Modern Theory of 2nd-Order Methods (Dec 2019)

Lecture 4: Implementable Tensor Methods

Yurii Nesterov (CORE/INMA, UCLouvain)

Minicourse: January 20-23, 2020 (Munich)

Contents

Multi-dimensional Taylor polynomials

Convex regularizations

Properties of tensor step

Basic and accelerated tensor methods

Lower complexity bounds

Third-order methods

Taylor Approximation

Let $x \in \operatorname{int}(\operatorname{dom} f)$. Then

$$
f(x+h)=\Phi_{x, p}(h)+o\left(\|h\|^{p}\right), \quad x+h \in \operatorname{dom} f
$$

where $\Phi_{x, p}(y) \stackrel{\text { def }}{=} f(x)+\sum_{i=1}^{p} \frac{1}{1!} D^{i} f(x)[y-x]^{i}, y \in \mathbb{E}$ and

$$
D^{p} f(x)\left[h_{1}, \ldots, h_{p}\right]
$$

is the directional derivative of f at x along directions $h_{i} \in \mathbb{E}, i=1, \ldots, p$.

Note:

1. $D^{p} f(x)[\cdot]$ is a symmetric p-linear form.
2. If $h_{1}=\cdots=h_{p}$, we use notation $D^{p} f(x)[h]^{p}$

Measuring the quality of approximations

Let us fix a norm $\|\cdot\|$ in \mathbb{E} and define the norm

$$
\left\|D^{p} f(x)\right\|=\max _{h}\left\{\left|D^{p} f(x)[h]^{p}\right|:\|h\| \leq 1\right\} .
$$

Then we can introduce Lipschitz constants for derivatives:

$$
\left\|D^{p} f(x)-D^{p} f(y)\right\| \leq L_{p}\|x-y\|, \quad x, y \in \operatorname{dom} f
$$

These constants ensure the high-quality of local approximations:
A. Function:

$$
\left|f(y)-\Phi_{x, p}(y)\right| \leq \frac{L_{p}}{(p+1)!}\|y-x\|^{p+1}
$$

B. Gradient:

$$
\left\|f^{\prime}(y)-\Phi_{x, p}^{\prime}(y)\right\|_{*} \leq \frac{L_{p}}{p!}\|y-x\|^{p}
$$

C. Hessian:

$$
\left\|f^{\prime \prime}(y)-\Phi_{x, p}^{\prime \prime}(y)\right\| \leq \frac{L_{p}}{(p-1)!}\|y-x\|^{p-1}
$$

and so on ...

And what?

Note that:

1. For $p \geq 3, \Phi_{x, p}(y)$ is a non-convex multivariate polynomial.
2. Up to now, Algebraic Geometry cannot provide us with efficient tools for computing even its stationary points (not speaking about the global minimum)

Consequence

Practical Optimization goes up to the 2nd-order methods.

Let us look...

Let us fix $B=B^{*} \succ 0: \mathbb{E} \rightarrow \mathbb{E}^{*}$ and define the norms

$$
\|x\|=\langle B x, x\rangle^{1 / 2}, \quad x \in \mathbb{E}, \quad\|g\|_{*}=\left\langle g, B^{-1} g\right\rangle^{1 / 2}, \quad g \in E^{*}
$$

Let us introduce the power function $d_{p}(x)=\frac{1}{p}\|x\|^{p}, p \geq 2$ with

$$
\begin{aligned}
d_{p}^{\prime}(x) & =\|x\|^{p-2} B x \\
d_{p}^{\prime \prime}(x) & =\|x\|^{p-2} B+(p-2)\|x\|^{p-4} B x x^{*} B \\
& \succeq\|x\|^{p-2} B \\
\text { Define } & \Omega_{x, p, M}(y)=\Phi_{x, p}(y)+\frac{M}{p!} d_{p+1}(y-x)
\end{aligned}
$$

NB: 1. If $M \geq L_{p}$, then $f(y) \stackrel{(A)}{\leq} \Omega_{x, p, M}(y) \quad$ for all $y \in \mathbb{E}$.
2. The epigraph $\{(x, t): t \geq f(x)\}$ is a convex set.

Question: Is it easy to put a nonconvex object into the convex one?

Main Theorem

Let $M \geq p L_{p}$. Then function $\Omega_{x, p, M}(\cdot)$ is convex.
Proof. $\Phi_{x, p}^{\prime \prime}(\cdot)$ is a Taylor approximation of $f^{\prime \prime}(\cdot)$.
Therefore, for any $y \in \mathbb{E}$ we have

$$
\begin{aligned}
0 & \preceq f^{\prime \prime}(y) \preceq \Phi_{x, p}^{\prime \prime}(y)+\frac{L_{p}}{(p-1)!}\|y-x\|^{p-1} B \\
& \preceq \Phi_{x, p}^{\prime \prime}(y)+\frac{M}{p!}\|y-x\|^{p-1} B \\
& \preceq \Omega_{x, p, M}^{\prime \prime}(y) .
\end{aligned}
$$

Consequences

1. For $M>p L_{p}$ the point $T_{p, M}(x)=\arg \min _{y \in \mathbb{E}} \Omega_{x, p, M}(y)$ is well defined.
2. It can be computed by the techniques of Convex Optimization.
3. It can be used for solving the problem $f_{*}=\min _{x \in \mathbb{E}} f(x)$
in the case $L_{p}(f)<+\infty$.

Properties of the Tensor Step

Let $T=T_{p, M}(x)$ be the solution of the equation

$$
\Phi_{x, p}^{\prime}(T)+\frac{M}{p!} r^{p-1} B(T-x)=0
$$

where $r=\|T-x\|$.

$$
\left\|f^{\prime}(T)\right\| \leq \frac{L_{p}+M}{p!} r^{p}
$$

Proof.

$$
\begin{aligned}
\left\|f^{\prime}(T)\right\|= & \left\|f^{\prime}(T)-\Phi_{x, p}^{\prime}(T)-\frac{M}{p!} r^{p-1} B(T-x)\right\| \\
\leq & \left\|f^{\prime}(T)-\Phi_{x, p}^{\prime}(T)\right\|+\frac{M}{p!} r^{p} \leq \frac{M+L_{p}}{p!} r^{p} \\
& \left\langle f^{\prime}(T), x-T\right\rangle \geq \frac{M-L_{p}}{p!} r^{p+1}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\left\langle f^{\prime}(T), x-T\right\rangle & =\left\langle f^{\prime}(T)-\Phi_{x, p}^{\prime}(T)-\frac{M}{p!} r^{p-1} B(T-x), x-T\right\rangle \\
& \geq \frac{M-L_{p}}{p!} r^{p+1}
\end{aligned}
$$

Local Method

For $M \geq p L_{p}$, consider the process

$$
x_{t+1}=T_{p, M}\left(x_{t}\right), t \geq 0
$$

Theorem 2. For all $t \geq 0$ we have $f\left(x_{t+1}\right) \leq f\left(x_{t}\right)$.
At the same time, $f\left(x_{t}\right)-f_{*} \leq \frac{\left(M+L_{p}\right) D^{p+1}}{p!}\left(\frac{p+1}{t}\right)^{p}, \quad t \geq 1$
where $D=\max _{x \in E}\left\{\left\|x-x^{*}\right\|: f(x) \leq f\left(x_{0}\right)\right\}$.
Proof. We have

$$
\begin{aligned}
f\left(x_{k}\right)-f\left(x_{k+1}\right) & \geq O\left(r_{k}^{p+1}\right) \geq O\left(\left\|f^{\prime}\left(x_{k+1}\right)\right\|^{\frac{p+1}{p}}\right) \\
& \geq O\left(\left(f\left(x_{k+1}\right)-f^{*}\right)^{\frac{p+1}{p}}\right)
\end{aligned}
$$

Accelerated Tensor Method

NB: We apply the standard technique of estimating sequences
We choose $M \geq p L_{p}$ and recursively update the following sequences.

1. Sequence of estimating functions

$$
\psi_{k}(x)=\ell_{k}(x)+\frac{c}{p!} d_{p+1}\left(x-x_{0}\right), \quad k \geq 1
$$

where $\ell_{k}(\cdot)$ are linear functions in $x \in \mathbb{E}$, and $C>0$.
2. Minimizing sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$.
3. Sequence of scaling parameters $\left\{A_{k}\right\}_{k=1}^{\infty}: \quad A_{k+1} \stackrel{\text { def }}{=} A_{k}+a_{k}, k \geq 1$.

For these objects, we are going to maintain the following relations:

$$
\begin{gathered}
\mathcal{R}_{k}^{1}: A_{k} f\left(x_{k}\right) \leq \psi_{k}^{*} \equiv \min _{x \in \mathbb{E}} \psi_{k}(x) \\
\mathcal{R}_{k}^{2}: \psi_{k}(x) \leq A_{k} f(x)+\frac{M+L_{p}+C}{p!} d_{p+1}\left(x-x_{0}\right), \forall x \in \mathbb{E}, k \geq 1
\end{gathered}
$$

Define $A_{k}=\left[\frac{(p-1)\left(M^{2}-p^{2} L_{p}^{2}\right)}{4(p+1) M^{2}}\right]^{\frac{p}{2}}\left(\frac{k}{p+1}\right)^{p+1}, \quad a_{k+1}=A_{k+1}-A_{k}, k \geq 0$.

Initialization: Choose $x_{0} \in \mathbb{E}$ and $M>p L_{p}$.
Define $C=\frac{p}{2} \sqrt{\frac{(p+1)}{(p-1)}\left(M^{2}-p^{2} L_{p}^{2}\right)}$ and $\psi_{0}(x)=\frac{C}{p!} d_{p+1}\left(x-x_{0}\right)$.
Iteration $k,(k \geq 1)$:

1. Compute $v_{k}=\arg \min _{x \in \mathbb{E}} \psi_{k}(x)$ and choose $y_{k}=\frac{A_{k}}{A_{k+1}} x_{k}+\frac{a_{k+1}}{A_{k+1}} v_{k}$.
2. Compute $x_{k+1}=T_{p, M}\left(y_{k}\right)$ and update

$$
\psi_{k+1}(x)=\psi_{k}(x)+a_{k+1}\left[f\left(x_{k+1}\right)+\left\langle f^{\prime}\left(x_{k+1}\right), x-x_{k+1}\right\rangle\right] .
$$

Convergence:

$$
f\left(x_{k}\right)-f\left(x^{*}\right) \leq \frac{M+L_{p}+C}{(p+1)!}\left[\frac{4(p+1) M^{2}}{(p-1)\left(M^{2}-p^{2} L_{p}^{2}\right)}\right]^{\frac{p}{2}}\left(\frac{p+1}{k}\right)^{p+1}\left\|x_{0}-x^{*}\right\|^{p+1}
$$

Lower Complexity Bounds

Assumption: Method can move only to the point generated by p th-order information.
Difficult function. Define $\eta_{p+1}(x)=\frac{1}{p+1} \sum_{i=1}^{n}\left|x^{(i)}\right|^{p+1}, \quad x \in \mathbb{R}^{n}$.
Let $U_{k}=\left(\begin{array}{rrlr}1 & -1 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ & & \ldots & \\ 0 & 0 & \ldots & -1 \\ 0 & 0 & \ldots & 1\end{array}\right) \in \mathbb{R}^{k \times k}, \quad$ and $A_{k}=\left(\begin{array}{cc}U_{k} & 0 \\ 0 & I_{n-k}\end{array}\right)$.
Consider the function $f_{k}(x)=\eta_{p+1}\left(A_{k} x\right)-x^{(1)}, \quad 2 \leq k \leq p$
Theorem 3. Let for any function f with $L_{p}(f)<+\infty$ method \mathcal{M} ensures the rate of convergence

$$
\min _{0 \leq k \leq t} f\left(x_{k}\right)-f_{*} \leq \frac{L_{p}\left\|x_{0}-x^{*}\right\|^{p+1}}{(p+1)!\kappa(t)}, t \geq 1
$$

Then for all $t: 2 t+1 \leq n$ we have $\kappa(t) \leq \frac{1}{3 p} 2^{p+1}(2 t+2)^{\frac{3 p+1}{2}}$.
NB: for $p=2$ the lower bound is $O\left(\frac{1}{k^{3.5}}\right)$

Degree of Non-Optimality

Accelerated method:

- Rate of convergence: $O\left(\left(\frac{1}{t}\right)^{p+1}\right)$.
- Complexity bound: $O\left(\left(\frac{1}{\epsilon}\right)^{\frac{1}{\rho+1}}\right)$.

Lower bound:

- Rate of convergence: $O\left(\left(\frac{1}{t}\right)^{\frac{3 p+1}{2}}\right)$.
- Complexity bound: $O\left(\left(\frac{1}{\epsilon}\right)^{\frac{2}{3 p+1}}\right)$.

Extra factor: $O\left(\left(\frac{1}{\epsilon}\right)^{\frac{p-1}{(p+1)(\beta p+1)}}\right)$.
NB: $p=1 \Rightarrow\left(\frac{1}{\epsilon}\right)^{0}, \quad p=2 \Rightarrow\left(\frac{1}{\epsilon}\right)^{\frac{1}{21}}, \quad p=3 \Rightarrow\left(\frac{1}{\epsilon}\right)^{\frac{1}{20}}$.
At the same time, $2^{20} \approx 10^{6}$.
Conclusion: "Optimal methods" with expensive line search should not work in practice.

Third-order methods: implementation details

Taylor polynomial:

$$
\Phi_{x}(h)=\left\langle f^{\prime}(x), h\right\rangle+\frac{1}{2}\left\langle f^{\prime \prime}(x) h, h\right\rangle+\frac{1}{6} D^{3} f(x)[h]^{3} .
$$

Auxiliary Problem: $\Omega_{x, M}(h) \stackrel{\text { def }}{=} \Phi_{x}(h)+\frac{M}{24}\|h\|^{4} \rightarrow \min _{h \in \mathbb{E}}$.
Main Theorem: for all $h \in \mathbb{E}$ we have

$$
0 \preceq f^{\prime \prime}(x)+D^{3} f(x)[\pm h]+\frac{1}{2} L_{3}\|h\|^{2} B .
$$

Conclusion: For any $h \in \mathbb{E}$, the Hessian $\Phi_{x}^{\prime \prime}(h)$ is similar to the Hessian of the function

$$
\rho_{x}(h)=\frac{1}{2}\left(1-\frac{1}{\tau}\right)\left\langle f^{\prime \prime}(x) h, h\right\rangle+\frac{M-\tau L_{3}}{10}\|h\|^{4}
$$

with some $\tau>1$.

Relative Smoothness Condition

Definition: Function $f(\cdot)$ satisfies the strong relative smoothness condition with respect to $\rho(\cdot)$ if

$$
\mu \rho^{\prime \prime}(x) \preceq f^{\prime \prime}(x) \preceq L \rho^{\prime \prime}(x) .
$$

Define the Bregman distance $\beta_{\rho}(x, y)=\rho(y)-\rho(x)-\left\langle\rho^{\prime}(x), y-x\right\rangle$.
Consider the method:

$$
x_{k+1}=\arg \min _{y \in \mathbb{E}}\left\{\left\langle f^{\prime}\left(x_{k}\right), y-x_{k}\right\rangle+L \beta_{\rho}\left(x_{k}, y\right)\right\}
$$

Theorem 4. $\quad f\left(x_{k}\right)-f^{*} \leq \frac{\mu \beta_{\rho}\left(x_{0}, x^{*}\right)}{\left(\frac{L}{L-\mu}\right)^{k}-1}$.
NB: 1. For 3rd-order method with $\rho=\rho_{x}$, we have $\mu=1, L=\frac{\tau+1}{\tau-1}$.
2. Solution of problem $\left({ }^{*}\right)$ is simple:

$$
\min _{h \in \mathbb{E}}\left\{\langle g, h\rangle+\frac{1}{2}\langle G h, h\rangle+\gamma\|h\|^{4}\right\}
$$

especially after an appropriate factorization of matrix $G \succeq 0$.

Remarks

1. There exists an accelerated 3rd order schemes for minimizing smooth convex functions with the global rate of convergence $O\left(\frac{1}{k^{4}}\right)$.
This is the fastest sublinear rate known so far.
2. These schemes are implementable. Complexity of each iteration is comparable with that of the 2 nd-order methods:

- Linear convergence rate of auxiliary process depends only on absolute constant.
- Algorithmic complexity of one iteration is $O\left(n^{2}\right)$.
- The oracle is simple: we need to compute the vector $D^{3} f(x)[h]^{2}$. (e.g. Separable Optimization: $\sum_{i=1}^{N} f_{i}\left(\left\langle a_{i}, x\right\rangle\right)$, functions with explicit structure (by fast backward differentiation), etc.)
- The vector $D^{3} f(x)[h]^{2}$ can be approximate by the 2 nd-order oracle. Then we get 2nd-order method with the rate of convergence $O\left(\frac{1}{k^{4}}\right)$. No contradiction with the lower bounds since this is for another problem class.

