

ρj,T := dist(x(j), T ) j ∈ C, rk,T := dist(Mk, T ) k ∈ E , rT := min
k∈E

rk,T .

Lemma 11. Let T ∈ Th, T ⊂ Uj for some j ∈ C, and u ∈ W 2,p
~β,~δ

(ST ) with some p ∈ (6/5,∞]

be given. Assume that the weight exponents satisfy 0 ≤ βj < 5/2−3/p, and 0 ≤ δk < 5/3−2/p
for all k ∈ Xj. Then, for ` = 0, 1, the following interpolation error estimates hold:

|u− Zhu|H`(T ) ≤

ch2−`
T |T |1/2−1/p|u|

W 2,p
~β,~δ

(ST )
·


ρ
−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
, if ρj,ST > 0, rk,ST > 0 (∀k ∈ Xj),

h−δkT ρ
δk−βj
j,T , if ρj,ST > 0, rk,ST = 0,

h
−βj
T , if ρj,ST = 0.

(4.10)

Furthermore, let κ := max{maxk∈E δk,maxj∈C βj} denote the largest weight. Then, the esti-
mate above simplifies to

|u− Zhu|H`(T ) ≤ ch2−`
T |T |1/2−1/p|u|

W 2,p
~β,~δ

(ST )
·
{
r−κT , if rST > 0,

h−κT , if rST = 0.
(4.11)

Proof. The estimate (4.10) in case of rST > 0 follows from a standard interpolation error
estimate since the regularity u ∈ W 2,p(ST ) can be exploited. We may introduce the weights
afterwards and obtain

|u− Zhu|H`(T ) ≤ ch2−`
T |T |1/2−1/pρ

−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
|u|

W 2,p
~β,~δ

(ST )
. (4.12)
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Let us consider the case that ST touches a singular point. For arbitrary first-order poly-
nomials w ∈ P1(ST ) we have [Zhw]|T = w|T and with the triangle inequality we get the
decomposition

|u− Zhu|H`(T ) ≤ |u− w|H`(T ) + |Zh(u− w)|H`(T ). (4.13)

We first consider the second part of (4.13). Using an inverse inequality, the transformation
to the reference element and the stability of Zh in H1(ST̂ ) (compare Lemma 9) we get

|Zh(u− w)|H`(T ) ≤ ch−`T ‖Zh(u− w)‖L2(T )

≤ ch−`T |T |1/2‖Ẑh(û− ŵ)‖L2(T̂ )

≤ ch−`T |T |1/2‖û− ŵ‖H1(ST̂ ).

Here, ST̂ denotes the patch ST transformed to the reference setting via the affine linear
mapping F−1

T . Note, that the patch ST̂ has diameter d(ST̂ ) = O(1) and contains a ball of
radius ρ(ST̂ ) = O(1). For the first part of (4.13) the transformation to the reference element

and the embedding H1(T̂ ) ↪→ L2(T̂ ) yield

|u− w|H`(T ) ≤ ch−`T |T |1/2|û− ŵ|H`(T̂ ) ≤ ch−`T |T |1/2‖û− ŵ‖H1(ST̂ ).

Using also the embedding W 2,6/5(ST̂ ) ↪→ H1(ST̂ ), the estimate (4.13) simplifies to

|u− Zhu|H`(T ) ≤ ch−`T |T |1/2‖û− ŵ‖W 2,6/5(ST̂ ). (4.14)

Now, we employ a Deny-Lions type argument, e. g. the version from Theorem 3.2 in [17] where
the estimate depends only on d(ST̂ ) and ρ(ST̂ ), as well as the transformation back to ST , and
arrive at

|u− Zhu|H`(T ) ≤ ch−`T |T |1/2|û|W 2,6/5(ST̂ ) ≤ ch2−`
T |T |1/2−5/6|u|W 2,6/5(ST ), (4.15)

where |ST | ∼ |T | was exploited in the last step. Henceforth, we have to distinguish among
the cases whether ST touches a corner or only a single edge.

We first consider the case that ST touches the edge Mk for some k ∈ Xj , but is away from
the corners. The Hölder inequality with q := 5p/6 and 1/q + 1/q′ = 1 yields

‖v‖6/5
W 0,6/5(ST )

=

∫
ST

rk(x)6δk/5|v(x)|6/5rk(x)−6δk/5dx

≤
(∫

ST

rk(x)pδk |v(x)|pdx
)6/(5p)(∫

ST

rk(x)−q
′6δk/5dx

)1/q′

. (4.16)

The second integral can be integrated exactly in cylinder coordinates (rk, ϕk, zk) around Mk

and is bounded if 2 − q′6δk/5 > 0. This condition is equivalent to δk < 5/3 − 2/p when
inserting the definition of q and q′. As ST is contained in a cylindrical sector around Mk

having length and radius proportional hT there exist constants ci > 0, i ∈ {1, 2, 3}, such that(∫
ST

rk(x)−q
′6δk/5dx

)5/(6q′)

≤ c
(∫ c1+c2hT

c1

∫ c3hT

0
r

1−q′6δk/5
k drkdzk

)5/(6q′)

≤ ch−δkT |T |5/6−1/p, (4.17)
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where we used 1/q′ = 1 − 6/(5p) and |T | ∼ h3
T in the last step. Inserting (4.16) with (4.17)

into (4.15) leads to

|u− Zhu|H`(T ) ≤ ch2−`−δk
T |T |1/2−1/pρ

δk−βj
j,T |u|

W 2,p
~β,~δ

(ST )
, (4.18)

where we already inserted the remaining weights and exploited that ST is away from the
corner.

Let now ST contain also the corner c := x(j). Analogous to (4.16) we derive an embedding
into an appropriate weighted Sobolev space and obtain using the Hölder inequality

‖v‖6/5
W 0,6/5(ST )

=

∫
ST

ρj(x)6βj/5
∏
k∈Xj

(
rk
ρj

(x)

)6δk/5

|v(x)|6/5ρj(x)−6βj/5
∏
k∈Xj

(
rk
ρj

(x)

)−6δk/5

dx

≤ c

∫
ST

ρj(x)pβj
∏
k∈Xj

(
rk
ρj

(x)

)pδk
|v(x)|pdx

6/(5p)

×

∫
ST

ρj(x)−q
′6βj/5

∏
k∈Xj

(
rk
ρj

(x)

)−q′6δk/5
dx

1/q′

. (4.19)

We introduce spherical coordinates (ρ, ϕk, ϑk), which are centred at c and coincide with the
edge Mk for ϑk = 0. This definition implies that rk/ρj = sin(ϑk). The integrals over ϑk
are bounded by a constant independent of hT under the condition −q′6δk/5 > −2 which is
implied by −2/p < δk < 5/3− 2/p for all k ∈ Xj . Hence, a constant c1 > 0 exists such that
the second integral in (4.19) can be simplified to∫

ST

ρj(x)−q
′6βj/5

∏
k∈Xj

(
rk
ρj

(x)

)−q′6δk/5
dx

6/(5q′)

≤ c
(∫ c1hT

0
ρ2−q′6βj/5dρ

)6/(5q′)

≤ ch−βjT |T |5/6−1/p, (4.20)

provided that −q′6βj/5 > −3 which is equivalent to the assumption βj < 5/2 − 3/p. As a
consequence, we get from (4.15) using (4.19) and (4.20) the estimate

|u− Zhu|H`(T ) ≤ ch
2−`−βj
T |T |1/2−1/p|u|

W 2,p
~β,~δ

(ST )
, if ρj,ST = 0,

and estimate (4.10) is proved completely.
Let us now investigate how the estimate (4.11) can be deduced from (4.10). The factors

containing rk,T and ρj,T obviously depend on the position of T . Therefore we introduce the
following definitions. We denote the interior angle between the edges Mk and Ml, k, l ∈ Xj ,
by αk,l and write αj := 1

4 mink,l∈Xj αk,l for the quarter of the minimal angle between all edges

having an endpoint in x(j). We define some cones C
αj
k , k ∈ Xj , also illustrated in Figure 2,

by
C
αj
k := {x ∈ Uj ∩ Ω: rk(x)/ρj(x) ≤ sinαj}.

Outside of this cone, the angular distance rk(x)/ρj(x) is then bounded from below by a
constant depending only on the angles αj , but not on Th. If T ∩ Cαjk = ∅ for all k ∈ Xj , the
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angular distances to all edges are bounded from below, i. e.∏
k∈Xj

(
rk,T
ρj,T

)−δk
≤ c.

Together with ρ
−βj
j,T ≤ r−κT the estimate (4.12) leads to (4.11). Otherwise, if T ∩ Cαjk 6= ∅

for some k ∈ Xj , we have rT = rk,T , and since the angular distances to the other edges are
bounded from below we get from (4.12) the estimate

|u− Zhu|H`(T ) ≤ ch2−`
T |T |1/2−1/pρ

δk−βj
j,T r−δkk,T |u|W 2,p

~β,~δ
(ST )

. (4.21)

Let us discuss the terms depending on rk,T and ρj,T . In case of δk ≥ βj we have ρ
δk−βj
j,T ≤ c.

Otherwise, we exploit rk,T ≤ ρj,T and arrive at ρ
δk−βj
j,T r−δkk,T ≤ cr

−βj
T . Hence, for both cases

estimate (4.11) follows from (4.21).
To deduce estimate (4.11) from (4.10) for rST = 0, the same technique can be applied. In

case of ρj,ST > 0 we merely exploit that ρj,T ≥ chT .

Remark 12. Let us recall the embeddings (4.14) and (4.16) (if ρj,ST > 0) or (4.19) (if
ρj,ST = 0) used in the proof of Lemma 11. Generally speaking one can say that we exploited

W 2,p
~β,~δ

(ST ) ↪→W 2,6/5(ST ) ↪→ H1(ST ),

which holds in particular for δk < 5/3−2/p. In the regularity result of Theorem 4 we demanded
δk > 2−2/p−λek, and we can always find a weight δk satisfying both conditions when λek > 1/3
which is indeed always the case. If we had used the Lagrange interpolant Ih which promises
stability only in L∞(T ), we would have used the embeddings

W 2,p
~β,~δ

(T ) ↪→W 2,3/2(T ) ↪→ L∞(T ),

which hold only for δk < 4/3− 2/p. One easily confirms that this condition and the assump-
tions of Theorem 4 can only be satisfied when λek > 2/3 which is not the case for domains
with edges having interior angle larger or equal 270◦.

Using the local interpolation error estimates derived in Lemma 11 one can prove con-
vergence rates for the finite element approximation of problem (4.1) in H1(Ω) and L2(Ω).

Theorem 13. Let Ω be decomposed into a family of triangulations Th satisfying the condition
(4.2). Let the mesh refinement parameter µ and the weights ~β ∈ [0, 1)d

′
and ~δ ∈ [0, 2/3)d

satisfy the inequalities

1− λek < δk ≤ 1− µ, ∀k ∈ E ,
1/2− λcj < βj ≤ 1− µ, ∀j ∈ C.

Then, for arbitrary input data f ∈W 0,2
~β,~δ

(Ω), g ∈W 1/2,2
~β,~δ

(Γ) the a priori error estimate

‖y − yh‖H`(Ω) ≤ ch2−`|y|
W 2,2
~β,~δ

(Ω)
≤ ch2−`

(
‖f‖

W 0,2
~β,~δ

(Ω)
+ ‖g‖

W
1/2,2
~β,~δ

(Ω)

)
. (4.22)

holds for ` = 0, 1.
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αj

Figure 2: Definition of the cones C
αj
k at a reentrant corner

Proof. As a consequence of Cea’s Lemma and the decomposition of the domain Ω we obtain

‖y − yh‖2H1(Ω) ≤
∑
T∈Th

‖y − Zhy‖2H1(T ). (4.23)

It remains to insert the interpolation error estimates from Lemma 11 and to adjust the grading
parameter such that the desired convergence rate is obtained. In case of rST = 0 we have
hT = h1/µ and with µ ≤ 1− κ we get

‖y − Zhy‖H1(T ) ≤ ch(1−κ)/µ|y|
W 2,2
~β,~δ

(ST )
≤ ch|y|

W 2,2
~β,~δ

(ST )
.

Otherwise, if rST > 0 the mesh condition yields hT = hr1−µ
T and consequently

‖y − Zhy‖H1(T ) ≤ chr1−µ−κ
T |y|

W 2,2
~β,~δ

(ST )
≤ ch|y|

W 2,2
~β,~δ

(ST )
.

Inserting these local estimates into (4.23) leads to

‖y − yh‖H1(Ω) ≤ ch|y|W 2,2
~β,~δ

(Ω)
≤ ch

(
‖f‖

W 0,2
~β,~δ

(Ω)
+ ‖g‖

W
1/2,2
~β,~δ

(Ω)

)
. (4.24)

Here, we also applied the regularity result of Theorem 4 whose conditions are satisfied under
our assumptions upon ~β and ~δ. Since ~β ≥ 0 and ~δ ≥ 0, hence L2(Ω) ↪→ W 0,2

~β,~δ
(Ω), we finally

obtain the estimate in the L2(Ω)-norm by the Aubin-Nitsche method.

If we assume slightly better regularity of the input data in classical Sobolev spaces we get
by the embeddings from Lemma 6 the following simplified version of Theorem 13.

Corollary 14. Let be f ∈ L2(Ω) and g ∈ H1/2(Γ). Then, the error estimate

‖y − yh‖H`(Ω) ≤ ch2−`

holds, provided that one of the following assumptions holds:

1. The family of triangulations Th is quasi-uniform (i.e. µ = 1) and the singular exponents
satisfy λek > 1, λcj > 1/2 for all k ∈ E and j ∈ C.
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2. The family of triangulations Th is refined according to (4.2) with refinement parameter

µ < min{min
k∈E

λek,min
j∈C

1/2 + λcj}.

In the remainder of this section, the finite element error on the boundary Γ is investigated.
The initial step of the convergence proof is an appropriate decomposition of Γ. In order to
extract those parts of the domain which are under influence of singularities we define the sets

ΩR := {x : 0 < r(x) < 1} ∩ Ω, ΓR := ∂ΩR ∩ Γ,

Ω̂R := {x : 0 < r(x) <
1

2
} ∩ Ω, Γ̂R := ∂Ω̂R ∩ Γ. (4.25)

Remember that r(·) := mink∈E rk(·) stands for the minimum distance to the singular points.
The boundary part which is not influenced by singularities is denoted by Γ̂0 := Γ\Γ̂R.

Γ̂R

Γ̂0

Figure 3: Decomposition of the boundary into Γ̂R and Γ̂0.

For technical reasons we introduce a dyadic decomposition of the domain ΩR. Therefore,
let di := 2−i, i = 0, . . . , I and let cI ≥ 1 be a constant independent of h such that dI = cIh

1/µ

and hence I ∼ | lnh|. The constant cI will be specified at the end of the proof of Theorem 17
and will play an important role. As illustrated in Figure 4 we define the sets

Ωi :=

{
{x : di+1 < r(x) < di} ∩ ΩR, for i = 0, 1, . . . , I − 1,

{x : 0 < r(x) < dI} ∩ ΩR, for i = I,

which form a decomposition of ΩR and Ω̂R, i. e.

ΩR = int

I⋃
i=0

Ω̄i, Ω̂R = int

I⋃
i=1

Ω̄i.

A decomposition of the boundary part ΓR is then given by

Γi := ∂Ωi ∩ Γ, i = 0, . . . , I. (4.26)
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Mk

Ω0

Ω1.
.
.

ΩI

Figure 4: Dyadic decomposition of ΩR along an edge.

Note that the elements contained in Ωi or intersecting Ωi satisfy

hT ∼
{
hd1−µ

i , for i = 0, 1, . . . , I − 1,

h1/µ, for i = I.

Furthermore, we will need the patches of Ωi with its adjacent sets defined by

Ω
(k)
i := int

(
Ω̄max{0,i−k} ∪ . . . ∪ Ω̄i ∪ . . . ∪ Ω̄min{I,i+k}

)
, k ∈ N,

and write Ω′i := Ω
(1)
i , Ω′′i := Ω

(2)
i .

The first step of the proof is to derive interpolation error estimates on the subdomains
Ωi. We will need estimates in the H`(Ωi)-norm (` = 0, 1) as well as in the L∞(Ωi)-norm. In
what follows, κ := max{maxk∈E δk,maxj∈C βj} denotes again the largest weight.

Lemma 15. Let be given some function u ∈ H1(Ω) such that Dαu ∈ W 1,p
~β,~δ

(Ω
(k+1)
i ) for all

|α| = 1, with p ∈ [2,∞], non-negative integer k, and weights satisfying

0 ≤ δk < 5/3− 2/p, k ∈ E ,
0 ≤ βj < 5/2− 3/p, j ∈ C.

Then, for ` ∈ {0, 1}, there holds

‖u− Zhu‖H`(Ω
(k)
i )
≤ c


h2−`d

(2−`)(1−µ)+1−2/p−κ
i |u|

W 2,p
~β,~δ

(Ω
(k+1)
i )

, for i = 0, 1, . . . , I − k − 2,

c
Θ1+1−2/p
I h(3−`−2/p−κ)/µ|u|

W 2,p
~β,~δ

(Ω
(k+1)
i )

, for i = I − k − 1, . . . , I,

where Θ1 := max{0, (7/2− `− 3/p)(1− µ)− κ}.
Moreover, if Dαu ∈W 1,∞

~β,~δ
(Ω

(k+1)
i ) for all |α| = 1, with weights satisfying

0 ≤ δk < 5/3, k ∈ E ,
0 ≤ βj < 2, j ∈ C,

the estimate

‖u− Ihu‖L∞(Ω
(k)
i )
≤ c


ch2d

2(1−µ)−κ
i |u|

W 2,∞
~β,~δ

(Ω
(k+1)
i )

, for i = 0, 1, . . . , I − k − 2,

cΘ2
I h(2−κ)/µ|u|

W 2,∞
~β,~δ

(Ω
(k+1)
i )

, for i = I − k − 1, . . . , I,
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holds, where Θ2 := max{0, 2(1− µ)− κ}.
Proof. Without loss of generality we prove the assertion for k = 0. The same arguments can
be applied in case of k > 0 either. Let us first derive the estimate in the H`(Ωi)-norm for
i = 0, 1, . . . , I − 2. By the discrete Hölder inequality we get

|u− Zhu|2H`(Ωi)
≤

 ∑
T∩Ωi 6=∅

1

1−2/p ∑
T∩Ωi 6=∅

|u− Zhu|pH`(T )

2/p

. (4.27)

The number of elements contained in Ωi can be estimated by∑
T∩Ωi 6=∅

1 ≤ c |Ωi|
minT∩Ωi 6=∅ |T |

≤ cd2
i max
T∩Ωi 6=∅

|T |−1. (4.28)

In the proof of Lemma 11 we have already shown that the local interpolation error for T with
rT > 0 can be estimated by

|u− Zhu|H`(T ) ≤ ch2−`
T |T |1/2−1/pr−κT |u|W 2,p

~β,~δ
(ST )

. (4.29)

Inserting this together with the mesh condition hT ∼ hd1−µ
i as well as rT ≥ di+1 = 1

2di and
(4.28) into (4.27) leads to

|u− Zhu|2H`(Ωi)
≤ ch2(2−`)d

2((2−`)(1−µ)+1−2/p−κ)
i |u|2

W 2,p
~β,~δ

(Ω′i)
.

Extracting the root yields the first assertion. Let us now consider the case i = I − 1, I. The
number of elements can be estimated by∑

T∩Ωi 6=∅

1 ≤ cd2
I |Tmin|−1,

where Tmin is an arbitrary element touching a singular edge having diameter hTmin ∼ h1/µ.
Due to the mesh condition we have to distinguish between the cases whether T touches the
singular points or not. If T is away from the singular edges/corners the estimate (4.29) can
be applied again and using |T | ∼ h3

T , the mesh condition hT ∼ hr1−µ
T , as well as h1/µ ≤ rT ≤

di ∼ cIh1/µ we obtain

|u− Zhu|H`(T ) ≤ ch2−`+3/2−3/pr
(2−`+3/2−3/p)(1−µ)−κ
T |u|

W 2,p
~β,~δ

(ST )

≤ ccΘ1
I h(2−`−κ)/µ|Tmin|1/2−1/p|u|

W 2,p
~β,~δ

(ST )
, (4.30)

where we used the property |Tmin| ∼ h3/µ in the last step. With the local interpolation error
estimate from Lemma 11 and the mesh criterion hT ∼ h1/µ we get almost the same estimate
for elements touching the singular points, namely

|u− Zhu|H`(T ) ≤ ch(2−`−κ)/µ|Tmin|1/2−1/p|u|
W 2,p
~β,~δ

(ST )
. (4.31)

The estimates (4.30) and (4.31) can be combined to

|u− Zhu|H`(T ) ≤ ccΘ1
I h(2−`−κ)/µ|Tmin|1/2−1/p|u|

W 2,p
~β,~δ

(ST )
∀T ∈ Th : T ∩ Ωi 6= ∅.
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Next, we apply the Hölder inequality (4.27) and obtain

|u− Zhu|H`(Ωi) ≤ cc
Θ1
I h(2−`−κ)/µd

(1−2/p)
I |u|

W 2,p
~β,~δ

(Ω′i)

≤ ccΘ1+1−2/p
I h(3−`−2/p−κ)/µ|u|

W 2,p
~β,~δ

(Ω′i)
.

In the remainder of this proof the L∞(Ωi) error estimates are considered. Therefore, let T ∗ be
the element where the maximum of |u(x)− Ihu(x)| is attained. Recall the covering {Uj}d′j=1

of Ω introduced on page 6. Without loss of generality we may assume that T ∗ ⊂ Uj . If
T ∗ ∩ Ωi 6= ∅ for some i = 0, 1, . . . , I − 2, we have u ∈ W 2,∞(T ∗), and thus we may apply a
standard interpolation error estimate and introduce the weights afterwards. We obtain

‖u− Ihu‖L∞(Ωi) ≤ ‖u− Ihu‖L∞(T ∗) ≤ ch2
T ∗ρ
−βk
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
|u|

W 2,∞
~β,~δ

(T ∗)

≤ ch2
T ∗r
−κ
T ∗ |u|W 2,∞

~β,~δ
(T ∗) ≤ ch

2d
2(1−µ)−κ
i |u|

W 2,∞
~β,~δ

(Ω′i)
. (4.32)

In the third step we used the technique already applied in the proof of Lemma 11, where
all factors depending on ρj,T and rk,T were simplified to r−κT . The last step follows from the

mesh condition hT ∼ hd1−µ
i and from rT ∗ ∼ di.

For i = I − 1, I we have lower regularity on elements touching the singular points. Thus,
standard interpolation error estimates cannot be applied. Analogous to the proof of Lemma
11 we introduce a polynomial w ∈ P1(T ∗), split the error into two parts and consider the
approximation error on a reference element. With the embedding W 1,p(T̂ ) ↪→ L∞(T̂ ) for
some p > 3, we obtain the estimate

‖u− Ihu‖L∞(T ∗) ≤ ‖û− ŵ‖L∞(T̂ ) + ‖Îh(û− ŵ)‖L∞(T̂ ) ≤ c‖û− ŵ‖W 1,p(T̂ ).

First, we consider the case that T ∗ is away from the corner points but possesses an edge which
is contained in the edge Mk, k ∈ E of Ω. We apply the embedding W 2,p

1,1 (T̂ ) ↪→W 1,p(T̂ ) from
Lemma 6 and the Bramble-Hilbert type argument in weighted Sobolev spaces presented in
Lemma 10, and obtain

‖u− Ihu‖L∞(T ∗) ≤ ‖û− ŵ‖W 2,p
1,1 (T̂ )

≤ c|û|
W 2,p

1,1 (T̂ )
. (4.33)

Under the assumption δk < 5/3 and p = 3 + ε with sufficiently small ε > 0 we get from
Lemma 6 and the transformation from T̂ to T ∗ using (4.4) the estimate

|û|
W 2,p

1,1 (T̂ )
≤ c|û|

W 2,∞
δk,δk

(T̂ )
≤ ch2−δk

T ∗ ρ
δk−βj
j,T ∗ |u|W 2,∞

~β,~δ
(T ∗). (4.34)

In the last step we already inserted the remaining weights and used the fact that ρj,T ∗ > 0.

Furthermore, analogous to the proof of Lemma 11 we can show h2−δk
T ∗ ρ

δk−βj
j,T ∗ ≤ ch2−κ

T ∗ , and
conclude from (4.34) and (4.33)

‖u− Ihu‖L∞(T ∗) ≤ ch2−κ
T ∗ |u|W 2,∞

~β,~δ
(T ∗). (4.35)

If T ∗ touches the edge Mk only in a single point we obtain exactly the same estimate by
replacing in (4.33) and (4.34) the space W 2,p

1,1 (T̂ ) by W 2,p
1,0 (T̂ ) and W 2,∞

δk,δk
(T̂ ) by W 2,∞

δk,0
(T̂ ), and

by using the property (4.6) instead of (4.4).
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Let now T ∗ touch additionally the corner x(j) and let an edge of T ∗ be contained in Mk,
k ∈ Xj . The other edges M`, ` ∈ Xj \ {k}, meeting in x(j) can be neglected, as T touches
them only in x(j). From (4.6) and (4.6) we conclude for these edges 1 = ρ̂/ρ̂ ∼ r`/ρj . We
consider again (4.33), employ the embedding from Lemma 6 with βj < 2 and δk < 5/3, and
obtain using (4.4) and (4.5) the estimate

|û|
W 2,p

1,1 (T̂ )
≤ c|û|

W 2,∞
βj,δk

(T̂ )
≤ ch2−βj

T ∗ |u|W 2,∞
~β,~δ

(T ∗)

In the last step we merely inserted the remaining weights which are bounded on T ∗. After
insertion into (4.33) we arrive again at (4.35).

In conclusion, we have shown that if T ∗ touches the singular points the estimate

‖u− Ihu‖L∞(T ∗) ≤ ch(2−κ)/µ|u|
W 2,∞
~β,~δ

(T ∗) (4.36)

holds, and otherwise, we obtain from (4.32) with h1/µ ≤ rT ∗ ≤ di ∼ cIh
1/µ, i = I − 1, I, and

some computations

‖u− Ihu‖L∞(T ∗) ≤ ch2r
2(1−µ)−κ
T ∗ |u|

W 2,∞
~β,~δ

(T ∗) ≤ cc
Θ2
I h(2−κ)/µ|u|

W 2,∞
~β,~δ

(T ∗). (4.37)

The estimates (4.36) and (4.37) imply the last assertion since T ∗ ⊂ Ω′i.

We first show an initial error estimate on a single boundary strip Γi and will combine it
to a global estimate in Theorem 17.

Lemma 16. Let y ∈ H1(ΩR) ∩ L∞(ΩR) and denote by yh its Ritz projection, i. e.∫
ΩR

(∇(y − yh) · ∇vh + (y − yh)vh) = 0 ∀vh ∈ Vh.

Then, for all i ∈ {1, . . . , I} the local estimate

‖y − yh‖L2(Γi) ≤ c
(
d

1/2
i | lnh| inf

χ∈Vh
‖y − χ‖L∞(Ω′i)

+ d
−1/2
i ‖y − yh‖L2(Ω′i)

)
(4.38)

holds.

Proof. Let us first show the assertion for i ∈ 1, . . . , I − 2. For technical reasons we decompose
the domain Ωi as follows. Let (xk, yk, zk), k ∈ E , denote Cartesian coordinate systems having
origin in some corner c = x(j), j ∈ C with k ∈ Xj , such that the zk-axes coincide with the

edges Mk. Moreover, define αjmin := mink,l∈Xj αk,l where αk,l is the angle between the edges
Mk and Ml, and introduce the set

Ωc
i :=

⋃
k∈Xj

{x ∈ Ωi : zk(x) < (1 +A) di} , where A := 2 cot
αjmin

2
∼ 1,

with outer boundary Γc
i := ∂Ωc

i ∩Γ (compare Figure 5a). It is easy to confirm that |Γc
i | ∼ d2

i .
To obtain the desired estimate on Γc

i we apply the Hölder inequality and a trace theorem and
obtain

‖y − yh‖L2(Γc
i ) ≤ di‖y − yh‖L∞(Γc

i ) ≤ di‖y − yh‖L∞(Ωc
i ). (4.39)
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′
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(b) Definition of Ωe
i,j and its patch

Figure 5: Illustration of the domains defined in the proof of Lemma 16

Now we can apply the local maximum norm estimate of Theorem 10.1 and Example 10.1 in
[37], which reads in our situation

‖y − yh‖L∞(Ωc
i ) ≤ c

(
| lnh| inf

χ∈Vh
‖y − χ‖L∞(Ω′i)

+ d−3/2‖y − yh‖L2(Ω′i)

)
, (4.40)

with d := dist(∂Ωc
i \ Γ, ∂Ω′i \ Γ). Due to our construction we find that d ∼ di and inserting

(4.40) into (4.39) yields

‖y − yh‖L2(Γc
i ) ≤ c

(
di| lnh| inf

χ∈Vh
‖y − χ‖L∞(Ω′i)

+ d
−1/2
i ‖y − yh‖L2(Ω′i)

)
. (4.41)

It remains to derive this estimate on that part of Ωi which excludes neighbourhoods of the
corners. We fix an edge e := Mk having length L and endpoints x(j), x(j′), introduce the
interval

Z := ((1 +A) di, L− (1 +A) di)

and define the domain
Ωe
i := {x ∈ Ωi : zk(x) ∈ Z} ,

having outer boundary Γe
i := ∂Ωe

i ∩Γ which is illustrated in Figure 5a. However, the measure
of Γe

i is only of order di and a direct application of (4.39)–(4.41) would yield a worse estimate.
Hence we introduce a further decomposition and split the interval Z into N ∼ d−1

i subintervals
Zj such that |Zj | ∼ di. Then, Ωe

i can also be expressed as the union of the sets

Ωe
i,j := {x ∈ Ωi : zk(x) ∈ Zj} , i = 1, . . . , N. (4.42)

Again, we write Γe
i,j := ∂Ωe

i,j ∩ Γ and confirm that the desired property |Γe
i,j | ∼ d2

i holds. To
apply the local maximum norm estimate (4.40) in a reasonable way we also have to define
patches

Ωe
i,j
′ :=

{
x ∈ Ω′i : zk(x) ∈ int

(
Zj−1 ∪ Zj ∪ Zj+1

)}
,
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where we set

Z0 := (Adi, (1 +A) di) ,

ZN+1 := (L− (1 +A) di, L−Adi) .

Due to this construction we have the property

dist(∂Ωe
i,j
′ \ Γ, ∂Ωe

i,j \ Γ) ∼ di. (4.43)

Exploiting the decomposition (4.42), the Hölder inequality, a trace theorem and the local
maximum norm estimate (4.40) with property (4.43) leads to

‖y − yh‖2L2(Γe
i ) ≤

N∑
j=1

d2
i ‖y − yh‖2L∞(Ωe

i,j)

≤ c
N∑
j=1

(
d2
i | lnh|2‖y − χ‖2L∞(Ωe

i,j
′) + d−1

i ‖y − yh‖2L2(Ωe
i,j
′)

)
≤ c

(
di| lnh|2‖y − χ‖2L∞(Ω′i)

+ d−1
i ‖y − yh‖2L2(Ω′i)

)
. (4.44)

In the last step we exploited that
∑N

i=1 1 ∼ d−1
i and that ∪Nj=1Ωi,j

′ ⊂ Ω′i. Finally we observe
that

Γi =
⋃
j∈C

Γx
(j)

i ∪
⋃
k∈M

ΓMk
i

and together with (4.41) and (4.44) we arrive at the assertion.
It remains to show (4.38) also for i = I − 1, I which cannot be obtained with the same

technique, since the local maximum norm estimate (4.40) is not applicable if Ω′i contains
the singular points. Therefore, we first insert an arbitrary element χ ∈ Vh as intermediate
function and apply the triangle inequality which leads to

‖y − yh‖L2(Γi) ≤ c
(
‖y − χ‖L2(Γi) + ‖χ− yh‖L2(Γi)

)
. (4.45)

Next, we apply the Hölder inequality and a trace theorem to get

‖y − χ‖L2(Γi) ≤ cd
1/2
i ‖y − χ‖L∞(Ωi). (4.46)

For the second part of (4.45) we exploit that χ − yh is a function from a finite-dimensional
space. Let F denote the set of faces F of elements T ∈ Th with F ⊂ Γi. The faces have
diameter hF ∼ hT if F ⊂ T . Applying a trace theorem on a reference setting as well as a
norm equivalence leads to

‖χ− yh‖2L2(Γi)
≤
∑
F∈F
‖χ− yh‖2L2(F )

≤ c
∑
F∈F

h2
F ‖χ̂− ŷh‖2L2(F̂ )

≤ c
∑

T∩Ωi 6=∅

h2
T ‖χ̂− ŷh‖2L2(T̂ )

≤ c
∑

T∩Ωi 6=∅

h−1
T ‖χ− yh‖2L2(T ) ≤ ch−1/µ‖χ− yh‖2L2(Ω′i)

. (4.47)
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Extracting the root and taking di ∼ h1/µ into account yields

‖χ− yh‖L2(Γi) ≤ cd
−1/2
i ‖χ− yh‖L2(Ω′i)

.

With the triangle inequality and the Hölder inequality exploiting that |Ω′i| ∼ d2
i , we obtain

‖χ− yh‖L2(Γi) ≤ c
(
d

1/2
i ‖y − χ‖L∞(Ω′i)

+ d
−1/2
i ‖y − yh‖L2(Ω′i)

)
. (4.48)

Inserting (4.46) and (4.48) into (4.45) implies the estimate (4.38) for i = I − 1, I.

The next step of the proof is to derive a finite element error estimate on the boundary Γ̂R
which is under influence of corner and edge singularities. Therefore, we localise the solution
y with a smooth cut-off function ω ∈ C∞(Ω) satisfying

ω|Ω̂R ≡ 1 and suppω ⊂ ΩR, (4.49)

and define ỹ := ωy. Let

Vh(ΩR) := {vh ∈ Vh : vh ≡ 0 in Ω \ ΩR}

denote the space of ansatz functions vanishing outside of ΩR. This definition implies that
supp vh ⊂ ΩR. In what follows, ỹh ∈ Vh(ΩR) denotes the Ritz-projection of ỹ, i.e.

a(ỹ − ỹh, vh) = 0, for all vh ∈ Vh(ΩR). (4.50)

An error estimate for this Ritz-projection is considered in the following theorem:

Theorem 17. Let Dαỹ ∈W 1,2
~α,~γ(ΩR) ∩W 1,∞

~β,~δ
(ΩR) for all |α| = 1, with weights satisfying

0 ≤ αj < 1, 0 ≤ βj < 2, ∀j ∈ C,
0 ≤ γk < 2/3, 0 ≤ δk < 5/3, ∀k ∈ E .

Assume that the refinement condition (4.2) with parameter

µ ≤ 1− κ2, with κ2 := max{max
j∈C

αj ,max
k∈E

γk},

µ ≤ 5

4
− κ∞

2
, with κ∞ := max{max

j∈C
βj ,max

k∈E
δk}.

Then, for ỹ and ỹh defined in (4.50) the estimate

‖ỹ − ỹh‖L2(Γ̂R) ≤ ch2| lnh|3/2
(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)
holds.

Proof. We consider the decomposition of the boundary Γ̂R into the segments Γi := ∂Ωi ∩ Γ
introduced in (4.26). In Lemma 16 we have already derived the local estimate

‖ỹ − ỹh‖L2(Γi) ≤ c
(
d

1/2
i | lnh|‖ỹ − Ihỹ‖L∞(Ω′i)

+ d
−1/2
i ‖ỹ − ỹh‖L2(Ω′i)

)
(4.51)
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on Γi for all i = 1, . . . , I. Now, we sum up all boundary parts Γi and incorporate the property
di = 1

2di−1 ≥ 1
2(dI + r) := γ(r) on Γi which leads to

‖ỹ − ỹh‖2L2(Γ̂R)
≤ c

(
| lnh|2

I∑
i=1

di‖ỹ − Ihỹ‖2L∞(Ω′i)
+ ‖γ−1/2(ỹ − ỹh)‖2L2(ΩR)

)
. (4.52)

For the first term on the right-hand side of (4.52) we exploit I ∼ | lnh| and the local interpo-
lation error estimate in L∞(Ω′i)-norm from Lemma 15 which leads to

I∑
i=1

di‖ỹ − Ihỹ‖2L∞(Ω′i)
≤ c| lnh|h4|ỹ|2

W 2,∞
~β,~δ

(ΩR)
. (4.53)

Here, we already inserted the assumption µ ≤ 5/4 − κ∞/2. The second part requires an
estimate for a weighted L2(ΩR) error. Therefore, we adopt the technique that was applied in
the proof of Lemma 6.2 in [33] and use a duality argument. First, we decompose the error
into

‖γ−1/2(ỹ − ỹh)‖L2(ΩR) ≤ ‖γ−1/2(ỹ − ỹh)‖L2(ΩR\(Ω0∪Ω1)) + ‖γ−1/2(ỹ − ỹh)‖L2(Ω0∪Ω1).

On the outermost rings Ω0 ∪ Ω1 we exploit that γ ∼ 1 and use Theorem 13 which leads to

‖γ−1/2(ỹ − ỹh)‖L2(Ω0∪Ω1) ≤ c‖ỹ − ỹh‖L2(ΩR) ≤ ch2|ỹ|
W 2,2
~α,~γ

(ΩR)
. (4.54)

For the error on Ω̃R := ΩR\(Ω0 ∪ Ω1) we apply the representation

‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R) = sup
g∈C∞0 (Ω̃R)

‖g‖L2(Ω̃R)=1

(γ−1/2(ỹ − ỹh), g) (4.55)

and consider the auxiliary problem

−∆w + w = γ−1/2g in ΩR, ∂nw = 0 on ∂ΩR. (4.56)

From the weak formulation of (4.56) we can deduce

(γ−1/2(ỹ − ỹh), g) = (ỹ − ỹh, γ−1/2g) = a(ỹ − ỹh, w). (4.57)

We introduce a further cut-off function η ∈ C∞0 (ΩR) such that

η ≡ 1 on Ω̃R := ΩR \ (Ω0 ∪ Ω1), and supp η ⊂ Ω̂R,

and we make use of the decomposition w = w1 + w2 with w1 := ηw and w2 := (1 − η)w.
The definition of w1 implies that Zhw1 ∈ Vh(ΩR) which allows us to apply the Galerkin
orthogonality (4.50). This yields

a(ỹ − ỹh, w1) = a(ỹ − ỹh, w1 − Zhw1)

≤ c
(
I−3∑
i=3

‖ỹ − ỹh‖H1(Ωi)‖w1 − Zhw1‖H1(Ωi) +
I∑

i=I−2

‖ỹ − ỹh‖H1(Ωi)‖w1 − Zhw1‖H1(Ωi)

+ ‖ỹ − ỹh‖H1(Ω′1)‖w1 − Zhw1‖H1(Ω′1)

)
. (4.58)
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It remains to estimate the three terms on the right-hand side. The cases i = 3, . . . , I − 3 and
i = I − 2, . . . , I such as i = 0, 1, 2 are considered separately.

For the first part of the right-hand side of (4.58), i. e. i = 3, . . . , I − 3, we apply the local
H1(Ωi) error estimate of Corollary 9.1 in [37] which reads in our situation

‖ỹ − ỹh‖H1(Ωi) ≤ c
(
|ỹ − Zhỹ|H1(Ω′i)

+ d−1
i ‖ỹ − Zhỹ‖L2(Ω′i)

+ d−1
i ‖ỹ − ỹh‖L2(Ω′i)

)
. (4.59)

Inserting the interpolation error estimates of Lemma 15 leads to the inequality

‖ỹ − ỹh‖H1(Ωi) ≤ c
(
hd2−µ−κ∞

i (1 + hd−µi )|ỹ|
W 2,∞
~β,~δ

(Ω′′i )
+ d−1

i ‖ỹ − ỹh‖L2(Ω′i)

)
. (4.60)

Further, note that hd−µi ≤ hd−µI = c−µI ≤ 1 in case of cI > 1. To estimate the term
‖w1−Zhw1‖H1(Ωi) for i = 3, . . . , I−3 in (4.58) we directly apply the local H1(Ωi) interpolation

error estimates of Lemma 15 with p = 2. Note that w1 is an element of W 2,2
~1/2,~1/2

(ΩR) for

arbitrary polyhedra, since the assumptions of Theorem 4 are always satisfied as λek > 1/2
(k ∈ E) and λcj > 0 (j ∈ C). With κ = 1/2, Lemma 15 now implies

‖w1 − Zhw1‖H1(Ωi) ≤ chd
1/2−µ
i |w1|W 2,2

~1/2,~1/2
(Ω′i)

= chd
1/2−µ
i |w|

W 2,2
~1/2,~1/2

(Ω′i)
. (4.61)

The last step is a consequence of the fact that η ≡ 1 on Ω̃R and hence w1 ≡ w on all Ωi with
i = 3, . . . , I − 3. Combining (4.60) and (4.61) yields for i = 3, . . . , I − 3 the estimate

‖ỹ − ỹh‖H1(Ωi)‖w1 − Zhw1‖H1(Ωi)

≤ c
(
h2d

5/2−2µ−κ∞
i |ỹ|

W 2,∞
~β,~δ

(Ω′′i )
+ hd

−1/2−µ
i ‖ỹ − ỹh‖L2(Ω′i)

)
|w|

W 2,2
~1/2,~1/2

(Ω′i)

≤ c
(
h2|ỹ|

W 2,∞
~β,~δ

(Ω′′i )
+ c−µI ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i)

)
|w|

W 2,2
~1/2,~1/2

(Ω′i)
. (4.62)

The last step follows from the assumption upon µ and the definition of the domains Ωi, more
precisely we exploited d−µi < c−µI h−1. To obtain a similar estimate in case of i = I − 2, . . . , I
we have to insert the appropriate interpolation error estimates of Lemma 15 into (4.59) which
implies

‖ỹ − ỹh‖H1(Ωi) ≤ c
(
cΘ1+1
I h(2−κ∞)/µ|ỹ|

W 2,∞
~β,~δ

(Ω′′i )
+ d−1

i ‖ỹ − ỹh‖L2(Ω′i)

)
,

‖w1 − Zhw1‖H1(Ωi) ≤ cc
max{0,1/2−µ}
I h1/2µ|w1|W 2,2

~1/2,~1/2
(Ω′i)

.

In the following we neglect the factor cI where not needed since it is independent of h.
Combining both estimates leads to

‖ỹ − ỹh‖H1(Ωi)‖w1 − Zhw1‖H1(Ωi)

≤ c
(
h(5/2−κ∞)/µ|ỹ|

W 2,∞
~β,~δ

(Ω′′i )
+ c

max{0,1/2−µ}
I h1/2µd−1

I ‖ỹ − ỹh‖L2(Ω′i)

)
|w1|W 2,2

~1/2,~1/2
(Ω′i)

≤ c
(
h2|ỹ|

W 2,∞
~β,~δ

(Ω′′i )
+ c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i)

)
|w|

W 2,2
~1/2,~1/2

(Ω′i)
. (4.63)
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The last step follows from the assumption upon µ and the fact that di ∼ dI = cIh
1/µ for

i = I − 2, . . . , I. Moreover, we exploited w ≡ w1 on Ω′i for i = I − 2, . . . , I.
For the last part of (4.58) we apply Theorem 13 for the finite element error (compare also

(4.54)) and Lemma 15 for the interpolation error. The factors d0, d1 and d2 are of order one
and can thus be neglected. We then obtain

‖ỹ − ỹh‖H1(Ω′1)‖w1 − Zhw1‖H1(Ω′1) ≤ ch2|ỹ|
W 2,∞
~β,~δ

(ΩR)
|w1|W 2,2

~1/2,~1/2
(Ω′′1 )

≤ ch2|ỹ|
W 2,∞
~β,~δ

(ΩR)

(
|w|

W 2,2
~1/2,~1/2

(Ω′′1 )
+ ‖w‖H1(Ω′′1 )

)
. (4.64)

The last step is a consequence of the Leibniz rule and the fact that Dαη ≤ c for all |α| ≤ 2,
as well as the property 1/16 ≤ r(x) ≤ 1 on Ω′′1 which allows us to neglect the weights hidden
in the norm definition.

We may now insert the estimates (4.62), (4.63) and (4.64) into (4.58) which leads to

a(ỹ − ỹh, w1)

≤ c
I∑
i=3

(
h2|ỹ|

W 2,∞
~β,~δ

(Ω′′i )
+ c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i)

)
|w|

W 2,2
~1/2,~1/2

(Ω′i)
(4.65)

+ ch2

(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)(
|w|

W 2,2
~1/2,~1/2

(ΩR)
+ ‖w‖H1(ΩR)

)
≤ c

(
h2| lnh|1/2

(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)
+ c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

)
×
(
|w|

W 2,2
~1/2,~1/2

(ΩR)
+ ‖w‖H1(ΩR)

)
. (4.66)

Next, we show that w possesses the regularity demanded by the right-hand side, which follows
from Theorem 4 and the Lax-Milgram Lemma once we have shown that

γ−1/2g ∈W 0,2
~1/2,~1/2

(ΩR) ∩ (H1(ΩR))∗. (4.67)

For some fixed x ∈ Uj define k̄ ∈ Xj such that rk̄(x) = r(x). The angular distance to the
edges Mk with k ∈ Xj \ {k̄} is bounded from below, i.e. rk/ρj ≥ c (compare also Figure 2).
Consequently, we obtain

γ−1(x) = (dI + r(x))−1 ≤ r(x)−1 = rk̄(x)−1 = ρj(x)−1

(
rk̄
ρj

(x)

)−1

≤ cρj(x)−1
∏
k∈Xj

(
rk
ρj

(x)

)−1

, (4.68)

and directly conclude
‖γ−1/2g‖

W 0,2
~1/2,~1/2

(ΩR)
≤ c‖g‖L2(ΩR) ≤ c. (4.69)

To show the boundedness in (H1(ΩR))∗ we use the operator norm representation, the Cauchy-
Schwarz inequality as well as the boundedness of g in L2(ΩR), and arrive at

‖γ−1/2g‖(H1(ΩR))∗ = sup
ϕ∈H1(ΩR)

(g, γ−1/2ϕ)ΩR

‖ϕ‖H1(ΩR)
≤ c sup

ϕ∈H1(ΩR)

‖γ−1/2ϕ‖L2(ΩR)

‖ϕ‖H1(ΩR)
. (4.70)
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Taking again (4.68) into account leads to

‖γ−1/2ϕ‖L2(ΩR) ≤ c‖ϕ‖W 0,2

−~1/2,−~1/2
(ΩR)

≤ c‖ϕ‖H1(ΩR), (4.71)

where the second step is a consequence of the embedding W 1,2
~0,~0

(ΩR) ↪→ W 0,2

−~1/2,−~1/2(ΩR) (see

Lemma 6) and the fact that the spaces W 1,2
~0,~0

(ΩR) and H1(ΩR) are equivalent. Inserting (4.71)

into (4.70) and taking also (4.69) into account yields (4.67), and consequently

|w|
W 2,2
~1/2,~1/2

(ΩR)
+ ‖w‖H1(ΩR) ≤ c. (4.72)

The estimate (4.65) then becomes

a(ỹ − ỹh, w1)

≤ c
(
h2| lnh|1/2

(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)
+ c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

)
.

(4.73)

It remains to derive a similar estimate with w2 instead of w1. Therefore, we exploit that
w2 ≡ 0 on Ω̃R, and ∂nw2 ≡ 0 on ∂ΩR. Partial integration then yields

a(ỹ − ỹh, w2) = (ỹ − ỹh,−∆w2) + (ỹ − ỹh, w2) + (ỹ − ỹh, ∂nw2)∂ΩR

≤ ‖ỹ − ỹh‖L2(ΩR)‖w2‖H2(ΩR\Ω̃R). (4.74)

We exploit the property Dαη ≤ c for all |α| ≤ 2 and the fact that ΩR \ Ω̃R has positive
distance to the singular points, and arrive at

‖w2‖H2(ΩR\Ω̃R) ≤ c‖w‖H2(ΩR\Ω̃R) ≤ c
(
‖w‖H1(ΩR) + |w|

W 2,2
~1/2,~1/2

(ΩR)

)
≤ c,

where the last estimate is another application of (4.72). Moreover, we insert the global
estimate from Theorem 13 into (4.74) and get

a(ỹ − ỹh, w2) ≤ ch2|ỹ|
W 2,2
~α,~γ

(ΩR)
. (4.75)

With the equations (4.55) and (4.57), the decomposition w = w1 + w2, and the estimates
(4.73) and (4.75), we get

‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

≤ c
(
cΘ1+1
I h2| lnh|1/2

(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)
+ c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

)
.

(4.76)

We fix the generic constant c and choose cI sufficiently large such that cc
max{−1/2,−µ}
I ≤ 1/2.

This allows us to apply a kick-back argument and we consequently arrive at

‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R) ≤ ch2| lnh|1/2
(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)
.

Taking also (4.54) into account leads to

‖γ−1/2(ỹ − ỹh)‖L2(ΩR) ≤ ch2| lnh|1/2
(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)
.

Inserting this together with (4.53) into (4.52) yields the assertion.
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Now we are able to prove the main result of this section.

Theorem 18. Assume that f ∈ C0,σ(Ω) and g ≡ 0 and that the triangulation Th satisfies
the condition (4.2). Moreover, let be given weights ~α ∈ [0, 1)d

′
, ~β ∈ [0, 2)d

′
and ~γ ∈ [0, 2/3)d,

~δ ∈ [0, 5/3)d, which satisfy

1

2
− λcj < αj ≤ 1− µ, 2− λcj < βj ≤

5

2
− 2µ, ∀j ∈ C,

1− λek < γk ≤ 1− µ, 2− λek < δk ≤
5

2
− 2µ, ∀k ∈ E .

(4.77)

Let y denote the solution of the boundary value problem (4.1) and yh its finite element ap-
proximation. Then some c > 0 exists such that

‖y−yh‖L2(Γ) ≤ ch2| lnh|3/2
∑
|α|=1

‖Dαy‖
W 1,2
~α,~γ

(Ω)
+
∑
|α|=1

‖Dαy‖
W 1,∞
~β,~δ

(Ω)
+ ‖y‖L∞(Ω)

 . (4.78)

Proof. For technical reasons we introduce further subsets

Ω̆R := int
I⋃
i=2

Ωi, Ω̃R := int
I⋃
i=3

Ωi, Γ̆R := ∂Ω̆R ∩ Γ, Γ̃R := ∂Ω̃R ∩ Γ.

Note that we have the relation Ω̃R ⊂⊂ Ω̆R ⊂⊂ Ω̂R ⊂⊂ ΩR ⊂⊂ Ω in the sense of Wahlbin [37,
Chapter 10]. Let ω be the cut-off function defined in (4.49). In order to apply Theorem 17
we insert the intermediate function ỹh and exploit that ỹ := ωy coincides with y in Ω̂R. This
leads to

‖y − yh‖L2(Γ̆R) ≤ ‖ỹ − ỹh‖L2(Γ̂R) + ‖ỹh − yh‖L2(Γ̆R). (4.79)

For the first part we may now apply the result of Theorem 17 and obtain

‖ỹ − ỹh‖L2(Γ̂R) ≤ ch2| lnh|3/2
(
|ỹ|

W 2,2
~α,~γ

(ΩR)
+ |ỹ|

W 2,∞
~β,~δ

(ΩR)

)
. (4.80)

Note that it is possible to construct a cut-off function ω satisfying (4.49) and ‖Dαω‖L∞(ΩR) ≤
c with some c > 0 depending only on |α| and dist(∂Ω̂R \ Γ, ∂ΩR \ Γ) = 1/2. Moreover, we
have Dαω = 0 on Ω̂R for |α| ≥ 1. The Leibniz rule then yields

|ỹ|
W 2,p
~β,~δ

(ΩR)
= |ωy|

W 2,p
~β,~δ

(ΩR)
≤ c

(
|y|

W 2,p
~β,~δ

(ΩR)
+ ‖y‖W 1,p(Ω\Ω̂R)

)

≤ c

∑
|α|=1

‖Dαy‖
W 1,p
~β,~δ

(Ω)
+ ‖y‖Lp(Ω)

 , p ∈ [1,∞], (4.81)

where we also exploited that the weights are bounded within Ω \ Ω̂R.
Let us discuss the second part of (4.79). For the error of ỹh − yh we first apply a trace

theorem and exploit that ỹh−yh is discrete harmonic on Ω̂R. Hence, the discrete Caccioppoli-
type estimate of Lemma 3.3 in [15] can be applied and we obtain

‖ỹh−yh‖L2(Γ̆R) ≤ c‖ỹh−yh‖H1(Ω̆R) ≤ c‖ỹh−yh‖L2(Ω̂R) ≤ c
(
‖ỹ − ỹh‖L2(ΩR) + ‖y − yh‖L2(Ω)

)
.
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Here we also used the properties dist(∂Ω̂\Γ, ∂Ω̆\Γ) = 1/4 ≤ c and y = ỹ on Ω̂R. An
application of Theorem 13 yields then

‖ỹh − yh‖L2(Γ̆R) ≤ ch2
(
|ỹ|

W 2,2
~α,~γ

(Ω)
+ |y|

W 2,2
~α,~γ

(Ω)

)
≤ ch2

∑
|α|=1

‖Dαy‖
W 1,2
~α,~γ

(Ω)
+ ‖y‖L2(Ω)

 ,

(4.82)
where we reused the technique applied in (4.81) in the last step. Consequently we get from
(4.79) the estimate

‖y−yh‖L2(Γ̆R) ≤ ch2| lnh|3/2
(∑
α=1

‖Dαy‖
W 1,2
~α,~γ

(ΩR)
+
∑
α=1

‖Dαy‖
W 1,∞
~β,~δ

(Ω)
+ ‖y‖L∞(Ω)

)
. (4.83)

Let us consider the error on the remaining part Γ\Γ̆R where we have no influence of the
singularities. One can directly apply the trace theorem in L∞-norm which yields

‖y − yh‖L2(Γ\Γ̆R) ≤ c‖y − yh‖L∞(Γ\Γ̆R) ≤ c‖y − yh‖L∞(Ω\Ω̆R). (4.84)

Now we may apply the local maximum norm estimate of Theorem 10.1 in [37] (compare also
(4.40)) which yields

‖y − yh‖L∞(Ω\Ω̆R) ≤ c
(
| lnh|‖y − Ihy‖L∞(Ω\Ω̃R) + ‖y − yh‖L2(Ω\Ω̃R)

)
. (4.85)

The second part on the right-hand side of (4.85) has been estimated in Theorem 13 whose
assumptions are obviously satisfied. The element where the maximum of |y− Ihy| is acquired
is denoted by T ∗. An application of a standard L∞(T ∗) interpolation error estimate implies

‖y − Ihy‖L∞(Ω\Ω̃R) ≤ ‖y − Ihy‖L∞(T ∗) ≤ ch2|y|W 2,∞(T ∗)

and we may insert the weights which are bounded by a constant within Ω\Ω̃R. This estimate
together with (4.85) and (4.84) yields

‖y − yh‖L2(Γ\Γ̆R) ≤ ch2| lnh||y|
W 2,∞
~β,~δ

(Ω)
,

and together with (4.83) the desired estimate (4.78) follows.

From the above theorem we directly conclude the following observations.

Corollary 19. Assume that f ∈ C0,σ(Ω) for arbitrary σ ∈ (0, 1), and g ≡ 0. The error
estimate

‖y − yh‖L2(Γ) ≤ ch2| lnh|3/2

holds, provided that one of the following assumptions is satisfied:

1. The triangulation Th is quasi-uniform (i. e. µ = 1), and the singular exponents satisfy
λek > 3/2, λcj > 3/2 for all k ∈ E and j ∈ C.

2. The triangulation Th is refined according to (4.2) with parameter

µ <
1

4
+

1

2
min

{
min
k∈E

λek,min
j∈C

λck

}
. (4.86)
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Remark 20. One observes that the refinement condition necessary for an optimal conver-
gence rate in L2(Γ)-norm is a different one than for error estimates in the L2(Ω)-norm (see
Corollary 14). However, on the one hand we have

µ <
1

4
+

1

2
λek < λek,

since λek > 1/2, and, on the other hand we have

µ <
1

4
+

1

2
λcj <

1

2
+ λcj ,

since λcj > 0. Thus, the mesh grading condition required for optimal error estimates on the
boundary from Corollary 19 implies the condition required for the estimates in the domain
from Corollary 14.

Remark 21. Let us recall the fact that λek > 1/2 (k ∈ E) and λcj > 0 (j ∈ C). If there
are only singular edges but no corners, one can always find a refinement parameter µ > 1/2
satisfying (4.86). However, it may happen that the corner singular exponent is very close to
0 and hence, we have to choose µ close to 1/4. With our refinement strategy the number of
elements contained in Th is then not of order h−3, and as a consequence we would not get
optimal convergence with respect to the number of degrees of freedom #DOF . As a remedy,
we can use another refinement strategy, for instance the one from [25], which allows a stronger
refinement only towards the corner with parameter ν ∈ (0, 1]. In a vicinity of a corner we
can choose ν arbitrarily small and still have #DOF = O(h−3). Unfortunately, the extension
of the proof of Theorem 18 to this advanced refinement strategy is not obvious.

5 Error estimates for the optimal control problem

We are now in the position to formulate the second main result of this paper. Replacing the
error norms in Lemma 1 with the estimates obtained in Corollary 14 and Corollary 19 yields:

Theorem 22. Let yd ∈ C0,σ(Ω) with some σ ∈ (0, 1), and f ∈ L2(Ω). By (ȳ, ū) and (ȳh, ūh)
we denote the solutions of (1.1) and (2.5), respectively. Assume that the refinement criterion
(4.2) is satisfied with parameter

µ <
1

4
+

1

2
min

{
min
k∈E

λek,min
j∈C

λcj

}
. (5.1)

Then, the error estimate

‖ū− ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) ≤ ch2| lnh|3/2

holds.

Proof. To show the desired estimate we insert the results from Corollary 14 and Corollary 19
into Lemma 1 and get

‖ū− ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) ≤ ch2| lnh|3/2 (5.2)

which holds true once we have shown

‖ū‖H1/2(Γ) + ‖ȳ − ȳd‖C0,σ(Ω) ≤ c. (5.3)
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As a consequence of the projection formula (1.5), we get

‖ū‖H1/2(Γ) ≤ c
(
‖ū‖L2(Γ) + |Πad(−α−1p̄)|H1/2(Γ)

)
. (5.4)

For the second term on the right-hand side we exploit the definition of the H1/2(Γ)-seminorm,
distinguish among the subsets of Γ where ū is active and inactive, and find analogous to [6,
Theorem 4.1] that

|Πad(−α−1p̄)|H1/2(Γ)c ≤ | − α−1p̄|H1/2(Γ).

Together with a trace theorem and the Lax-Milgram Lemma we get from (5.4)

‖ū‖H1/2(Γ) ≤ c
(
‖ū‖L2(Γ) + ‖ȳ − yd‖L2(Ω)

)
≤ c

(
‖f‖L2(Ω) + ‖ū‖L2(Γ) + ‖yd‖L2(Ω)

)
≤ c. (5.5)

In order to show the regularity of ȳ in (5.3) we exploit the embedding

H3/2+εreg(Ω) ↪→ C0,σ(Ω)

which holds for σ ∈ (0, εreg). The regularity ȳ ∈ H3/2+εreg(Ω) with some εreg ∈ (0, 1/2] is
stated in [14, Corollary 23.5] and holds under the assumption f ∈ L2(Ω) and ū ∈ H1/2(Γ),
which has been discussed already in (5.5). Collecting up all regularity results leads to the
assertion.

Corollary 23. If the conditions of Theorem 22 are satisfied the estimate

‖p̄− p̄h‖L2(Γ) ≤ ch2| lnh|3/2.

holds.

Proof. Using the representation (2.4) we get

‖p̄− p̄h‖L2(Γ) = ‖S∗(ȳ − yd)− S∗h(ȳh − yd)‖L2(Γ)

≤ c‖(S∗ − S∗h)(ȳ − yd)‖L2(Γ) + ‖S∗h(ȳ − ȳh)‖L2(Γ).

Applying the boundedness of S∗h from L2(Ω) to L2(Γ), and the estimates from Theorem 18
and Theorem 13, leads to the assertion.

Example 24 (Pure edge singularities). The case of pure edge singularities is the easier case
since the singular exponent λek := π/ωk is explicitly known. Consequently, the assumption of
Theorem 22 reads

µ <
1

4
+

π

2ωk
,

which guarantees optimal convergence rates. If the angle tends to 360◦ the refinement param-
eter has to be chosen close to 1/2. The L-shaped domain with interior angle of 270◦ has edge
singular exponent λek = 2/3 and thus, the assumptions of Theorem 22 require

µ <
1

4
+

1

3
=

7

12
.

The singular exponents for the endpoints of the singular edge are given by λcj = 5/3 which is
proven in [35]. Due to λcj > λek no additional refinement towards the corner is necessary here.
The three-dimensional L-shape will be considered in our experiments in Section 6.
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Example 25 (Fichera corner). In Section 3 we have already discussed the singular behaviour
at a Fichera corner and found that the corner singular exponent is approximately given by λcj ≈
0.84. For the edges having an endpoint in this corner we have λek = 2/3. The assumptions of
Theorem 22 then yield the condition

µ <
1

4
+

1

2
min

{
λcj , min

k∈Xj
λek

}
=

1

4
+
λek
2

=
7

12
.

Because of λcj > λek, the Fichera corner does not require an additional refinement in a vicinity
of the corner. The criterion for the singular edges is stronger in this case.

6 Numerical experiments

To confirm our theoretical investigations we constructed a simple benchmark example. We
consider the problem

min
(y,u)∈L2(Ω)×Uad

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Γ) +

∫
Γ
y(x)g2(x)dsx

subject to the constraints

−∆y + y = f in Ω, ∂ny = u+ g1 on Γ,

and u ≤ 0.4. Due to the additional term in the target functional the adjoint problem now
reads

−∆p+ p = y − yd in Ω, ∂np = g2 on Γ.

This allows us to construct an example which has an analytic solution. Note that our theory
can be simply extended to this modified problem.

In this example, Ω is the three-dimensional L-shape, see Figure 6. The exact solution
given in cylinder coordinates (r, ϕ, z) with z-axis coinciding with the singular edge is set to

ȳ = (16z4 − 32z3 + 16z2 + 1)rλ
e

cos(λeϕ).

Obviously, it contains the dominant part of the edge singularity if λe := π/ω = 2/3. Further-
more, let p̄ = ȳ be the optimal adjoint state and let ū be defined by the projection formula.
The input data f and yd can be computed by means of state and adjoint equation and the
functions g1, g2 ∈ L2(Γ) are introduced such that the boundary conditions of state and adjoint
equation are satisfied. The singular behaviour on this domain has been discussed in Example
24.

We computed the solution of our model problem on the uniform mesh (µ = 1), on a slightly
refined mesh (µ = 0.7777), on a mesh which guarantees optimal convergence for the finite
element error in L2(Ω)-norm but not in L2(Γ)-norm (µ = 0.6666), and on a mesh satisfying
the assumptions of the main result Theorem 22 (µ = 0.5). The refinement routine works as
follows. We marked all cells for those

hT > h

(
r̃T
R

)1−µ
with r̃T := sup

x∈T

√
x2

1 + x2
2 (6.1)

holds. The parameter R is the refinement radius, i. e. all elements which have distance less
than R to the singular edge are at least refined once when µ < 1, provided that all elements
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(a) µ = 1 (b) µ = 0.5

Figure 6: Local refinement of a very coarse grid

within this radius have equal diameter (see e. g. Figure 6a). In the present experiment we used
R = 0.2. All marked cells are then decomposed regularly, i.e. each tetrahedron is divided into
eight pieces. To construct a conforming closure we adapt the strategy that has been studied
in [11]. The marking and refinement procedure is repeated until there is no element satisfying
(6.1) any more. This refinement strategy applied to a coarse mesh can be seen in Figure 6b.

10−3

10−2

105 106

‖ū
−
ū
h
‖ L

2
(Γ

)

Number of DOFs

µ = 1
µ = 0.7777
µ = 0.6666

µ = 0.5
O(N−1.16/3)
O(N−1.5/3)
O(N−1.71/3)
O(N−2/3)

Figure 7: Error ‖ū− ūh‖L2(Γ), solid lines: measured error, dotted lines: expected behaviour

Figure 7 confirms that the measured error coincides with the theoretically predicted be-
haviour which is illustrated by the dotted lines. The results widely coincide with experiments
for two-dimensional problems with the post-processing strategy in [6].
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7 Conclusion and outlook

In the present paper we derived a convergence proof for the variational discretisation concept
applied to a Neumann boundary control problem. We found that we can achieve the optimal
convergence order of almost two on general polyhedra with sufficient mesh refinement. In
comparison to distributed control problems, we now have to use stronger mesh refinement
due to the error estimate on the boundary discussed in Theorem 18. The predicted behaviour
was also confirmed by numerical experiments.

Subject of future research is to prove discretisation error estimates for other discretisation
approaches like the post-processing technique [26]. Also in these convergence proofs the finite
element error in the domain and on the boundary derived in Section 4 are involved.

The advantage of the presented refinement strategy is that it is easy to implement. How-
ever, it is actually not necessary to refine along the x3-direction of a singular edge because one
can show that the x3-derivative of our solution has a higher regularity (compare Section 6.5.1
of [28]). As a consequence anisotropic finite elements are often used. Convergence analysis
for the finite element method has been considered, e. g. in [2, 3, 4, 8]. The missing part is
the proof of a finite element error estimate on the boundary for these meshes. The technique
presented here is not directly applicable, since the maximum norm estimate (4.40) used in
Lemma 16 is only valid for at least locally quasi-uniform meshes (cf. [32]). The same holds
for the local H1(Ω)-estimate used in (4.59). An extension to anisotropic elements is subject
of current research.
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[12] C. Băcuţă, V. Nistor, and L. T. Zikatanov. Improving the rate of convergence of high-
order finite elements on polyhedra. II: mesh refinements and interpolation. Numer. Funct.
Anal. Optimization, 28:775–824, 2007.

[13] M. Costabel, M. Dauge, and S. Nicaise. Analytic Regularity for Linear Elliptic Systems
in Polygons and Polyhedra. Math. Models Methods Appl. Sci., 8:227–261, 2012.

[14] M. Dauge. Elliptic boundary value problems on corner domains. Springer Berlin, 1988.

[15] A. Demlow, J. Guzmán, and A.H. Schatz. Local energy estimates for the finite element
method on sharply varying grids. Math. Comput., 80:1–9, 2011.

[16] Manfred Dobrowolski. Angewandte Funktionalanalysis. Springer, Berlin, 2006.

[17] T. Dupont and L.R. Scott. Polynomial approximation of functions in Sobolev spaces.
Math. Comput., 34:441–463, 1980.

[18] P. Grisvard. Singularities in boundary value problems. Paris: Masson; Berlin: Springer-
Verlag, 1992.

[19] C. Grossmann, H.G. Roos, and M. Stynes. Numerical Treatment of Partial Differential
Equations. Springer, Berlin, 2007.

[20] M. Hinze. A variational discretization concept in control constrained optimization: the
linear-quadratic case. Comput. Optim. Appl., 30:45–61, 2005.

[21] M. Hinze and U. Matthes. A note on variational discretization of elliptic Neumann
boundary control. Control & Cybernetics, 38(3), 2009.

[22] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints.
Mathematical Modelling: Theory and Applications. Springer, Dortrecht, 2009.

[23] T. Horger, M. Melenk, and B.I. Wohlmuth. On optimal L2- and surface flux convergence
in FEM. Preprint, 2014.

[24] V.A. Kozlov, V.G. Maz’ya, and J. Rossmann. Spectral problems associated with corner
singularities of solutions to elliptic equations. Number 85. American Mathematical Soc.,
2001.

37



[25] J. M.-S. Lubuma and S. Nicaise. Dirichlet problems in polyhedral domains. II: Approx-
imation by FEM and BEM. J. Comput. Appl. Math., 61:13–27, 1995.
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[29] C. Meyer and A. Rösch. Superconvergence Properties of Optimal Control Problems.
SIAM J. Control Optim., 43:970–985, 2004.

[30] C. Pester. CoCoS: Computation of corner singularities. Preprint
SFB393/05-03, Preprint-Reihe des SFB393 der TU Chemnitz, 2005.
http://dokumente.unibw.de/pub/bscw.cgi/d7381243/cocos.pdf.

[31] C. Pester. A posteriori error estimation for non-linear eigenvalue problems for differential
operators of second order with focus on 3D vertex singularities. PhD thesis, TU Chemnitz,
2006.

[32] A.H. Schatz and L.B. Wahlbin. Interior maximum norm estimates for finite element
methods. Mathematics of Computation, 31(138):414–442, 1977.

[33] A.H. Schatz and L.B. Wahlbin. Maximum Norm Estimates in the Finite Element Method
on Plane Polygonal Domains. Part 2, Refinements. Math. Comput., 33:465–492, 1979.

[34] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying
boundary conditions. Math. Comput., 54(190):483–493, 1990.

[35] E. Stephan and J.R. Whiteman. Singularities of the Laplacian at corners and edges
of three-dimensional domains and their treatment with finite element methods. Math.
Methods Appl. Sci., 10:339–350, 1988.
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