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Abstract

In this thesis, we study an energy-corrected finite element method mitigating the

pollution effect on polygonal domains. We show that the general higher-order dis-

cretisation yields error of optimal order when measured in the maximum norm. We

propose an energy-corrected discretisation of parabolic problems based on an explicit

time-stepping. Finally, we show that the application of the energy-correction can

improve the finite element approximation of optimal control problems.

Zusammenfassung

In dieser Arbeit wird die energiekorrigierte Finite-Elemente-Methode untersucht um

den Verschmutzungseffekt auf polygonalen Gebieten einzudämmen. Wir zeigen, dass

die allgemein höhere Ordnung Diskretisierung einen Fehler mit optimaler Ordnung

liefert, wenn dieser in der Maximumsnorm gemessen wird. Wir führen eine en-

ergiekorrigierte Diskretisierung, die auf ein explizites Zeitschrittverfahren basiert, für

parabolische Probleme ein. Schließlich zeigen wir, dass Energiekorrektur die Finite

Element Approximation von Optimalsteuerungsprobleme verbessern kann.
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Chapter 1

Introduction

Mathematical models play a vital role in natural, social and medical sciences, as well

as in engineering applications. Time-dependent phenomena, such as radioactive de-

cay, population growth or velocity of a falling body, can be described using equations

involving derivatives in the temporal dimension. On top of that, especially in the

area of continuum mechanics, models can also include derivatives in the spatial di-

rections, resulting in partial differential equations. This mathematical formalism has

proven very useful in describing a wide range of phenomena, from fluid flow and heat

distribution to elasticity and growth of bacteria population depending on a nutrient

consumption. Despite their importance, it is, in general, very difficult to solve partial

differential equations analytically.

Due to this inherent difficulty and the importance of partial differential equa-

tions, many numerical methods for approximating the solutions have been developed.

Among the most popular ones are a finite difference, finite volume, boundary ele-

ment and finite element methods, all of which approximate the partial differential

equations with systems of algebraic equations. The last method of the mentioned

here has gained considerable popularity due to its flexibility in representing complex

computational domains and treatment of nonhomogeneous, local material properties.

It is based on a discretisation of the continuous problem in some finite dimensional

space and subdividing the domain of interest into small parts.

Among domains of particular interest in applied sciences are polygons, poten-

tially including non-convex corners. The presence of corners in the computational

domains negatively influences the regularity of the solutions of elliptic partial differ-

ential equations, by introducing a certain known type of singular functions into the

solution. The appearance of singular functions in the solutions on polygonal domains

diminishes the approximation properties of the finite element method. Furthermore,

the approximation is suboptimal not only in a vicinity of the corner but also when

1



2 CHAPTER 1. INTRODUCTION

considered in some positive distance from it - the behaviour known as the pollution

effect.

Many approaches for improving the global convergence of the finite element solu-

tion exist already, such as adaptivity, graded mesh algorithms or enrichment of the

finite element space by singular functions. These methods improve the approximation

quality regaining the optimal convergence properties. However, they require a modi-

fication of the standard finite element solution in a neighbourhood of the corners and

need changing the structure of the mesh or the function space, in which the solution

is approximated.

Recently, an alternative method for eliminating the pollution effect in the finite el-

ement discretisation on polygonal domains has been developed - the energy-correction

method. It is based on the observation that the approximation quality of the finite

element, when measured in the L2(Ω)-norm, is limited by the approximation of the

energy. The numerical algorithm modifies the bilinear form governing the system of

equations so that the optimal approximation of the energy is regained. Moreover, this

modification can be created in a way that modifies the problem only in some small

area around the corner. It corresponds to the scaling of a fixed number of entries

in the stiffness matrix governing the system of algebraic equations arising upon the

discretisation. Using the energy-correction method, optimal convergence concerning

the interpolation error is regained. As opposed to the schemes involving adaptivity

or the mesh grading, the energy-correction works on uniformly refined meshes.

The energy-corrected finite element discretisation was studied in the setting of

scalar elliptic problems for the piecewise linear [69, 85, 136] and for the piecewise

polynomial case [86]. It was also further extended to the Stokes problem in fluid dy-

namics [91]. The energy-correction method serves as a common denominator for all

the problems analysed in this thesis. We aim at answering several interesting ques-

tions regarding this type of discretisation and at showing some potential applications

in the realm of time-dependent problems and optimisation.

We begin in Chapter 2 by introducing the notation and standard, as well as

weighted, function spaces, which are used later in the thesis. We compare the known

regularity results for the solutions of elliptic problems on polygons with the ones

defined on domains with smooth boundaries. Then, we introduce the standard finite

element method and discuss the pollution effect lowering the convergence order of the

finite element discretisation in the whole considered area. For completeness, we also

briefly discuss the gradual mesh refinement around the domains’ corners. We give a

complete presentation of the known results for the energy-corrected discretisations of
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elliptic problems. The energy-correction method mitigates the pollution effect and

yields optimal convergence in weighted Lebesgue and Sobolev norms. Additional

post-processing step results in a further improvement of the approximation when the

standard norms of the error are concerned. We conclude by showing some numerical

experiments confirming the theoretical findings. The goal of this chapter is to present

a relevant mathematical background and known results, on which we shall later build

our analysis.

Having provided a summary of the existing error estimates for the energy-corrected

finite element in weighted Lebesgue and Sobolev norms, in Chapter 3 we focus our

interest on pointwise error estimates. The main result of our investigations states that

the energy-correction yields optimal convergence order, compared to the interpolation

error, in weighted maximum norm. This, in particular, means that the pollution

effect, which can also be observed in errors in the maximum norm, is eliminated.

The energy-corrected scheme yields the optimal approximation when considered far

from the corner. The proof of this result is based on the dyadic decomposition of

the computational domain around the corner. Furthermore, we propose the post-

processing approach based on the enrichment of the discrete space by the singular

functions, which improves the convergence order of the finite element scheme in the

standard maximum norm. We complete the chapter presenting numerical experiments

confirming the theoretical findings.

The pollution effect introduced for the elliptic partial differential equations can

also be observed in the case of parabolic problems on polygonal domains. In Chap-

ter 4, we show that the piecewise linear energy-corrected finite element discretisation

of parabolic problems improves the convergence properties of the standard schemes

and results in the optimal convergence, also when considered in the weighted Sobolev

norms. As opposed to the methods involving mesh refinement around the singular

corner, the energy-correction requires only uniform triangulation of the computa-

tional domain. This results in a non-restrictive stability requirement for the explicit

time-stepping schemes. We propose a fully discrete scheme for the parabolic equa-

tions based on the piecewise-linear and enriched cubic energy-corrected finite element

combined with the explicit time discretisation. These schemes are completed with the

mass lumping strategy yielding fast solvers in time, and an additional post-processing

step. We present numerical experiments confirming the theoretical results.

In Section 4.4, we provide extensive numerical studies and propose several exten-

sions of the scheme. We show that the proposed discretisation can be successfully



4 CHAPTER 1. INTRODUCTION

applied to problems with multiple singular corners, to problems including mild con-

vective terms and when various quantities of interest are considered. Furthermore, we

also provide a comparison of the energy-corrected scheme with other commonly used

discretisations. Finally, we show a potential application of the method to a prob-

lem of heat distribution in a geometry of a graphite nuclear power plant moderator

brick. This problem poses an exciting challenge from our perspective, as it involves

16 non-convex corners in a three-dimensional setting.

In Chapter 5, we consider an optimisation problem subject to the Poisson equa-

tion with the Dirichlet boundary conditions being controlled. Moreover, we equip

the problem with the regularisation in the energy space and with box-constraints on

the control boundary. Similar problems arise, among other places, in the area of

computational fluid dynamics and have recently achieved considerable attention. Er-

ror estimates for the finite element discretisation of such problems have been studied

lately in the context of convex domains. We show that the presence of non-convexities

in the polygonal domains diminishes the convergence properties of the standard fi-

nite element method, and the phenomenon analogous to the pollution effect can be

observed. As a remedy, we propose an energy-corrected finite element approximation

of the problem. Furthermore, we prove the optimal convergence properties of the

method, regarding the known interpolation error estimates. This is done under the

assumption that the control is placed in some positive distance from the re-entrant

corners. Finally, we show a numerical implementation based on the primal-dual ac-

tive set strategy and present the numerical experiments confirming the theoretical

findings.

We conclude the thesis in Chapter 6 with the outlook and a summary of possible

interesting further steps in the development of the energy-corrected finite element.

Chapters 3–5 present our novel results and are extended discussions of the analysis

presented in [153], [152] and [92] respectively. When discussing the theory already

existing in the literature, we provide only a relevant reference, whereas proofs always

support the novel results.



Chapter 2

Mathematical Background

In this chapter, we introduce the mathematical tools necessary for derivation and

understanding of the analysis presented in this work. Our goal is to construct a

theoretical framework, in which all the investigations will be conducted. Moreover,

we wish to familiarise the reader with the notation. Finally, we also want to describe

the current state of the knowledge in the field of finite element approximations of

elliptic problems on polygonal domains with the particular interest in the energy-

correction method.

We begin with the classical functional analysis results, defining spaces on bounded

domains in Euclidean spaces and discussing their elementary properties. Further,

we discuss also weighted spaces, which are useful for describing the features of the

problems defined on domains with corners. Then, we introduce elliptic problems

and investigate their fundamental properties. We show, how these properties depend

on the smoothness of the considered domain. Next, we introduce the finite element

methods providing the numerical toolset for discretisation of the partial differential

equations considered in this thesis. Finally, we show an exhaustive summary of the

existing results in the area of the energy-corrected finite element methods.

5



6 CHAPTER 2. MATHEMATICAL BACKGROUND

2.1 Function spaces

In this section, we introduce the function spaces, which are further used as the basis

for the analysis presented in this thesis. For the sake of completeness and in order

to introduce the notation, we begin with defining the standard Hölder, Lebesgue and

Sobolev spaces and summarize their basic properties stating known embedding and

trace theorems. An exhaustive discussion of the above-mentioned function spaces

can be found for example in [1, 71, 75, 113, 64, 159]. Following [100, 113], we extend

given definitions to the case of weighted Sobolev spaces, which constitute a convenient

framework for the analysis of boundary value problems on polygonal domains.

2.1.1 Standard function spaces

Here, we will be concerned with subsets Ω of the Euclidean space Rd, where we

denote by d ∈ Z+ the dimension of the space. We begin by stating the definition of

the Banach spaces of continuously differentiable functions and functions with Hölder

continuous derivatives.

Definition 2.1.1 (Spaces of continuously differentiable functions). Let k be a non-

negative integer and Ω ⊂ Rd be an open set. We denote by Ck(Ω) the space of all

k-times differentiable functions u : Ω → R, for which derivatives Dmv : Ω → R are

continuous and bounded for all multiindices m satisfying |m| ≤ k. We equip this

space with the following norm

‖v‖Ck(Ω) =
∑
|m|≤k

sup
Ω
|Dmv|.

We also denote by Ck
0 (Ω) a subset of Ck(Ω) consisting of functions compactly sup-

ported in Ω. Furthermore, when k = 0, we write C0(Ω) = C(Ω) and C0
0(Ω) = C0(Ω).

Definition 2.1.2 (Spaces of Hölder continuous functions). Let Ω ⊂ Rd, be an open

set and σ ∈ (0, 1). The Hölder space Ck,σ(Ω) consists of all functions v ∈ Ck(Ω), for

which ∑
|m|=k

sup
x,y∈Ω, x 6=y

|Dmv(x)−Dmv(y)|
|x− y|σ

<∞.

The norm in this space is defined by

‖v‖Ck,σ(Ω) = ‖v‖Ck(Ω) +
∑
|m|=k

sup
x,y∈Ω, x 6=y

|Dmv(x)−Dmv(y)|
|x− y|σ

.
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Definition 2.1.3 (Lp(Ω) spaces). Let 1 ≤ p ≤ ∞ and let Ω ⊂ Rd, be a measurable

set. The Lebesgue space Lp(Ω) consists of all measurable functions v : Ω → R, for

which the corresponding norm is finite

‖v‖Lp(U) =
(∫

Ω

|v|p
)1/p

, for 1 ≤ p <∞,

‖v‖L∞(U) = ess sup
Ω
|v|.

Moreover, we identify functions, which differ only on a set of measure 0.

Remark 2.1.4. L2(Ω) space is a Hilbert space with an inner product defined by〈
u, v
〉
L2(Ω)

=

∫
Ω

uv.

For the sake of notational simplicity, we skip the subscript in the inner product, when

the space is clear from the context. Furthermore, we denote the norm in the L2(Ω)

space by

‖v‖0 = ‖v‖L2(Ω).

Now, we assume that Ω ⊂ Rd, is a bounded, open domain. We define Sobolev

spaces, which constitute a standard framework for investigating the partial differential

equations [71].

Definition 2.1.5 (Sobolev spaces). Let k ∈ Z+ ∪ {0} and 1 ≤ p ≤ ∞. The Sobolev

space W k,p(Ω) consists of all measurable functions v : Ω→ R, for which

Dmv ∈ Lp(Ω), for all |m| ≤ k,

where m is a multiindex and Dmv is a m-weak derivative of the function v.

We equip the Sobolev space with the following norm

‖v‖Wk,p(Ω) =
( ∑
|m|≤k

‖Dmv‖pLp(Ω)

)1/p

, for 1 ≤ p <∞,

‖v‖Wk,∞(Ω) =
∑
|m|≤k

‖Dmv‖L∞(Ω).

Moreover, we denote by W k,p
0 (Ω) the closure of Ck

0 (Ω) in W k,p(Ω).

We also define the following seminorms

|v|Wk,p(Ω) =
( ∑
|m|=k

‖Dmv‖pLp(Ω)

)1/p

, for 1 ≤ p <∞,

|v|Wk,∞(Ω) =
∑
|m|=k

‖Dmv‖L∞(Ω).



8 CHAPTER 2. MATHEMATICAL BACKGROUND

Note that W 0,p(Ω) = Lp(Ω).

Remark 2.1.6 (Sobolev–Hilbert spaces). When p = 2, we use the notation Hk(Ω) =

W k,2(Ω). Similarly as in the case of Lebesgue spaces, when p = 2, Sobolev spaces are

also Hilbert spaces with the inner product〈
u, v
〉
Hk(Ω)

=
∑
|m|≤k

〈
Dmu,Dmv

〉
L2(Ω)

.

Consequently, we also use the standard notation Hk
0 (Ω) = W k,2

0 (Ω). Moreover, we

define

H−1(Ω) =
(
H1

0 (Ω)
)∗
.

So far we have only defined Sobolev spaces W k,p(Ω) for positive integer expo-

nents k. We would like to extend this notion by incorporating also fractional expo-

nents by the introduction of Sobolev–Slobodeckij spaces. Such spaces will appear in

the analysis of problems with reduced regularity due to the presence of non-convexities

in the computational domain. Furthermore, fractional Sobolev spaces also play a sig-

nificant role in prescribing the values on the boundary of the domain to functions from

some Sobolev spaces. This will be clear later once the notion of traces is introduced

in Section 2.1.3.

Definition 2.1.7 (Sobolev–Slobodeckij spaces). Let s > 0 be a non-integer and

1 ≤ p ≤ ∞. Let also ϑ = s − bsc ∈ (0, 1). We define the Sobolev–Slobodeckij

seminorm of a measurable function v : Ω→ R by

|v|W s,p(Ω) =
∑
|m|=bsc

(∫
Ω

∫
Ω

|Dmv(x)−Dmv(y)|p

|x− y|ϑp+d

)1/p

, for 1 ≤ p <∞,

|v|W s,∞(Ω) = max
|m|=bsc

ess sup
(x,y)∈Ω×Ω

|Dmv(x)−Dmv(y)|
|x− y|ϑ

.

We define the space W s,p(Ω) as a space of all functions v ∈ W bsc,p(Ω), for which

|v|W s,p(Ω) <∞

and equip it with the norm

‖v‖W s,p(Ω) = ‖v‖W bsc,p(Ω) + |v|W s,p(Ω).

Again, when p = 2, we also write Hs(Ω) = W s,p(Ω).
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As desired, the standard Sobolev spaces and fractional Sobolev–Slobodeckij spaces

form a natural hierarchy.

Remark 2.1.8 (Hierarchy of Sobolev spaces). Let k ≤ s ≤ s′ ≤ k + 1 for some

k ∈ Z+ ∪ {0}, and let Ω be a Lipschitz domain. Then for all 1 ≤ p ≤ ∞

W k+1,p(Ω) ↪→ W s′,p(Ω) ↪→ W s,p(Ω) ↪→ W k,p(Ω).

Having defined all standard spaces, we are now in a position to recall some well-

known results in the theory of Sobolev spaces.

Theorem 2.1.9 (Sobolev embedding theorem). Let Ω ⊂ Rd be a bounded Lipschitz

domain, s ∈ (0, 1] and 1 ≤ p <∞. Consider two cases:

• if sp < d, then W s,p(Ω) ↪→ Lq(Ω) for and q ≥ p∗ = dp
d−sp .

• if sp > d, then W s,p(Ω) ↪→ C0,σ(Ω) for σ < s− d/p.

Remark 2.1.10. In the limit case sp = d in Theorem 2.1.9, the mentioned embedding

does not extend naturally to bounded functions. In particular W 1,d(Ω) 6↪→ L∞(Ω). For

a treatment of this case in the framework of Orlicz spaces, we would like to refer the

reader to the Trudinger–Moser inequality [116, 161] and [1, Chapter 8].

The proof of the theorem for s = 1 can be found in [71, Section 5.6] and [113,

Section 4.4, Section 5.1]. A comprehensive proof of the Sobolev Embedding Theorem

in the case of fractional spaces can be found in [64, Theorem 6.7, Theorem 8.2]. We

also refer the reader to [39, 162].

2.1.2 Weighted function spaces

As we shall see in Section 2.2, weighted Sobolev spaces constitute a very efficient

framework for describing the regularity of solutions of elliptic problems on domains

with corners. Now, we would like to focus our attention on two-dimensional polygonal

domains.

Definition 2.1.11 (Polygonal domain). Let N ∈ Z+ and S = {xj}Nj=1 ⊂ R2. Let also

Γj, j = 1, . . . , N , be a series of pairwise disjoint open intervals such that xj = Γj∩Γj+1

with ΓN+1 = Γ1. We call an open, bounded, and simply-connected set Ω ⊂ R2 a

polygonal domain if ∂Ω =
⋃N
j=1 Γj.

We call points xi vertices or corners and intervals Γj the edges. Furthermore, we

denote the angles between Γj and Γj+1 by Θj.
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We define (rj, φj), j = 1, . . . , N to be polar coordinates around respective corners.

Here rj(x) denotes the distance of the point x ∈ R2 from the j-th corner and φj

denotes the angle, which is chosen so that φj = 0 aligns with one of the attached

edges.

Further, we will use the notation introduced in the definition above. Notice that

this definition allows only for corners of size 0 < Θj < 2π excluding an important

case of a so-called slit-domain. A visual representation of the notation is shown in

Figure 2.1a. This notation will be used further throughout the work unless explic-

itly stated otherwise. From now on, we assume that Ω ⊂ R2 is a two-dimensional

polygonal domain with N corners of sizes Θ1, . . .ΘN .

Θj
Θ1

Θ2

Θ3

Θj+1

. . .

. . .

ΘN

Γ1

Γ2

Γj
ΓN

(a) Model of a polygon with N edges

Ωj

r r

Γ̃j

Γj

Γj+1

(b) Sector defined at one of the corners

Figure 2.1: Model polygonal domain (left) and a sector around one of the corners
(right).

For a given vector ~β = (β1, . . . , βN) ∈ RN we define the weights as

r
~β =

N∏
i=1

rβii .

For the sake of notational simplicity, we use the convention ~β+δ = (β1+δ, . . . , βN+δ),

where δ ∈ R.

As in the case of standard function spaces, we begin the disussion of weighted

spaces with spaces of continuous and differentiable functions.

Definition 2.1.12 (Weighted Hölder spaces). Let k ∈ Z+ ∪ {0} and σ ∈ (0, 1). We

define space of weighted Hölder continuous functions Nk,σ
~β

(Ω) consisting of all k-times



2.1. FUNCTION SPACES 11

continuously differentiable functions, for which∑
|m|=k

sup
x,y∈Ω, x 6=y

|r(x)
~βDmv(x)− r(y)

~βDmv(y)|
|x− y|σ

<∞.

We consider this space with the following norm.

‖v‖Nk,σ
~β

(Ω) =
∑
|m|≤k

‖r~β−σ−k+|m|Dmv‖C0(Ω)

+
∑
|m|=k

sup
x,y∈Ω, x 6=y

|r(x)
~βDmv(x)− r(y)

~βDmv(y)|
|x− y|σ

.

Definition 2.1.13 (Weighted Lp(Ω) spaces). Let ~β ∈ RN , N ∈ Z+. We define the

weighted Lebesgue space Lp~β(Ω), 1 ≤ p ≤ ∞, as the set of all measurable functions

v : Ω→ R, such that

‖v‖Lp
~β
(Ω) = ‖v‖~β =

∥∥r~βv∥∥
Lp(Ω)

<∞,

where r
~β is called ’the power weight’, or simply ’the weight’.

We now move to the definition of two different types of weighted Sobolev spaces

with weights depending on the distance r from a chosen point in the computational

domain. An exhaustive discussion of more general types of weighted Sobolev spaces

involving also different kinds of weights can be found in [100].

Definition 2.1.14 (Weighted Sobolev spaces W k,p
~β

(Ω) and V k,p
~β

(Ω)). Suppose that

k ∈ Z+ ∪ {0} and 1 ≤ p ≤ ∞. We define the weighted Sobolev spaces as follows

W k,p
~β

(Ω) =
{
v −measurable : r

~βDmv ∈ Lp(Ω), |m| ≤ k
}
,

V k,p
~β

(Ω) =
{
v −measurable : r

~β−k+|m|Dmv ∈ Lp(Ω), |m| ≤ k
}
.

When 1 ≤ p <∞, we equip these spaces with the following norms

‖v‖Wk,p
~β

(Ω) =

( ∑
|m|≤k

∥∥r~βDmv
∥∥p
Lp(Ω)

)1/p

,

‖v‖V k,p
~β

(Ω) =

( ∑
|m|≤k

∥∥r~β−k+|m|Dmv
∥∥p
Lp(Ω)

)1/p

,

and in the remaining case of p =∞

‖v‖Wk,∞
~β

(Ω) =
∑
|m|≤k

∥∥r~βDmv
∥∥
L∞(Ω)

,

‖v‖V k,∞
~β

(Ω) =
∑
|m|≤k

∥∥r~β−k+|m|Dmv
∥∥
L∞(Ω)

.
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Finally, we also define the seminorms

|v|Wk,p
~β

(Ω) = |v|V k,p
~β

(Ω) =

( ∑
|m|=k

∥∥r~βDmv
∥∥p
Lp(Ω)

)1/p

, for 1 ≤ p <∞,

|v|Wk,∞
~β

(Ω) = |v|V k,∞
~β

(Ω) =
∑
|m|=k

∥∥r~βDmv
∥∥
L∞(Ω)

.

When p = 2, we also denote Hk
~β
(Ω) = V k,2

~β
(Ω) and use the notation

‖v‖Hk
~β

(Ω = ‖v‖k,~β =

( ∑
|m|≤k

∥∥r~β−k+|m|Dmv
∥∥2

L2(Ω)

)1/2

.

Note that L2
~β
(Ω) = H0

~β
(Ω) and due to the special form of the weight r2~β, Hk

~β
(Ω) are

Hilbert spaces.

Let Γ ⊂ ∂Ω. We define the space Hk
0,~β

(Ω,Γ) as the closure of {v ∈ C∞(Ω) : v|Γ =

0} in Hk
~β
(Ω) norm. When Γ = ∂Ω, we also write Hk

0,~β
(Ω) instead.

The following embeddings describe the relationships between the weighted spaces

introduced above

Theorem 2.1.15. Let ~β = (β1, . . . , βN) ∈ RN , k ∈ Z+ and 1 ≤ p ≤ ∞. Then

• for all l ∈ Z+ we have V k+l,p
~β+l

(Ω) ↪→ V k,p
~β

(Ω)

• if all βi 6= 1
2
(jp− 1), where j ∈ Z+, then W k,p

0,~β
(Ω) ↪→ V k,p

~β
(Ω) ↪→ W k,p

~β
(Ω),

• for σ > 0 we have Nk,σ
~β

↪→ V k,p
~β

(Ω).

The proof of the first assertion can be found in [100, Theorem 8.11]. Note that it

is an extension of Remark 2.1.8 to the framework of weighted Sobolev spaces. The

second assertion is a consequence of [100, Theorem 9.4, Theorem 9.6]. The last one

follows directly from the definitions of the considered spaces.

2.1.3 Traces

For sufficiently smooth functions and domains, the values on the boundary of the

domain can be defined by a straightforward extension of the values inside the domain.

However, pointwise values of functions from Sobolev spaces and their weak derivatives

can, in general, be not well-defined. Spaces Hs
0(Ω), s > 1

2
, as closures of functions

with compact support in Ω, can be intuitively understood as consisting of functions

with homogeneous values on the boundary. In order to attach non-homogenous values

on the boundary to functions in Sobolev spaces Hs(Ω), it is necessary to introduce

the notion of traces.
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Theorem 2.1.16 (Trace theorem on smooth domains). Let Ω ⊂ Rd be domain with

a Ck+1-boundary ∂Ω for some k ∈ Z+ ∪ {0}. Let also s ∈ R and j ∈ Z+ ∪ {0} satisfy

j + 1/2 < s ≤ k + 1. The operator

trju =
∂ju

∂nj

∣∣∣
∂Ω

: C∞(Ω)→ Hs−j−1/2(∂Ω)

has a unique continuous and surjective extension trj : Hs(Ω)→ Hs−j−1/2(∂Ω).

We call tr0 and tr1 the Dirichlet and Neumann trace respectively. Moreover, we

identify the values of functions from the space Hs(Ω) and values of their derivative in

the direction orthogonal to the boundary n, with the values given by the application

of the corresponding trace operator and thus write also tr0u = u|∂Ω, tr1u = ∂nu|∂Ω.

A more exhaustive discussion of traces of Sobolev functions can be found in [71,

Section 5.5], [75, Chapter 18], [87, Section 4.2].

In Theorem 2.1.16, we introduced the notion of the trace defining the values

of functions from Sobolev spaces on the boundary. So far, this was done only on

domains with certain smoothness properties of the boundary, which are not satisfied

by polygons. We will close this gap using standard Sobolev spaces. For the discussion

regarding the traces of functions in weighted Sobolev spaces, we refer the reader

to [100, Theorem 9.15] and [131, Section 2.2].

Suppose that Ω ⊂ R2 is a polygonal domain in the sense of Definition 2.1.11.

Let Γi ⊂ ∂Ω, i = 1, . . . , J , be some pairwise disjoint smooth parts of the boundary,

for example edges of the polygon, and let Γ =
⋃J
i=1 Γi. The following theorem was

proved in [78, Theorem 1.4.2].

Theorem 2.1.17. Let s ∈ R and j ∈ Z+ ∪ {0} such that j < s − 1/2. Then the

mapping

trju =
∂ju

∂nj

∣∣∣
Γi

: C∞(Ω)→ Hs−j−1/2(Γi)

has a unique continuous and surjective extension

trj : Hs(Ω)→ Hs−j−1/2(Γi).

Due to the presence of corners in the polygonal domains, which violate the regu-

larity assumptions imposed on the computational domain Ω in Theorem 2.1.16, the

formulation presented there cannot be directly extended to parts of the boundary of

a polygon consisting of several edges.
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We restrict our attention only to two kinds of Sobolev spaces on boundaries of

polygonal domains, since only these two spaces are necessary for our further consider-

ations. For a complete treatment of such spaces, together with a formulation of more

elaborate compatibility conditions imposed in higher order spaces, we refer to [78,

Section 1.4].

Definition 2.1.18. Let σ ∈ {1/2, 3/2}. We define spaces of piecewise Sobolev regu-

larity by

Hσ
pw(Γ) =

{
v ∈ L2(Γ) : v|Γi ∈ Hσ(Γi)

}
.

Moreover, when σ = 3/2, we impose an additional compatibility condition, namely,

we require that all functions v ∈ H3/2(Γ) are continuous on Γ. For simplicity, we

also write Hσ
pw(∂Ω) = Hσ(∂Ω).

We also define the subspace of functions with homogenous extension by

Hσ
00(Γ) =

{
v = ṽ

∣∣∣
Γ

: ṽ ∈ Hσ(∂Ω), supp ṽ ⊂ Γ
}
.

We denote the corresponding dual space by H−1/2(Γ) =
(
H

1/2
00 (Γ)

)∗
.

We can now formulate the final theorem of this section.

Theorem 2.1.19 (Trace theorem on polygons). Let σ ∈ {1/2, 3/2} and j ∈ Z+ such

that j < σ. Then the mapping

trju =
∂ju

∂nj
|Γ : C∞(Ω)→ Hσ

pw(Γ)

has a unique continuous and surjective extension

trj : Hσ+1/2(Ω)→ Hσ−j
pw (Γ).

This theorem was proven in [77, Theorem 1.5.2.8] and in [78, Theorem 1.4.3].
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2.2 Elliptic problems

In this section, we review some known regularity results for elliptic partial differential

equations. We begin by briefly recalling the standard regularity theory for problems

on domains with smooth boundaries. Further, we contrast these results with the

regularity properties of solutions of elliptic problems on polygonal domains. As we

shall see, the presence of corners in the domain introduces, in general, a certain

type of singular functions to the solution. This, in turn, limits the Sobolev regularity,

which can further influence the approximation properties of the finite element schemes

discussed in Section 2.3.

Consider a model elliptic Poisson problem

−∆u = f in Ω, u = 0 on ∂Ω, (2.1)

where Ω ⊂ R2 is an open, bounded and simply connected two-dimensional set.

Definition 2.2.1 (Weak solution). Let f ∈ H−1(Ω). We say that u ∈ H1
0 (Ω) is the

weak solution of the Poisson problem (2.1) if for all v ∈ H1
0 (Ω)

a(u, v) :=

∫
Ω

∇u · ∇v =
〈
f, v
〉
−1,1

,

where
〈
·, ·
〉
−1,1

is the duality pairing between H−1 and H1
0 .

Theorem 2.2.2 (Existence and uniqueness of the solution). The Poisson problem

from Definition 2.2.1 has a unique solution u ∈ H1
0 (Ω).

The proof of this theorem is based on the Riesz Representation Theorem or, alter-

natively, a more general Lax–Milgram Lemma. The application of them is justified by

the fact that the bilinear form a(·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R is bounded and coercive.

A complete discussion of the theorem can be found in [71, Section 6.2, Theorem 3].

For the proof of the Lax–Milgram Lemma we send the reader to [71, Section 6.2,

Theorem 1] and [130].

2.2.1 Elliptic problems on smooth domains

So far we only know that there exists a unique solution and we would now like to

investigate its regularity properties. As we shall see, this depends on two factors: the

regularity of the right-hand side forcing term f and the smoothness of the bound-

ary ∂Ω.



16 CHAPTER 2. MATHEMATICAL BACKGROUND

Theorem 2.2.3 (Boundary regularity). Let m ∈ Z+ and Ω ⊂ R2 be a bounded

domain with a Cm+1 boundary ∂Ω. Then, for each f ∈ Hm−1(Ω), there exists a

unique weak solution of the boundary value problem (2.2.1) u ∈ H1
0 (Ω) ∩ Hm+1(Ω),

which satisfies

‖u‖Hm+1(Ω) ≤ c‖f‖Hm−1(Ω)

for some constant c > 0 independent of f .

The proof of this theorem can be found in [71, Section 6.3, Theorem 5]. It is often

called the shift theorem, since, upon the assumption of sufficient regularity of the

domain, the regularity of the right-hand side f in Hilbert–Sobolev spaces translates

directly to the regularity of the solution u in such spaces of the order higher by 2.

Moreover, due to [71, Section 6.3, Theorem 6], the following also holds.

Remark 2.2.4. Suppose that f ∈ C∞(Ω) for a bounded domain Ω ⊂ R2 with a

C∞ boundary ∂Ω. Then, the Poisson problem (2.1) has a unique smooth solution

u ∈ C∞(Ω).

2.2.2 Elliptic problems on polygonal domains

So far we have shown that on sufficiently regular domains the regularity of the solution

of the Poisson problem (2.1) can be guaranteed by the smoothness assumptions on

the forcing term f . However, as we shall see, this is not true anymore in the case of

polygonal domains, which have only piecewise smooth boundaries.

Let Ω ⊂ R2 be a bounded polygonal domain with N corners as introduced in

Definition 2.1.11. In the presence of the corners in the computational domain a

certain type of singular functions appear in the solution of the Poisson problem (2.1),

see [77, Chapter 4], [99, Section 2.1.1] and [108], namely let for i ∈ Z+

si,j(rj, φj) = η(rj)r
λi,j
j sin(λi,jφj), λi,j = iπ/Θj. (2.2)

Here, Θj is the angle of the j-th corner and (rj, φj) are polar coordinates defined

around it. Also, η(rj) is a smooth cut-off function equal to 1 for rj < r and equal to

0, when rj > r, for some positive constants r, r such that r < r. Let Ωj = Ω ∩ B(r),

where B(r) denotes the ball of radius r centered at the corner, see Figure 2.1b. Note

that r can be chosen so that the cut-off functions around different corners have disjoint

supports Ωj.

Later, we shall skip the index j, when it is clear from the context, which corner

of the domain is considered or when it does not matter.
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We would like now to summarize few important facts about the singular functions

defined above and show, what kind of regularity properties they exhibit. We have for

all i ∈ Z+

−∆si = 0, in Ω ∩ {r < r} and si = 0 on ∂Ω.

Furthermore, si ∈ Hs(Ω) for 0 ≤ s < 1 + λi. If Θ > iπ/k for a nonnegative

integer k, then si /∈ Hk+1(Ω). Consider, in particular, the case Θ > π, so when the

polygonal domain is not convex anymore and contains a re-entrant corner. Then we

have s1 /∈ H2(Ω).

Nevertheless, the regularity of the singular functions (2.2) can be precisely de-

scribed using the framework of weighted Sobolev spaces introduced in Section 2.1.2.

Theorem 2.2.5 (Regularity of the singular functions in Hk+1
α (Ω)). Let α > k + λi.

Then the singular functions (2.2) staisfy

si ∈ Hk+1
α (Ω).

The regularity description in terms of weighted Sobolev spaces is more precise,

as it shows the locality of the singular behaviour. When considered in some fixed

positive distance from the corner, functions si are in fact smooth and si ∈ C∞(U),

where U ⊂ Ω \B(ε) for some ε > 0.

Now, we would like to recall some important results describing the regularity of

the solutions of the Poisson problem (2.1) on polygonal domains.

Theorem 2.2.6 (V k+1,p
β (Ω) regularity). Let k be a positive integer, 1 ≤ p < ∞ and

let us for all j = 1, . . . , N take the weight coefficients βj such that k+ 1− βj − 2/p ∈(
ljπ/Θj, (lj +1)π/Θj

)
for some positive integers lj. Let also f ∈ H−1(Ω)∩V k−1,p

~β
(Ω).

Then, there exists a unique solution u ∈ H1
0 (Ω). Moreover, the solution admits the

following expansion

u = U +
N∑
j=1

lj∑
i=1

ki,jsi,j,

where ki,j ∈ R. The regular part of the solution satisfies U ∈ V k+1,p
~β

(Ω). Furthermore,

for some c > 0 independent of f , the following a priori estimates hold

N∑
j=1

lj∑
i=1

|ki,j|+ ‖U‖V k+1,p
~β

(Ω) ≤ c‖f‖V k−1,p
~β

(Ω).
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First investigations of the kind presented in the above theorem, together with

the splitting of the solution into a singular and regular part and the use of weighted

Sobolev spaces, can be found in [97]. The precise formulation and the proof of the

above theorem in a general setting of V k,p
α (Ω) spaces comes from [99, Theorem 1.4.4,

Theorem 2.6.1] and an extensive discussion in [99, Section 2.6.1]. The bounds on the

norms can be found in [99, Theorem 1.4.1].

We would like to formulate two important implications of the aforementioned

theorem, which will be used later in this work.

Theorem 2.2.7 (Hk+1
α (Ω) regularity). Let us take some small ε > 0 and let k be a

positive integer. Furthermore, let us for all j = 1, . . . , N take the weight coefficients

max(0, k − λ1,j + ε) ≤ αj < k and α̃j = αj − k + 1. Let also f ∈ Hk−1

−~̃α (Ω). Then,

there exists a unique solution u ∈ H1
0 (Ω) ∩ Hk+1

~α (Ω). Moreover, the solution admits

the following expansion

u = U +
N∑
j=1

∑
i:λi,j<k+αj

ki,jsi,j,

where ki,j ∈ R. The regular part of the solution satisfies U ∈ Hk+1

−~̃α (Ω). Furthermore,

for some c > 0 independent of f , the following a priori estimates hold

‖u‖k+1,~α ≤ c‖f‖k−1,−~̃α, and
N∑
j=1

∑
i:λi,j<k+αj

|ki,j|+ ‖U‖k+1,−~̃α ≤ c‖f‖k−1,−~̃α.

The formulation presented in Theorem 2.2.7 involves more restrictive assumption

because the higher regularity of the regular part of the expansion is needed in the

further investigations of the finite element methods. It is clear that due to the presence

of the corners in the domain the Shift Theorem of the type Theorem 2.2.3 does not

hold in standard Sobolev spaces. However, it can be shown that for the solution u

to be in the space Hk+1
~α (Ω) it is enough to assume that f ∈ Hk−1

~α (Ω). This can be

regarded as a version of the Shift Theorem in the weighted Sobolev spaces, where a

shift in the order of spaces appears analogously as in Theorem 2.2.3.

Another important result follows from Theorem 2.2.6, when the standard Sobolev

spaces are concerned.

Theorem 2.2.8 (Hs(Ω) regularity). Let k be a positive integer and f ∈ Hk−1(Ω).

Furthermore, let 1 < s < 1 + min
(
k,minj=1,...,N λ1,j

)
. Then, there exists a unique

solution u ∈ H1
0 (Ω) ∩Hs(Ω). Moreover, the solution admits the following expansion

u = U +
N∑
j=1

∑
i:λi,j<k

ki,jsi,j,
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where ki,j ∈ R and the regular part of the solution satisfies U ∈ Hk+1(Ω). Finally,

for some c > 0 independent of f , the following a priori estimate holds true

‖u‖Hs(Ω) ≤ c‖f‖Hk−1(Ω), and
N∑
j=1

∑
i:λi,j<k

|ki,j|+ ‖U‖Hk+1(Ω) ≤ c‖f‖Hk−1(Ω).

Similar but more general results of this type, with the right-hand side f in certain

fractional Sobolev space, can be found in [17] and [94].

Remark 2.2.9. In the case of k = 1, the singular functions in the expansion above

appear only around the corners of angle Θj > π and then, in general, u ∈ H2(Ωj)

cannot be obtained. However, in the case of convex domains a Shift Theorem of the

kind presented in Theorem 2.2.3 is obtained upon the choice of m = 1 regardless of

the non-smoothness of the boundary and around corners of size Θj ≤ π we can expect

u ∈ H2(Ωj).

Apart from summarizing the regularity properties of the solutions of the Pois-

son problem on domains with corners, the above theorems provide additionally a

splitting formula of the solution into regular and singular parts. This splitting will

play an important role in the further investigations of finite element approximations

on polygonal domains. The coefficients ki,j in these expansions are the so-called

stress-intensity factors and the formulas for computing them can be found in [77,

Section 8.4].

Let us define the dual singular functions of the form similar to (2.2)

s−i,j(rj, φj) = −η(rj)r
−λi,j
j sin(λi,jφj). (2.3)

The stress-intensity factors can be then computed using the following representation

ki,j = − 1

iπ

∫
Ω

fs−i,j + u∆s−i,j. (2.4)
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2.3 Finite element methods

In this section, we discuss the finite element method for approximating the solutions

of elliptic problems. We focus our attention on the model Poisson problem (2.1)

defined on polygonal domains, see Definition 2.1.11. In Section 2.3.1, we present an

abstract framework for the finite element and define the k-th order Lagrange elements

used further in this work. Then, we introduce the standard finite element method

in Section 2.3.2 and show that the presence of corners in the computational domain

diminishes the convergence properties of the method not only in their vicinity but

also in an arbitrary positive distance from them. This phenomenon, known as the

pollution effect, is the motivation for introducing the energy-corrected finite element

method, which is thoroughly reviewed in Section 2.3.3.

Section 2.3.2 is supposed to serve as a brief introduction to the theory of finite

element methods. Together with the main results, we also introduce the notation

used further in this work. It is worth noting that we do not limit our interest to

the standard piecewise linear discretization, but present more general piecewise poly-

nomial methods. Here, we are not aiming at providing a thorough study of finite

element methods in general, as numerous great works in this field already exist. For

more exhaustive discussions of the finite element methods for elliptic equations, we

would like to refer the reader to [16, 23, 38, 56, 150].

After the introduction of the standard finite element, in Section 2.3.3 we review

the known results in the theory of energy-correction schemes, which were developed

to improve the convergence properties of the finite element for elliptic problems on

polygonal domains.

2.3.1 Introduction to the finite element methods

We begin by defining the finite elements in a general, abstract setting following [38,

55, 56]. The introduction of the abstract finite element framework will later allow us

to treat also the enriched spaces in Chapter 4 and finite element discretization on the

one-dimensional boundary of the domain in Chapter 5.

Definition 2.3.1 (Finite element). Let

• K ⊂ Rd be a bounded, closed set with a piecewise smooth boundary, which is

star-shaped with respect to some ball B ⊂ K,

• P be a finite dimensional space of functions on K,
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• N =
{
N1, . . . , NJ

}
be a basis of P∗.

We call the triplet (K,P ,N ) a finite element. Furthermore, we call K the element or

element domain, elements of P are called shape functions and N is the set of nodal

variables.

The dual basis N defines also the so called nodal basis B =
{
φ̂l
}J
j=1

of P of

functions satisfying Nj(φ̂l) = 1 if j = l and Nj(φ̂l) = 0 otherwise. This allows us to

define the interpolation operator on the element K.

Definition 2.3.2 (Interpolant). Let
{
φ̂l
}J
j=1

be the nodal basis of P. If the actions of

Ni on function v are well-defined, then we define the local interpolant on the element K

as

IKv =
J∑
j=1

Nj(v)φ̂j.

Let now Pk(K) denote the space of polynomials of order not larger than k on K.

We now state a classical result of Bramble and Hilbert [34], which plays a crucial role

in proving the interpolation error estimates.

Lemma 2.3.3 (Bramble–Hilbert Lemma). Let K ⊂ Rd be as in Definition 2.3.1 and

1 ≤ p ≤ ∞. There exists a constant c > 0 independent of p and u such that for any

u ∈ Wm,p(K) there exists a polynomial pl−1 ∈ Pl−1(K) such that for all m ∈ {0, . . . , l}

|u− pl−1|Wm,p(K) ≤ c|u|W l,p(K).

The first formulation of this lemma can be found in [34], where the domain K

is assumed to satisfy a strong cone property. More general versions, together with

a constructive proof and relaxed assumptions, can be found in [66]. For a complete

discussion of the result we refer to [3, 112].

Having introduced the Hilbert–Bramble lemma, we can state the interpolation

error estimate on the reference element K ⊂ Rd

Theorem 2.3.4 (Interpolation on the reference element). Suppose that for some

l ∈ Z+ we have Pl−1(K) ⊂ P and N ⊂
(
Cr(K)

)∗
. Let 1 ≤ p, q ≤ ∞ and m ∈ Z+∪{0}

be such that l > r + d/p, m < l and

W l,p(K) ↪→ Wm,q(K).

Then, there exists a constant c = c(p, q,K) > 0 such that for all v ∈ W l,p(K)

|v − IKv|Wm,q(K) ≤ c|K|1/q−1/p|v|W l,p(K).
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The proof of the interpolation error estimate can be found in [38, Theorem 4.4.4],

when p = q, and, following a constructive approach together with the study of the

constants in the estimates, in [66, 67]. These proofs are based on the Deny–Lions

Lemma, see [66]. For an exhaustive study of interpolation error estimates we refer the

reader to [3]. Similar result, incorporating also fractional Sobolev spaces, was proven

in [138] under stronger assumptions of convexity of the element K and P = Pl−1(K).

Then the seminorm |v|W l,p(K) can be replaced with a Sobolev–Slobodeckij seminorm

introduced in Definition 2.1.7.

Now, we would like to move our considerations to a more particular case of k-th

order Lagrange elements on triangles, where k ∈ Z+. In order to do this, we first

introduce the reference triangle

T̂ =
{
x̂1 ≥ 0

}
∩
{
x̂2 ≥ 0

}
∩
{

1− x̂1 − x̂2 ≥ 0
}
,

where x̂ =
(
x̂1, x̂2

)T ∈ R2.

In the reference triangle T̂ we choose (k + 1)(k + 2)/2 nodal points for i, j =

1, . . . , k + 1 and 1 ≤ i+ j ≤ k + 2,

Xk =
{
x̂i,j = ((i− 1)/k, (j − 1)/k)T

}
1≤i+j≤k+2

.

In particular, all the points are pairwise distinct, 3 of them are placed in the vertices

of T̂ and there are k − 1 in the interior of each of the triangle’s edges.

Notice that
(
C(T̂ )

)∗ ⊂ (Pk(T̂ )
)∗

. We define the nodal viariables NLi,j ∈
(
C(T̂ )

)∗
by

NLi,j(v) = v(x̂i,j), for all v ∈ C(T̂ ),

where x̂i,j ∈ Xk. We also denote N Lk =
{
NLi,j

}
1≤i+j≤k+2

.

Definition 2.3.5 (Lagrange Finite Element). We call the triplet
(
T̂ , Pk(T̂ ),N Lk

)
the

Lagrange Finite Element.

A discussion of Triangular Lagrange Elements can be found in [38, Section 3.2].

The following inverse inequality on the reference triangle can be found in [32, (6.12)].

Lemma 2.3.6 (Inverse inequality). Let 0 ≤ l ≤ m ≤ k. For the Lagrange finite

element, the following inverse inequality holds for some c > 0

|v|Hm(T̂ ) ≤ c|v|Hl(T̂ ), for all v ∈ Pk(T̂ ).
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The choice of the nodal variables of the Lagrange Finite Element naturally defines

the nodal basis of the Pk(T̂ ) space. We denote the elements of this basis by φ̂T̂i .

Having defined the finite element on the reference triangle, we are now in the posi-

tion to introduce the discretization of an arbitrary computational domain of interest.

Let Ω ⊂ R2 be a polygonal domain as in Definition 2.1.11 and let TH be its trian-

gulation, so Ω =
⋃
T∈TH T . Triangles T ⊂ R2 are closed sets with pairwise disjoint

interiors and without corners lying on the edges of any other triangle. Assume also

that {Th}h>0 is a series of conforming meshes constructed by a uniform refinement

of TH . For each of the triangles T and mesh Th we define

hT = sup
x,y∈T

|x− y|, and h = max
T∈Th

hT .

We call h a mesh size, which is the largest of the diameters of the elements in the

triangulation. Notice that due to the assumption of the uniform refinement

ch ≤ hT ≤ h, for all T ∈ Th.

for some c > 0 independent of the refinemenet level.

The computational meshes defined above are quasi-uniform, which means that the

minimal angle of each triangulation is uniformly bounded from below and that they

satisfy the following property

maxT∈Th |T |
minT∈Th |T |

≤ c (2.5)

for some c > 0 independent of the refinement level. In this thesis, unless stated

otherwise, c > 0 will denote a generic constant independent of the mesh size h.

Furthermore, in many proofs its value might change between the steps.

Each polygon can be exactly represented by a properly chosen set of triangles,

which is not the case for domains with curved boundaries. The imperfections in the

representation of the domains of the latter kind by a chosen triangulation or the use

of curved elements can be a source of additional error, and, in general, needs to be

thoroughly studied. Investigations of finite element methods on curved domains can

be found, among others, in [38, Chapter 10].

For each element T ∈ Th, there exists an affine bijection FT : T̂ → T . The

basis functions φ̂T̂i of Pk(T̂ ) defined on the reference triangle, together with the afine

transformations on all T ∈ Th, define the following functions on the domain Ω

φi(x) = φ̂T̂l (x̂), where T 3 x = FT
(
x̂), and x̂ ∈ T̂ .
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The aforementioned affine transformations FT identify each nodal point in the trian-

gles T ∈ Th with the corresponding nodal point in the reference triangle T̂ . Let us

denote all nodal points in the domain Ω as

X =
{
x ∈ Ω : x = FT (x̂j) for some T ∈ Th and a nodal point x̂j ∈ T̂

}
. (2.6)

We number these points so that for some K,L ∈ Z+, points {xi}Ki=1 belong to the

interior of Ω, and the remaining {xi}K+L
i=K+1 points lie on the boundary ∂Ω. Note that

for each point xi ∈ X there exists the corresponding basis function φi.

We define the discrete space Skh(Ω) introduced as the space of globally continuous,

piecewise polynomial finite elements by

Skh(Ω) =
{
v ∈ C(Ω) : v|T ∈ Pk(T ), for all T ∈ Th

}
. (2.7)

Furthermore, let V k
h be the subspace of finite element functions disapearing on the

boundary

V k
h (Ω) = Skh(Ω) ∩H1

0 (Ω) ⊂ H1
0 (Ω). (2.8)

In the cases, when the choice of the domain Ω is clear from the context, we also write

simply Skh and V k
h . When k = 1, so in the case of piecewise linear finite element

functions, we use the notation S1
h = Sh and V 1

h = Vh. The introduced discretisation

spaces are indeed linear spaces spanned by the nodal basis functions associated with

the nodal points.

V k
h = span{φi}Ki=1, Skh = span{φi}K+L

i=1 . (2.9)

The following inverse inequality is a fundamental property of the discrete spaces

and follows from the equivalence of norms in the finite dimentional spaces, see [32,

Section 6.8] for more details.

Lemma 2.3.7 (Global inverse inequality). Let 0 ≤ l ≤ m ≤ k. There exists a

constant c > 0 such that

|vh|Hm(Ω) ≤ cih
l−m
min |vh|Hl(Ω), for all vh ∈ Sh,

where hmin = minT∈Th hT . In particular, for uniformly refined meshes, we have

|vh|Hm(Ω) ≤ cih
l−m|vh|Hl(Ω), for all vh ∈ Sh.

Since functions φi are defined using the nodal basis functions, we should also refer

to them as the nodal basis.
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Definition 2.3.8 (Nodal interpolation). Let ω ⊂ Ω be an open set. For any k ∈ Z+

we define the nodal interpolation Ikh : C(ω)→ Skh by

Ikhv =
∑

i: xi∈X∩ω

v(xi)φi.

Now, we would like to summarize the approximation properties of the nodal in-

terpolation operator. These will depend not only on the order of the polynomials in

the finite element basis but also on the regularity of the interpolated function. We

begin by stating the result on one of the elements in the triangulation Th only. This

estimate is of a big importance, as all the interpolation error estimates used later

follow from this one.

Lemma 2.3.9 (Local interpolation error estimates). Let m, k ∈ Z+, m < s < ∞,

and 1 ≤ p, q ≤ ∞. Assume also that W s,p(T ) ↪→ Wm,q(Ω). Then, for some c > 0

and the nodal interpolation Ikh : C(T ) → Pk(T ) the following estimate holds for all

v ∈ W s,p(T )

|v − Ikhv|Wm,p(T ) ≤ ch2/q−2/p+s−m|v|W s,p(T ).

In the case s ∈ Z+, this result is a simple consequence of Theorem 2.3.4 upon

observation that |T | ≤ ch2 for all T ∈ Th. The scaling h2/q−2/p comes from the

Jacobian of the affine transformation between T and T̂ . This is a classical result

and can be found in [3] and [38, Theorem 4.4.20]. The proof in a more general case

of fractional Sobolev spaces of order s follows an analogous path and can be found

in [138].

Consequently, the application of the local interpolation error estimates to each of

the elements in the triangulation T ∈ Th leads to the following global interpolation

error estimate.

Theorem 2.3.10. Let k ∈ Z+ and v ∈ Hs(Ω) for some 1 < s ≤ k + 1. Then the

following interpolation error estimates hold for some c > 0 and the nodal interpolant

Ikh : C(Ω)→ Skh

‖v − Ikhv‖0 ≤ chs|v|Hs(Ω), and ‖∇(v − Ikhv)‖0 ≤ chs−1|v|Hs(Ω).

Note that due to Theorem 2.1.9, for s > 1 the functions v ∈ Hs(Ω) are continuous

and hence, the interpolation Ikhv is well-defined.

As stated in Section 2.2, the regularity properties of the solution of the ellip-

tic problem (2.1) can be efficiently described in the framework of weighted Sobolev
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spaces. As these spaces allow for incorporating the knowledge about the loss of reg-

ularity in the neighbourhood of corners in the polygonal domains, we would like to

use them also to describe the approximation properties of the finite element spaces.

The following result can be found in [86, Lemma 11].

Theorem 2.3.11. Let k ∈ Z+ and v ∈ Hk+1
α (Ω) for some α < k. Furthermore, let

α − k ≤ β ≤ α. Then for the nodal interpolant Ikh : C(Ω) → Skh the following error

estimates hold for some c > 0

‖v − Ikhv‖β ≤ chk+1+β−α|v|k+1,α, and ‖∇(v − Ikhv)‖β ≤ chk+β−α|v|k+1,α.
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2.3.2 Standard finite element method for elliptic problems

So far we have described the properties of the finite element spaces, which are inde-

pendent of the potential equations, whose solutions we would like to approximate.

Let us now consider the Poisson problem (2.1) in the variational formulation from

Definition 2.2.1.

2.3.2.1 Finite element for elliptic problems

Definition 2.3.12. We call uh ∈ V k
h the finite element approximation of (2.1) if

a(uh, vh) =
〈
f, vh

〉
−1,1

, for all vh ∈ V k
h . (2.10)

From now on we will assume that f ∈ L2(Ω), so the dual pairing
〈
f, vh

〉
−1,1

is

equivalent to the L2(Ω) inner product of f and vh.

Let u ∈ H1
0 (Ω) be the solution of (2.1), then the equation (2.10) can be reformu-

lated as

a(uh, vh) = a(u, vh), for all vh ∈ V k
h . (2.11)

This defines a linear operator Rk
h : H1

0 (Ω) → V k
h by Rk

hu = uh, which we call the

Ritz projection. In the case of the piecewise linear approximation, we also skip the

superscript and write R1
hu = Rhu.

One of the fundamental properties of the finite element discretisation (2.10) is the

so-called Galerkin orthogonality.

Theorem 2.3.13 (Galerkin orthogonality). Let uh ∈ V k
h be the finite elmenent ap-

proximation defined in (2.10) of the solution u ∈ H1
0 (Ω) of the elliptic problem (2.1).

Then the following identity holds

a(u− uh, vh) = 0, for all vh ∈ V k
h .

This means that the finite element approximation (2.10) is the orthogonal projec-

tion of the solution u onto the discrete space V k
h with the inner product induced by

the bilinear form a(·, ·).
Problem (2.10) can be equivalently rewritten as a linear system of equations,

since V k
h is a K-dimensional linear space. Let uh be a linear combination of the basis

functions in the space V k
h

uh =
K∑
i=1

uiφi.
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Let also

M =
[〈
φi, φj

〉]K
i,j=1

, S =
[
a(φi, φj)

]K
i,j=1

, F =
(〈
f, φj

〉)K
j=1
. (2.12)

We call M and S the mass and stifness matrices respectively. The problem introduced

in Definition 2.3.12 can be then understood as finding U =
(
ui
)K
i=1
∈ RK such that

SU = F. Note that both mass and stiffness matrices are not only symmetric and

positive definite but, due to the fact that the basis functions φi of the space V k
h have

local supports, they are also sparse.

We now move to summarizing the main approximation results of the finite element

method defined in Definition 2.3.12.

Theorem 2.3.14 (Best approximation property). Let u ∈ H1
0 (Ω) be the weak solution

of (2.1) with f ∈ L2(Ω) and uh ∈ V k
h be the solution of (2.10). Then, the following

best approximation property holds for some c > 0

‖∇(u− uh)‖0 ≤ c inf
vh∈V kh

‖∇(u− vh)‖0.

In particular we also have

‖∇(u− uh)‖0 ≤ c‖∇(u− Ikhu)‖0.

This means that, up to a multiplicative constant, the finite element method de-

fined above yields the best possible approximation among all the possible discrete

functions in V k
h . Moreover, it approximates the real solution at least as well as the

nodal interpolation, when measured in the H1
0 (Ω) seminorm. Note that the nodal

interpolant Ikhu is well-defined, since u ∈ Hs(Ω) for some s > 1, see Theorem 2.2.7

and Hs(Ω) ↪→ C(Ω) due to the Sobolev Embedding Theorem. 2.1.9.

The convergence order of the finite element scheme depends on the regularity of

the solution, as well as on the order of the discretisation space.

Theorem 2.3.15. Let k be a positive integer, 0 < s ≤ k, and u ∈ H1
0 (Ω) ∩Hs+1(Ω)

be the solution of (2.1). Furthermore, let uh ∈ V k
h be the finite element approxima-

tion (2.10). Then the following error estimate is true

‖∇(u− uh)‖0 ≤ chs‖u‖Hs+1(Ω).

The estimate in the H1
0 (Ω) semi-norm follows directly from the best approximation

property in Theorem 2.3.14 and the interpolation error from Theorem 2.3.10.
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2.3.2.2 Finite element on domains with corners

From now on, we would like to focus our attention on the influence that the presence

of corners in the computational domain has on the finite element approximation of

the solution of (2.1). To simplyfy the notation, we consider the singularites appearing

around only one of the domain’s corners. This is equivalent to the following technical

assumption.

Assumption 2.3.16. Let k ∈ Z+ be the chosen order of polynomials in the finite

element space. At least one of the following holds for every corner except the first one

in the computational domain, namely Θj, j = 2, . . . , N

• The angle of the corner is not large enough to influence the expansion described

in Theorem 2.2.8, namely Θj ≤ π/k.

• The singular functions in the expansion given by Theorem 2.2.7 disappear,

namely ki,j = 0 for all i ∈ Z+ such that iπ
Θj
≤ k.

This assumption means that the singular functions defined only around one of the

corners in the computational domain Ω influence the regularity of the solution in the

sense of the Theorem 2.2.6. It is important to notice that all the results presented

later naturally extend to the more general case of multiple relevant corners in the

domain and that the assumption above is introduced only to simplify the notation.

From now on, by Θ be mean the size of the relevant corner and we set λi = iπ/Θ.

Furthermore, we assume that the considered corner is located at the origin of the

Euclidean space.

To understand precisely the approximation properties of the finite element method

for the Poisson problem on polygonal domains, we need to first investigate the be-

haviour of the nodal interpolant of the singular functions (2.2).

Lemma 2.3.17 (Interpolation of the singular functions). Let si be the singular func-

tion as defined in (2.2). Let us also take ε > 0, and α = max(0, k−λi + ε). Then the

following interpolation error estimates hold

‖si − Ikhsi‖0 ≤ chmin(k,λi)+1, ‖∇(si − Ikhsi)‖0 ≤ chmin(k,λi),

Moreover,

‖si − Ikhsi‖α ≤ chk+1, ‖∇(si − Ikhsi)‖α ≤ chk.
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We know that si ∈ H1+λi−ε(Ω) and si ∈ Hk+1
α (Ω) for ε > 0 and α = k − λi + ε.

The direct application of the interpolation error estimates stated Theorem 2.3.10 and

Theorem 2.3.11 yields the suboptimal error estimates

‖si − Ikhsi‖0 ≤ chmin(k,λi)+1−ε, ‖∇(si − Ikhsi)‖0 ≤ chmin(k,λi)−ε.

The ε-dependence can be eliminated by a direct computation, as done in [28]. More-

over, the interpolation error estimates in Lemma 2.3.17 are optimal in the order of h.

The estimates in the weighted norms follow from Theorem 2.3.11. The constants

in Lemma 2.3.17 depend only on the regularity of the considered singular function,

so their order i and the size of the corner, around which it is defined.

Lemma 2.3.17 guarantees better approximation order of the interpolation opera-

tor, when applied to the singular functions, than predicted by Theorem 2.3.11. The

following is a direct consequence of the linearity of the Poisson problem (2.1).

Corollary 2.3.18. Let the assumptions of Theorem 2.2.6 be satisfied. Let us also

take ε > 0, and α = max(0, k − λi + ε). The following interpolation error etimates

for the solution u of the Poisson problem (2.1) hold

‖u− Ikhu‖0 ≤ chmin(k,λi)+1, ‖∇(u− Ikhu)‖0 ≤ chmin(k,λi),

Moreover,

‖u− Ikhu‖α ≤ chk+1, ‖∇(u− Ikhu)‖α ≤ chk.

From these interpolation error estimates and the best approximation property, see

Theorem 2.3.14, we immediately conclude the following error estimates for the Ritz

projection (2.11) of the singular functions.

Corollary 2.3.19 (Approximation of the singular functions). Let k ∈ Z+ be the

order of the finite element discretization and let si be the i-th singular function (2.2)

around an angle of size Θ. Then for some constants c1, c2 > 0

c1h
min(k,λi) ≤ ‖∇(si −Rk

hsi)‖0 ≤ c2h
min(k,λi). (2.13)

The linearity of the Poisson problem (2.1) yields now the following finite element

error estimate in the energy norm.

Theorem 2.3.20 (Error estimate in H1
0 (Ω)). Let k be a positive integer and u ∈

H1
0 (Ω) be the solution of (2.1) with f ∈ Hk−1(Ω). Furthermore, let uh ∈ V k

h be the

finite element approximation (2.10). Then the following error estimate holds true

‖∇(u− uh)‖0 ≤ chmin(k,λ1)‖f‖Hk−1(Ω).
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This is a direct consequence of the regularity result in Theorem 2.2.8, the best

approximation property from Theorem 2.3.14 and of the approximation of the singular

functions stated in Lemma 2.3.17.

It is worth noting that the increase of the order of polynomials in the finite element

space does not, in general, improve the convergence order of the finite element method

in the presence of corners in the computational domain. This is due to the influence,

which the corners have on the regularity of the solution of the elliptic problems, see

Theorem 2.3.15.

The loss of regularity due to the presence of the corners in the domain has a

more severe effect on the finite element approximation, when measured in the L2(Ω)

norm, in which the best approximation property similar to the one stated in Theo-

rem 2.3.14 does not hold. Let u ∈ H1
0 (Ω) and uh ∈ V k

h be the solutions of the Poisson

problem (2.1) and its finite element approximation (2.10) respectively. Then

‖∇(u− uh)‖2
0 = |a(u− uh, u− uh)|

= |a(u, u)− a(uh, uh)| ≤ ‖u− uh‖α‖f‖−α. (2.14)

So the order of the finite element approximation in the weighted L2(Ω) is, regard-

less of the weight, bounded from below by the approximation measured in the squared

energy norm. This means that due to the reduced regularity of the solution of (2.1)

also the convergence order of the finite element approximation (2.10) is not optimal

in the sense of the interpolation error, even if measured in the weighted norm. This

behavior is known as the so-called pollution effect, see [27, 43] and [38, Section 5.8.4].

Theorem 2.3.21 (Pollution effect). Let k be a positive integer. Let also u ∈ H1
0 (Ω)∩

Hk+1
α (Ω) be the solution of (2.1) with f ∈ Hk−1

−α̃ for some k − λ1 < α < k and

α̃ = α− k+ 1. Assume also that the stress-intensity factor k1 in the expansion given

in Theorem 2.2.7 satisfies k1 6= 0. Then the finite element approximation uh ∈ V k
h

defined in (2.10) satisfies for some c1, c2 > 0

‖u− uh‖α ≥ c1‖∇(u− uh)‖2
0 ≥ c2h

2λ1 .

Hence, also

‖u− uh‖0 ≥ c2h
2λ1 .

The pollution effect implies that the convergence properties of the scheme mea-

sured in the L2(Ω) norm also in a fixed distance away from the corner are suboptimal.
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Corollary 2.3.22. Let Ω̃ ⊂ Ω such that dist(Ω̃,0) > δ > 0. Then for some c > 0

‖u− uh‖L2(Ω̃) ≥ ch2λ1 . (2.15)

The presence of the corners in the computational domain not only diminishes

the regularity properties of the solutions of the elliptic problems but also negatively

influences the convergence properties of their finite element approximation. As we

see, regardless of the order of the finite element discretisation and the regularity of

the right-hand side in (2.1), the order of approximation of the finite element scheme

is significantly worse compared to the interpolation error stated in Theorem 2.3.10 in

all subparts of the domain Ω.

2.3.2.3 Gradually refined triangulations

One of the most commonly used techniques for improving the accuracy of the finite

element schemes on polygonal domains is the so-called mesh grading, see [5, 6, 9, 16,

37, 49, 143]. For the sake of completeness and comparison, we briefly introduce this

method. In Section 2.3.1, we presented the triangulation of the polygonal domain Ω

based on a uniform refinement. As opposed to the standard methods involving the

uniform triangulations introduced there, the mesh grading requires the refinement

of the computational mesh in the surrounding of the singular corner located at the

origin. We define such meshes following [131, Section 3.2.1].

Definition 2.3.23 (Graded mesh). Let 0 < h < 1 be the global mesh parameter and

let R > 0. Furthermore, let

rT = inf
x∈T
|x|

be the distance of the triangulation’s element from the considered corner. We call the

mesh Th a graded mesh with the grading parameter µ ∈ (0, 1] if there exist c1, c2 > 0

such that for each T ∈ Th

c1h
1/µ ≤ hT ≤ c2h

1/µ, if rT = 0,

c1hr
1−µ
T ≤ hT ≤ c2hr

1−µ
T , if 0 < rT ≤ R,

c1h ≤ hT ≤ c2h, if rT > R,

where hT = diam T .
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Figure 2.2: The graded mesh (right) with µ = 1/2 and R = 1 constructed using the
uniform triangulation of the L-shape domain (left)

The gradually refined meshes can be constructed using an initial coarse triangu-

lation TH , which is uniformly refined until the desired mesh size h > 0 is obtained.

Then, all the nodes of the triangulation within the chosen distance R > 0 from the

corner are moved to get the triangulation sizes required in Definition 2.3.23. In Fig-

ure 2.2 we present the graded mesh obtained from a uniform triangulation of the

L-shape domain. In the construction, we used parameters µ = 1/2 and R = 0. An-

other mesh grading method involves the bisection of elements of the coarse mesh TH
until the conditions stated in Definition 2.3.23 are satisfied [50]. For the discussion

of the construction of the graded meshes, we refer the reader to [131, Section 3.2.5].

Neither of the algorithms constructing the gradually refined triangulation signif-

icantly increases the number of nodes in the mesh, as it remains of order O(h−2).

Although in the case of the first one this is obvious, a similar result for the latter

algorithm is also known [9, Remark 3.1]. Moreover, the uniform meshes from Sec-

tion 2.3.1 are obtained upon the choice µ = 1.

The following theorem summarising the accuracy of the finite element scheme

defined on the gradually refined triangulation can be found in [14] and [146, Theo-

rem 4.3]. An exhaustive discussion of the interpolation error estimates on the graded

meshes can be found in [131, Section 3.2.2].

Theorem 2.3.24 (Error estimates on graded meshes). Let f ∈ L2(Ω), u ∈ H1
0 (Ω)

be the unique solution of (2.1) and let uh ∈ Vh be its piecewise linear finite element

approximation (2.10) on a triangulation satisfying requirements of Definition 2.3.23

with µ < λ1. Then
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‖u− Ihu‖0 ≤ ch2‖f‖0, and ‖∇(u− Ihu)‖0 ≤ ch‖f‖0.

Moreover, the following a priori error estimates hold for some c > 0 independent

of f

‖u− uh‖0 ≤ ch2‖f‖0, and ‖∇(u− uh)‖0 ≤ ch‖f‖0.

This result shows that the finite element method on the mesh with a sufficiently

strong grading towards the singular corner is capable of regaining the optimal con-

vergence of the finite element scheme compared to the interpolation error. Moreover,

the interpolation error is also improved compared to the one defined on the uniform

meshes, see Lemma 2.3.17. Even though this requires the refinement of the computa-

tional mesh in the vicinity of the corner, since the number of nodes is asymptotically

equivalent to the quasi-uniform case, it does not increase the complexity of the re-

sulting finite element scheme.

2.3.2.4 Numerical examples

In order to illustrate the influence that the presence of corners can have on the

finite element approximation of the solution of (2.1), we study the convergence of

finite element methods using P1, P2 and P3 Lagrange elements. We perform the

computations on the L-shape domain (−1, 1)2 \ [0, 1] × [−1, 0] with a known exact

solution u = s1+s2+s3 being a linear combination of the first three singular functions.

We use the computational mesh presented in Figure 2.3. We measure the L2(Ω) norm

and H1
0 (Ω) seminorm, both standard and weighted, and summarise the results of the

simulations in Table 2.1. For the weighted spaces we choose weights depending on

the order of the finite element space used and set α = k − λ1 + ε, ε = 10−4, so

u ∈ Hk+1
α (Ω). This satisfies the assumptions of Theorem 2.3.11 and Corollary 2.3.18,

and yields the following interpolation error estimates

‖u− Ikhu‖0 = O
(
h1+λ1

)
, and ‖u− Ikhu‖α = O

(
hk+1

)
, (2.16)

‖∇(u− Ikhu)‖0 = O
(
hλ1
)
, and ‖∇(u− Ikhu)‖α = O

(
hk
)
, (2.17)

and λ1 = 2/3.

As predicted in Theorem 2.3.21, the presence of the corner in the domain leads

to the suboptimal convergence of the finite element approximation compared to the

interpolation error, when measured in standard and weighted L2(Ω) norms. Moreover,
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Figure 2.3: Initial triangulation of the L-shape domain (left) with a once refined mesh
(right).

the application of higher-order discretisation does not improve the convergence order

of the scheme.

The convergence order of the piecewise linear discretisation is optimal in the sense

of the interpolation error, when measured in the standard and weighted H1
0 (Ω) semi-

norm. However, the optimal convergence order in the weighted seminorm in no longer

observed for the piecewise quadratic and piecewise cubic discretisations.
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P1 elements
L ‖u− uh‖0 eoc ‖u− uh‖α eoc ‖∇(u− uh)‖0 eoc ‖∇(u− uh)‖α eoc
1 1.7834e-1 - 1.4343e-1 - 1.3521e-0 - 1.1553e-0 -
2 5.2930e-2 1.75 4.0224e-2 1.83 6.9847e-1 0.95 5.9203e-1 0.96
3 1.7248e-3 1.62 1.1918e-2 1.75 3.6515e-1 0.94 2.9959e-1 0.98
4 6.0922e-3 1.50 3.8509e-3 1.63 1.9416e-1 0.91 1.5116e-1 0.99
5 2.2675e-3 1.43 1.3516e-3 1.51 1.0550e-1 0.88 7.6206e-2 0.99
6 8.6841e-4 1.38 5.0253e-4 1.43 5.8788e-2 0.84 3.8408e-2 0.99
7 3.3754e-4 1.36 1.9300e-4 1.38 3.3624e-2 0.81 1.9355e-2 0.99

Expected 1.33 1.33 0.67 1.00

P2 elements
L ‖u− uh‖0 eoc ‖u− uh‖α eoc ‖∇(u− uh)‖0 eoc ‖∇(u− uh)‖α eoc
1 2.6468e-2 - 6.4823e-3 - 1.9930e-1 - 7.1927e-2 -
2 8.8458e-3 1.58 1.5853e-3 2.03 1.1978e-1 0.73 1.9817e-2 1.86
3 3.1144e-3 1.51 5.9664e-4 1.41 7.3789e-2 0.70 5.5919e-3 1.83
4 1.1390e-3 1.45 2.3609e-4 1.34 4.6038e-2 0.68 1.6696e-3 1.74
5 4.2751e-4 1.41 9.3683e-5 1.33 2.8888e-2 0.67 5.3813e-4 1.63
6 1.6341e-4 1.39 3.7176e-5 1.33 1.8170e-2 0.67 1.8766e-4 1.52
7 6.3257e-5 1.37 1.4753e-5 1.33 1.1439e-2 0.67 6.9498e-5 1.43

Expected 1.33 1.33 0.67 1.33

P3 elements
L ‖u− uh‖0 eoc ‖u− uh‖α eoc ‖∇(u− uh)‖0 eoc ‖∇(u− uh)‖α eoc
1 1.0128e-2 - 2.4257e-3 - 1.1720e-1 - 2.7053e-2 -
2 3.4783e-3 1.54 4.1394e-4 2.55 7.2282e-2 0.70 3.8455e-3 2.81
3 1.2389e-3 1.49 1.4982e-4 1.47 4.5144e-2 0.68 8.8484e-4 2.12
4 4.5456e-4 1.45 5.9242e-5 1.34 2.8341e-2 0.67 3.1463e-4 1.49
5 1.7067e-4 1.41 2.3504e-5 1.33 1.7829e-2 0.67 1.2328e-4 1.35
6 6.5204e-5 1.39 9.3270e-6 1.33 1.1225e-2 0.67 4.8861e-5 1.34
7 2.5226e-5 1.37 3.7013e-6 1.33 7.0700e-3 0.67 1.9387e-5 1.33

Expected 1.33 1.33 0.67 1.33

Table 2.1: Summary of convergence rates on the L-shape domain obtained using
Lagrange finite elements P1, P2, P3.



2.3. FINITE ELEMENT METHODS 37

2.3.3 Energy-corrected finite element method

As we showed in the previous section, the standard finite element method on polygonal

domains yields significantly lower convergence rates compared to the interpolation er-

ror in the standard and weighted L2(Ω) norms. The goal of this section is to introduce

an efficient method for mitigating the pollution effect summarised in Theorem 2.3.21.

In the past, several approaches have been proposed to improve the global conver-

gence of the numerical solutions of elliptic problems on polygonal domains, such as

graded mesh algorithms [5, 6, 9, 16, 37, 49], mesh adaptivity [13, 18, 19, 143] and h-p

adaptivity [15, 62, 63, 70, 126, 133], in which the mesh refinement is combined with

the increase in the order of locally used finite elements. Another types of methods

for eliminating the pollution effect in the discrete approximation include the enrich-

ment of the finite element space by singular functions, see, e.g., [28, 36, 41, 72, 111],

post-processing based on the evaluation of the stress-intensity factors [96, 124] or

extrapolation-based techniques [29, 30]. These methods improve the approximation

quality but require a modification of the standard finite element solution in a O(1)

neighbourhood of the re-entrant corner and require changing the structure of the

mesh or the function space, in which the solution is approximated.

We follow a different approach, based on the so-called energy-corrected finite el-

ement method. The idea was originally proposed for finite difference schemes in

[135, 137, 167]. Recently, it has been extended in the context of finite element meth-

ods, for the Poisson equation in [69, 88, 136] for the piecewise linear discretisation

and in [86], as well as in [84, Chapter 4], using higher-order finite element spaces. In

this section, we follow the ideas proposed there.

The energy-correction finite element was also developed for the Stokes problem

in [91].

2.3.3.1 Definition of the energy-correction

Following Assumption 2.3.16, we restrict our considerations to only one corner in the

computational domain.

As observed in Equation (2.14), the performance of the finite element approx-

imation uh of the solution u of the Poisson problem (2.1), when measured in the

weighted L2(Ω) norms, is limited in the following way

‖u− uh‖α & |a(u, u)− a(uh, uh)| (2.18)
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for any α ∈ R and sufficiently regular forcing term f . The expression on the right-

hand side can be understood as a difference in energies between the continuous prob-

lem (2.1) and its discretisation (2.10). Moreover, we know that it is bounded from

below by an expression depending on the size of the corner in the domain (2.14).

The necessity of improving the approximation of the energy serves as a motivation

for the energy-corrected finite element method described in this section. This method

is based on a local modification of the bilinear form a(·, ·) defining the discrete prob-

lem (2.10). Hence, if we want to obtain the optimal approximation order in the sense

of the best-approximation property stated in Theorem 2.3.14, the necessary condition

|a(u, u)− ah(uh, uh)| ≤ chk+1. (2.19)

needs to be fulfilled. Naturally, this contradicts (2.14) in the case of the standard

finite element approximation introduced in Section 2.3.2. Here, we will construct a

modified bilinear form ah(·, ·) on the discrete space so that (2.19) is satisfied. This

modification will also prove sufficient for obtaining optimal convergence orders of the

finite element scheme measured in weighted norms.

Let k ∈ Z+ be the order of the used finite element space. Similarly to (2.10), the

modified finite element approximation of (2.1) reads: find umh ∈ V k
h such that

ah(u
m
h , vh) = 〈f, vh〉Ω for all vh ∈ V k

h , (2.20)

where the bilinear form is defined as

ah(u, v) = a(u, v)− ch(u, v). (2.21)

The energy-corrected scheme defines a modified Ritz projection Rm
h u = umh . We

assume that ah(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R is bilinear, continuous and elliptic, and

that ch(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R is symmetric. Furthermore, we assume that the

support of the bilinear form ch(·, ·) is contained a subset Sh consisting of few element

patches around the considered corner. This means that

If u|Sh = 0 or v|Sh = 0, then ch(u, v) = 0.

Finally, we assume that

|ch(u, v)| ≤ c‖u‖H1(Sh)‖v‖H1(Sh),

so that the correcting bilinear form is bounded in H1(Sh).



2.3. FINITE ELEMENT METHODS 39

Due to the small size of the support of the modification, the stiffness matrix

Sm =
[
ah(φi, φj)

]K
i,j=1

associated with the energy-corrected discretisation (2.20) has

only a fixed, independent of h, number of different entries compared with the standard

stiffness matrix (2.12). Note also that for ch(u, v) ≡ 0 we recover the standard finite

elemenr discretisation (2.10).

Similarly as in the case of the standard finite element discretisation (2.10), the or-

thogonality result resembling the Galerkin orthogonality introduced in Theorem 2.3.13

holds also for the energy-corrected discretisation.

Theorem 2.3.25 (Modified Galerkin orthogonality). Let umh ∈ V k
h be the finite elme-

nent approximation defined in (2.20) of the solution u ∈ H1
0 (Ω) of the elliptic prob-

lem (2.1). Then the following identity holds

a(u− umh , vh) + ch(u
m
h , vh) = 0, for all vh ∈ V k

h .

Motivated by the necessary condition (2.19) for obtaining the optimal convergence

of the energy-corrected scheme, we define the energy defect function as

gh(v) = a(v, v)− ah(Rm
h v,R

m
h v). (2.22)

The analysis of the properties of the energy defect function will prove vital in the

construction of the optimally accurate energy-corrected finite element method. Due

to the modified Galerkin orthogonality introduced in Theorem 2.3.25, we can rewrite

the energy defect function in a commonly used form

gh(v) = a(v −Rm
h v, v −Rm

h v)− ch(Rm
h v,R

m
h v). (2.23)

We also define a more general entity

g̃h(v, w) = a(v −Rm
h v, w −Rm

h w)− ch(Rm
h v,R

m
h w).

In particular, we have

g̃h(v, v) ≡ gh(v).

Before moving to the investigations of the approximation properties of the energy-

corrected scheme, we need to impose an important constraint on the computational

mesh in the vicinity of the corner. We consider three types of patches, which are

summarized in Figure 2.4, namely unstructured (G1), locally symmetric (G2) and

consisting of identical isosceles triangles (G3). Choice of the right local mesh around
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(G1) (G2) (G3)

Figure 2.4: Constraints on the local mesh around the corner. Here, the dashed line
is a bisection of the angle at the corner. In the first case (G1) we see an arbitrary
patch. In (G2) we choose the mesh so that it is locally symmetric with respect to the
bisection axis. In (G3) we see a grid consisting of identical isosceles triangles.

the considered corner depends on the order of polynomials in the finite element space

and the size of the corner and is summarized below.
(G1) if k = 1 and Θ < 3

2
π

(G2) if k = 1 and Θ ≥ 3
2
π or k = 2 and Θ < 4

3
π

(G3) if k = 2 and Θ ≥ 4
3
π or k ≥ 3

(U)

From now on, whenever the energy-corrected finite element is considered, we will

assume that the following holds.

Assumption 2.3.26. We assume that for different singular functions si, sj, for which

λi + λj < k + 1, we have∫
Sh
∇si · ∇Ikhsj =

∫
Sh
∇si · ∇sj = 0.

This assumption was numerically studied and verified for the meshes satisfying

condition (U) in [86, Section 6.1.3].

Finally, let us define the correction order as

Nk =

{⌊
(k + 1) Θ

2π

⌋
if (k + 1)λ1

2
/∈ Z+,

(k + 1) Θ
2π
− 1 otherwise.

(2.24)

2.3.3.2 Convergence of the energy-corrected scheme

Now, we can state the main result describing the approximation property of the

energy-corrected finite element discretisation.
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Theorem 2.3.27 (Accuracy of the energy-correction). Let k ∈ Z+ be the order of the

finite element space used in the discretisation (2.20). Let also max
(
0, k−λ1

)
< α < k

and α̃ = α− k + 1. Suppose that f ∈ Hk−1
−α̃ (Ω) and u ∈ H1

0 (Ω) is the unique solution

of (2.1). If

gh(si) = O
(
hk+1

)
, for all i ≤ Nk, (2.25)

then for some c > 0 independent of f the following estimates hold

‖u− uh‖α ≤ chk+1‖f‖k−1,−α̃, and ‖∇(u− uh)‖α ≤ chk‖f‖k−1,−α̃.

This result was first proven in [69, Theorem 2.4] in the case of a piecewise-linear

discretisation. It was further extended to the form presented here in [86, Theorem 2.2].

Due to Theorem 2.2.7, the regularity assumption on the forcing term f implies

that u ∈ Hk+1
α (Ω). Hence, the error estimates are optimal in the sense of the in-

terpolation error stated in Theorem 2.3.11. The correction order is the number of

relevant singular functions (2.2) in the expansion provided by the Theorem 2.2.7 that

need to be taken care of by the energy-corrected scheme so that the energy defect

function converges optimally (2.25). The mixed term g̃h(si, sj) for i 6= j disappear

due to the Assumption 2.3.26. The presence of the positive weight α in the norms is

necessary to compensate the lower approximation order in the vicinity of the corner

stemming from the presence of the singular functions in the solution. However, the

approximation exhibits the optimal order of convergence, when measured in some

positive distance from the considered corner.

Corollary 2.3.28 (Approximation far from the corner). Suppose that the assumption

of Theorem 2.3.27 are satisfied and let Ω̃ ⊂ Ω be such that dist(Ω̃, 0) > δ > 0. Then

‖u− uh‖L2(Ω̃) ≤ chk+1‖f‖k−1,−α̃, and ‖∇(u− uh)‖L2(Ω̃) ≤ chk‖f‖k−1,−α̃.

So the energy-corrected finite element scheme recovers the optimal convergence

properties in the sense of the interpolation error summarised in Theorem 2.3.10 when

measured far from the corner. Hence, if we can assure that the condition (2.25) is

satisfied, we will know that the pollution effect stated in Theorem 2.3.21 is eliminated

from the approximation.

Naturally, we would also like to know, how the energy-corrected scheme performs

in more regular cases when the singular functions are absent in the expansion given

in Theorem (2.2.7). The following result was proven in [86, Lemma 3.1].
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Lemma 2.3.29. Let k be a positive integer and u ∈ Hk+1
−α̃ (Ω) ∩ H1

0 (Ω) for some

1− λ1 < α̃ < 1. Then the following estimates hold for some c > 0

‖u− umh ‖−α̃ ≤ chk+1‖u‖k+1,−α̃, and ‖∇(u− umh )‖−α̃ ≤ chk‖u‖k+1,−α̃. (2.26)

Remark 2.3.30. Since L2
−α̃ ↪→ L2(Ω), the following estimates hold under the as-

sumptions of Lemma 2.3.29 are

‖u− umh ‖0 ≤ chk+1‖u‖k+1,−α̃, and ‖∇(u− umh )‖0 ≤ chk‖u‖k+1,−α̃. (2.27)

However, it is important to note that the regularity u ∈ Hk+1
−α̃ (Ω)∩H1

0 (Ω) in negatively

weighted norms in also necessary for the estimate (2.27) to hold. This cannot be

improved due to the low regularity of the dual problem around the corner.

We would like to obtain similar estimates to the ones given in Theorem 2.3.27 in

more commonly-used standard L2(Ω) and H1
0 (Ω) norms. In order to do this, we will

exploit the known structure of the solution in the post-processing step.

Suppose that for some positive integer k we have max(0, k − λ1) < α < k and

α̃ = α − k + 1. Furthermore, assume that f ∈ Hk−1
−α̃ (Ω). Thanks to Theorem 2.2.7

and (2.4), we know that

u = U +
∑

i:λi<k+α

kisi. (2.28)

Recall, the stress-intensity factors ki in this expansion can be computed using

formula (2.4). We define the approximate stress-intensity factors as

khi =
1

iπ

∫
Ω

fs−i + umh ∆s−i. (2.29)

The following lemma was proposed in the case of the piecewise linear discretisation

in [69, Theorem 2.6] and further extended to the piecewise polynomial case in [86].

Lemma 2.3.31. Suppose that the assumptions of Theorem 2.3.27 are satisfied. Then

for all i ≤ Nk and some c > 0

|ki − khi | ≤ chk+1‖f‖k−1,−α̃.

Due to the linearity of the modified Ritz projection and (2.28), we also have

umh = Um
h +

∑
i:λi<k+α

kis
m
i,h. (2.30)
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Notice that U ∈ Hk+1
−α̃ (Ω), and hence, according to Lemma 2.3.30, it is regular

enough for its finite element approximations to exhibit desired convergence. Now, hav-

ing the accurate approximation of the stress-intensity factors through Lemma 2.3.31,

we can replace the remaining approximations of the singular functions (2.30) by their

continuous counterparts. Finally, we define the post-processed solution by

ũmh = umh +
∑

i:λi<k+α

khi
(
si − smi,h

)
. (2.31)

This post-processing step is based on the enrichment of the discrete space by the

singular functions after the solution of (2.20) is obtained. This results in an improved

approximation property of the scheme, which is summarised in the following theorem.

Theorem 2.3.32. Suppose that the assumptions of Theorem 2.3.27 hold. Then for

some c > 0

‖u− ũmh ‖0 ≤ chk+1‖f‖k−1,−α̃, and ‖∇(u− ũmh )‖0 ≤ chk‖f‖k−1,−α̃.

For the proof of this theorem, we refer the reader to [86, Corollary 2.3]. This

improved approximation of the scheme comes at a computational cost of solving Nk

additional elliptic problems in the search of smi,h and Nk integral evaluations for the

approximation of the stress-intensity factors (2.29).

2.3.3.3 Construction of the modification

We will now focus on showing that the assumptions on the energy defect func-

tion (2.25) can indeed be satisfied upon the right choice of the correcting bilinear

form ch(·, ·). Let us define

S1
h = {T ∈ Th : 0 ∈ ∂T}, S ih = {T ∈ T : ∂T ∩ ∂S i−1

h 6= ∅}, i = 1, . . . , Nk.

So S ih denotes the i-th layer of elements counting from the corner.

We consider two types of modifications for the energy-corrected scheme

cRh (u, v) =

Nk∑
i=1

γRi

∫
Sih

∇u · ∇v, cFh (u, v) =

Nk∑
i=1

γFi

∫
S1
h

r̂i−1∇u · ∇v. (2.32)

Here, r̂ is a distance from the corner measured on the reference triangle and γR, γF

are vectors of correction parameters, which will be specified later. The bilinear

form cRh (·, ·) is supported in Nk element layers from the corner, which are visualised

in Figure 2.5. Note that in the case of k = 1 and Θ > π, we have Nk = 1 and both

corrections reduce to the same type of modification
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S1
h

S2
h

S3
h

Figure 2.5: Local mesh around the re-entrant corner. In the higher-order energy-
correction, modification cRh (·, ·) is supported in a layer of Nk elements around the
re-entrant corner. In this case Nk = 3.

ch(u, v) = γ

∫
S1
h

∇u · ∇v. (2.33)

We also assume that ‖γR‖`∞ < 1 and ‖γF‖`∞ < 1, so that the coercivity of ah(·, ·)
is preserved. The modifications (2.32) were proposed in [86] and (2.33) was studied

in [69].

We will now move to finding the right parameters for the modifications introduced

in (2.32). For the better readability, we skip the superscripts and simply write γ

instead of γR and γF . Let us define

gh(γ) =
(
gh(si)

)Nk
i=1
, (2.34)

where gh(·) is the energy defect function (2.22) with a suitable modification (2.32)

and a given parameter vector γ =
(
γh,1, . . . , γh,Nk

)
. For each refinement level with

the mesh-size h we define a new vector of parameters as the solution of

gh(γh) = 0. (2.35)

The following result shows that the assumptions of Theorem 2.3.27 with modifica-

tions (2.32) can indeed be satisfied.
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Lemma 2.3.33. Let γ∗ = limh→0+ γh and suppose that

|γ∗i − γh,i| = O
(
hk+1−λi

)
. (2.36)

Then the assumption (2.25) of Theorem 2.3.27 is satisfied with the modification (2.32)

and γ = γ∗.

This result was proven in [69, Lemma 5.3] for a piecewise linear discretisation and

in [86, Lemma 5.1] for the general piecewise polynomial setting. Moreover, for piece-

wise linear finite element the solution of (2.35) exists and converges sufficiently fast

to satisfy (2.36), see [69, Lemma 5.2, Remark 5.4]. However, for the higher-order dis-

cretisation, the assumption (2.36) was only confirmed numericaly [86, Section 6.1.1].

Parameters γh defined as roots of the energy defect function (2.35) can be effi-

ciently found using nested Newton algorithms proposed in [136] and standard Newton

iteration studied also in [86, Section 6.1.1].

Throughout this work, we will assume that the optimal parameter γ∗ provided by

Lemma 2.3.33 is known. In all the numerical investigations we will use its approx-

imation γh computed on a sufficiently many times refined mesh. It is worth noting

that the parameter γ∗ depends only on the size of the considered corner and on the

one element patch of the triangulation around it. In particular, it is independent of

the whole domain Ω and a particular choice of the right-hand side f in (2.1).

2.3.3.4 Numerical examples

To illustrate the approximation properties of the energy-corrected finite element

scheme, we perform numerical examples in the same setting as in Section 2.3.2. We

use the exact solution u = s1 + s2 + s3 on the L-shape domain with the triangulation

presented in Figure 2.3 and for the weighted norms we set α = k − λ1 + ε, ε = 10−4.

We summarise the convergence rates for the energy-corrected scheme in Table 2.2.

The obtained errors are optimal in the sense of the interpolation error (2.16). Hence,

the application of the energy-correction significantly improves the observed conver-

gence properties of the finite element scheme yielding higher orders of convergence

than the ones observed in Table 2.1 for the standard discretisation.

We would also like to point out that the use of cF (·, ·) modification results in

lower errors than the ones obtained with the help of cR(·, ·). This was already ob-

served in [86, Section 6.3] and can be attributed to the larger support of the latter

modification.
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Energy-corrected P1 elements, γ = 0.117531611518762
L ‖u− umh ‖0 eoc ‖u− umh ‖α eoc ‖∇(u− umh )‖0 eoc ‖∇(u− umh )‖α eoc
1 1.8706e-1 - 1.5053e-1 - 1.3609e-0 - 1.1511e-0 -
2 5.2642e-2 1.83 4.0585e-2 1.89 7.0341e-1 0.95 5.9341e-1 0.96
3 1.4130e-3 1.90 9.8875e-3 2.04 3.6794e-1 0.93 3.0048e-1 0.98
4 3.8881e-3 1.86 2.4112e-3 2.04 1.9603e-1 0.91 1.5161e-1 0.99
5 1.1092e-3 1.81 5.9519e-4 2.02 1.0682e-1 0.88 7.6424e-2 0.99
6 3.2650e-4 1.76 1.4834e-4 2.00 5.9717e-2 0.84 3.8514e-2 0.99
7 9.8405e-5 1.73 3.7233e-5 1.99 3.4265e-2 0.80 1.9406e-2 0.99

Expected 1.66 2.00 0.67 1.00

Energy-corrected P2 elements with cRh (·, ·), γ = (0.03152,−0.005533)
L ‖u− umh ‖0 eoc ‖u− umh ‖α eoc ‖∇(u− umh )‖0 eoc ‖∇(u− umh )‖α eoc
1 2.6630e-2 - 8.3594e-3 - 2.04155e-1 - 8.3001e-2 -
2 8.6672e-2 1.62 1.8170e-3 2.20 1.2252e-1 0.74 2.1620e-2 1.94
3 2.5959e-3 1.74 1.9483e-4 3.22 7.4899e-2 0.71 5.2438e-3 2.04
4 8.0270e-4 1.69 2.1625e-5 3.17 4.6629e-2 0.68 1.3438e-3 1.96
5 2.5114e-4 1.68 2.5898e-6 3.06 2.9238e-2 0.67 3.4983e-4 1.94
6 7.8905e-5 1.67 3.2494e-7 2.99 1.8385e-2 0.67 9.1232e-5 1.94

Expected 1.67 3.00 0.67 2.00

Energy-corrected P2 elements with cFh (·, ·), γ = (0.10241,−0.16802)
L ‖u− umh ‖0 eoc ‖u− umh ‖α eoc ‖∇(u− umh )‖0 eoc ‖∇(u− umh )‖α eoc
1 2.9144e-2 - 8.2033e-3 - 2.0737e-1 - 8.4710e-2 -
2 7.6256e-2 1.93 1.0192e-3 3.01 1.2226e-1 0.76 2.0511e-2 2.05
3 2.3590e-3 1.69 1.3273e-4 2.94 7.5078e-2 0.70 5.3884e-3 1.93
4 7.3770e-4 1.68 1.7356e-5 2.93 4.6798e-2 0.68 1.4122e-3 1.93
5 2.3170e-4 1.67 2.3238e-6 2.90 2.9355e-2 0.67 3.6887e-4 1.94
6 7.2901e-5 1.67 3.0767e-7 2.92 1.8461e-2 0.67 9.6027e-5 1.94

Expected 1.67 3.00 0.67 2.00

Energy-corrected P3 elements with cRh (·, ·), γ = (0.012891,−0.0023667)
L ‖u− umh ‖0 eoc ‖u− umh ‖α eoc ‖∇(u− umh )‖0 eoc ‖∇(u− umh )‖α eoc
1 1.0368e-2 - 3.2602e-3 - 1.1866e-1 - 3.2392e-2 -
2 3.3871e-3 1.61 4.3010e-4 2.92 7.3067e-2 0.70 4.5921e-3 2.82
3 1.0012e-3 1.76 3.0173e-5 3.82 4.5454e-2 0.68 5.0162e-4 3.19
4 3.0779e-4 1.70 1.8948e-6 3.99 2.8503e-2 0.67 5.8511e-5 3.10
5 9.6080e-5 1.68 1.1716e-7 4.02 1.7925e-2 0.67 7.1874e-6 3.03
6 3.0161e-5 1.67 7.2796e-9 4.01 1.1284e-2 0.67 9.0095e-7 3.00

Expected 1.67 3.00 0.67 2.00

Energy-corrected P3 elements with cFh (·, ·), γ = (0.042218,−0.07085)
L ‖u− umh ‖0 eoc ‖u− umh ‖α eoc ‖∇(u− umh )‖0 eoc ‖∇(u− umh )‖α eoc
1 1.1670e-2 - 3.2991e-3 - 1.2107e-1 - 3.5799e-2 -
2 3.1178e-3 1.90 1.5467e-4 4.41 7.3228e-2 0.73 3.3454e-3 3.42
3 9.7010e-3 1.68 9.5697e-6 4.01 4.5632e-2 0.68 4.0535e-3 3.04
4 3.0425e-4 1.67 5.9812e-7 4.00 2.8628e-2 0.67 5.0667e-5 3.00
5 9.5683e-5 1.67 3.8298e-8 3.96 1.8006e-2 0.67 6.4023e-6 2.98
6 3.0120e-5 1.67 2.7183e-9 3.82 1.1336e-2 0.67 8.1184e-7 2.98

Expected 1.67 4.00 0.67 3.00

Table 2.2: Summary of convergence rates on the L-shape domain obtained using
energy-corrected finite elements P1, P2, P3 with two different types of modification.



Chapter 3

Maximum norm error estimates

The study of maximum norm error estimates for the standard piecewise linear fi-

nite element approximation of elliptic problems on quasi-uniform meshes started

with [119, 121, 122, 123], where suboptimal estimates were obtained. They were

further improved to the optimal form of sharp estimates in [74, 145].

The first investigations on polygonal domains were conducted in [142]. There, it

was shown that the presence of the corners in the computational domain significantly

reduces the convergence order of the finite element method in the maximum norm,

a phenomenon similar to the pollution effect introduced in Theorem 2.3.21. The

standard approaches for mitigating the pollution effect in the finite element solution

include refinement towards the corners in the domain. The L∞(Ω) norm estimates

for the schemes based on mesh refinement were studied in [143] and [146, Chapter 4],

and sharp estimates can be found in [134]. Similar techniques also lead to optimal

estimates for the Neumann problem on polygonal domains, see [7].

The optimal error estimates for the higher-order finite element discretisation was

studied in [139, 140].

In Section 2.3.3, we introduced the energy-correction method, which improves the

convergence properties of the finite element methods on domains with corners, when

measured in weighted L2(Ω) norm and H1
0 (Ω) seminorm. We build on the analysis

presented there and show that the energy-correction method converges optimally in

the sense of the best approximation property also when the weighted L∞(Ω) norm is

concerned.

We begin by stating the regularity results for the singular solutions of the Poisson

problem on polygonal domains in the framework of weighted W k,∞(Ω) spaces. Next,

we show some auxiliary results describing the behaviour of piecewise polynomial el-

ements in weighted spaces. We prove an interpolation error estimate, which to our

knowledge, cannot be found in the literature. Having all necessary tools at hand, in

47
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Section 3.3.1, we move to proving the optimal convergence of the energy-corrected

finite element, when measured in the weighted L∞(Ω) norm. The proof follows the

ideas first introduced in [142, 143] and is based on a dyadic decomposition of the

computational domain Ω around the considered corner. In Section 3.3.2, we propose

a post-processing approach improving the convergence of the finite element scheme,

when measured in the standard maximum norm, also in the vicinity of the corner.

We conclude the chapter with numerical investigations illustrating and confirming

the obtained results.

The optimal error estimates presented in this chapter mean that the presence of

the corners in the computational domain does not have any influence on the approxi-

mation properties of the energy-corrected scheme in a positive distance from it. This

stems from the fact that the energy-correction method successfully eliminates the

pollution effect introduced in Theorem 2.3.21, the fact also apparent in the proof of

the main result of this chapter.

The results presented in this chapter were partly published by the author and B.

Wohlmuth in the paper entitled ”Maximum norm estimates for energy- corrected finite

element method” in Numerical Mathematics and Advanced Applications ENUMATH

2017, which will appear in print in the year 2018, [153].

3.1 Regularity

In this chapter, we focus on the model Poisson problem (2.1) with the right-hand

side f and the solution u, on polygonal domains Ω, see Definition 2.1.11. In Sec-

tion 2.2.2, we discussed the regularity properties of the elliptic problems on domains

with corners and introduced the singular functions (2.2). Furthermore, we investi-

gated their regularity in standard and weighted Hilbert–Sobolev spaces Hk+1(Ω).

A similar analysis can be conducted in terms of the Sobolev space W k+1,∞(Ω).

Similarly as before, we consider the behaviour around only one of the domain’s cor-

ners, which we locate at the origin of the Euclidean space for simplicity. Note first

that for positive integers k, if Θ > iπ
k+1

, then si /∈ W k+1,∞(Ω). This, in particular,

means that around a corner of size Θ > π/2, we have s1 /∈ W 2,∞(Ω). However,

similarly as in the aforementioned case, it is convenient to describe the regularity in

weighted V k+1,∞
β (Ω) spaces.
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Theorem 3.1.1 (Regularity of the singular functions in V k+1,∞
β (Ω)). Let β ≥ k +

1− λi. Then the singular functions (2.2) staisfy

si ∈ V k+1,∞
β (Ω).

In Theorem 2.2.6, we established the shift of regularity between the forcing term f

and the corresponding solution of the Poisson problem. However, the similar result in

the case p =∞ cannot be expected and a higher Hölder regularity assumptions on f

need to be imposed. The following theorem is a consequence of [99, Theorem 2.6.5].

Theorem 3.1.2 (V k+1,∞
β (Ω) regularity). Let k be a positive integer and let us take

β ≥ max(0, k + 1− λ1). Suppose that for some σ > 0 we have f ∈ Nk−1,σ
β (Ω). Then

there exists a unique solution of the Poisson problem (2.1) u ∈ V k+1,∞
β (Ω) ∩H1

0 (Ω),

which is continuous. Moreover, it admits the following expansion

u = U +
∑

i:λi<k+1−β

kisi,

where ki ∈ R. Finally, the regular part of the solution satisfies U ∈ Nk+1,σ
β (Ω) and

for some c > 0 independent of the right-hand side f

‖u‖V k+1,∞
β (Ω) ≤ c‖f‖Nk−1,σ

β (Ω)

This, together with Theorem 2.2.7, leads to the following result.

Corollary 3.1.3. Let β ≥ max(0, k + 1 − λ1), k − λ1 < α < k and α̃ = α − k + 1.

Assume that f ∈ Nk−1,σ
β (Ω) ∩ Hk−1

−α̃ (Ω) for some σ > 0. Then the solution u ∈
V k+1,∞
β (Ω)∩Hk+1

α (Ω)∩H1
0 (Ω) of (2.1) is continuous. Moreover, it admits the following

expansion

u = U +
∑

i: λi<k+1−β

kisi,

and the regular part of the solution satisfies U ∈ Nk+1,σ
β (Ω) ∩ Hk+1

−α̃ (Ω) ∩ H1
0 (Ω).

Furthermore, for some c > 0

‖u‖V k+1,∞
β (Ω) ≤ c‖f‖Nk−1,σ

β (Ω), and ‖u‖Hk+1
α (Ω) ≤ c‖f‖Hk−1

−α̃ (Ω).

3.2 Finite element error in maximum norm

Now, we move to the investigations of the quality of the finite element approximations

of the solution u in the discrete spaces V k
h of piecewise polynomial functions, which we
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introduced in (2.8). We first analyse the errors obtained using the nodal interpolation

from Definition 2.3.8. These estimates will serve as a benchmark, with which we shall

compare the quality of the finite element approximation. Moreover, the interpolation

error estimates will be essential further in the proof of the optimal error estimates for

the energy-corrected scheme.

The Bramble–Hilbert Lemma 2.3.3 in the classical form presented in Section 2.3.1

is insufficient to prove interpolation error estimates in weighted Sobolev norms. There-

fore, we present its suitable extension, which was proposed in [12]. There, an even

more general form than the one presented here can be found.

Lemma 3.2.1 (Bramble–Hilbert Lemma in weighted spaces). Let K ⊂ Rd be as in

Definition 2.3.1 and 1 ≤ p ≤ ∞. Let m, l ∈ Z ∪ {0} and α, β ∈ R be the weights

satisfying

0 < l − α−m, and − d < αp, when 1 ≤ p <∞,

−d < β, and α < l, when p =∞,

Moreover, if βp+ l − α−m > 0, then there exists a constant c > 0 independent of p

and u such that for any u ∈ Wm,p(Ω) there exists a polynomial pl−1 ∈ Pl−1(K) such

that

|u− pl−1|Wm,p
β (Ω) ≤ c|u|W l,p

α (Ω).

This result is essential for the proof of the interpolation error estimates.

Lemma 3.2.2 (Interpolation error in L∞β (Ω)). Let Ikh : C(Ω) → V k
h denote the

standard nodal interpolation operator, see Definition 2.3.8. Then, for any function

u ∈ W k+1,∞
α (Ω)∩C(Ω̄), with 0 ≤ α < k+ 1 and max(0, α− k) ≤ β ≤ α the following

estimate holds

‖u− Ikhu‖L∞β (Ω) ≤ chk+1+β−α|u|Wk+1,∞
α (Ω)

for some constant c > 0 independent of h and u.

Proof. Suppose that the value of the norm ‖u− Ikhu‖L∞β (Ω) is attained in the element

T ∗ ∈ Th. Then we have

‖u− Ikhu‖L∞β (Ω) = ‖u− Ikhu‖L∞β (T ∗).

We consider two cases, namely when dist
(
0, T ∗) := dT ∗ > 0 and dist

(
0, T ∗) = 0. We

begin our considerations with the former case.
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Note that in this case there exists a constant c1 > 0 such that

c1 sup
x∈T ∗
|x| ≤ dT ∗ = inf

x∈T ∗
|x|. (3.1)

Thus, we can write

‖u− Ikhu‖L∞β (T ∗) ≤ cdβT ∗‖u− I
k
hu‖L∞(T ∗) = cdβT ∗‖û− I

k
T̂
û‖L∞(T̂ ), (3.2)

where T̂ is the reference triangle and Ik
T̂

is the interpolation operator defined on it.

For the estimate in the standard Sobolev norms on the reference element we can use

Theorem 2.3.4, where we set p = q =∞, m = 0 and l = k + 1. We arrive at

‖u− Ikhu‖L∞β (T ∗) ≤ cdβT ∗‖û− I
k
T̂
û‖L∞(T̂ )

≤ cdβT ∗|û|Wk+1,∞(T̂ )

≤ cdβT ∗h
k+1|u|Wk+1,∞(T ∗)

≤ cdβ−αT ∗ hk+1|u|Wk+1,∞
α (T ∗)

The last inequality is the result of (3.1). The scaling hk+1 comes from the Jacobian

of the transformation from the reference triangle to the element T ∗. Since dT ∗ ≥ h

and β ≤ α, we have dβ−αT ∗ ≤ hβ−α. Hence, we finally obtain

‖u− Ikhu‖L∞β (T ∗) ≤ chk+1+β−α|u|Wk+1,∞
α (T ∗). (3.3)

Suppose now that dist
(
0, T ∗) = 0. Since in T ∗ we have r ≤ h, we can write

‖u− IkT ∗u‖L∞β (T ∗) = ‖rβ(u− IkT ∗u)‖L∞(T ∗)

≤ hβ‖u− IkT ∗u‖L∞(T ∗) = hβ‖û− Ik
T̂
û‖L∞(T̂ ). (3.4)

Let now pk ∈ Pk(T̂ ) be some polynomial of order k on T̂ , which will be specified later.

Since ‖Ikhv‖L∞(T̂ ) ≤ ‖v‖L∞(T̂ ) holds for the nodal interpolation Ik
T̂

, we have

‖û− Ik
T̂
û‖L∞(T̂ ) ≤ ‖û− pk‖L∞(T̂ ) + ‖Ik

T̂
(pk − û)‖L∞(T̂ ) ≤ c‖û− pk‖L∞(T̂ ).

Thanks to Lemma 3.2.1 in which we take β = 0, l = k + 1, p = ∞ and m = 0, we

obtain

‖û− Ik
T̂
û‖L∞(T̂ ) ≤ c|û|Wk+1,∞

α (T̂ ).

In combination with (3.4) this yields

‖u− IkT ∗u‖L∞β (T ∗) ≤ chβ|û|Wk+1,∞
α (T̂ )
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However, we also have r̂ ∼ hr, where r̂ is the distance from the origin on the refer-

ence triangle. Hence, similarly as before, after transformation back to the physical

triangle T ∗, we get

‖u− Ikhu‖L∞β (T ∗) ≤ chk+1+β−α|u|Wk+1,∞
α (T ∗).

This, together with (3.3) completes the proof of the lemma.

Note that for a positive parameter α, we have V k+1,∞
α (Ω) ↪→ W k+1,∞

α (Ω) and also

|u|Wk+1,∞
α (Ω) = |u|V k+1,∞

α (Ω). Hence, the assertion of Lemma 3.2.2 holds also when

spaces W k+1,∞
α (Ω) are replaced with V k+1,∞

α (Ω).

Now, we would like to investigate the convergence of the standard finite element

approximation uh ∈ V k
h defined in Section 2.3.2, when measured in standard and

weighted L∞(Ω) norms.

Let u ∈ H1
0 (Ω) be the solution of the Poisson problem (2.1). The following error

estimates can be found in [142, Section 0].

Theorem 3.2.3 (Pollution effect in maximum norm). Let k ∈ Z+, and let the right-

hand side f ∈ Nk−1,σ
β (Ω) for some β ≥ max(0, k + 1− λ1) and σ > 0. Moreover, let

Ω̃ ⊂ Ω be separated from the corner, namely dist(Ω̃, 0) > δ > 0. Then for any ε > 0

the standard finite element approximation defined in (2.10) satisfies for some c > 0

depending on u

‖u− uh‖L∞(Ω) ≤ chmin(k+1,λ1)−ε, and ‖u− uh‖L∞(Ω̃) ≤ chmin(k+1,2λ1)−ε.

Hence, also for all α ≥ 0

‖u− uh‖L∞α (Ω) ≤ chmin(k+1,2λ1)−ε.

We will now present some numerical examples showing that the estimates provided

in Theorem 3.2.3 are sharp, at least up to the choice of ε > 0, and cannot be im-

proved. This means that the standard finite element approximation yields suboptimal

convergence rates compared to the nodal interpolation summarised in Lemma 3.2.2.

We consider the benchmark problem, which we already studied in Section 2.3.2.4

and Section 2.3.3.4. Let Ω ⊂ R2 be the L-shape domain with the largest interior

angle Θ = 3π/2. Consider the exact solution u = s1 + s2 + s3 and let β = k+ 1− λ1.

Then the exact solution satisfies u ∈ V k+1,∞
β (Ω).

We approximate the solution of the Poisson problem (2.1) with the standard piece-

wise polynomial finite element of order k = 1, 2, 3. The approximation errors obtained
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upon the discretisation on few consecutive refinement levels are summarised in Ta-

ble 3.1. Note that the weights depend on the order of the discretisation. Furthermore,

we take Ω̃ = Ω \B(0.5).

The convergence rates are consistent with the findings of Theorem 3.2.3 implying

the sharpness of the estimates. Moreover, the increase in the order of the polynomials

used in the finite element method does not qualitatively improve the approximation

properties.

3.3 Maximum norm error estimates for the energy-

correction

In this section, we investigate the maximum norm error estimates of the energy-

corrected finite element scheme introduced in Section 2.3.3. We begin by stating and

proving some auxiliary results regarding the properties of the finite element spaces.

Then, we move to the formulation of this chapter, namely the finite element error

estimates in the weighted maximum norm for the energy-corrected scheme.

Lemma 3.3.1 (Inverse inequality). For all vh ∈ V k
h and all α ≥ −1, the following

estimate holds. Moreover, when the triangulation is uniform, the constant is inde-

pendent of the choice of the element.

‖vh‖L∞α (T ) ≤ ch−1‖vh‖L2
α(T ) for all T ∈ T .

Proof. The proof follows from the standard scaling argument and the equivalence

of finite dimensional norms. Let us consider two separate cases, namely, when the

triangle T lies in a positive distance dT from the corner located at the origin, and

when it is attached to the corner. We begin with the former. Notice that

c1 sup
x∈T
|x| ≤ dT = inf

x∈T
|x|. (3.5)

First, we apply these inequalities and transform the discrete function to the ref-

erence triangle T̂ to obtain

‖vh‖L∞α (T ) ≤ cdαT‖vh‖L∞(T ) = cdαT‖v̂h‖L∞(T̂ ).

Due to the equivalence of norms in the finite dimensional spaces we arrive at

‖v̂h‖L∞(T̂ ) ≤ c‖v̂h‖L2(T̂ ) = ch−1‖vh‖L2(T ).
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P1 elements
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− uh‖L∞(Ω̃) eoc

1 1.1320e-2 - 1.1320e-2 - 1.1320e-2 -
2 2.2810e-2 -1.01 9.0520e-3 0.32 2.2810e-2 -1.01
3 1.9100e-2 0.26 3.6329e-3 1.32 9.1494e-3 1.32
4 1.3227e-2 0.53 1.4699e-3 1.31 3.6697e-3 1.32
5 8.6316e-3 0.62 5.8631e-4 1.33 1.4714e-3 1.32
6 5.5122e-3 0.65 2.3372e-4 1.33 5.8787e-4 1.32
7 3.4911e-3 0.66 9.3089e-5 1.33 2.3430e-4 1.33

Expected 0.67 1.33 1.33

P2 elements
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− uh‖L∞(Ω̃) eoc

1 2.1860e-2 - 4.3375e-3 - 2.1860e-2 -
2 1.6048e-2 0.45 1.0654e-3 2.03 3.3171e-3 2.72
3 1.0679e-2 0.59 4.4250e-4 1.27 1.7702e-3 0.91
4 6.8697e-3 0.64 1.7485e-4 1.34 7.0756e-4 1.32
5 4.3632e-3 0.65 6.9152e-5 1.34 2.7985e-4 1.34
6 2.7575e-3 0.66 2.7408e-5 1.34 1.1089e-4 1.34
7 1.7393e-3 0.66 1.0877e-5 1.33 4.3985e-5 1.33

Expected 0.67 1.33 1.33

P3 elements
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− uh‖L∞(Ω̃) eoc

1 7.7357e-3 - 2.1568e-3 - 4.2138e-3 -
2 5.5680e-3 0.47 3.5099e-4 2.62 2.5791e-3 0.71
3 3.6846e-3 0.60 1.4046e-4 1.32 7.2086e-4 1.84
4 2.3655e-3 0.64 5.6261e-5 1.32 2.8052e-4 1.36
5 1.5012e-3 0.66 2.2319e-5 1.33 1.1121e-4 1.33
6 9.4847e-4 0.66 8.8568e-6 1.33 4.4130e-5 1.33
7 5.9819e-4 0.66 3.5148e-6 1.33 1.7513e-5 1.33

Expected 0.67 1.33 1.33

Table 3.1: Summary of convergence rates on the L-shape domain obtained using
Lagrange finite elements P1, P2, P3.
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The scaling in the last inequality comes from the Jacobian of the transformation

between the physical triangle T and the reference triangle T̂ . Finally, gathering all

the estimates together and applying (3.5) we obtain

‖vh‖L∞α (T ) ≤ cdαTh
−1‖vh‖L2(T ) ≤ c1h

−1‖vh‖L2
α(T ). (3.6)

Now, assume that the triangle T is attached to the corner. The distance from the

corner on the reference triangle satisfies r̂ ∼ hr, so

‖vh‖L∞α (T ) ≤ hα‖v̂h‖L∞α (T̂ ).

Similarly as before, we use the equivalence of the norms on the finite dimensional

spaces to obtain

‖v̂h‖L∞α (T̂ ) ≤ c‖v̂h‖L2
α(T̂ ) ≤ ch−1−α‖vh‖L2

α(T ).

In the last step we again applied the transformation between the reference and phys-

ical element. Combining all the estimates together we arrive at

‖vh‖L∞α (T ) ≤ c2h
−1‖vh‖L2

α(T ).

Choosing the bigger one of the constants c1, c2 and accounting for (3.6) completes the

proof of the lemma.

The result presented in the next lemma is a form of an inverse inequality between

standard and weighted L2(Ω) norms in the neighbourhood of the corner.

Lemma 3.3.2. Let α > −1 and T ∗ ∈ T be a single element of the triangulation

that lies close to the corner located at the origin, namely maxx∈T ∗ r(x) < c̃h for some

positive constant c̃. Then the following estimate holds for all vh ∈ V k
h

hα‖vh‖L2(T ∗) ≤ c‖vh‖L2
α(T ∗).

Proof. Let first α ≥ 0. If the element T ∗ is not attached to the corner, then it lies in

the distance of at least h from it and hence the estimate is obvious.

Suppose then that the triangle T ∗ shares a vertex with the corner. We proceed sim-

ilarly as before, exploiting the equivalence of norms in the finite dimensional spaces.

Thus, we write

hα‖vh‖L2(T ∗) = hα‖v̂h‖L2(T̂ )

≤ chα‖v̂h‖L2
α(T̂ ) = c‖v̂h‖L2

α(T ∗).

Suppose now that α ∈ (−1, 0). Since r ≤ c̃h, we have hα ≤ 1
c̃α
rα and

hα‖vh‖L2(T ∗) ≤ c‖vh‖L2
α(T ∗)
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3.3.1 Main result

Following [7, 8, 141, 142], we introduce a dyadic decomposition around the corner of

the domain Ω. This construction will be important in the proof of the global finite

element estimates, where we will use local estimates on each part of the decomposition.

Definition 3.3.3 (Dyadic decomposition). Let R > 0. For J = 0, . . . , I we set

ΩJ = {x ∈ Ω : dJ+1 < |x| < dJ},

where dJ = 2−JR and dI ≤ c∗h, dI+1 = 0.

Moreover, dI is chosen so that the correction patch Sh of (2.21) is contained in ΩI .

We also define Ω−1 = Ω \
⋃I
J=0 ΩJ and d−1 = diam(Ω).

Finally, we set

Ω′J = ΩJ+1 ∪ ΩJ ∪ ΩJ−1.

In the proof of the maximum norm estimates, we will exploit the known local

estimates derived by Schatz and Wahlbin in [141, Theorem 5.1]. The form presented

here can be found in [7, (3.11)] and is a special case of the estimate proven in [164,

Theorem 10.1].

Lemma 3.3.4 (Interior maximum norm estimate). Let J < I − 1 and suppose that

the following holds

a(u− uh, vh) = 0 for all vh ∈ V k
h (Ω′J).

Then, we have

‖u− uh‖L∞(ΩJ ) ≤ c
(
| log h|s inf

χ∈V kh
‖u− χ‖L∞(Ω′J ) + d−1

J ‖u− uh‖L2(Ω′J )

)
,

where s = 1, when k = 1 and s = 0 otherwise.

Finally, we are in a position to state main result of this chapter.

Theorem 3.3.5. Let β ≥ max(0, k+ 1−λ1 + ε), with ε > 0 and also k−λ1 < α < k,

α̃ = α − k + 1. Assume that f ∈ Nk−1,σ
β (Ω) ∩ Hk−1

−α̃ (Ω) for some σ > 0. Then the

energy-corrected finite element approximation (2.20) of (2.1) admits the following

convergence property

‖u− umh ‖L∞β (Ω) ≤ chk+1| log h|s(‖f‖Nk−1,σ
β (Ω) + ‖f‖Hk−1

−α̃ (Ω)),

where s = 1, when k = 1 and s = 0 otherwise.
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Proof. Without loss of generality, we assume that the corner lies at the origin. We

also assume that Θ > π
k+1

since otherwise standard methods provide the desired

convergence order of the scheme, see Theorem 3.2.3.

In the proof we consider cases J = I − 1, I and the case J < I − 1 separately.

For J < I−1 we can rely on Theorem 3.3.4. This result holds under the Galerkin

orthogonality assumption a(u−umh , vh) = 0. Although this does not hold globally for

the energy-corrected finite element scheme, it is sattisfied for functions vh ∈ V k
h (Ω′J)

with support in Ω′J . This is true due to the Galerkin orthogonality property for the

energy-corrected scheme stated in Theorem 2.3.25, since Ω′J ∩ Sh = ∅.
As a consequence, we immediately obtain

‖u− umh ‖L∞β (ΩJ ) ≤ dβJ‖u− u
m
h ‖L∞(ΩJ )

≤ cdβJ

(
| log h|s inf

χ∈V kh
‖u− χ‖L∞(Ω′J ) + d−1

J ‖u− u
m
h ‖L2(Ω′J )

)
.

Furthermore, since for some constant independent of J

dJ ≤ c inf
x∈Ω′J

r(x),

we can also write

‖u− umh ‖L∞β (ΩJ ) ≤ c
(
| log h|s inf

χ∈V kh
‖u− χ‖L∞β (Ω′J ) + ‖u− umh ‖L2

β−1(Ω′J )

)
. (3.7)

Now, we move our investigations to subregions, which are close to the corners of

the domain, namely, we consider J = I − 1, I. Let T ∗ ∈ T denote the element in the

domain’s triangulation, in which the maximum error of the scheme, when measured

on ΩJ only, is attained. Note also that T ∗ ⊂ Ω′J . Then, for any vh ∈ V k
h

‖u− umh ‖L∞β (ΩJ ) ≤ ‖u− umh ‖L∞β (T ∗) ≤ ‖u− χ‖L∞β (Ω′J ) + ‖χ− umh ‖L∞β (T ∗) (3.8)

We now focus our attention on the second term in this estimate. Applications of

the inverse inequality between L∞ and L2 norms of discrete functions, as stated in

Lemma 3.3.1 for α = 0, and Lemma 3.3.2 give for some constants cJ , c
′
J > 0

‖χ− umh ‖L∞β (T ∗) ≤ cJh
β‖χ− umh ‖L∞(T ∗)

≤ cJh
β−1‖χ− umh ‖L2(T ∗) ≤ c′J‖χ− umh ‖L2

β−1(T ∗).

Let β′ satisfy β > β′ > k+ 1− λ1. Then rβ−β
′−1 ∈ L2(Ω) and a simple application of

the Hölder inequality leads to

‖u− χ‖L2
β−1(Ω′J ) ≤ c‖u− χ‖L∞

β′ (Ω
′
J ).
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Hence, for c′′J > 0 we have

c′J‖χ− umh ‖L2
β−1(T ∗) ≤ c′J‖u− umh ‖L2

β−1(Ω′J ) + c′J‖u− χ‖L2
β−1(Ω′J )

≤ c′J‖u− umh ‖L2
β−1(Ω′J ) + c′′J‖u− χ‖L∞β′ (Ω′J )

Therefore, we obtain for all χ ∈ V k
h using (3.8)

‖u− umh ‖L∞β (ΩJ ) ≤ c
(
‖u− χ‖L∞

β′ (Ω
′
J ) + ‖u− umh ‖L2

β−1(Ω′J )

)
. (3.9)

Combining (3.7) and (3.9) we see that for some c > 0 and for any β > β′ > k+ 1−λ1

‖u− umh ‖L∞β (Ω) ≤ c
(
| log h|s inf

χ∈V kh
‖u− χ‖L∞β (Ω) + ‖u− umh ‖L2

β−1(Ω)

)
.

We also use the embedding L∞β′ (Ω) ↪→ L∞β (Ω), which allows us to replace the L∞β (Ω)-

norm with the L∞β′ (Ω)-norm in (3.7). Application of the interpolation error estimate

from Lemma 3.2.2 and the energy-corrected finite element estimates in weighted L2(Ω)-

norm stated in Theorem 2.3.27 completes the proof. Note that the weight α = β − 1

is exactly the one required there.

When the considered angle satisfies π
k+1

< Θ < π
k
, then −1 < β − 1 < 0 and the

results from Lemma 2.3.29 need to be used instead.

Remark 3.3.6. In the case of general polygonal domains, the energy-correction needs

to be applied to all corners, for which the singular functions (2.2) influence the reg-

ularity stated in Theorem 3.1.2. These are exactly the corners, for which Θ > π
k+1

,

where k is the order of polynomials used in the finite element discretisation. A similar

condition also appears in schemes employing mesh grading on domains with corners,

see [143].

The result of Theorem 3.3.5 means that the energy-corrected finite element ex-

hibits, up to a logarithmic factor, the same approximation properties as the interpola-

tion operator, see Lemma 3.2.2. The same correction bilinear form ch(·, ·), see (2.21),

is used as necessary for the optimal convergence of the scheme when measured in

the weighted L2(Ω) norm. This follows directly from the proof, as the L2
β−1(Ω) error

appears in (3.10).

The value of the weight β applied in the vicinity of the corner cannot be low-

ered. However, the weight does not have any effect on the convergence of the scheme

considered in a positive distance from the corner. Hence, similar convergence or-

der of the energy-corrected finite element scheme, when considered outside of some

neighbourhood of the corner, follows.
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Corollary 3.3.7. Suppose that the assumptions of Theorem 3.3.5 are satisfied. Fur-

thermore, let Ω̃ ⊂ Ω satisfy dist
(
Ω̃, 0

)
> 0. Then the energy-corrected finite element

approximation yields

‖u− umh ‖L∞(Ω̃) ≤ chk+1| log h|s(‖f‖Nk−1,σ
β (Ω) + ‖f‖Hk−1

−α̃ (Ω)),

where s = 1, when k = 1 and s = 0 otherwise.

Finally, we can say that the pollution effect in L∞(Ω) space summarised in The-

orem 3.2.3 can be successfully eliminated using the energy-corrected scheme.

3.3.2 Post-processing

In Section 2.3.3.2, we introduced the post-processing strategy for improving the con-

vergence orders of the scheme, when measured in the standard L2(Ω) and H1(Ω)

norms, see Theorem 2.3.32. It was achieved by the enrichment of the discrete space

after the computation of the energy-corrected approximation. Since the pollution

effect is eliminated from the solution, the stress-intensity factors are well approxi-

mated. Here, we follow a similar path and introduce the post-processing approach

for improving the convergence in the standard L∞(Ω) norm.

Suppose that β ≥ max(0, k + 1 − λ1 + ε), with ε > 0 and also k − λ1 < α < k,

α̃ = α − k + 1. Assume also that f ∈ Nk−1,σ
β (Ω) ∩Hk−1

−α̃ (Ω) for some σ > 0. Due to

Corrolary 3.1.3, the following splitting into regular and singular part of the solution

holds true

u = U +
∑

i: λi<k+1−β

kisi (3.10)

Thanks to the linearity of the Poisson problem, the energy-corrected finite element

approximation can be written as

umh = Um
h +

∑
i: λi<k+1−β

kis
m
i,h. (3.11)

The following result decribes the approximation of the regular part U .

Lemma 3.3.8. Suppose that 0 ≤ β̃ ≤ k + 1 and k − λ1 < α < k, α̃ = α − k + 1.

Assume also that f ∈ Nk−1,σ

β̃
(Ω) ∩ Hk−1

−α̃ (Ω) for some σ > 0. Then for some c > 0

independent of f

‖U − Um
h ‖L∞(Ω) ≤ chk−β̃+α̃| log h|s(‖f‖Nk−1,σ

β̃
(Ω) + ‖f‖Hk−1

−α̃ (Ω)),

where s = 1, when k = 1 and s = 0 otherwise.
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Proof. The proof follows a similar path as the proof of Theorem 3.3.5. We consider

the same dyadic decomposition of the domain Ω and divide the steps into two separate

cases, namely J < I − 1 and J = I − 1, I. We begin our considerations with the

former.

Again, due to the fact that the Galerkin Orthogonality holds in all the decompo-

sition layers ΩJ except for ΩI , we apply Lemma 3.3.4 to obtain

‖U − Um
h ‖L∞(ΩJ )

≤ c
(
| log h|s inf

χ∈V kh
‖U − χ‖L∞(Ω′J ) + d−1

J ‖U − U
m
h ‖L2(Ω′J )

)
≤ c
(
| log h|s inf

χ∈V kh
‖U − χ‖L∞(Ω′J ) + h−(1−α̃)‖U − Um

h ‖L2
−α̃(Ω′J )

)
. (3.12)

In the last step we used the fact that for some constant c > 0 independent of J

h < dJ ≤ c inf
x∈Ω′J

r(x).

We now move our investigations to the two remaining layers, namely J = I−1, I.

Suppose that T ∗ ⊂ Ω′J is the element, in which the maximum is attained. Then the

triangle inequality gives

‖U − Um
h ‖L∞(ΩJ ) ≤ ‖U − Um

h ‖L∞(T ∗) ≤ ‖U − χ‖L∞(T ∗) + ‖χ− Um
h ‖L∞(T ∗), (3.13)

where χ ∈ V k
h (Ω′J) is an arbitrary discrete function. Application of the inverse in-

equality, see Lemma 3.3.1, and of Lemma 3.3.2 yields

‖χ− Um
h ‖L∞(T ∗) ≤ ch−1‖χ− Um

h ‖L2(T ∗)

≤ ch−(1−α̃)‖χ− Um
h ‖L2

−α̃(T ∗)

≤ ch−(1−α̃)
(
‖U − χ‖L2

−α̃(T ∗) + ‖U − Um
h ‖L2

−α̃(T ∗)

)
.

On the other hand, we know that r−α̃ ∈ L2(Ω), so

‖U − χ‖L2
−α̃(T ∗) ≤ c‖U − χ‖L∞(T ∗).

Thus, (3.13) implies that

‖U − Um
h ‖L∞(ΩJ ) ≤ ch−(1−α̃)

(
‖U − χ‖L∞(Ω′J ) + ‖U − Um

h ‖L2
−α̃(Ω′J )

)
Finally, combining this with (3.12), we obtain
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‖U − Um
h ‖L∞(Ω) ≤ ch−(1−α̃)| log h|s

(
inf
χ∈V kh

‖U − χ‖L∞(Ω) + ‖U − Um
h ‖−α̃

)
.

Application of Lemma 2.3.29 and the interpolation error estimate, see Lemma 3.2.2,

yields

‖U − Um
h ‖L∞(Ω) ≤ chk−β̃+α̃| log h|s

(
|U |Wk+1,∞

β̃
(Ω) + ‖U‖k+1,−α

)
.

The regularity results summarised in Corollary 3.1.3 complete the proof.

Similarly as in (2.31), we define the post-processed solution as

ũmh = umh +
∑

i:λi<k+1−β

khi
(
si − smi,h

)
. (3.14)

Theorem 3.3.9 (Post-processing for maximum norm). Let the assumptions of Theo-

rem 3.3.5 be satisfied and suppose that for some 0 ≤ β̃ ≤ k+1 we have f ∈ Nk−1,σ

β̃
(Ω).

Then, for some constant c > 0 independent of f

‖u− ũmh ‖L∞(Ω) ≤ chk−β̃+α̃| log h|s(‖f‖Nk−1,σ

β̃
(Ω) + ‖f‖Hk−1

−α̃ (Ω)),

where s = 1, when k = 1 and s = 0 otherwise.

Proof. Thanks to the splitting of the solution into singular and regular parts as

in (3.10) and (3.11), the error of can be estimated as

‖u− ũ‖L∞(Ω) ≤ ‖U − Um
h ‖L∞(Ω) +

∑
i:λi<k+1−β

|ki − khi |
(
‖si‖L∞(Ω) + ‖smi,h‖L∞(Ω)

)
.

Combining the results of Lemma 2.3.31 and Lemma 3.3.8 completes the proof.

The convergence order of the post-processed solution depends on the regularity

of the forcing term f around the corner. Particularly interesting is the regular case

of f ∈ Ck(Ω). Since for any ε > 0 we have Ck(Ω) ↪→ Hk(Ω) ↪→ Hk−1
−1+ε(Ω) due to

Theorem 2.1.15 and Theorem 2.1.9, then also

‖u− ũmh ‖L∞(Ω) = O
(
hk+1−ε).

The post-processing approach can significantly improve the convergence order of

the numerical scheme measured in the standard L∞(Ω) norm, yielding better re-

sults than the interpolation error estimates, see Lemma 3.2.2. This is the aftermath
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of eliminating the pollution effect in the solution, which allows for an accurate ap-

proximation of the stress-intensity factors. The post-processing, however, comes at

the cost of solving several additional elliptic problems for approximating the singu-

lar functions, and several integral evaluations for approximating the stress-intensity

factors.

3.4 Numerical results

In this section, we present numerical experiments validating the analysis conducted

above. For this purpose, we consider two examples with known analytical solutions.

First, we choose the L-shape domain Ω = (−1, 1)2 \
(
[0, 1] × [−1, 0]

)
with the

largest interior angle of size Θ = 3π/2. In the second example, we set the domain

Ω = (−1, 1)2 \ {−x ≤ y ≤ 0}, which has the angle Θ = 7π/4 located at the origin.

We call the latter the Pac-Man domain1. The initial triangulations of both domains

are presented in Figure 3.1.

Figure 3.1: Initial triangulations of the L-shape domain (left) and Pac-Man domain
(right).

We use a known exact solution u = s1 + s2 + s3, where si are singular func-

tions (2.2) corresponding to the considered angles. For the sake of presentation, it

is chosen so that the energy-correction needs to be applied only around the origin,

see Remark 3.3.6 in a more general case. In the experiments, we choose the weight

β = k + 1 − λ1, where k = 1, 2, 3 is the order of polynomials used in the discretiza-

tions and λ1 = π/Θ. This choice induces a slightly stronger norm than assumed in

1We name the domain after a character from a computer game popular in the 1980s, whose figure
included a re-entrant corner of size 7π/4 and reseambled the defined domain.
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Theorem 3.3.5 but the optimal convergence order of the energy-corrected scheme can

be observed regardless of this.

Figure 3.2: Comparison of errors of piecewise quadratic finite element schemes with
(right) and without energy-correction (left) for Θ = 3π/2.

The parameters γ in the modification (2.33) are computed using a version of the

Newton algorithm for finding the roots of the energy defect function (2.22) described

in [86, Section 6.1.1]. The precise values used in the experiments are included in

the tables below. To fulfil the requirements (U) imposed on the mesh, we perform

computations with initial meshes including only identical isosceles triangles around

the origin, 6 and 7 in the respective cases of L-shape and Pac-Man domains, see

Figure 3.1.

In Table 3.2 and Table 3.3 we summarise the errors obtained using the energy-

corrected finite element method in standard and weighted L∞(Ω) norms on the L-

shape (Θ = 3π/2) and Pac-Man (Θ = 7π/4) domain respectively. In the case of the

piecewise cubic energy-corrected approximation, we omit the first refinement level,

since the initial coarse mesh does not allow for defining three necessary correction

rings when the modification cR(·, ·) is used. For comparison, we also include the

errors obtained using the standard finite element method in the two leftmost parts of

the tables. Finally, let Ω̃ = Ω \ B(0.5) be a part of the domain Ω containing all the

points in a distance larger than 0.5 from the corner. In the rightmost parts of the

tables we show the errors in the L∞(Ω̃) norm.

The application of the energy-correction does not improve the convergence order

of the scheme, when measured in the standard L∞(Ω) norm. This, however, can be
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expected, as the same approximation order is yielded by the interpolation operator in

Lemma 3.2.2, where β = 0 is taken. Nevertheless, the numerical error of the energy-

corrected scheme is in all studied cases quantitatively smaller than that of a standard

finite element scheme. When the piecewise linear discretisation is considered, we

observe a significant pre-asymptotic behaviour with a higher approximation order.

The numerically estimated convergence orders in the weighted L∞β (Ω) norms con-

firm the predictions of Theorem 3.3.5. This is a significant improvement compared to

the standard finite element discretisation, resulting in the order k+1 in place of 2π/Θ.

Since the energy-corrected discretisation yields optimal convergence order, compared

to the interpolation error, when measured in the weighted norm, see Lemma 3.2.2,

it also converges optimally when considered in a fixed, positive distance from the

corner, for instance when measured on Ω̃. The numerical investigations shown in the

rightmost columns of the tables confirm these findings. Finally, we would like to note

that the higher-order energy-correction methods using cF (·, ·) give quantitatively bet-

ter results than the methods involving the modification cR(·, ·). This behaviour was

already observed in [86] and we discussed it in Section 2.3.3.4.

In Figure 3.2, we plot the absolute values of the differences between the exact

solutions and the piecewise quadratic finite element approximations. On the left-

hand side, the error obtained using the standard discretisation is shown. The error is

substantial not only in the neighbourhood of the corner but propagates over the whole

domain. On the other hand, the energy-corrected scheme successfully eliminates the

pollution effect from Theorem 3.2.3. Therefore, the error of the energy-corrected

scheme plotted on the right-hand side is large only in the vicinity of the corner and is

significantly smaller in the remaining parts of the domain, when compared with the

standard discretisation.



3.4. NUMERICAL RESULTS 65

Energy-corrected P1 elements, γ = 0.117531611518762
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 1.1320e-2 - 1.1320e-2 - 5.7383e-2 - 5.7382e-2 - 5.7382e-2 -
2 2.2810e-2 -1.01 9.0520e-3 0.32 3.0394e-2 0.92 1.2062e-2 2.25 3.0394e-2 0.92
3 1.9100e-2 0.26 3.6329e-3 1.32 1.1326e-2 1.42 1.7838e-3 2.76 3.7011e-3 3.03
4 1.3227e-2 0.53 1.4699e-3 1.31 4.1396e-3 1.45 2.5873e-4 2.79 4.8867e-4 2.92
5 8.6316e-3 0.62 5.8631e-4 1.33 1.5643e-3 1.40 3.9999e-5 2.69 7.8657e-5 2.64
6 5.5122e-3 0.65 2.3372e-4 1.33 6.1449e-4 1.35 6.6710e-6 2.58 1.4737e-5 2.42
7 3.4911e-3 0.66 9.3089e-5 1.33 2.6763e-4 1.20 1.4622e-6 2.19 3.5095e-4 2.07

Expected 0.67 1.33 0.67 2.00 2.00

Energy-corrected P2 elements with cRh (·, ·), γ = (0.0315200,−0.005533)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 2.1860e-2 - 4.3375e-3 - 2.2319e-2 - 1.5701e-2 - 2.2319e-2 -
2 1.6048e-2 0.45 1.0654e-3 2.03 1.2636e-2 0.45 1.9651e-3 3.00 9.9033e-3 1.17
3 1.0679e-2 0.59 4.4250e-4 1.27 7.4690e-3 0.59 1.5007e-4 3.71 4.2364e-4 4.55
4 6.8697e-3 0.64 1.7485e-4 1.34 4.6157e-3 0.64 1.5591e-5 3.27 2.3460e-5 4.17
5 4.3632e-3 0.65 6.9152e-5 1.34 2.8855e-3 0.65 1.6995e-6 3.20 1.8175e-6 3.69
6 2.7575e-3 0.66 2.7408e-5 1.34 1.8122e-3 0.66 1.9279e-6 3.14 1.5387e-7 3.56

Expected 0.67 1.33 0.67 3.00 3.00

Energy-corrected P2 elements with cFh (·, ·), γ = (0.1024101,−0.1680210)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 2.1860e-2 - 4.3375e-3 - 2.5085e-2 - 1.8816e-2 - 2.3331e-2 -
2 1.6048e-2 0.45 1.0654e-3 2.03 1.0644e-2 1.24 4.1909e-4 5.49 1.6292e-3 3.84
3 1.0679e-2 0.59 4.4250e-4 1.27 5.7149e-3 0.90 4.4648e-5 3.23 8.1159e-5 4.33
4 6.8697e-3 0.64 1.7485e-4 1.34 3.2046e-3 0.83 4.9678e-6 3.17 1.2924e-5 2.65
5 4.3632e-3 0.65 6.9152e-5 1.34 1.8650e-3 0.78 6.4579e-7 2.94 1.7541e-6 2.88
6 2.7575e-3 0.66 2.7408e-5 1.34 1.1655e-3 0.68 8.1791e-8 2.98 2.2807e-7 2.94

Expected 0.67 1.33 0.67 3.00 3.00

Energy-corrected P3 elements with cRh (·, ·), γ = (0.012891,−0.0023667)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 7.7357e-3 - 2.1568e-3 - 7.5928e-3 - 6.2087e-3 - 6.2087e-3 -
2 5.5680e-3 0.47 3.5099e-4 2.62 4.5109e-3 0.75 4.7663e-4 3.70 3.7451e-3 0.73
3 3.6846e-3 0.60 1.4046e-4 1.32 2.6220e-3 0.78 2.1275e-5 4.49 1.8711e-4 4.32
4 2.3655e-3 0.64 5.6261e-5 1.32 1.6339e-3 0.68 1.3379e-6 3.99 8.8010e-6 4.41
5 1.5012e-3 0.66 2.2319e-5 1.33 1.0248e-3 0.67 8.4020e-8 3.99 5.4275e-7 4.02
6 9.4847e-4 0.66 8.8568e-6 1.33 6.4449e-4 0.67 5.2556e-9 4.00 3.4767e-8 3.96

Expected 0.67 1.33 0.67 4.00 4.00

Energy-corrected P3 elements with cFh (·, ·), γ = (0.042218,−0.07085)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 7.7357e-3 - 2.1568e-3 - 1.1025e-2 - 8.0471e-3 - 8.0471e-3 -
2 5.5680e-3 0.47 3.5099e-4 2.62 4.6299e-3 1.25 1.1971e-4 6.07 1.2066e-3 2.74
3 3.6846e-3 0.60 1.4046e-4 1.32 2.7603e-3 0.75 7.0327e-6 4.09 3.6505e-5 5.05
4 2.3655e-3 0.64 5.6261e-5 1.32 1.7723e-3 0.64 4.4799e-7 3.97 1.9441e-6 4.23
5 1.5012e-3 0.66 2.2319e-5 1.33 1.1321e-3 0.65 2.8391e-8 3.98 1.4697e-7 3.75
6 9.4847e-4 0.66 8.8568e-6 1.33 7.1711e-4 0.66 1.9533e-9 3.86 9.7768e-9 3.91

Expected 0.67 1.33 0.67 4.00 4.00

Table 3.2: Summary of convergence rates on the L-shape domain obtained using
energy-corrected Lagrange finite elements P1, P2, P3 with different types of correction
bilinear forms.
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Energy-corrected P1 elements, γ = 0.18617957
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 1.5662e-2 - 1.5662e-2 - 7.2605e-2 - 7.2604e-2 - 7.2605e-2 -
2 3.7435e-2 -1.26 1.3907e-2 0.17 5.1037e-2 0.51 1.8960e-2 1.94 5.1037e-2 0.51
3 3.4296e-2 0.13 6.3299e-3 1.34 2.2443e-2 1.19 3.4897e-3 2.44 8.0102e-3 2.67
4 2.5699e-2 0.42 2.8704e-3 1.14 9.9787e-3 1.17 6.5552e-4 2.41 1.3809e-3 2.54
5 1.8064e-2 0.51 1.3122e-3 1.13 4.5199e-3 1.14 1.2830e-4 2.35 3.0774e-4 2.17
6 1.2382e-2 0.54 5.9458e-4 1.14 2.0894e-3 1.11 2.6127e-5 2.30 6.7657e-5 2.19
7 8.3975e-3 0.56 2.6944e-5 1.14 9.9080e-4 1.08 5.4307e-6 2.27 1.4072e-5 2.27

Expected 0.57 1.14 0.57 2.00 2.00

Energy-corrected P2 elements with cRh (·, ·), γ = (0.0736961,−0.0196752)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 3.6503e-2 - 6.7804e-3 - 3.7209e-2 - 3.3495e-2 - 3.3495e-2 -
2 2.9394e-2 0.31 2.2959e-3 1.56 2.8982e-2 0.36 5.0024e-3 2.74 2.6383e-2 0.34
3 2.1266e-2 0.47 1.0646e-3 1.11 1.4218e-2 1.03 4.4682e-4 3.48 1.6360e-3 4.01
4 1.4749e-2 0.53 4.7991e-4 1.15 8.9041e-3 0.68 4.3258e-5 3.37 1.1484e-4 3.83
5 1.0053e-2 0.55 2.1751e-4 1.14 5.7371e-3 0.63 4.4358e-6 3.29 1.1002e-5 3.38
6 6.8018e-3 0.56 9.8442e-5 1.14 3.7587e-3 0.61 4.7750e-7 3.22 1.0199e-6 3.43

Expected 0.57 1.14 0.57 3.00 3.00

Energy-corrected P2 elements with cFh (·, ·), γ = (0.2371897,−0.4160492)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 3.6503e-2 - 6.7804e-3 - 5.3662e-2 - 3.3748e-2 - 4.7699e-2 -
2 2.9394e-2 0.31 2.2959e-3 1.56 1.8689e-2 1.52 7.2941e-4 5.53 3.6019e-3 3.73
3 2.1266e-2 0.47 1.0646e-3 1.11 9.7133e-3 0.94 8.6554e-5 3.08 3.2576e-4 3.47
4 1.4749e-2 0.53 4.7991e-4 1.15 5.5317e-3 0.81 1.1240e-5 2.94 5.0920e-5 2.68
5 1.0053e-2 0.55 2.1751e-4 1.14 3.2878e-3 0.75 1.4445e-6 2.96 6.392e-6 3.01
6 6.8018e-3 0.56 9.8442e-5 1.14 2.0516e-3 0.68 1.8807e-7 2.94 8.391e-7 2.91

Expected 0.57 1.14 0.57 3.00 3.00

Energy-corrected P3 elements with cRh (·, ·), γ = (0.0406490,−0.0194762, 0.0045036)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 1.5888e-2 - 3.7222e-3 - - - - - - -
2 1.2811e-2 0.31 8.5171e-4 2.13 1.9448e-2 - 5.5003e-3 - 1.5520e-2 -
3 9.2634e-3 0.47 3.9812e-4 1.10 8.0764e-3 1.27 3.1353e-5 4.13 3.3758e-3 2.20
4 6.4263e-3 0.53 1.8010e-4 1.14 4.0592e-3 0.99 1.2057e-5 4.70 2.6139e-6 10.33
5 4.3819e-3 0.55 8.1681e-5 1.14 2.3892e-3 0.76 5.6577e-7 4.41 2.4501e-7 3.42
6 2.9657e-3 0.56 3.6977e-5 1.14 1.5798e-3 0.59 2.8453e-8 4.31 1.6478e-8 3.89

Expected 0.57 1.14 0.57 4.00 4.00

Energy-corrected P3 elements with cFh (·, ·), γ = (0.1227554,−0.3070823, 0.1419462)
L ‖u− uh‖L∞(Ω) eoc ‖u− uh‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω) eoc ‖u− umh ‖L∞β (Ω) eoc ‖u− umh ‖L∞(Ω̃) eoc

1 1.5888e-2 - 3.7222e-3 - 2.1093e-2 - 1.5679e-2 - 1.7765e-2 -
2 1.2811e-2 0.31 8.5171e-4 2.13 1.0037e-3 1.07 2.3385e-4 6.07 2.5179e-3 2.82
3 9.2634e-3 0.47 3.9812e-4 1.10 5.8585e-3 0.78 1.8147e-5 3.69 1.1997e-4 4.39
4 6.4263e-3 0.53 1.8010e-4 1.14 3.7843e-3 0.63 1.2072e-6 3.91 8.7340e-6 3.78
5 4.3819e-3 0.55 8.1681e-5 1.14 2.5085e-3 0.59 8.2371e-8 3.87 5.9223e-7 3.88
6 2.9657e-3 0.56 3.6977e-5 1.14 1.6668e-3 0.59 5.7123e-9 3.85 4.1840e-8 3.82

Expected 0.57 1.14 0.57 4.00 4.00

Table 3.3: Summary of convergence rates on the Pac-Man domain obtained using
energy-corrected Lagrange finite elements P1, P2, P3 with different types of correction
bilinear forms.



Chapter 4

Energy-correction for parabolic
problems

Numerical approximations of parabolic problems are of great interest due to the many

technical applications, in which they appear, and have been extensively studied in

multiple settings [45, 109, 132]. Standard numerical aapproximations involve finite

difference methods [103, 155], but to allow for computations on more complicated

domains finite volume [46] and finite element methods have been developed, among

many others, in [33, 65, 73, 154, 165] and in [52, 53, 54, 60] for problems with re-

stricted regularity. For a more exhaustive discussion of the standard finite element

approximations of parabolic problems and an extensive list of references, we refer the

reader to [156]. Recently, these investigations have been extended to the finite element

error estimates in energy norm [68] and maximum norm in [104, 105, 106, 107, 129].

The presence of corners in the computational domain negatively influences reg-

ularity properties of the solutions of parabolic problems [21, 77], due to the ap-

pearance of certain known singular functions. For corners with angles Θ > π, in

general, H2 regularity in space cannot be guaranteed. This introduces the pollution

effect, diminishing the convergence order of the standard finite element schemes for

parabolic problems [47]. Standard methods for improving the approximation prop-

erties of the finite element method in the elliptic setting include refinement [13, 16]

and grading [6, 9, 143] of the mesh around the singular corner. These results can

also be extended to parabolic problems on non-convex polygonal domains [47]. How-

ever, due to the very small mesh size in the vicinity of the re-entrant corner, the

CFL condition [103], which guarantees the stability of an explicit time integration

scheme, becomes very restrictive. This, in turn, means that explicit time-stepping

schemes cannot be efficiently used, as they would require prohibitively small time-

steps. Alternative approaches include finite volume element method, for which the

67
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mesh refinement around the corner also improves the convergence properties of the

scheme [48]. Also, in [51] the Fourier finite element method for efficient approxima-

tions of the solutions and stress-intensity factors was proposed.

In this chapter, we follow a different approach, based on the piecewise linear

energy-corrected finite element method. As opposed to the methods involving mesh

refinement in the vicinity of the corner, it can be successfully applied on quasi-uniform

meshes, and hence, does not suffer from a too severe CFL condition. This permits

the construction of fast explicit time-stepping schemes combined with the energy-

corrected finite element in space.

This chapter is structured as follows: in Section 4.1 we discuss the regularity

properties of the parabolic equations and in Section 4.2, we generalize the piecewise

linear energy-corrected finite element to parabolic problems. We prove the error

estimates for the semi-discretisation in space and for the fully discrete scheme with

explicit time-stepping. The estimates are optimal in terms of the interpolation error.

We illustrate the analysis with numerical investigations in Section 4.3. In Section 4.4,

we present several potential extensions of the scheme. We show that it can be applied

to the advection-diffusion problem with a moderate advection term. Furthermore, we

introduce higher-order energy-corrected discretisation combined with mass-lumping

technique and a post-processing approach for improving convergence properties of the

scheme also in the vicinity of the singular corner. We complete the discretisation with

an explicit Runge-Kutta time-stepping and show that the energy-corrected scheme

exhibits superior performance compared with other commonly used discretisation

methods. Finally, we present a potential application of the method, showing the

flexibility of the energy-corrected finite element, which can be applied to problems

with multiple re-entrant corners, and in three-dimensional settings.

The publication by the author and B. Wohlmuth entitled ”Energy-corrected FEM

and explicit time-stepping for parabolic problems” containing the results presented

in this chapter is currently in preparation, [152].
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4.1 Parabolic problem

Consider a standard heat equation defined on a domain Ω ⊂ Rd in a time interval [0, T ]

with T > 0

ut −∆u = f in Ω× (0, T ), (4.1)

u = 0 on ∂Ω× [0, T ], (4.2)

u = u0 in Ω at t = 0. (4.3)

Similarly as in the case of the elliptic equations (2.1), the classical twice continu-

ously differentiable solution of the heat equation (4.1) might not exist. Therefore, we

would like to define the solution in some weaker sense allowing for a less regular be-

haviour. To do this, we first need to introduce the Bochner spaces, which will prove

useful for the time-dependent problems considered here. We follow the definitions

presented in [71, Section 5.9.2]. For a comprehensive study of the Bochner spaces we

refer the reader to [89].

We begin by defining the spaces of continuous functions with values in Banach

spaces.

Definition 4.1.1. Let X be a real Banach space, T > 0 and σ ∈ (0, 1). The

space Cσ([0, T ];X) consists of all continuous functions u : [0, T ] → X, for which

the following norm is finite

‖u‖Cσ([0,T ];X) = sup
0≤t≤T

‖u(t)‖X + sup
0≤t1<t2≤T

‖u(t1)− u(t2)‖X
|t1 − t2|σ

<∞.

Now, we extend the notion of measurability to the time-dependent functions.

Definition 4.1.2 (Strong measurability). Let X be a real Banach space and let T > 0.

(i) We call a function s : [0, T ]→ X simple, if it can be written as

s(t) =
m∑
i=1

χEi(t)ui,

where χB are indicator functions of a set B, Ei ⊂ [0, T ] are Lebesgue measurable

sets and ui ∈ X.

(ii) A function u : [0, T ] → X is a strongly measurable function, if there exists a

sequence of simple functions sm : [0, T ]→ X such that

lim
m→∞

sm(t) = u(t), for a.e. t ∈ [0, T ].
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We can now introduce the Bochner spaces, which will allow us to define the

solution of (4.1) in a weaker sense and investigate its regularity.

Definition 4.1.3 (Bochner spaces). Let 1 ≤ p ≤ ∞, T > 0 and X be a real Banach

space. The space Lp(0, T ;X) consists of all strongly measurable functions u : [0, T ]→
X such that

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖X dt

)1/p

<∞, for 1 ≤ p <∞

‖u‖L∞(0,T ;X) = ess sup
t∈[0,T ]

‖u(t)‖X <∞.

When X is a Sobolev space, then the Bochner spaces extend the definitions in-

troduced in Section 2.1 to functions dependent on time. In particular, they allow for

recognition of different natures of temporal and spatial dimentions.

Finally, we are in a position to define the weak solution of the heat equation (4.1).

Definition 4.1.4. We define a weak solution of the heat equation (4.1) as a function

u ∈ L2
(
0, T ;H1

0 (Ω)
)
, ut ∈ L2

(
0, T ;H−1(Ω)

)
such that u(0) = u0 a.e. and for all

v ∈ H1
0 (Ω) and a.e. 0 < t ≤ T

〈ut(t), v〉+ a(u(t), v) = 〈f, v〉 (4.4)

where a(u, v) =
〈
∇u,∇v

〉
.

Note that the bilinear form a(·, ·) is exactly the same as the one governing the Pois-

son equation from Definition 2.2.1. This will be important later in the construction

of the finite element approximation, which will be directly inspired by the schemes

considered in the elliptic setting before.

4.1.1 Regularity results

In order to show the impact of the corners in the computational domain on the

solution of the problem (4.4), we first consider it in a smooth setting. The following

result comes from [71, Chapter 7, Theorem 6] and can be found in a more general

form in [22].

Theorem 4.1.5 (Parabolic regularity). Let m ∈ Z+ and let Ω ⊂ R2 be an open

domain with a Cm+1 boundary. We assume that

u0 ∈ H2m+1(Ω),
dkf

dtk
∈ L2(0, T ;H2m−2k(Ω)), for k = 0, . . . ,m.
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Suppose also that the m-th order compatibility condition holds, namely for

g0 = u0, g1 = f(0) + ∆u0, . . . , gm =
dm−1f

dtm−1
(0) + ∆gm−1

we have

gk ∈ H1
0 (Ω), for all k = 0, . . . ,m.

Then, there exists a unique solution of (4.4)

dku

dtk
∈ L2(0, T ;H2m+2−2k(Ω)), for all k = 0, . . . ,m+ 1.

Furthermore, the following a priori estimate is true for some constant c > 0 depending

only on m,Ω, T .

m+1∑
k=0

∥∥dku

dtk
∥∥
L2(0,T ;H2m+2−2k(Ω))

≤ c
( m∑
k=0

∥∥dkf

dtk
∥∥
L2(0,T ;H2m+−2k(Ω))

+ ‖u0‖H2m+1(Ω)

)
.

The authors of [71] assume that the boundary ∂Ω is smooth. This assumption

can be relaxed to the ones included here.

This theorem is an equivalent of the elliptic Shift Theorem 2.2.3 and shows, how

the regularity assumptions on the initial conditions u0, the forcing term f and the

smoothness of the boundary ∂Ω influence the regularity of the solution of the model

parabolic problem (4.4).

An interesting consequence of Theorem 4.1.5, see [71, Chapter 7, Theorem 7], is

the following result, which holds in a smooth setting.

Remark 4.1.6. Let Ω ⊂ R2 be a domain with a boundary ∂Ω of class C∞. Assume

also that

u0 ∈ C∞(Ω), and f ∈ C∞(Ω× [0, T ]).

Suppose also that the compatibility conditions stated in Theorem 4.1.5 hold true. Then

the parabolic problem from Definition 4.1.4 has a unique solution satisfying

u ∈ C∞(Ω× [0, T ]).

This means that for smooth domains, under sufficient smoothness assumptions

on the initial conditions u0 and the forcing term f , an arbitrary smoothness of the

solution of the heat equation (4.4) can be expected. However, this does not hold

anymore, if polygonal domains are concerned.
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From now on, unless stated otherwise, let Ω ⊂ R2 be a bounded, non-convex,

polygonal domain in the sense of Definition 2.1.11, that is a domain containing a

re-entrant corner of size π < Θ < 2π. As before, for the sake of simplicity we shall

assume that this domain contains only one such corner located at the origin. Note

however that the analysis presented here also applies in a more general setting of

domains with an arbitrary number of re-entrant corners.

The following regularity result for the parabolic system (4.1) was proposed in [21].

Theorem 4.1.7. Let f ∈ Cσ
(
[0, T ], L2(Ω)

)
, σ > 0. Then there exists a unique

solution u ∈ C([0, T ], H2
α(Ω)) of (4.4), where 1− λ1 < α < 1. Moreover, there exists

U ∈ C
(
[0, T ];H2(Ω)

)
and k1(t) ∈ C

(
[0, T )

)
∩ C1

(
(0, T )

)
such that

u(t,x) = U(t,x) + k1(t)s1(x)

where s1 is a singular function defined in (2.2).

The solution of the parabolic problems on polygonal domains exhibits similar

splitting into regular and singular parts as elliptic problems, see Theorem 2.2.6. Fur-

thermore, we would like to stress out that the same singular functions arise in the

solution of both elliptic and parabolic problems on non-convex polygonal domains.

Slightly different, but equivalent form of the singular functions in the parabolic set-

ting was discussed in [77, 78]. As opposed to the case of sufficiently smooth domains

consedered in Theorem 4.1.5 and Remark 4.1.6, the regularity of the parabolic prob-

lems on the non-convex polygonal domains cannot, in general, be improved by the

choice of the more regular initial conditions u0 or the forcing term f .

The regularity of parabolic equations on domains with conical points was further

studied in [120, 163] with the results presented in the framework of weighted Sobolev

spaces. The following theorem is a consequence of the analysis presented there

Theorem 4.1.8. Suppose that the assumptions of Theorem 4.1.7 are satisfied. Fur-

thermore, let f ∈ L2
(
0, T ;H4

−α(Ω)
)
, df

dt
∈ L2

(
0, T ;H2

−α(Ω)
)
, d2f

dt2
∈ L2

(
0, T ;L2

−α(Ω)
)
,

and u0 ∈ H3
−α(Ω). Assume also that the standard compatibility condition f(0)+∆u0 ∈

H1(Ω) is satisfied. Then,

max
0≤t≤T

‖∆u‖−α <∞, and

∫ T

0

‖∆ut‖2
−α <∞, and

∫ T

0

∥∥utt∥∥2

α
<∞.

Note also that the results of Theorem 4.1.7 and Theorem 4.1.8 can be easily

extended to multiple singular functions.
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4.1.2 Finite element discretisation

In this section we introduce the standard finite element method for parabolic equa-

tions and discuss its properties. For now, we concentrate our attention on the piece-

wise linear approximation in the discrete spaces Vh introduced in (2.8). We will show

that the impact, which the presence of the non-convex corners in the computational

domain has on the approximation of the elliptic problems, is also directly inherited

by the corresponding parabolic problems.

Definition 4.1.9. We define the semi-discretisation of the problem (4.4) in space as

finding a continuous function uh : [0, T ]→ Vh such that, uh,t ∈ L2
(
0, T ;Vh

)
and

〈uh,t(t), vh〉+ a(uh(t), vh) = 〈f, vh〉 for all vh ∈ Vh, t ∈ (0, T ), (4.5)

uh(0) = Phu0, (4.6)

where Ph is a linear operator on the space Vh.

Definition 4.1.9 depends on the choice of the operator Ph. For now, we assume

that Ph = Rh is the Ritz projection (2.11).

We begin the error analysis of the finite element method for parabolic problems

with summarising the known estimates for the standard semi-discrete approximation.

Theorem 4.1.10 (Error estimates for the standard FEM). Let Ω ⊂ R2 be a polygonal

domain with the largest interior angle of size Θ > 0. Suppose that f ∈ L2(0, T ;H2(Ω)),
df
dt
∈ L2(0, T ;L2(Ω)), u0 ∈ H1

0 (Ω), ∆u0 ∈ L2(Ω) and f(0) + ∆u0 ∈ H1
0 (Ω). Then

max
0≤t≤T

‖u(t)− uh(t)‖0 ≤ chσ
(
‖∆u0‖0 + ‖f(0)‖0 +

∫ T

0

∥∥df

dt
(τ)
∥∥

0
dτ
)
,

where for any ε > 0

σ =

{
2, if Θ ≤ π

2λ1 − ε, if Θ > π.

This means that the finite element approximation on convex polygonal domains

exhibits optimal second-order convergence in L2(Ω)-norm compared to the interpo-

lation error, see Theorem 2.3.10. The proof of this result can be found for example

in [156, Theorem 19.2] for the convex and in [156, Theorem 19.4] for the non-convex

case respectively. Similar optimal convergence rates, when measured in the H1(Ω)-

semi-norm and L∞(Ω)-norm are also known [156, Theorem 19.6], the former under

more restrictive smoothness assumptions on the domain.
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As shown in [47, Theorem 3.3], the situation is significantly different when corners

of angle Θ > π are present in the computational domain. In the case of the non-

convex polygonal domains the expected convergence order is not only lower than in

the convex setting, but also considerably lower than the interpolation error estimate

from Theorem 2.3.10. As we shall illustrate later using numerical examples, this can-

not be improved by relaxing the regularity assumptions on the initial conditions u0

and the forcing term f . Moreover, the convergence properties are also worse than

the ones obtained for the nodal interpolation operator in weighted norms in Theo-

rem 2.3.11, and when measured in a positive distance from the re-entrant corner. This

phenomenon is an equivalent of the pollution effect introduced in Theorem 2.3.21 in

the case of elliptic equations.

These rates can be improved using suitable mesh-grading techniques, so that the

optimal convergence in space is regained [156]. However, as we shall see in Sec-

tion 4.3, the corresponding CFL condition for explicit time-stepping schemes gets

very prohibitive and makes the use of explicit time-stepping schemes less attractive.

Theorem 4.1.11 (Mesh grading for parabolic problems). Let Ω ⊂ R2 be a polygonal

domain with the largest interior angle of size Θ > π and let δ ∈ (0, 1/2]. Suppose

that f ∈ L2(0, T ;H2(Ω)), df
dt
∈ L2(0, T ;Hδ(Ω)), u0 ∈ H1

0 (Ω), ∆u0 ∈ L2(Ω) and

f(0) + ∆u0 ∈ H1
0 (Ω). Then the finite element approximation uh(t) on a gradually

refined mesh with µ < λ1, see Definition 2.3.23, exhibits the following convergence

max
0≤t≤T

‖u(t)− uh(t)‖0 ≤ ch2
(
‖∆u0‖0 + ‖f(0) + ∆u0‖Hδ(Ω) +

∫ T

0

∥∥df

dt
(τ)
∥∥
Hδ(Ω)

dτ
)
,

where the constant c > 0 depends only on the domain Ω, the final time T > 0 and the

parameter δ.

We now move to the fully-discrete setting, where also the temporal domain is

discretised. We discretise Equation (4.9) using the θ time-stepping scheme. Let us

divide the time interval [0, T ] into N ∈ Z+ time steps of equal lengths ∆t, so tn = n∆t.

The fully discrete approximation of the model problem (4.4) reads as follows.

Definition 4.1.12 (Fully discrete θ-scheme). Let θ ∈ [0, 1]. We define the fully

discrete solution Un
h ∈ Vh for 0 ≤ n ≤ N as the function satisfying〈Un+1

h − Un
h

∆t
, vh

〉
+ a
(
θUn

h + (1− θ)Un+1
h , vh

)
=
〈
θf(tn) + (1− θ)f(tn+1), vh

〉
(4.7)

for all vh ∈ Vh. We also set U0
h = Rhu0.
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In particular, for θ = 0 we recover the implicit (backward) Euler scheme and for

θ = 1 we have the explicit (forward) Euler scheme. Furthermore, when θ = 1/2, the

θ-scheme becomes the well-known Crank–Nicolson time discretisation.

In order to investigate the stability of the explicit Euler scheme with θ = 1, we

need to introduce the so-called CFL (Courant–Friedrichs–Lewy) condition.

Definition 4.1.13 (CFL condition). Consider the θ-scheme (4.7) with θ = 1. We

define the CFL condition as

h−2
min∆t ≤ cs, (4.8)

where hmin = minT∈Th h and cs is a constant independent of the triangulation and the

time-step ∆t.

This condition was first introduced in [103] in the context of finite difference

methods. The extension concerning the finite element methods for time-dependent

problems can be found in [20, 35]. We send the reader to [156, Chapters 7,8] for the

following result and an exhaustive analysis of the stability of the time discretisation

methods with uniform refinement in space for parabolic problems. We include the

proof of the stability on polygonal domains, to show, why it is important to include

the smallest of the element sizes in Definition 4.1.13.

Theorem 4.1.14 (Stability of the fully discrete scheme). Let f and u0 satisfy the

assumptions of Theorem 4.1.7. Then the following stability estimate is true for the

solution (4.7) in the case of θ = 0 and θ = 1/2.

‖Un
h ‖0 ≤ ‖U0

h‖0 + 2∆t
n−1∑
k=0

‖f(tn)‖0.

Let ci > 0 be the constant in the inverse inequality stated in Lemma 2.3.7 with m = 1

and l = 0. If, in addition, the CFL condition (4.8) holds with cs = 2/c2
i , then the

estimate is true also for the explicit Euler scheme, so when θ = 1.

Proof. The proofs in the cases of θ = 0 and θ = 1/2 can be found in [47, Theorem 5.1]

and [47, Theorem 5.6] respectively. Therefore, we focus on the remaining case of θ = 1.

Let us take vh = Un+1
h in (4.7). We obtain〈

Un+1
h − Un

h , U
n+1
h

〉
+ ∆ta

(
Un
h , U

n+1
h

)
= ∆t

〈
f(tn), Un+1

h

〉
.
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Note however that〈
Un+1
h , Um

h

〉
=

1

2

(
‖Un+1

h ‖2
0 + ‖Un

h ‖2
0 − ‖Un+1

h − Un
h ‖2

0

)
,

a
(
Un
h , U

n+1
h

)
=

1

4

(
a
(
Un+1
h + Un

h , U
n+1
h + Un

h

)
− a
(
Un+1
h − Um,n

h , Un+1
h − Un

h

))
.

Hence

1

2
‖Un+1

h ‖2
0 −

1

2
‖Un

h ‖2
0 +

1

2
‖Un+1

h − Un
h ‖2

0 +
∆t

4
a
(
Un+1
h + Un

h , U
n+1
h + Un

h

)
=

∆t

4
a
(
Un+1
h − Un

h , U
n+1
h − Un

h

)
+ ∆t

〈
f(tn), Un+1

h

〉
.

Due to the assumed coercivity of the bilinear form we have

0 ≤ a
(
Un+1
h + Un

h , U
n+1
h + Un

h

)
.

Furthermore, due to the inverse inequality stated in Lemma 2.3.7, we get

a
(
Un+1
h − Un

h , U
n+1
h − Un

h

)
= ‖∇(Un+1

h − Un
h )‖2

0 ≤ c2
ih
−2
min‖Un+1

h − Un
h ‖2

0.

Thus we can write

‖Un+1
h ‖2

0 − ‖Un
h ‖2

0 + ‖Un+1
h − Un

h ‖2
0

≤ c2
i∆th

−2
min

2
‖Un+1

h − Un
h ‖2

0 + 2∆t
〈
f(tn), Un+1

h

〉
.

Due to the assumed CFL condition, see Definition 4.1.13 we have

‖Un+1
h ‖2

0 − ‖Un
h ‖2

0 ≤ 2∆t
〈
f(tn), Un+1

h

〉
.

Applying the Cauchy–Schwarz inequality we arrive at

‖Un+1
h ‖2

0 − ‖Un
h ‖2

0 ≤ 2∆t‖f(tn)‖0

(
‖Un+1

h ‖0 + ‖Un
h ‖0

)
.

Therefore also

‖Un+1
h ‖0 − ‖Un

h ‖0 ≤ 2∆t‖f(tn)‖0

and by induction we finally obtain the desired stability result.
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Theorem 4.1.14 provides the restriction on the growth of the solution in time

in the L2(Ω) norm. Although this restriction is guaranteed in the case of implicit

schemes with θ = 0 and θ = 1/2, the stability in the fully explicit case of θ = 1 is

obtained only under the assumption of the CFL condition (4.8). This assumption

cannot be droped, see [156, Chapter 7]. Similar results exist also for other types of

the time-stepping schemes, such as Runge–Kutta methods, hewever, they are beyond

the scope of this work.

The stability estimate given in Theorem 4.1.14 is the basis for derivation of the

error estimate for the finite element discretisation of parabolic equations.

Theorem 4.1.15 (Convergence of the fully discrete scheme). Suppose that the as-

sumptions of Theorem 4.1.10 are satisfied. Consider the θ-scheme approximation

introduced in Definition 4.1.12 and let for any ε > 0

σ =

{
2, if Θ ≤ π

2λ1 − ε, if Θ > π.

If θ = 0, or θ = 1 and the CFL condition (4.8) is satisfied, then

max
0≤n≤N

‖u(tn)− Un
h ‖0 ≤ c

(
hσ + ∆t

)(
‖∆u0‖0 +

∫ T

0

‖∆u‖0 dτ +

∫ T

0

‖∆ut‖0 dτ
)
.

Suppose now that θ = 1/2 instead. If d2f
dt2
∈ L1(0, T ;L2(Ω)), and df

dt
f(0) + ∆f(0) +

∆2u0 ∈ H1(Ω), then

max
0≤n≤N

‖u(tn)− Un
h ‖0 ≤ c

(
hσ + (∆t)2

)(
‖∆u0‖0 +

∫ T

0

‖∆ut‖0 dτ

+

∫ T

0

‖uttt‖0 dτ +

∫ T

0

‖∆utt‖0 dτ
)
.

Finally, assuming that the finite element approximation Un
h is obtained on a gradu-

ally refined triangulation with µ < λ1, and the assumptions of Theorem 4.1.11 are

satisfied, we can set σ = 2.

This result in the case of uniform triangulation of the domain, can be found

in [156, Theorem 1.5, Theorem 1.6] for θ = 0 and Θ = 1/2, and in [156, Chapter 7,8]

for θ = 1. The variant of the scheeme using graded meshes was considered in [47]

for θ = 0 and Θ = 1/2. The extension to the explicit Euler scheme, so when θ = 1,

is straightforward.

Theorem 4.1.15 summarises, upon certain regularity assumptions assuring that

the right-hand sides in the bounds are finite, the error estimates for the fully discrete
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scheme for parabolic equations. Application of the Crank-Nicolson time-stepping

(θ = 1/2) yields second order convergence in time, whereas implicit and explicit Euler

schemes guarantee only first order convergence. Moreover, the CFL condition (4.8)

needs to be satisfied in the case of the explicit time-stepping. The convergence order of

the spatial discretisation is identical as in the semi-discrete setting, see Theorem 4.1.10

and Theorem 4.1.11, and is suboptimal compared to the interpolation error, when

uniformly refined triangulation is concerned. Additional application of the mesh

grading technique improves the convergence order of the method yielding the optimal

second order of convergence.

In Theorem 4.1.11 we showed that the mesh grading technique is a feasible choice

for the improvement of the spatial approximation order of the finite element ap-

proximation of parabolic equations. However, it requires a local refinement of the

computational mesh around the singular corner.

For the CFL condition (4.8) to be satisfied in the case of graded meshes, the

relationship ∆t ∼ h2/µ needs to hold. For angles Θ > π, this introduces a significantly

more restrictive form of the CFL condition than the one necessary on the uniform

meshes, so when µ = 1 and ∆t ∼ h2. In the following section, we will propose an

energy-correction based method for recovering optimal convergence order of the finite

element scheme on uniformly refined meshes.

4.2 Energy-corrected finite elements for parabolic

problems

In this section, we investigate the energy-corrected finite element approximation of

the parabolic problem (4.1). We begin by analysing the semi-discretisation, where

the time variable is continuous. The reasoning is then further extended to a fully

discrete case with the explicit Euler time-stepping.

4.2.1 Energy-corrected semi-discrete scheme

We define a modified semi-discrete finite element approximation as〈
umh,t, vh

〉
+ ah(u

m
h , vh) =

〈
f, vh

〉
, for all vh ∈ Vh (4.9)

uh(0) = Rm
h u0, (4.10)

where ah(·, ·) is an energy-corrected bilinear form introduced in Section 2.3.3 with the

modification (2.33) and Rm
h is the corresponding modified Ritz projection. Moreover,
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we also assume that the optimal modification parameter γ∗ is known. Remember

that its existence was guaranteed by Lemma 2.3.33. To impose the initial conditions

we also use the corresponding modified Ritz projection Rm
h in place of the operator

Ph in (4.5).

Let us denote by cc, cb > 0 the continuity and coercivity constants of the energy-

corrected bilinear form ah(·, ·) respectively, so

cc‖∇vh‖2
0 ≤ ah(vh, vh), and ah(vh, wh) ≤ cb‖∇vh‖0‖∇wh‖0, for all vh, wh ∈ Vh.

Note that it is enough to set cc = 1 − γ∗ and cb = 1 + γ∗, where γ∗ denotes the

optimal parameter for the modification (2.33).

We denote by cα the embedding constant from Theorem 2.1.15, so we have

‖v‖−α ≤ cα‖∇v‖0, for all v ∈ H1
0 (Ω).

Before moving to the statement of the main convergence result of the scheme (4.9),

we first show the stability of the scheme.

Lemma 4.2.1 (Stability of the discrete scheme). Let f ∈ L2
(
0, T ;L2

α(Ω)
)

for some

α < 1. The semi-discrete solution of problem (4.9) satisfies

‖umh ‖2
0 ≤ ‖Rm

h u0‖2
0 + C∗

∫ T

0

‖f‖2
α dt.

Proof. By the coercivity of the bilinear form ah(·, ·), we obtain

ah(u
m
h , u

m
h ) ≥ c1‖∇umh ‖2

0.

Upon the choice vh = umh in Eq. (4.9) we obtain

1

2

d

dt
‖umh ‖2

0 + c1‖∇umh ‖2
0 ≤

(
f, umh

)
.

A Further application of the Cauchy-Schwarz and Young inequalities yields for

any ε > 0

1

2

d

dt
‖umh ‖2

0 + cc‖∇umh ‖2
0 ≤ ‖f‖α‖umh ‖−α

≤ 1

2ε
‖f‖2

α +
ε

2
‖umh ‖2

−α.

Due to Theorem 2.1.15 we know that H1
0 (Ω) ↪→ L2

−α(Ω) and thus
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1

2

d

dt
‖umh ‖2

0 + cc‖∇umh ‖2
0 ≤

1

2ε
‖f‖2

α +
c2
αε

2
‖∇umh ‖2

0.

Choosing ε ≤ 2cc/c
2
α we arrive at

1

2

d

dt
‖umh ‖2

0 ≤ C∗‖f‖2
α,

where C∗ ≥ c2
α/4cc. Integrating both sides over the time interval [0, T ] completes the

proof of the lemma.

Remark 4.2.2. In the case of the standard choice of the modified bilinear form (2.33)

in the energy-corrected scheme we have cc = 1−γ and the stability constant C∗ above

can be reduced to C∗ = c2
α/4. The embedding constant cα is an equivalent of the

Poincaré-Friedrichs constant in weighted spaces and depends only on the domain Ω.

Theorem 4.2.3. Suppose that functions u0 and f satisfy the regularity requirements

stated in Theorem 4.1.7 and Theorem 4.1.8 and let 1 − λ1 < α < 1. The energy-

corrected semi-discretisation (4.9) of Problem (4.1) yields optimal convergence rate

in weighted norm, namely for some c > 0 independent of u

max
0≤t≤T

‖u− umh ‖α ≤ ch2

(
max

0≤t≤T
‖∆u(t)‖2

−α +

∫ T

0

‖∆ut(t)‖2
−α dt

)1/2

. (4.11)

Proof. We proceed in a standard manner by splitting the discretisation error into two

independent parts

u(t)− umh (t) =
(
u(t)−Rm

h u(t)
)

+
(
Rm
h u(t)− umh (t)

)
=: ρ+ η, (4.12)

where Rm
h denotes the energy-corrected Ritz projection defined in Section 2.3.3.

Hence, due to Theorem 2.3.27

‖ρ‖α = ‖u(t)−Rm
h u(t)‖α ≤ ch2‖∆u(t)‖−α (4.13)

and

‖ρt‖α = ‖ut(t)−Rm
h ut(t)‖α ≤ ch2‖∆ut(t)‖−α. (4.14)

Using the definition of the modified Ritz projection

ah(R
m
h u(t), vh) = a(u(t), vh), for all vh ∈ Vh,
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we obtain due to the definitions of the continuous solution (4.4) and the energy-

corrected discretisation (4.9)〈
ηt, vh

〉
+ ah(η, vh) =

〈
− ρt, vh

〉
.

Finally, due to Lemma 4.2.1, we get

‖Rm
h u(t)− umh (t)‖2

α = ‖η(t)‖2
α ≤ ‖η(0)‖2

0 + C∗
∫ t

0

‖ρt‖2
α dt.

Note that due to Theorem 4.1.8, the right-hand side of the inequality above is well-

defined. Moreover, the discrete initial conditions were chosen in a way that η(0) = 0.

Combining this with Equation (4.12) gives

max
0≤t≤T

‖u− umh ‖2
α ≤ max

0≤t≤T

(
‖ρ‖2

α + ‖η‖2
α

)
≤
(

max
0≤t≤T

‖ρ‖2
α + C∗2

∫ T

0

‖ρt‖2
α dt

)
.

Finally, application of the results stated in (4.13) and (4.14) completes the proof.

The right-hand side of Equation (4.11) is finite, see Theorem 4.1.8. The above

theorem shows that the application of the energy-corrected finite element scheme to

the parabolic equations results in the optimal accuracy of the scheme, when compared

to the interpolation error.

4.2.2 Energy-corrected fully discrete scheme

Now, we move to the fully discrete setting, where also the temporal dimention is

discretised. We consider only explicit Euler time-stepping, which later will serve as

a foundation for building fast numerical schemes. The extension to a more general

case of θ-scheme in time is straightforward.

Following the convention presented above for the fully discrete schemes, we denote

the solution by capital letters. The fully discrete energy-corrected finite element

approximation of the model problem (4.4) reads as follows: Find Um,n
h ∈ Vh for

0 ≤ n ≤ N such that〈Um,n+1
h − Um,n

h

∆t
, vh

〉
+ ah(U

m,n
h , vh) =

〈
f(tn), vh

〉
, for all vh ∈ Vh. (4.15)

The initial condition, as before, is imposed using the modified Ritz projection

Um,0
h = Rm

h u0.
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We begin the convergence analysis of the scheme by showing an auxiliary result

bouding the finite difference in the formulation (4.15).

Let ci > 0 denote the constant appearing in the inverse inequality from Lemma 2.3.7,

when l = 0 and m = 1.

Lemma 4.2.4. Suppose that f ∈ C
(
0, T ;L2

α(Ω)
)

for some 0 ≤ α < 1. Then for

all 0 ≤ n ≤ N − 1∥∥∥Um,n+1
h − Um,n

h

∆t

∥∥∥
0
≤ cih

−1
(
cα‖f‖α + cb‖∇Um,n

h ‖0

)
.

Proof. Let us set vh =
Um,n+1
h −Um,nh

∆t
in (4.15). Then, applying the Cauchy-Schwarz

inequality and using the boundedness of the bilinear form ah(·, ·), we get

∥∥∥Um,n+1
h − Um,n

h

∆t

∥∥∥2

0
=
〈
f(tn),

Um,n+1
h − Um,n

h

∆t

〉
− ah

(
Um,n
h ,

Um,n+1
h − Um,n

h

∆t

)
≤ ‖f‖α

∥∥∥Um,n+1
h − Um,n

h

∆t

∥∥∥
−α

+ cb‖∇Um,n
h ‖0

∥∥∥∇Um,n+1
h − Um,n

h

∆t

∥∥∥
0
.

Since H1
0 (Ω) ↪→ L2

−α(Ω), see Theorem 2.1.15, we obtain

∥∥∥Um,n+1
h − Um,n

h

∆t

∥∥∥2

0
≤
(
cα‖f‖α + cb‖∇Um,n

h ‖0

)∥∥∥∇Um,n+1
h − Um,n

h

∆t

∥∥∥
0
.

Finally, application of the inverse inequality from Lemma 2.3.7 yields the desired

result.

Now, we can state the stability result, which will prove crucial for showing the error

estimates for the fully discrete scheme. The main difference between the following and

the stablity estimate presented in Theorem 4.1.14 lies in the use of weighted spaces.

Similarly as in the case of the standard norms, the explicit time-stepping scheme is

stable only under an additional assumption that the CFL condition (4.8) is satisfied.

We provide the precise value of the stability constant.

Theorem 4.2.5 (Stability of the fully discrete scheme). Suppose that for some 0 ≤
α < 1 we have f ∈ C

(
0, T ;L2

α(Ω)
)

and let 0 < ε < 1/2, 0 < δ < cc
c2α

. Suppose also

that the CFL condition proposed in Definition 4.1.13 is satisfied with the constant

cs = 2 cc−c2αδ
c2i c

2
b(1+ε)

. Then for some cε,δ > 0 independent of h and ∆t, we have

‖Um,n
h ‖2

0 ≤ ‖U
m,0
h ‖

2
0 + cε,δ∆t

n−1∑
k=0

‖f(tn)‖2
α.
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Proof. We set vh = Um,n
h in (4.15). Notice that

Um,n
h =

Um,n+1
h + Um,n

h

2
− ∆t

2

Um,n+1
h − Um,n

h

∆t
.

Hence

‖Um,n+1
h ‖2

0 − ‖U
m,n
h ‖2

0

2∆t
+ ah(U

m,n
h , Um,n

h ) =
〈
f(tn), Um,n

h

〉
+

∆t

2

∥∥∥Um,n+1
h − Um,n

h

∆t

∥∥∥2

0
.

(4.16)

Note that for any numbers ε, a, b > 0 we have

(a+ b)2 ≤
(
1 +

1

ε

)
a2 + (1 + ε)b2.

Therefore, Lemma 4.2.4 gives us

∥∥∥Um,n+1
h − Um,n

h

∆t

∥∥∥2

0
≤ c2

ih
−2c2

α

(
1 +

1

ε

)
‖f(tn)‖2

α + c2
ih
−2c2

b(1 + ε)‖∇Um,n
h ‖2

0. (4.17)

Furthermore, for any δ > 0 we get due to the Cauchy-Schwarz inequality and the

embedding from Theorem 2.1.15〈
f(tn), Um,n

h

〉
≤ 1

δ
‖f(tn)‖2

α + c2
αδ‖∇U

m,n
h ‖2

0. (4.18)

Using the coercivity of the bilinear form ah(·, ·) and applying (4.16)–(4.18), we

obtain

‖Um,n+1
h ‖2

0 − ‖U
m,n
h ‖2

0

2∆t
+ cc‖∇Um,n

h ‖2
0 ≤

(1

δ
+

1

2

(
1 +

1

ε

)
c2
i c

2
αh
−2∆t

)
‖f(tn)‖2

α

+
(
c2
αδ +

1

2
c2
i c

2
b(1 + ε)h−2∆t

)
‖∇Um,n

h ‖2
0.

The CFL condition (4.8) states that

h−2∆t ≤ cs = 2
cc − c2

αδ

c2
i c

2
b(1 + ε)

and therefore

‖Um,n+1
h ‖2

0 − ‖U
m,n
h ‖2

0

2∆t
≤
(1

δ
+

1

2

(
1 +

1

ε

)
c2
i c

2
bh
−2∆t

)
‖f(tn)‖2

α

Setting

cε,δ = 2
(1

δ
+

1

2

(
1 +

1

ε

)
c2
i c

2
bcs

)
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and applying induction we finally obtain

‖Um,n
h ‖2

0 ≤ ‖U
m,0
h ‖

2
0 + cε,δ∆t

n−1∑
k=0

‖f(tn)‖2
α.

Upon the right choice of the values ε, δ, we see that any cs < 2 cc
c2i c

2
b

is a feasible

stability constant. Note however that when δ → 0 or ε→ 0, then cε,δ →∞.

Finally, we are in a position to state the convergence result for the fully discrete

scheme.

Theorem 4.2.6. Suppose that functions u0 and f satisfy the regularity requirements

stated in Theorem 4.1.7 and Theorem 4.1.8 and let 1−λ1 < α < 1. Suppose also that

the CFL condition stated in Definition 4.1.13 holds with the constant cs = 2 cc−c2αδ
c2i c

2
b(1+ε)

for some 0 < ε < 1/2, 0 < δ < cc
c2α

. Then, the following error estimate for the energy-

corrected discretisation Um,n
h , see (4.15), of Problem (4.1) holds for some c > 0

independent of u

max
0≤n≤N

‖u(tn)− Um,n
h ‖α (4.19)

≤ c(h2 + ∆t)

(
max

0≤t≤T
‖∆u(t)‖2

−α +

∫ T

0

‖∆ut(t)‖2
−α dt+

∫ T

0

‖utt‖2
α dt

)1/2

.

Proof. Similarly as in the proof of Theorem 4.2.3, we begin the proof by splitting the

error into two components.

u(tn)− Um,n
h =

(
u(tn)−Rm

h u(tn)
)

+
(
Rm
h u(tn)− Um,n

h

)
=: ρn + ηn, (4.20)

where Rm
h denotes the energy-corrected Ritz projection defined in Section 2.3.3. Due

to Theorem 2.3.27

‖ρn‖α = ‖u(tn)−Rm
h u(tn)‖α ≤ ch2‖∆u(tn)‖−α (4.21)

We focus now on estimating the remaining ηn component of the error. Due to the

definition of the energy-corrected Ritz projection and the problem formulation (4.4),

we have 〈
ut(tn), vh

〉
+ ah(R

m
h u(tn), vh) =

〈
f(tn), vh

〉
, for all vh ∈ Vh.

Therefore, equation (4.15) yields for all vh ∈ Vh
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ah(η
n, vh) =

〈Um,n+1
h − Um,n

h

∆t
− ut(tn), vh

〉
= −

〈Rm
h u(tn+1)−Rm

h u(tn)

∆t
− Um,n+1

h − Um,n
h

∆t
, vh

〉
−
〈
ut(tn)− Rm

h u(tn+1)−Rm
h u(tn)

∆t
, vh

〉
= −

〈ηn+1 − ηn

∆t
, vh

〉
+
〈u(tn+1)− u(tn)

∆t
− ut(tn), vh

〉
−
〈ρn+1 − ρn

∆t
, vh

〉
.

Thus, we can write〈ηn+1 − ηn

∆t
, vh

〉
+ ah(η

n, vh) =
〈
ψn1 + ψn2 , vh

〉
, for all vh ∈ Vh,

where

ψn1 =
u(tn+1)− u(tn)

∆t
− ut(tn), and ψn2 =

ρn+1 − ρn

∆t
.

Thanks to the stability estimate stated in Theorem 4.2.5 we obtain

‖ηn‖2 ≤ ‖η0‖+ 2∆tcε,δ

( n−1∑
k=0

‖ψn1 ‖2
α +

n−1∑
k=0

‖ψn2 ‖2
α

)
. (4.22)

We now estimate ψn1 and ψn2 separately. Note that

ψn1 =
u(tn+1)− u(tn)

∆t
− ut(tn) = − 1

∆t

∫ tn+1

tn
(tn+1 − t)utt dt,

and hence

‖ψn1 ‖α ≤
√

∆t
(∫ tn+1

tn
‖utt‖2

α dt
)1/2

. (4.23)

Further, due to the linearity of the modified Ritz projection, we have

ψn2 =
u(tn+1)− u(tn)

∆t
−Rm

h

u(tn+1)− u(tn)

∆t
,

and thus, see Theorem 2.3.27, we also get

‖ψn2 ‖α ≤ ch2
∥∥∥∆
(u(tn+1)− u(tn)

∆t

)∥∥∥
−α

= ch2
∥∥∥ 1

∆t

∫ tn+1

tn

∆ut dt
∥∥∥
−α
.

Further, applying Cauchy-Schwarz inequality, we obtain

‖ψn2 ‖α ≤ c
h2

√
∆t

(∫ tn+1

tn

‖∆ut‖2
−α dt

)1/2

. (4.24)
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Since the initial conditions in the discretisation are imposed using the modified

Ritz projection, see (4.15), we automatically have η0 = 0. Using this and combin-

ing (4.22) with (4.23) and (4.24), we arrive at

‖ηn‖2 ≤ c(∆t)2

∫ T

0

‖utt‖2
α dt+ ch4

∫ T

0

‖∆ut‖2
−α dt

Finally, combining this result with (4.21), and applying to the error splitting (4.20)

we get

max
0≤n≤N

‖u(tn)− Um,n
h ‖2

α

≤ c
(
h4 + (∆t)2

)(
max

0≤n≤N
‖∆u(tn)‖2

−α +

∫ T

0

‖∆ut‖2
−α dt+

∫ T

0

‖utt‖2
α dt

)
Hence, the proof is completed upon taking the square root of both sides of the

inequality. The boundedness of the right-hand side is ensured by Theorem 4.1.8.

As opposed to the mesh grading strategy, the energy-correction works on uniform

meshes with less restrictive stability conditions. We shall exploit this fact further in

the next section, when creating fast time-stepping schemes.

4.3 Numerical results

In this section, we propose and numerically investigate a fast fully-discrete solver

for parabolic problems based on energy-corrected finite element (4.15). We show

that, as opposed to the algorithms involving mesh grading and adaptivity, explicit

time-stepping schemes are a feasible choice in the proposed setting.

Let {φi}Ki=1 denote the nodal basis functions of the finite element space Vh and

let Um
n =

(
Um,n
i

)K
i=1

be the vector of coefficients of the finite element solution in this

basis at the time step n. We also denote Fn =
[〈
f(tn, ·), φi

〉]K
i=1

. Moreover, M and

Sm are respectively the mass and modified stiffness matrices of the system introduced

in (2.12).

The discrete systems (4.15) can be rewritten in a matrix-vextor formulation as

Um
n+1 = Um

n + ∆tM−1
[
Fn − SmUm

n

]
. (4.25)
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The choice of a nodal, vertex-based quadrature rule for assembling the mass matrix

leads to a lumped diagonal matrix M̃, which can be used in place of M. The ap-

plication of the nodal Gauss quadrature in the assembly process does not diminish

the convergence of the finite element scheme, see [23] for more details. This results

in a fast time-stepping scheme, where at each time step, multiplication by a diagonal

matrix M̃−1 and a sparse matrix Sm needs to be performed.

Stability of the explicit Euler scheme is guaranteed by the CFL condition (4.8),

which is very prohibitive when mesh grading or adaptivity is concerned. However,

this is not an issue in the case of the energy-corrected FEM, which works on uniform

meshes. Then, balancing the error of order O(∆t) coming from the time-stepping

discretisation with O(h2) order of error measured in the weighted L2(Ω)-norm, see

Theorem 4.2.6, exactly the same relationship, as the CFL stability requirement, needs

to be kept.

In order to improve the convergence of the scheme at a fixed point in time T >

0, we complete the algorithm with a post-processing strategy introduced in (2.31).

As stated in Equation (2.4), the stress-intensity factor, see Theorem 4.1.7, can be

computed by

k1(T ) = − 1

π

∫
Ω

(
f(T )− ut(T )

)
s−1 + u∆s−1.

We define its discrete approximation using (2.29) as

kh1 (T ) = − 1

π

∫
Ω

(
f(T )− Um,N

h − Um,N−1
h

∆t

)
s−1 + Um

h (T )∆s−1.

This leads to the post-processed solution of the form

ũmh (T ) = Um,N
h + kh1 (T )

(
s1 − sm1,h

)
. (4.26)

Note that the additional cost of performing the post-processing is equal to the cost

of solving one additional elliptic equation and evaluating one integral.

In Table 4.1, we summarise the errors and the convergence rates of the proposed

scheme. We choose the L-shape domain Ω = (−1, 1)2 \
(
[0, 1] × [−1, 0]

)
with the

largest interior angle of size Θ = 3π/2 and the triangulation as previously shown in

Figure 2.3. We also choose a known exact solution u = sin(t)s1 +sin(2t)s2−sin(3t)s3,

being a linear combination of singular functions (2.2) with smooth time-dependent

coefficients.

The parameter γ in the modification (2.33) is computed using a version of the

Newton algorithm described in [136] and in the numerical experiments we choose the
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weight α = 1 − λ1. This choice of the weight induces a slightly stronger norm than

assumed in Theorem 4.2.3 but the optimal convergence order of the energy-corrected

scheme can be observed regardless of this.

We consider uniform refinement of the initial mesh and together with refining

the mesh, we also divide the time-step ∆t by 4, initially set to be equal to 0.1. For

the purposes of comparison, in the first two columns of Table 4.1, we summarise the

results obtained using the standard, uncorrected scheme. The suboptimal conver-

gence rates in the sense of the interpolation error, when measured both in standard

and weighted L2(Ω)-norms, are in line with the results in Theorem 4.1.10. For the

energy-corrected scheme (4.15), we see that no pollution in the L2(Ω)-norm appears.

Moreover, second-order convergence in the weighted norm means that the error is

relatively large only in the vicinity of the re-entrant corner, so the pollution effect

from Theorem 2.3.21 has been removed. Finally, the post-processing approach yields

second-order convergence in the standard L2(Ω)-norm. Numerical tests confirm the

theoretical results of Theorem 4.2.3.

In Figure 4.1 the evolution of the L2(Ω) error in time is shown. The presented

results were obtained on the 5th refinement level in space and time. The energy-

corrected finite element consistently provides a smaller error than the standard finite

element method. Moreover, the growth of the error in the latter is also faster than in

the energy-corrected scheme.

Standard and energy-corrected P1 elements, γ = 0.18617957
L ‖u− uh‖0 rate ‖u− uh‖α rate ‖u− umh ‖0 rate ‖u− umh ‖α rate ‖u− ũmh ‖0 rate
1 8.3556e-02 6.4626e-02 8.6186e-02 6.7405e-02 6.0499e-02
2 2.9690e-02 1.49 2.0407e-02 1.66 2.7783e-02 1.63 1.9365e-02 1.80 1.9961e-02 1.60
3 1.1018e-02 1.43 6.8650e-03 1.57 7.9946e-03 1.79 4.7695e-03 2.02 5.0731e-03 1.98
4 4.1983e-03 1.39 2.4516e-03 1.49 2.2934e-03 1.80 1.1349e-03 2.07 1.1892e-03 2.09
5 1.6212e-03 1.37 9.1443e-04 1.42 6.7778e-04 1.75 2.7326e-04 2.06 2.7349e-04 2.12
6 6.3061e-04 1.36 3.5033e-04 1.38 2.0565e-04 1.72 6.6972e-05 2.03 6.3007e-05 2.12

Expected 1.33 1.33 1.66 2.00 2.00

Table 4.1: Summary of convergence rates obtained using two different approximations
of the heat equation on the L-shape domain

4.4 Extensions

In this section, we present extensions of the methods introduced above. We show

that the energy-corrected finite element can be applied to domains with multiple re-

entrant corners, also in the presence of a moderate advection in the problem (4.1).

Furthermore, we show a possible extension to the piecewise polynomial finite element
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Figure 4.1: Development of the L2(Ω) error in time.

and propose a fast explicit time-stepping scheme based on cubic elements combined

with mass-lumping techniques. Finally, in order to show the flexibility of the energy-

correction method, we present numerical experiments involving multiple re-entrant

corners in three dimensions.

4.4.1 Advection-diffusion equation

We consider the following advection-diffusion problem

ut + b · ∇u−∆u = f in Ω× (0, T ), (4.27)

u = 0 on ∂Ω× [0, T ], (4.28)

u = u0 in Ω at t = 0. (4.29)

In the numerical example, we consider T = 1, u0 = 0 and b = (1, 1), so the problem

is equipped with moderate advection. The computational domain Ω, together with

its triangulation, is presented in Figure 4.2 and consists of a rectangle (0, 4) × (0, 3)

with a right, isosceles triangle cut out. There are three re-entrant corners in the

domain Ω, two of sizes 7π/4 and one of size 3π/2. We use a computational grid with

one-element patches around the singular corners consisting of the identical isosceles

triangles. For the right-hand side we choose f = sin(πt)
(

(x−2)2+(y−3/2)2
)−1

, which

has a singularity in the middle of the cut-out triangle. For the time discretisation,

we choose Explicit Euler time-stepping as described in Section 4.3 with an initial

step-size ∆t = 0.02, which is small enough to guarantee the stability of the scheme.
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Figure 4.2: On the left-hand side a computational domain consisting of a rectangle
(0, 4)×(0, 3) with a right-angled, isosceles triangle cut out of it is shown. The domain
is triangulated so that one element patches around the re-entrant corners consist of
identical isoscles triangles. On the right-hand side a convergence of a computed
quantity of interest - maximum value in the domain, is shown.

We investigate the behaviour of a quantity of interest QoI = ‖uh‖L∞(Ω) for stan-

dard finite element method and the energy-corrected finite element method on 5

consecutive refinement levels. The results of the simulations are summarised in the

plot on the right-hand side of Figure 4.2. For completeness, we also include the ex-

trapolated approximation ‖u‖ex∞ of the real value in the plot. The estimated order of

convergence of |‖u‖ex∞ − ‖uh‖∞| is equal to 1.85 and 1.55 in the case of the energy-

corrected scheme and standard finite element respectively. The energy-corrected finite

element can be successfully applied also in the cases of several different re-entrant cor-

ners in the domain and the presence of a moderate advection in the problem

4.4.2 Higher-order FEM

So far we only analysed the piecewise linear discretisation in space. In this section,

we discuss the feasibility of using higher-order discretisations. Moreover, we also

present the mass lumping strategy for the higher-order elements based on the enrich-

ment of the finite element spaces, the idea introduced in [57]. We apply the method

to the parabolic problem (4.4) in a straightforward manner, suitably modifying the

formulation (4.9) by using the more general form of the energy-correction (2.32).

We are aiming to construct a fast, explicit solver and this means that, in order

to guarantee the stability of the method, the CFL condition ∆t ∼ h2 needs to be
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satisfied. The use of cubic finite element basis yields fourth-order convergence in

weighted L2(Ω)-norm, and we would like to balance it with a second-order time-

stepping scheme. Similarly to the piecewise linear case discussed in Section 4.3,

optimal balancing of the errors stemming from the time and space discretisations

means that the CFL condition is automatically satisfied and makes the use of explicit

time-stepping scheme feasible. We use the second-order Runge-Kutta scheme, also

known as the Heun’s method, see [118, Section 2.4] and [151, Section 12.5]. The fully

discrete scheme can be written as

Ũm
h,n+1 = Um

h,n + ∆tM−1
[
Fn − SmUm

h,n

]
(4.30)

Um
h,n+1 = Um

h,n +
1

2
∆tM−1

[(
Fn − SmUm

h,n

)
+
(
Fn+1 − SmŨm

h,n+1

)]
(4.31)

4.4.2.1 Mass-lumping for higher-order FEM

Note that the application of the mass-lumping strategy is not as straightforward

as in the piecewise linear case. When the standard piecewise linear P1 elements are

considered, a diagonal matrix is obtained upon the choice of a suitable Gauss-Lobatto

quadrature rule for computation of the matrix entries, where the quadrature points

are located at the triangulation nodes. However, similar strategy in the case of higher-

order finite elements cannot be applied, as it would result in negative or zero entries

in the mass matrix. To overcome this, we follow the method proposed in [57] in the

context of the wave equation. It is based on the enrichment of the finite element space

with higher-order polynomial bubble functions, which are uniformly equal to 0 at the

element’s edges. Moreover, the mass matrix is assembled using a positive quadrature

rule

IT̂ (f) = |T̂ |
∑
xi∈T̂

ωif(xi), (4.32)

where ωi are weights and xi are quadrature points on the reference element T̂ . Note

that it suffices to define the quadrature rule on the reference triangle only. We will

show the construction of the quadrature rule with quadrature points located in the

nodal points of the enriched space. Such a construction yields a diagonal matrix M̃

used in place of M in scheme (4.30).

We now introduce mass-lumping techniques for locally enriched quadratic and

cubic finite elements. Resulting quadrature rules have third and fourth order accuracy

respectively and will contain only positive weights ensuring the stability of the scheme.
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We shall also define a locally enriched finite element space with nodal points coinciding

with the nodes of the quadrature rule. A more detailed discussion of the topic can

be found in [57]. It was further extended to even higher-order approximation spaces

[93, 117]. Moreover, the method is also known in the context of Qk finite element

spaces on quadrilateral meshes, see [58, 79].

In the construction of the quadrature rules and finite element spaces we demand

two main assumptions to be satisfied, namely:

The modified mass matrix is positive definite (A1)

The weights in the quadrature formula are strictly positive. (A2)

Satisfying these two assumptions correspond to the invertability of the mass matrix

and stability of the scheme. Since this cannot in principle be done for the stan-

dard P2(T̂ ) and P3(T̂ ) spaces, we shall consider their enrichments denoted by Pk(T̂ ) ⊂
P̃k(T̂ ) ⊂ Pk′(T̂ ) for some k ≤ k′. We define a corresponding enriched finite element

space as

S̃kh = {vh ∈ H1(Ω) : for all T ∈ Th vh|T ∈ P̃k(T )}. (4.33)

Moreover, to ensure sufficient accuracy of the integration formula, we add one more

assumption

The quadrature rule is exact in Pk+k′−2(T̂ ). (A3)

P2 elements

For the sake of completeness, we begin by introducing the mass-lumping technique for

piecewise quadratic finite element spaces. We define the enriched space of quadratic

polynomials as P̃2(T̂ ) = P2(T̂ ) ⊕ b, where b is a bubble function, that is a third

order polynomial disappearing on the edges of the triangle. We consider the nodal

basis of the enriched discrete space. Note that in this way we introduce one extra

degree of freedom in each triangle in the computational mesh Th. There are 7 nodal

points defining the nodal basis, and we place 3 of them in the vertices (V ), 3 in the

midpoints (M) of the edges and one in the centre of the gravity (G) of the triangle.

It is graphically summarised in Figure 4.3. We also set the values of the quadrature

weights in the corresponding nodal points as

ωV =
1

20
, ωM =

2

15
, ωG =

9

20
.



4.4. EXTENSIONS 93

The quadrature formula

IT̂ (f) = |T̂ |
(
ωV
∑
i

f(Vi) + ωM
∑
i

f(Mi) + ωG
∑
i

f(Gi)
)

is exact in the space P3 and the mass matrix in the space S̃2
h defined in Equation (4.33)

is diagonal with strictly positive entries.

P3 elements

The procedure in the case of P3(K) spaces is more complicated, as not only do

we have to enrich the space, but also move the nodal points to different positions

compared to the standard cubic Lagrange finite elements introduced in Section 2.3.1.

To describe the construction accurately, we introduce the barycentric coordinates

ξ1(x), ξ2(x), ξ3(x) being the distances of the point x from the corresponding vertices

of the triangle.

We begin with the definition of the suitable polynomial space P3(T̂ ) ⊂ P̃3(T̂ ) =

P3(T̂ ) ⊕ bP1(T̂ ) ⊂ P4(T̂ ). This means that we enrich the qubic polynomial spaces

with fourth order polynomials. We also need to define the nodal points so that the

quadrature rule can be exact on P5(T̂ ) polynomial functions, see Assumption A3.

We divide these points into three groups: 3 vertices V , 6 edge points M(α) and 3

interior points G(β), so in total 12 degrees of freedom depending on the parameters

0 < α, β < 1/2, β 6= 1/3. The edge points are chosen so that they are at a distance

α and 1 − α from the corresponding vertices of the triangle and the interior points

have barycentric coordinates ξi = β, ξj = 1−β
2

, j 6= i. This choice of nodal points is

graphically summarised in the Figure 4.3. The basis functions in each triangle of the

mesh can be divided into three groups:

• Functions associated with the interior points G(β)

φGi =
(
ξi −

1− β
2

)
b.

• Functions associated with the interior points Mi,j(α)

φMi,j = pi,j −
8b

β(1− β)2(3β − 1)

[
A1

(
ξi −

1− β
2

)
+B1

(
ξj −

1− β
2

)
+ C1

(
ξk −

1− β
2

)]
,
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where

pi,j =
ξiξj

α(1− α)(2α− 1)

(
αξi − (1− α)ξj − (1− 2α)ξk

)
,

A1 = pi,j(Gi), B1 = pi,j(Gj), C1 = pi,j(Gk).

Note that the values of the constants A1, B1, C1 are independent of the choice

of indices i, j.

• Functions associated with the vertices Vi

φVi = pi −
8b

β(1− β)2(3β − 1)

[
A2

(
ξi −

1− β
2

)
+B2

∑
l 6=i

(
ξl −

1− β
2

)]
,

where

pi = ξi

(∑
l

ξ2
l −

1− 2α + 2α2

α(1− α)
ξjξk +

2− 7α + 7α2

α(1− α)
ξi(ξj + ξk)

)
,

A2 = pi(Gi), B2 = pi(Gj), j 6= i.

Moreover, constants A2, B2 are intependent of the choice of the indices i, j.

The basis functions constructed this way on the reference triangle T̂ , together with

the nodal evaluations, create the finite element in the sense of Definition 2.3.1.

There exists a unique quadrature formula of the form as in equation (4.32) satis-

fying Assumptions A1–A3 and it requires

α =
42 + 21

√
7−

√
21(35 + 16

√
7)

84 + 42
√

7
, β =

1

3
+

2

21

√
7.

It also defines uniquely strictly positive weights

ωV = 2
919
√

7 + 2471

124080
√

7 + 330960
, ωM = 2

√
7(2 +

√
7)4

25280 + 9520
√

7
, ωG = 2

147 + 42
√

7

400
√

7 + 1280
.

Finaly, the quadrature formula

IT̂ (f) = |T̂ |
(
ωV

∑
i:xi∈T̂

f(Vi) + ωM
∑
i 6=j

f(Mi,j) + ωG
∑
i

f(Gi)
)

is exact in the space P5(T̂ ) and the mass matrix in the space S̃3
h defined in equa-

tion (4.33) approximated with the use of the defined quadrature formula is diagonal

and positive definite.
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P̃1(T̂ ) = P1(T̂ ) P̃2(T̂ ) = P2(T̂ )⊕ b P̃3 = P3(T̂ )⊕ P1(T̂ )b

Figure 4.3: Graphical representation of the enriched finite element spaces. Grey
circles represent nodal points in the vertices of the triangle, which always coincide
with the standard choice for the piecewise polynomial finite element. Nodes on the
edges have modified coordinates. Blue points correspond to the nodal points of the
higher-order bubble functions enriching the finite element spaces.

4.4.2.2 Comparison of schemes

In the numerical study, we use a known exact solution u = sin(t)s1 + sin(2t)s2 −
sin(3t)s3 on the L-shaped domain Ω = (−1, 1)2 \

(
[0, 1] × [−1, 0]

)
with the largest

interior angle of size Θ = 3π/2 and the triangulation presented in Figure 2.3. We

compare the L2(Ω) and L2(Ω′) errors of the schemes at the last time step T = 1,

where Ω′ = Ω ∩ {|x| > 0.25}.
In Figure 4.4, a standard L2(Ω) error is shown. The standard piecewise linear finite

element combined with an explicit Euler time-stepping and mass-lumping provides

the worst results among the ones studied since its performance is limited by (4.1.10).

Initially ∆t = 0.1 is chosen and with each space refinement the time step is divided

by 4.

Application of mesh grading improves the performance of the solver [47]. However,

the use of explicit time-stepping schemes is infeasible due to the very restrictive CFL

condition. To recover the optimal convergence order in the L2(Ω)-norm, it is necessary

to grade the mesh towards the singular corner, introducing elements of the size h1/µ,

where µ < π/Θ. This, in particular, means that in the case of the L-shape domain

with Θ = 3π/2, time-steps ∆t smaller than O(h3) need to be used. Therefore, we use

the unconditionally stable Crank-Nicolson scheme in time allowing for coarser time

discretisation. To keep the right balance between space and time discretisation errors,

with each mesh refinement we divide the time-step by 2, beginning with ∆t = 0.1.

The piecewise linear energy-corrected finite element scheme with explicit Euler

time-stepping (4.25) yields significantly better results than the standard piecewise

linear discretisations. It also gives comparable results with the mesh grading scheme
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Comparison of the L2-error and computational times

P1 with Explicit Euler
P1 with CN and grading
P1EC and Explicit Euler
P1EC with Explicit Euler and PP
P3ECR and Runge-Kutta 2
P3ECR with Runge-Kutta 2 and PP
P3ECF and Runge-Kutta 2
P3ECF with Runge-Kutta 2 and PP

Figure 4.4: Comparison of the normalised computational time and accuracy of com-
monly used finite element discretisations of the parabolic problems with the pro-
posed energy-corrected solvers on the L-shape domain. Schemes incorporating the
post-processing (PP) are also included in the graph. We compare the L2(Ω) error
evaluated at the final time-step T = 1.

completed with Crank-Nicolson time-stepping. An application of the post-processing

additionally improves the accuracy of the method resulting in a better error-to-time

ratio than the mesh grading method equipped with Crank-Nicolson time-stepping. We

use in-built MATLAB linear system solvers. Note that the application of fast iterative

solvers, such as multigrid methods, could additionally improve the performance of the

implicit methods.

Application of the cubic energy-corrected finite element scheme with second-order

Runge-Kutta scheme in time gives similar results to the piecewise linear energy-

corrected scheme. However, additional application of the post-processing yields the

best results regarding the balance between the computational time and the accuracy of

the scheme out of all tested methods. This can be attributed to the use of the scheme

eliminating the pollution effect in the solution, completion with the post-processing

strategy yielding optimal convergence in the standard norms, and the use of mass-

lumping strategy. Note that the use of cFh (·, ·) modification gives quantitatively better

results than cRh (·, ·). This phenomenon was previously observed in the case of eliptic

equations in [86, Section 6.3] and in Section 2.3.3.4, and can be attributed to the

smaller modification subregion in the computational domain.
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Comparison of the L2-error and computational times

P1 with Explicit Euler
P1 with CN and grading
P1EC with Explicit Euler
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P3ECF with Runge-Kutta 2

Figure 4.5: Comparison of the normalised computational time and accuracy of com-
monly used finite element discretisations of the parabolic problems with the proposed
energy-corrected solvers on the L-shape domain. We compare the L2(Ω′) error eval-
uated at the final time-step T = 1.

As shown in Theorem 2.3.27, the energy-correction method gives optimal conver-

gence rates in terms of the best-approximation property, however, in weighted norms.

This, in particular, means that the method converges optimally when measured far

from the re-entrant corner. Therefore, no additional post-processing needs to be

applied, when one is interested in the solution far from the singular corner.

In Figure 4.5, a comparison of L2(Ω′) errors and normalised computational times

of the previously described methods are shown. Again, due to the pollution effect, the

standard finite element discretisation results in the worst error-to-time ratio. It can be

improved by the application of the mesh grading together with Crank-Nicolson time-

stepping, which yields only slightly worse results than the piecewise-linear energy-

corrected scheme. The cubic energy-corrected finite element, together with Heun’s

time-stepping and mass-lumping strategy, results in by far the best method when

the L2-error far from the re-entrant corner is concerned. Small variations in the

convergence rates in the cubic finite element scheme, when using cRh (·, ·) modification,

appear because of insufficient initial resolution of the mesh. Again, modification

cFh (·, ·) yields a better performance than cRh (·, ·).
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(a) 3D geometry (b) Computational mesh of a cross-section

Figure 4.6: Geometry and a computational mesh of a graphite moderator brick of a
nuclear power plant. In Figure 4.6a a complete 3D domain is shown.

4.4.3 Application

In this section, we apply the piecewise linear energy-corrected finite element method

to a real 3D geometry of a graphite moderator brick of a nuclear power plant. Such

a moderation type is commonly used in Advanced Gas-cooled Reactors (AGR) [125].

Efficient simulations of heat distribution in moderator bricks play an important role

in the analysis of the material properties of the whole nuclear core, and accurate com-

putations of temperature distribution can help determine the lifetime of nuclear mate-

rials, which often suffer from large temperature gradients and fast neutron fluxes [11].

The 3D geometry Ω of the graphite brick is presented in Figure 4.6a. The shape

of the brick has a tensorial structure, with identical 2D horizontal cross-sections

containing 16 equally-sized re-entrant corners with angle Θ = 3π/2 at the external

boundary. Heat transfer in a graphite moderator brick, in its simplest form, can be

described by

ut −∆u = f in Ω× (0, T ), (4.34)

u = g on ∂Ω1 × [0, T ], (4.35)

∂νu = 0 on ∂Ω2 × [0, T ], (4.36)

u = 0 on ∂Ω3 × [0, T ], (4.37)

u = u0 in Ω at t = 0. (4.38)
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(a) Temperature distribution at t = 0.25. (b) Temperature distribution at t = 0.5.

Figure 4.7: Temperature distribution in the geometry of a graphite moderator brick
at two different time points. The temperature is shown in a cross-section of a domain
at the height L/2 = 1.5. We would like to point out the nonuniformity of the solution
and lack of rotational symmetry due to choice of the boundary conditions on the
internal, cylindrical wall.

Here, ∂Ω1 is the interior boundary of the domain and g is the heating produced

due to the nuclear reaction occurring in the fuel assembly. The system is thermally

isolated from below on the ∂Ω2 part of the boundary, which is reflected by the uniform

Neumann boundary conditions. Finally, the remaining part of the domain’s boundary

- ∂Ω3, is subject to a circulating coolant of a constant temperature. Note that the

solution is rescaled, so that the temperature there is uniformly distributed.

Exploiting the tensorial structure of the domain Ω, we divide it into prismatic

elements of equal length hz in the vertical dimension. Moreover, each cross-section is

triangulated as shown in Figure 4.6b. It is worth noting that around each of the 16 re-

entrant corners in the cross-sections, we use identical one-element patches consisting

of congruent isosceles triangles. This, together with the tensorial structure of the

mesh, allows us to reuse the same parameter γ in the energy-corrected scheme (4.9)

once computed in the two-dimensional setting, for all the corners. Following (4.15),

we complete the finite element discretisation in space with the explicit Euler time-

stepping scheme.

In the simulations, we choose a homogenuous initial temperature distribution u0 =

0 and the heating on the internal boundary to be given by g = 10 cos
(
πz/(2L)

)(
1 +

sin(φ+4πt)
)

sin(πt), where L = 3 is the height of the domain Ω and (r, φ, z), z ∈ [0, L]

are cylindrical coordinates associated with the domain. The simulation is performed

using N = 5000 time steps with the final time at T = 1 and at the end of the
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simulation the solution is rescaled to a physically meaningful value range by U =

20u + 400. The solution at two intermediate time-steps is presented in the vertical

cross-sections of the domain taken in the middle at the height z = 1.5 at times

t = 0.25 and t = 0.5.

To investigate the convergence of the scheme, we measure two different quantities

of interest, namely the average temperature in the body at the final time-step and

the average temperature in the whole space-time cylinder Ω× [0, T ]

QoI1 =
1

|Ω|

∫
Ω

uh(T, x) dx, QoI2 =
1

T |Ω|

∫ T

0

∫
Ω

uh(t, x) dx dt.

In order to investigate the convergence properties of the quantities of interest, we

perform the computations on four different refinement levels. Initially, we use the

mesh described above, which is then uniformly refined and the time-step size is di-

vided by 4. The results of the computations are presented in Figure 4.8. We compare

the accuracy of the standard finite element with the energy-corrected finite element

method. Together with the quantities of interest QoI1 and QoI2, we include also the

extrapolated values QoIex1 and QoIex2 in the plots. As presented in Figure 4.8, the

application of energy-correction improves the approximation properties of the quan-

tities of interest. Moreover, in the case of the standard finite element approximation

the respective estimated orders of convergence of |QoIex1 − QoI1| and |QoIex2 − QoI2|
are 1.37 and 1.23. The application of the energy-correction improves these orders and

yields estimated values of 2.1 and 2.12, respectively.
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Figure 4.8: Comparison of the approximations of QoI1 (left) and QoI2 (right) ob-
tained using standard and energy-corrected finite element scheme on four consecutive
refinement levels in the space-time domain. Additionaly, extrapolated value of both
quantities of interest are added to the plots for comparison.



Chapter 5

Energy-correction for optimal
control problem

The results presented in this chapter were partly published by the author with L.

John, and B. Wohlmuth in the paper entitled ”Energy corrected FEM for optimal

Dirichlet boundary control problems” in Numerische Mathematik, 139(4):913–938 in

the year 2018, [92].

Here, we investigate the energy-corrected finite element approximation of the

Dirichlet boundary optimal control problem on polygonal domains. We want to begin

with a brief introduction to the field of optimal control by giving a general framework,

in which our particular problem of interest is set. For this, we follow the presentation

of [110].

Optimal control problems consist of several components and are concerned with

the search for a control z, being an element of a set of admissible controls Uad. This

set contains information about potential restrictions imposed on the control, such as

its minimum or maximum pointwise value. Function z controls some process with an

outcome u, which can be described as a solution of

F (u, z) = 0. (5.1)

In problems of interest for us, the function F (·, ·) is a differential equation, potentially

involving partial derivatives in various dimensions. The solution u can be observed

only over some observation operator Φ(u). This operator, for instance, can be a

pointwise evaluation of the function u, its average or maximum.

Finally, we equip the problem with the cost functional J (z), which describes,

what we mean by the optimality. Often, the cost functional can be written in the

form

J (u, z) = C
(
Φ
(
u
)
, z
)

+R(z).

101
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Functional C
(
Φ
(
u(z)

)
, z
)

measures, how close, for a given control z, the observed

solution u is from the desired outcome. The second part R(z) is often interpreted as

a regularisation term. It represents the cost yielded by the control and can be added

for imposing additional regularity properties on the solution.

The optimal control problem can be written as

arg min
z∈Uad

J (u, z), subject to F (u, z) = 0.

Optimal control problems constrained by partial differential equations occur in

many technical applications, such as optimal heating and flow control, see, e.g., [61,

82, 90, 102] or optimal sensor placement [26, 40]. The precise form of the optimisation

problem depends thus on the considered physical process. Equation (5.1) can be an

elliptic [4, 7], parabolic [31, 44, 42], or hyperbolic partial differential equation [101].

Also, the considered spaces of admissible controls vary significantly, from subsets of L2

spaces to measures [158]. Such models need to cover a wide range of computational

domains, among them being polygonal domains with re-entrant corners [83].

The regularity theory of optimal control problems and finite element error esti-

mates has been investigated in numerous articles, see, for instance, [4, 8, 43, 115].

As discussed in Section 2.3.2.2, in the presence of corners in the computational do-

main, the solutions of elliptic equations, in general, have singular components, even

when smooth data are considered. Hence, the standard finite element approximations

exhibit worse convergence properties than the nodal interpolation. Here, we follow

the energy-correction based approach for improving the convergence properties of the

finite element approximation of the optimal control problem. We apply this method

to a certain class of optimal control problems, namely optimal Dirichlet boundary

control in the energy space. The main result of this chapter show the optimal conver-

gence order of the energy-corrected finite element method for the approximation of

this particular optimisation problem, see Theorem 5.2.11. It is worth noting that this

methodology is not limited to this type of problem and can be extended to other types

of boundary control, for example, Neumann and distributed control. Also, different

norms for the control might be considered, cf. [4, 8, 43, 61].

The remainder of the chapter is structured as follows: In Section 5.1, we intro-

duce the optimal Dirichlet boundary control problem, recall the optimality system

and present regularity results. Moreover, we present a numerical example illustrating

the effect of a corner singularity on the accuracy and convergence of the finite element

approximation. We derive optimal error estimates in weighted spaces for the optimal
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control problem using the energy-corrected finite element method in Section 5.2. Fi-

nally, in Section 5.3, we present several numerical results, illustrating the presented

theoretical results.
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5.1 Dirichlet boundary control problem

Let Ω ⊂ R2 be a bounded polygonal domain in the sense of Definition 2.1.11 with

mutually disjoint boundary parts ΓD and ΓC, both of positive measure, satisfying

Γ := ∂Ω = ΓD ∪ ΓC.

In this chapter, we consider as a model problem the optimal Dirichlet boundary

control in the energy space. This type of optimal control problem was proposed

in [110] and has been recently studied in [90, 127]. For a given desired state u, right-

hand side f and a cost-coefficient ρ, it is defined as a minimisation of the following

tracking-type functional

J (u, z) =
1

2
‖u− u‖2

L2(Ω) +
ρ

2
‖z‖2

H
1/2
00 (ΓC)

, (5.2)

subject to the constraint
−∆u = f in Ω,

u = 0 on ΓD,

u = z on ΓC,

(5.3)

and the control constraints

za ≤ z ≤ zb a.e. on ΓC (5.4)

for some za, zb ∈ H1/2
00 (ΓC).

In the notation of the framework introduced above, we set F (u, z) to be the Poisson

equation (5.3). Furthermore, J (u, z) = C(u, z) + R(z), where C(u, z) is the L2(Ω)

distance of the solution u from some desired state u. The regularisation term R(z)

is the energy norm of the control on the domain’s boundary scaled by some positive

parameter ρ. Similar problem with the regularisation involving L2(Γ) norm in place

of the energy norm was studied in [4, 8, 43, 131, 134], where the control z in the

Poisson problem (5.3) is applied on as the Dirichlet or Neumann boundary condition.

The use of the H1/2(Γ) norm on the boundary for the regularisation of the optimal

control problem has several advantages compared to the L2(ΓC) norm. First of all, it

allows for the use of the weak formulation of (5.3) and the so-called ultra-weak form

is not required. Moreover, the energy space H1/2(Γ) appears naturally as the trace

of the Sobolev space H1(Ω). Finally, it results in the higher regularity of the control

than when the L2(Γ) regularisation is used. Hence, also better approximation order

of the finite element method can be obtained, see [127, Section 4].

In particular, we are interested in the case of non-convex domains, i.e. Ω con-

taining a re-entrant corner with interior angle π < Θ < 2π. As before, we use the
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notation λi = iπ/Θ. Moreover, the re-entrant corner is located on the Dirichlet

boundary ΓD, having a fixed positive distance from ΓC, and we assume that the angle

between ΓD and ΓC is not larger than π/2. This restricts the analysis to a certain

subclass of optimal control problems, which nevertheless is not too restrictive and

relevant in many application problems, see, e.g., [59, 102]. For simplicity, we con-

sider a single re-entrant corner, located at the origin. The methodology and analysis

presented here can be straightforwardly extended to a more general case of domains

containing multiple re-entrant corners, see also Section 5.3 for numerical results.

The forthcoming analysis of the energy-correction scheme is carried out in weighted

Lebesgue and weighted Sobolev spaces introduced in Section 2.1.2. We denote by

Hk
0,β(Ω) the set of all functions from Hk

β(Ω) with zero trace and by Hk
0,β(Ω,ΓD) all

functions with zero trace on ΓD. We skip the subscript β, when β = 0.

Recall, H
3/2
pw (ΓC) is the Dirichlet trace space of H2

β(Ω) with respect to ΓC, see

Section 2.1.3. We shall refer to [77, 87] for further details.

To introduce a convenient representation of the norm, we consider for a given

z ∈ H
1/2
00 (ΓC) the harmonic extension uz ∈ H1(Ω), which is defined as the unique

weak solution of the problem

−∆uz = 0 in Ω,

uz = 0 on ΓD,

uz = z on ΓC .

(5.5)

Definition 5.1.1 (Solution operator). For the harmonic extension, we introduce the

solution operator H : H
1/2
00 (ΓC) → H1

0 (Ω,ΓD) assigning a weak solution of (5.5) to

any given z ∈ H1/2
00 (ΓC), namely

Hz = uz ∈ H1
0 (Ω,ΓD).

The following result is a special case of [98, Theorem 6.1.1].

Lemma 5.1.2. Operator H : H
1/2
00 (ΓC)→ H1

0 (Ω,ΓD) is bounded and coercive, namely

for some constant c > 0 depending only on Ω and ΓC such that for all z ∈ H1/2
00 (ΓC)

we have

‖∇Hz‖0 ≤ c‖z‖
H

1/2
00 (ΓC)

, and
〈
Hz, z

〉
≥ c‖z‖2

H
1/2
00 (ΓC)

.

Moreover, when z ∈ H3/2
pw (ΓC), then Hz ∈ H2

α(Ω) for 0 < 1− α < λ1.
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From now on, we will assume that α ≥ 0. Note that H1
0 (Ω,ΓD) ↪→ L2

−α(Ω), see

Theorem 2.1.15.

For the realisation of the energy norm of the control we introduce the Steklov–

Poincaré operator, also known as Dirichlet-to-Neumann map [157].

Definition 5.1.3. We define the operator S : H
1/2
00 (ΓC)→ H−1/2(ΓC) by

Sz = ∂nuz in H−1/2(ΓC), (5.6)

where uz is the solution of (5.5) for a given z.

Due to the Trace Theorem 2.1.19, the Steklov–Poincaré operator (5.6) is bounded

and elliptic in H
1/2
00 (ΓC). The duality product defines then an equivalent norm in

H
1/2
00 (ΓC), namely

‖z‖2

H
1/2
00 (ΓC)

= 〈Sz, z〉ΓC
for all z ∈ H1/2

00 (ΓC). (5.7)

We assume that f, u ∈ L2
−α(Ω) and za, zb ∈ H

3/2
pw (ΓC) with za ≤ zb a.e. on ΓC.

These regularity assumptions can be relaxed for the existence and uniqueness of the

solution of the optimal control problem. However, later we shall see that these more

regular data are required to obtain optimal error convergence rates for the finite

element approximation. Since we equip the problem with control constraints, we

introduce the set of admissible controls by

Uad =
{
z ∈ H1/2

00 (ΓC) : za ≤ z ≤ zb a.e. on ΓC

}
,

where za and zb are assumed to be such that this set is not empty.

5.1.1 Primal and dual problems

In order to derive the dual problem, the solution of problem (5.3) is split into a

homogeneous and an inhomogeneous part, namely u = uz + uf . Here, uf ∈ H1
0 (Ω)

is the solution of the Poisson problem with the right-hand side f and homogeneous

Dirichlet boundary conditions: find uf ∈ H1
0 (Ω) such that

a(uf , v) = 〈f, v〉Ω, for all v ∈ H1
0 (Ω), (5.8)

where the bilinear form is given by

a(u, v) = 〈∇u,∇v〉Ω for all u, v ∈ H1(Ω).
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Hence, the solution of (5.3) can be written as u = Hz + uf .

For the optimality condition, we also need the adjoint solution operator. There-

fore, for a given ψ ∈ L2
α(Ω), we consider the unique solution p ∈ H1

0 (Ω) of the adjoint

problem
−∆p = ψ in Ω,

p = 0 on Γ,
(5.9)

with the variational formulation: find p ∈ H1
0 (Ω) such that

a(p, v) = 〈ψ, v〉Ω for all v ∈ H1
0 (Ω).

Then, the adjoint solution operator H∗ : L2
α(Ω)→ H−1/2(ΓC) for α ≥ 0, is given by

H∗ψ = −∂np in H−1/2(ΓC).

Note, this simply follows from the fact that the adjoint operator defined in this way,

satisfies

〈H∗ψ,w〉ΓC
= −a(p,Hw) + 〈ψ,Hw〉Ω = 〈ψ,Hw〉Ω for all w ∈ H1/2

00 (ΓC).

5.1.2 Optimality conditions and regularity

Let us define w = u− uf . Due to (5.7) and u = Hz + uf the cost functional in (5.2)

can be rewritten as a reduced cost-functional

J̃ (z) =
1

2
‖Hz − w‖2

L2(Ω) +
ρ

2
〈Sz, z〉ΓC

.

The optimal control problem (5.2)–(5.4) is then equivalent to

arg min
z∈Uad

J̃ (z). (5.10)

The following result can be found in [160, Lemma 2.21].

Theorem 5.1.4. The minimisation of the reduced cost functional (5.10), and thus

also the optimal control problem (5.2), is equivalent to the variational inequality

〈H∗
(
Hz − w

)
, w − z〉ΓC

+ ρ 〈Sz, w − z〉ΓC
≥ 0 for all w ∈ Uad.

Therefore, we introduce the operator Tρ : H
1/2
00 (ΓC)→ H−1/2(ΓC) and right-hand

side by

Tρ = H∗H + ρ S, g = H∗(u− uf ) in H−1/2(ΓC). (5.11)
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The optimal control problem (5.2)–(5.4) can then be equivalently formulated as find-

ing z ∈ Uad such that

〈Tρz, w − z〉ΓC
≥ 〈g, w − z〉ΓC

for all w ∈ Uad. (5.12)

The following result describes some desirable properties of operator Tρ.

Lemma 5.1.5. The operator Tρ is H
1/2
00 (ΓC)-elliptic and bounded, namely for some

constants C
Tρ
1 , C

Tρ
2 > 0 that depend only on the domain and the choice of the param-

eter ρ we have

〈Tρz, z〉ΓC
≥ C

Tρ
1 ‖z‖2

H
1/2
00 (ΓC)

, ‖Tρz‖H−1/2(ΓC) ≤ C
Tρ
2 ‖z‖H1/2

00 (ΓC)
,

for all z ∈ H1/2
00 (ΓC).

Proof. The proof of the properties mentioned above is based on the coercivity and

boundedness of the Steklov–Poincaré operator S and the solution operator H, see

Lemma 5.1.2. We begin by showing the coercivity of Tρ.

〈Tρz, z〉ΓC
= 〈H∗Hz, z〉ΓC

+ ρ〈Sz, z〉ΓC

= 〈Hz,Hz〉ΓC
+ ρ〈Sz, z〉ΓC

≥ c1‖z‖2

H
1/2
00 (ΓC)

+ c2ρ‖z‖2

H
1/2
00 (ΓC)

≥ cmin{1, ρ}‖z‖2

H
1/2
00 (ΓC)

.

Similarly, we show the boundedness of the operator

‖Tρz‖H−1/2(ΓC) = sup
w∈H1/2

00 (ΓC)

〈Tρz, w〉ΓC

‖w‖
H

1/2
00 (ΓC)

= sup
w∈H1/2

00 (ΓC)

〈Hz,Hw〉ΓC
+ ρ〈Sz, w〉ΓC

‖w‖
H

1/2
00 (ΓC)

sup
w∈H1/2

00 (ΓC)

‖∇Hz‖0‖∇Hw‖0 + ρ‖z‖
H

1/2
00 (ΓC)

‖w‖
H

1/2
00 (ΓC)

‖w‖
H

1/2
00 (ΓC)

≤ c(1 + ρ)‖z‖
H

1/2
00 (ΓC)

.

In the last step we also used Theorem 2.1.19 for the estimate of the trace of function w.

Note that the constants satisfy C
Tρ
1 = O(1 + ρ) and C

Tρ
2 = O(min{1, ρ}). Conse-

quently, upon the direct application of [110, Theorem 1.2], we deduce that the elliptic

variational inequality (5.12) of first kind has a unique solution.
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Theorem 5.1.6 (Existence of the solution). Problem (5.2), together with its equiva-

lent formulation (5.12), has a unique solution z ∈ Uad.

Let us now introduce the Lagrange multiplier

λ = Tρz − g = H∗(u− u) + ρ Sz = −∂np+ ρ ∂nuz ∈ H−1/2(ΓC), (5.13)

where p ∈ H1
0 (Ω) is the solution of the problem (5.9) with ψ = u − u and uz = Hz

is the harmonic extension defined in (5.5). The boundary ΓC can be split into three

parts, Γa, Γb called active zones and Γn called inactive zone, given by

Γa = {x ∈ ΓC : z(x) = za(x)}, Γb = {x ∈ ΓC : z(x) = zb(x)},

Γn = ΓC \
(
Γa ∪ Γb

)
.

Following [90] we can reformulate the variational problem (5.12) equivalently as a

Signiorini boundary value problem

−∆uz = 0 in Ω, −∆p = u− u in Ω,

uz = 0 on ΓD, uz = za on Γa, uz = zb on Γb, ρ∂nuz = ∂np on Γn (5.14)

equipped with the inequality constraints

ρ∂nuz ≥ ∂np on Γa, ρ∂nuz ≤ ∂np on Γb, za < z < zb on Γn.

These last constraints correspond to the Karush–Kuhn–Tucker conditions for the

variational inequality (5.12). This is a standard primal-dual formulation of variational

inequality (5.12), see [76, 95].

5.1.3 Weak formulation

In the following, we derive the weak formulation of the optimality system in a saddle-

point form. For the adjoint problem (5.9) with ψ = u− u, we obtain

a(p, v) = 〈u− u, v〉Ω + 〈∂np, v〉ΓC
for all v ∈ H1

0 (Ω,ΓD). (5.15)

Similarly, for the primal problem we have

a(u, v)− 〈∂nuz, v〉ΓC
= a(uf , v) for all v ∈ H1

0 (Ω,ΓD),

and with the boundary condition ρ∂nuz = λ+ ∂np on ΓC we arrive at

a(u, v) =
1

ρ
〈∂np+ λ, v〉ΓC

+ a(uf , v) for all v ∈ H1
0 (Ω,ΓD). (5.16)
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Moreover, we demand the Lagrange multiplier λ to satisfy

〈λ,w − z〉ΓC
≥ 0 for all w ∈ Uad.

Finally, combining (5.16) with (5.15) and the variational inequality leads for given

uf ∈ H1
0 (Ω) to the following variational formulation of the optimal control problem,

see [90, Section 3.1.2] for more details: find (u, p, λ) ∈ H1
0 (Ω,ΓD)×H1

0 (Ω)×H−1/2(ΓC)

such that

aρ(u, v)−b(v, p)− 〈λ, v〉ΓC
= 〈u, v〉Ω + ρ a(uf , v) for all v ∈ H1

0 (Ω,ΓD),

b(u, q) = 〈f, q〉Ω for all q ∈ H1
0 (Ω),

〈λ,w − u|ΓC
〉ΓC

≥ 0 for all w ∈ Uad,

(5.17)

where the bilinear forms are given by

aρ(u, v) = 〈u, v〉Ω + ρ 〈∇u,∇v〉Ω, b(v, q) = 〈∇v,∇q〉Ω.

Remark 5.1.7. In the absence of box-constraints, so when Uad = H
1/2
00 (ΓC), the vari-

ational inequality (5.12) turns into equality, and problem (5.17) turns into a simple

2-by-2 saddle-point problem of finding (u, p) ∈ H1
0 (Ω,ΓD)×H1

0 (Ω) such that

aρ(u, v)−b(v, p) = 〈u, v〉Ω + ρ a(uf , v) for all v ∈ H1
0 (Ω,ΓD),

b(u, q) = 〈f, q〉Ω for all q ∈ H1
0 (Ω).

(5.18)

From now on, we assume that the weight satisfies

1− λ1 < α < 1.

For the solution, the following regularity result is valid.

Theorem 5.1.8. Let Ω ⊂ R2 be a bounded polygonal domain with one re-entrant

corner with an interior angle π < Θ < 2π. Furthermore, let f, u ∈ L2
−α(Ω), za, zb ∈

H
3/2
pw (ΓC), za < zb. Then the solution of Problem (5.17), satisfies u ∈ H1

0 (Ω,ΓD) ∩
H2
α(Ω), p ∈ H1

0 (Ω)∩H2
α(Ω), z ∈ H1/2

00 (ΓC)∩H3/2
pw (ΓC), and the following splitting into

regular and singular parts holds

u = U +
∑

λi<1+α

kisi, and p = P +
∑

λi<1+α

lisi.

Here U, P ∈ H2
−α(Ω) and si are the singular functions (2.2). Moreover, we obtain

g ∈ H1/2
pw (ΓC), where g is defined in (5.11).
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Proof. For the proof of this theorem in the case of convex Ω and α = 0, we refer the

reader to [127][Theorem 2.2]. Following the reasoning presented there, the proof can

be generalised to polygonal domains containing re-entrant corners.

Due to Theorem 5.1.6, there exists a unique solution z ∈ H1/2
00 (ΓC). Furthermore,

the primal state can be written as u = Hz + uf , where uf is the unique solution

of (5.8). According to Theorem 2.2.6, we have uf ∈ H2
α(Ω) ∩H1

0 (Ω) and

uf = Uf +
∑

λi<1+α

kfi si (5.19)

for some Uf ∈ H2
−α(Ω) and kfi ∈ R.

We also know that Hz ∈ H1
0 (Ω,ΓD), see Lemma 5.1.2, so u ∈ H1

0 (Ω,ΓD).

Let η be a smooth cut-off function as defined in (2.2) with r > 0 chosen so

that Br ⊂ Ω, where BR is a ball of radius R centered at the re-entrant corner. We

can write Hz = ηHz + (1− η)Hz.

According to [127, Theorem 2.2], the Signiorini problem (5.17) does not exhibit

any singular behaviour at the boundary and thus (1− η)Hz ∈ H2(Ω). Finally, notice

that ηHz is the unique solution of the equation

−∆ũ = −∆
(
ηHz

)
, in Ω, and ũ = 0, on Γ.

Since in Br we have −∆
(
ηHz

)
= 0, then −∆

(
ηHz

)
∈ L2

−α(Ω). Theorem 2.2.6

guarantees ũ ∈ H2
α(Ω) and ũ can be split into regular and singular part

ũ = Ũ +
∑

λi<1+α

k̃isi, (5.20)

where Ũ ∈ H2
−α(Ω) and k̃i ∈ R.

Finally, taking into account (5.19), we get u ∈ H2
α(Ω) and the desired splitting

into regular and singular parts

u = U +
∑

λi<1+α

kisi

holds true. Due to Trace Theorem 2.1.19, we also have z ∈ H1/2
00 (ΓC) ∩H3/2

pw (ΓC).

Applying the results of Theorem 2.2.6, the adjoint state being the unique solution

of (5.9) with φ = u− u satisfies p ∈ H2
α(Ω) and for some P ∈ H2

−α(Ω) and li ∈ R

p = P +
∑

λi<1+α

lisi.
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The boundary control z and box constraints are located far from the re-entrant cor-

ner, so the regularity of the control variable z is not influenced by the non-convexity.

However, a singularity in the primal and adjoint states u and p being solutions of

the Poisson equation, may occur in the vicinity of the re-entrant corner. Thus, we

may not, in general, obtain desirable H2(Ω) regularity of the solution and the use of

weighted H2
α(Ω) space is necessary.

The angle between ΓC and ΓD is assumed to be at most of size π/2. Otherwise,

another type of singular functions would appear in the solution around the corner,

where the Neumann and Dirichlet boundaries in the Signiorini formulation (5.14)

meet [108], and some additional numerical treatment of such singularities would need

to be introduced. This, however, is beyond the scope of this work.

5.1.4 Finite element discretization

Now, we would like to show the negative influence that the presence of the re-entrant

corner has on the convergence of the finite element approximation of the optimal

control problem (5.17). To do this, we first introduce the finite element discretisation

of the problem (5.18), where no box-constraints are imposed. Finally, we recall the

known convergence result proposed in [127] in the convex setting.

Let Th be a family of uniformly refined admissible and shape-regular triangula-

tions of Ω, as introduced in Section 2.3. So far, we considered only problems with

homogeneous conditions on the boundary. In this chapter, however, we are inter-

ested in problems with nonhomogeneous boundary values, and hence, we would like

to redefine the discrete spaces as follows

Vh = S1
h ∩H1

0 (Ω,ΓD) ⊂ H1
0 (Ω,ΓD), Qh = S1

h ∩H1
0 (Ω) ⊂ H1

0 (Ω).

Note that this is consistent with the notation used before, since when ΓC = ∅, spaces

Vh and Qh are equal.

From now on, we assume for the control constraints that za, zb ∈ H3/2
pw (ΓC). Let

us introduce the finite element space for the control as a trace operator space of Vh,

namely

Zh = Vh|ΓC
∩H1/2

00 (ΓC) ⊂ H
1/2
00 (ΓC).

The triangulation Th defines a natural partition Zh of the boundary Γ intro inter-

vals of the length O(h). Also, the traces of the nodal basis functions {φi}K+L
i=1 asso-

ciated with the space Sh, see (2.9), define the nodal basis {φi|Γ}Ni=1 of the space Zh
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on the partition Zh. Therefore, the nodal interpolation operator on the boundary of

the domain Ω is well-defined.

Definition 5.1.9 (Interpolation on the boundary). Let XΓC
be the set of nodal points

on the boundary ΓC associated with the partition Zh. Let also Γ0 ⊂ Γ be an open set.

We define the nodal interpolation operator Ih : C(Γ0)→ Zh by

Ihv =
∑

i: xi∈XΓC
∩Γ0

v(xi)φi|Γ.

Now, we state the result showing the accuracy of the approximation using the

interpolation operator on the given partition Zh of the boundary. It will serve as a

benchmark, with which we shall compare the accuracy of the finite element schemes

for the optimal control problem. A similar set of estimates to Theorem 2.3.10 also

holds when the boundary is considered, see [148, Equation 10.11].

Theorem 5.1.10 (Interpolation on the boundary). Let Γ0 ⊂ Γ be an open set and

let v ∈ Hs(Γ0) for some 1/2 < s ≤ 2. Then for any 0 ≤ r ≤ min(1, s) the following

interpolation error estimates hold for some c > 0 independent of v and h

‖v − Ihv‖Hr(Γ0) ≤ chs−r|v|Hs(Γ0).

Note that the functions v ∈ Hs(Γ0), where s > 1/2, are continuous due to the

embedding stated in Theorem 2.1.9. Hence, the interpolation operator is also well

defined.

Even in the case of the convex polygonal domain, no more than H
1/2
00 (ΓC) reg-

ularity for the control and H2(Ω) regularity for the primal state u and the adjoint

state p, in general, can be obtained, see Theorem 5.1.8. Hence, the application of the

higher order finite element discretisation would not improve the convergence property

of the finite element scheme. Therefore, we restrict our interest to the piecewise linear

approximation only.

For now, we only state the finite element approximation of the optimal control

problem in the absence of the box-constraints (5.4). This means that λ = 0 in (5.17)

and the optimisation problem reduces to the saddle point formulation (5.18). We use

this formulation of the problem for introducing the discretisation.

Definition 5.1.11. The finite element discretisation of problem (5.18) reads: find

(uh, ph) ∈ Vh ×Qh such that

aρ(uh, vh)−b(vh, ph) = 〈u, vh〉Ω + ρ a(uf,h, vh) for all vh ∈ Vh,

b(uh, qh) = 〈f, qh〉Ω for all qh ∈ Qh.
(5.21)
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Here, uf,h ∈ Qh is a standard finite element approximation of the Poisson (2.10) with

the right-hand side f . The discrete control is obtained applying the trace zh = uh|ΓC
∈

Zh.

The following convergence result was given in [127, Corollary 3.8] in a general

setting including the box-constraints. However, for the sake of presentation, we show

only its version restricted to the case relevant here.

Theorem 5.1.12 (Error estimate for on convex polygonal domains). Let Ω ⊂ R2 be a

bounded, convex polygonal domain and let f, u ∈ L2(Ω). Then, the following estimates

hold for the solution (uh, ph, zh) ∈ Vh×Qh×Zh of (5.21) and some constant c(u, f) > 0

independent of h

‖z − zh‖L2(ΓC) ≤ c(u, f)h3/2, and ‖z − zh‖H1/2(ΓC) ≤ c(u, f)h.

Moreover,

‖u− uh‖0 ≤ c(u, f)h2, and ‖p− ph‖0 ≤ c(u, f)h2.

Recently, these results have been improved and extended to a more general case

of arbitrary polygonal domains in [166, Theorem 3].

Theorem 5.1.13 (Error estimate for on polygonal domains). Let Ω ⊂ R2 be a polygo-

nal domain with the largest interior angle Θ > 0 and suppose that f, u ∈ L2(Ω). Then,

for any ε > 0, the following estimates hold for the solution (uh, ph, zh) ∈ Vh×Qh×Zh
of (5.21) and some constant c(u, f) > 0 independent of h

‖z − zh‖H1/2(ΓC) ≤ c(u, f)hmin(1,λ1−ε).

Furthermore, if Ω is convex and u ∈ C0,σ(Ω) for some σ > 0, then there holds

‖z − zh‖H1/2(ΓC) ≤ c(u, f)hmin(3/2,λ1−ε).

These convergence orders are optimal in the sense of the interpolation error on

the boundary of the domain stated in Theorem 5.1.10. Also inside the domain Ω the

primal and adjoint states u and p exhibit optimal convergence, see Theorem 2.3.10.

Yet, the convergence on the boundary depends on the size of the largest interior angle

in the domain. We will confirm this result numericaly and further, focus our attention

on improving the convergence property of the finite elements approximation.
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5.1.5 Numerical examples

In this section, we show the difference between the numerically obtained estimates

of the convergence orders of the finite element schemes on convex and non-convex

domains. In the latter case, similarly as in the case of elliptic problems from Sec-

tion 2.3.2.2 and parabolic problems discussed in Chapter 4, we observe significantly

worse approximation properties than the ones yield by the interpolation operator.

For the sake of simplicity, we consider no box-constraints, so λ = 0 in formu-

lation (5.17). Following (5.21), we denote the finite element solution of the discrete

version of (5.17) by (uh, ph) ∈ Vh×Qh. As a computational domain we consider either

the unit square Ω = (0, 1)2 with ΓC = Γ or the non-convex domain Ω = (−1, 2)2\[0, 1]2

with ΓC = {−1, 2} × [−1, 2] ∪ [−1, 2] × {−1, 2} and ΓD = Γ \ ΓC, as illustrated in

Figure 5.1.

ΓC ΓC ΓD

Figure 5.1: Computational domains with corresponding initial mesh, for the convex-
case (left) and the non-convex-case (right).

In order to illustrate the influence of a re-entrant corner on the convergence of the

finite element approximation we choose a smooth desired state u = ((x1 − 1/2)2 +

(x2 − 1/2)2)2, right-hand side f = 0 and cost coefficient ρ = 1. Note, in the case of

the non-convex domain we have four re-entrant corners, each with an interior angle

of size Θ = 3/2π.

For the numerical tests, we choose α = 1/3. The weights are applied in the vicinity

of every re-entrant corner in the domain. This choice of the weight parameters induces

a slightly stronger norm than required by the theory presented in Section 2.3.3. This

difference between the two norms cannot be observed numerically, and we make this

particular choice of the weighting parameter α to keep the presentation consistent

with the results presented in Section 5.3. Since the exact solution for these problems

is unknown we take the solution of refinement level L = 9, denoted by (uh9 , ph9 , zh9),

as a reference solution.
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convex domain
L ‖uh9 − uh‖0 eoc ‖uh9 − uh‖α eoc ‖zh9 − zh‖L2(ΓC) eoc
1 2.8098e–04 – 1.7264e–04 – 9.7098e–04 –
2 7.9573e–05 1.82 5.0858e–05 1.76 3.6516e–04 1.41
3 1.8388e–05 2.11 1.2022e–05 2.08 1.0333e–04 1.82
4 4.2616e–06 2.11 2.7865e–06 2.11 2.6673e–05 1.95
5 1.0259e–06 2.05 6.6849e–07 2.06 6.7037e–06 1.99
6 2.5248e–07 2.02 1.6422e–07 2.03 1.6628e–06 2.01
7 6.2377e–08 2.02 4.0545e–08 2.02 3.9999e–07 2.06

non-convex domain
L ‖uh9 − uh‖0 eoc ‖uh9 − uh‖α eoc ‖zh9 − zh‖L2(ΓC) eoc
1 8.3320e–01 – 1.2354e+00 – 8.4197e–01 –
2 3.0218e–01 1.46 4.3269e–01 1.51 3.2203e–01 1.39
3 1.1299e–01 1.42 1.5131e–01 1.52 1.1319e–01 1.51
4 4.3259e–02 1.39 5.6016e–02 1.43 4.0961e–02 1.47
5 1.6621e–02 1.38 2.1209e–02 1.40 1.5269e–02 1.42
6 6.2772e–03 1.40 7.9527e–03 1.42 5.6907e–03 1.42
7 2.2261e–03 1.50 2.8085e–03 1.50 2.0069e–03 1.50

Table 5.1: Errors and estimated convergence orders for the optimal control problem
in a convex and non-convex domain.

In Table 5.1, we presented errors in the standard and weighted L2-norms as well

as estimated orders of convergence (eoc). We obtain optimal convergence rates in

the case of a convex domain, both for the primal state as well as the control on

the boundary. In the non-convex case, we observe a reduced convergence order,

for the primal state in the standard L2(Ω) and for the control in the L2(ΓC)-norm,

when compared with the interpolation error stated in Theorem 5.1.10. Also, the

consideration of a weighted norm does not increase the order of convergence.

This means that in the presence of a re-entrant corner a non-optimal convergence

is obtained and the pollution effect, see Theorem 2.3.21, known in the case of elliptic

and parabolic problems is present also in the optimal control problem. The need

for eliminating the pollution motivates the application of an energy-corrected finite

element approach.
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5.2 Energy-corrected finite elements for optimal

boundary control

In this section, we extend the energy-corrected finite element approach to the optimal

Dirichlet boundary control problem introduced in Section 5.1. We will show that

the suboptimal convergence results on non-convex polygonal domains discussed in

Section 5.1.5 can be improved using the energy-corrected finite element method. The

line of reasoning is similar to the one proposed in [127] in the case of the standard

finite element method and convex domains. However, the use of the weighted Sobolev

spaces is necessary.

Whenever we speak of the energy-corrected finite element method in this section,

we assume that the optimal correction parameter γ∗, see (2.33) is known so that the

assumption (2.25) is satisfied. Furthermore, we also impose the conditions (U) on the

computational mesh in the vicinity of the re-entrant corner. The analysis presented

here is based on the investigations of the approximative operators in the discrete

spaces, defined with the help of the energy-corrected method. We will treat all the

operators separately in Sections 5.2.1–5.2.3.

We define the set of discrete admissible controls as

Uad,h =
{
zh ∈ Zh : za(xi) ≤ zh(xi) ≤ zb(xi) for all nodes xi ∈ ΓC

}
,

which is a subset of H
1/2
00 (ΓC). The corresponding finite element semi-discretisation

of (5.12) reads then: find zh ∈ Uad,h such that

〈Tρ zh, wh − zh〉ΓC
≥ 〈g, wh − zh〉ΓC

for all wh ∈ Uad,h. (5.22)

Similarly as in the continuous setting presented in Theorem 5.1.6, due to the bound-

edness and coercivity of the operator Tρ, see Lemma 5.1.5, problem (5.22) admits a

unique solution [110, Theorem 1.2]. The following result on error estimates can be

found in [127, 147].

Theorem 5.2.1. Let z ∈ Uad and zh ∈ Uad,h be the unique solutions of (5.12)

and (5.22) respectively and let za, zb ∈ H
3/2
pw (ΓC), g ∈ H

1/2
pw (ΓC). Then the follow-

ing error estimates are satisfied for some c > 0

‖z − zh‖H1/2
00 (ΓC)

≤ ch‖z‖
H

3/2
pw (ΓC)

, ‖z − zh‖L2(ΓC) ≤ ch3/2‖z‖
H

3/2
pw (ΓC)

.

All the arguments presented there hold also in the presence of re-entrant corner

in the domain as long as the control boundary has a fixed positive distance from the

re-entrant corner.
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5.2.1 Primal problem

Now we want to define a discrete counterpart of the solution operator H. Therefore,

let us first denote by E a continuous extension operator, vanishing in a fixed neigh-

borhood of the re-entrant corner, which is both a mapping E : H
1/2
00 (ΓC)→ H1

0 (Ω,ΓD)

and E : H
1/2
00 (ΓC) ∩H3/2

pw (ΓC)→ H1
0 (Ω,ΓD) ∩H2(Ω).

Let η be a smooth cut-off function as defined in (2.2) with r > 0 chose so that Br ⊂
Ω, where BR is a ballof radius R centered at the re-entrant corner. Without the loss

of generality, we can choose Ez = (1− η)H.

Furthermore, let Πh : H1(Ω)→ Vh be a Scott-Zhang quasi-interpolation operator,

see [144] for details.

Definition 5.2.2 (Modified Ritz projection). For a given ξ ∈ H1
0 (Ω,ΓD) we intro-

duce the energy-corrected Ritz projection Rm
h : H1

0 (Ω,ΓD) → Vh as a solution of the

following problem: find Rm
h ξ ∈ Vh with Rm

h ξ = Πhξ on ΓC such that

ah(R
m
h ξ, vh) = a(ξ, vh) for all vh ∈ Vh.

This definition of the modified Ritz projection is a straightforward extension of

the one given in Section 2.3.3 for the problems with homogeneous Dirichlet boundary

conditions.

Since Qh ⊂ Vh, we then find um0,h ∈ Qh as the solution of

ah(u
m
0,h, qh) = −ah(Rm

h Ez, qh) for all qh ∈ Qh.

Now, we define the approximate solution operator H̃ : H
1/2
00 (ΓC)→ L2

−α(Ω) by

H̃z = um0,h +Rm
h Ez. (5.23)

Note, the continuous solution operatorHz can be similarly expressed byHz = u0+Ez.

This definition is different than the one introduced in [127]. However, the advantages

of our definition will be apparent once the discrete adjoint operator is considered, see

Section 5.2.3.

Now, due to the results described in Section 2.3.3, the following error estimates

are valid.

Lemma 5.2.3. The approximate solution operator H̃ : H
1/2
00 (ΓC)→ L2

−α(Ω), defined

in (5.23), is bounded. Moreover, if z ∈ H
1/2
00 (ΓC) ∩ H3/2

pw (ΓC), the following error

estimates hold for some c > 0

‖(H− H̃)z‖α ≤ ch2‖z‖
H

3/2
pw (ΓC)

, and ‖∇(H− H̃)z‖α ≤ ch‖z‖
H

3/2
pw (ΓC)

.
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Proof. Let s ∈ {0, 1}. From the definition of the solution operatorH and approximate

solution operator H̃ we see that

‖∇s(H− H̃)z‖α ≤ ‖∇s(u0 − um0,h)‖α + ‖∇s(Ez −Rm
h Ez)‖α.

Following equalities hold for all qh ∈ Qh

ah(u
m
0,h, qh) = −ah(Rm

h Ez, qh) = −a(Ez, qh) = 〈∆Ez, qh〉Ω.

Thus, due to Theorem 2.3.27, we have for some c > 0

‖∇s(Ez −Rm
h Ez)‖α ≤ ch2−s‖∆Ez‖−α ≤ ch2−s‖Ez‖H2(Ω) ≤ ch2−s‖z‖

H
3/2
pw (ΓC)

.

Similarly, we obtain ‖∇s(u0 − um0,h)‖α ≤ ch2−s‖z‖
H

3/2
pw (ΓC)

and hence, the assertion

follows.

Let now uf ∈ H1
0 (Ω) be the weak solution of problem (5.8) and umf,h ∈ Qh its finite

element approximation obtained using the energy-corrected scheme

ah(u
m
f,h, qh) = 〈f, qh〉Ω for all qh ∈ Qh.

Then, according to Theorem 2.3.27, for f ∈ L2
−α(Ω) we have for some c > 0 indepen-

dent of f

‖uf − umf,h‖α ≤ ch2‖f‖−α. (5.24)

5.2.2 Steklov–Poincaré operator

The Steklov–Poincaré operator S, defined in (5.6), can be expressed by

〈Sz, w〉ΓC
= 〈∇Hz,∇Ew〉Ω, for all w ∈ H1/2

00 (ΓC).

This, in turn, motivates the following definition of the approximate Steklov–

Poincaré operator S̃ : H
1/2
00 (ΓC)→ H−1/2(ΓC) by

〈S̃z, w〉ΓC
= 〈∇H̃z,∇Ew〉Ω for all w ∈ H1/2

00 (ΓC), (5.25)

with the approximative solution operator H̃, see (5.23).

Lemma 5.2.4. The approximative Steklov–Poincaré operator S̃, defined in (5.25),

is bounded and H
1/2
00 (ΓC)-elliptic. For z ∈ H1/2

00 (ΓC) ∩H3/2
pw (ΓC) there holds the error

estimate for some c > 0 independent of z

‖(S − S̃)z‖H−1/2(ΓC) ≤ ch‖z‖
H

3/2
pw (ΓC)

.
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Proof. From the definition of H−1/2(ΓC) norm and the application of the Cauchy–

Schwarz inqeuality, we get

‖(S − S̃)z‖H−1/2(ΓC) = sup
0 6=w∈H1/2

00 (ΓC)

〈∇(H− H̃)z,∇Ew〉Ω
‖w‖

H
1/2
00 (ΓC)

≤ ‖∇(H− H̃)z‖α sup
06=w∈H1/2

00 (ΓC)

‖∇Ew‖−α
‖w‖

H
1/2
00 (ΓC)

.

Function Ew is equal to 0 in a fixed neighborhood of the re-entrant corner and thus

‖∇Ew‖−α ≤ c‖∇Ew‖0.

The assertion holds due to Lemma 5.2.3 and the boundedness of the extension oper-

ator E .

5.2.3 Adjoint problem

Now, we introduce the adjoint of the discrete solution operator. Consider the adjoint

problem (5.9) and the operator H∗ψ = −∂np in H−1/2(ΓC).

We define the energy-corrected finite element approximation of the adjoint prob-

lem as finding pmh ∈ Qh such that

ah(p
m
h , qh) = 〈ψ, qh〉Ω for all qh ∈ Qh.

For all ψ ∈ L2
α(Ω) we define the operator H̃∗ : L2

α(Ω)→ H−1/2(ΓC) by

〈H̃∗ψ,w〉ΓC
= −ah(pmh , Rm

h Ew) + 〈ψ,Rm
h Ew〉Ω for all w ∈ H1/2

00 (ΓC). (5.26)

In particular we obtain by the definitions above for all ψ ∈ L2
α(Ω), z ∈ H1/2

00 (ΓC)

〈H̃∗ψ, z〉ΓC
= −ah(pmh , Rm

h Ez) + 〈ψ,Rm
h Ez〉Ω

= ah(u
m
0,h, p

m
h ) + 〈ψ,Rm

h Ez〉Ω
= 〈ψ, um0,h〉Ω + 〈ψ,Rm

h Ew〉Ω
= 〈ψ, H̃z〉Ω,

and thus H̃∗ is indeed the adjoint discrete solution operator.

According to Theorem 2.3.27 the following lemma holds.

Lemma 5.2.5. Let ψ ∈ L2
−α(Ω), and let p ∈ H1

0 (Ω) and pmh ∈ Qh be solutions of the

adjoint problem and its energy-corrected finite element approximation, respectively.

Then, the following error estimates hold for some c > 0 independent of ψ and h

‖p− pmh ‖α ≤ ch2‖ψ‖−α, and ‖∇(p− pmh )‖α ≤ ch‖ψ‖−α.
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We begin the analysis of the discrete adjoint operator by showing an approxima-

tion result for the energy-corrected finite element in the limited regularity setting. In

Theorem 2.3.27, we assumed that the solution satisfies u ∈ H2
α(Ω) for the piecewise

linear finite element. Now, we will show what happens, if only H1
−α(Ω) regularity is

assumed.

Lemma 5.2.6. Let w ∈ H1
−α(Ω). Then the following error estimate holds for some c >

0 independent of w and h

‖w −Rm
h w‖α ≤ ch‖w‖1,−α.

Proof. Consider an adjoint problem

−∆ξ = r2α
(
w −Rm

h w
)

in Ω, and ξ = 0 on Γ.

Let ξmh ∈ Qh be the energy-corrected finite element approximation of ξ. Using the

modified Galerkin orthogonality, see Theorem 2.3.25, we obtain

‖w −Rm
h w‖2

α = a(w −Rm
h w, ξ)

= a(w −Rm
h w, ξ − ξmh )− ch(Rm

h w, ξ
m
h )

= a(w, ξ − ξmh ).

Now, applying the Cauchy–Schwarz inquality and the results of Theorem 2.3.27, we

see that

‖w −Rm
h w‖2

α ≤ ‖w‖1,−α‖ξ − ξmh ‖1,α

≤ ch‖w‖1,−α
∥∥r2α

(
w −Rm

h w
)∥∥
−α

= h‖w‖1,−α
∥∥w −Rm

h w
∥∥
α

and hence, the assertion follows.

Finally, we can state the result describing the approximation accuracy of the

adjoint discrete operator.

Lemma 5.2.7. The approximate adjoint solution operator H̃∗, defined in (5.26), is

bounded. Moreover, for ψ ∈ L2
−α(Ω) the following error estimate holds for some c > 0

independent of ψ and h

‖(H̃∗ −H∗)ψ‖H−1/2(ΓC) ≤ ch‖ψ‖−α.
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Proof. Since ah(p
m
h , R

m
h Ew) = a(pmh , Ew), we obtain by the definition of the norm in

H−1/2(ΓC) and the adjoint (discrete) solution operator the estimate

‖(H̃∗ −H∗)ψ‖H−1/2(ΓC) = sup
0 6=w∈H1/2

00 (ΓC)

〈(H̃∗ −H∗)ψ,w〉ΓC

‖w‖
H

1/2
00 (ΓC)

= sup
06=w∈H1/2

00 (ΓC)

a(p− pmh , Ew) + 〈ψ,Rm
h Ew − Ew〉Ω

‖w‖
H

1/2
00 (ΓC)

≤ ‖∇(p− pmh )‖α sup
06=w∈H1/2

00 (ΓC)

‖∇Ew‖−α
‖w‖

H
1/2
00 (ΓC)

+ ‖ψ‖−α sup
06=w∈H1/2

00 (ΓC)

‖Ew −Rm
h Ew‖α

‖w‖
H

1/2
00 (ΓC)

.

From Lemma 5.2.6, we conclude ‖Ew−Rm
h Ew‖α ≤ ch‖Ew‖1. Applying Lemma 5.2.5,

together with the boundedness of the extension operator E , completes the proof.

Notice that H2
α(Ω) ↪→ L2

α−2(Ω) ↪→ L2
−α(Ω), see Theorem 2.1.15, and we thus can

set ψ = u− u ∈ L2
−α(Ω).

5.2.4 Operator estimates

The operator Tρ and g in (5.22) cannot be represented exactly in the implementation

as it would require a precise implementation of the operators H,H∗ and the Steklov–

Poincaré operator S. Consequently, we introduce suitable approximations. Let us

denote by T̃ρ and g̃ approximations of Tρ and g given in (5.11) defined as

T̃ρ = H̃∗H̃ + ρS̃, g̃ = H̃∗(u− umf,h) in H−1/2(ΓC).

Notice that the energy-correction method is included in the definitions of T̃ρ and g̃.

We now move to the definition of the fully-discrete solution of the optimal control

problem.

Definition 5.2.8 (Discrete optimal control). We define the finite element approxi-

mation of the optimal control problem (5.12) as finding z̃h ∈ Uad,h such that

〈T̃ρz̃h, wh − z̃h〉ΓC
≥ 〈g̃, wh − z̃h〉ΓC

for all wh ∈ Uad,h. (5.27)

We first study the properties of the discrete operator T̃ρ. We begin by showing that

it is elliptic and bounded. Similar properties also hold for the continuous counterpart

of the operator, see Lemma 5.1.5.
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Lemma 5.2.9. The operator T̃ρ is Zh-elliptic and bounded, namely, for some c > 0

independent of h we have〈
T̃ρzh, zh

〉
ΓC
≥ c‖zh‖2

H
1/2
00 (ΓC)

, ‖T̃ρzh‖H−1/2(ΓC) ≤ c‖zh‖H1/2
00 (ΓC)

,

for all zh ∈ Zh.

Proof. Boundedness follows straight from the boundedness of the discrete operators

H̃, H̃∗ and S̃.

Recall,
〈
H̃∗ψ, zh

〉
ΓC

=
〈
ψ, H̃zh

〉
Ω

, thus we obtain〈
T̃ρzh, zh

〉
ΓC

= ‖H̃zh‖2
0 + ρ

〈
S̃zh, zh

〉
ΓC

for all zh ∈ Zh.

The assertion follows then from the ellipticity of the approximative Steklov-Poincaré

operator and ellipticity of the operator H̃.

Existence of a unique solution z̃h ∈ Uad,h of (5.27) follows from [110, Theorem 1.2].

The following error estimate is valid.

Lemma 5.2.10. Let z ∈ H1/2
00 (ΓC)∩H3/2

pw (ΓC). Furthermore, let zh, z̃h ∈ Uad,h be the

solutions of (5.22) and (5.27) respectively. Then the following error estimate holds

for some c > 0 independent of z and zh

‖z − z̃h‖H1/2
00 (ΓC)

≤ c‖z − zh‖H1/2
00 (ΓC)

+ ch
(
‖z‖

H
3/2
pw (ΓC)

+ ‖u‖−α + ‖f‖−α
)
.

Proof. Due to the ellipticity and boundedness of the operator T̃ρ and the definitions

of variational problems (5.12) and (5.27), we obtain

‖zh − z̃h‖2

H
1/2
00 (ΓC)

≤ c〈T̃ρ(zh − z̃h), zh − z̃h〉ΓC

= c
(
〈T̃ρzh, zh − z̃h〉ΓC

− 〈T̃ρz̃h, zh − z̃h〉ΓC

+ 〈Tρzh, z̃h − zh〉ΓC
− 〈Tρzh, z̃h − zh〉ΓC

)
≤ c
(
〈T̃ρzh, zh − z̃h〉ΓC

+ 〈g − g̃, zh − z̃h〉ΓC
+ 〈Tρzh, z̃h − zh〉ΓC

)
≤ c
(
‖(Tρ − T̃ρ)zh‖H−1/2(ΓC) + ‖g − g̃‖H−1/2(ΓC)

)
‖zh − z̃h‖H1/2

00 (ΓC)
.

Application of the triangle inequality yields

‖z − z̃h‖H1/2
00 (ΓC)

≤ c
(
‖z − zh‖H1/2

00 (ΓC)
+
∥∥(Tρ − T̃ρ)z∥∥H−1/2(ΓC)

+ ‖g − g̃‖H−1/2(ΓC)

)
.

(5.28)
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Now, using the triangle inequality and boundedness of the operator H∗ : L2
α(Ω) →

H−1/2(ΓC), we get

‖(Tρ − T̃ρ)z‖H−1/2(ΓC) = ‖(H∗H− H̃∗H̃)z + ρ(S − S̃)z‖H−1/2(ΓC)

≤ ‖(H∗ − H̃∗)Hz‖H−1/2(ΓC) + ‖H̃∗(H− H̃)z‖H−1/2(ΓC)

+ ρ‖(S − S̃)z‖H−1/2(ΓC)

≤ ‖(H∗ − H̃∗)Hz‖H−1/2(ΓC) + c‖(H− H̃)z‖α
+ ρ‖(S − S̃)z‖H−1/2(ΓC),

where we used the fact that uz = Hz ∈ L2
−α(Ω). Applying Lemma 5.2.3 together

with Lemma 5.2.4 and Lemma 5.2.7, we have

‖(Tρ − T̃ρ)z‖H−1/2(ΓC) ≤ ch‖z‖
H

3/2
pw (ΓC)

. (5.29)

Using a similar argument, we also see that

‖g − g̃‖H−1/2(ΓC) = ‖H∗(u− uf )− H̃∗(u− umf,h)‖H−1/2(ΓC)

≤ ‖(H∗ − H̃∗)u‖H−1/2(ΓC) + ‖H̃∗(uf − umf,h)‖H−1/2(ΓC)

+ ‖(H∗ − H̃∗)uf‖H−1/2(ΓC)

≤ ‖(H∗ − H̃∗)u‖H−1/2(ΓC) + c‖uf − umf,h‖α
+ ‖(H∗ − H̃∗)uf‖H−1/2(ΓC).

Application of (5.24) and Lemma 5.2.7 yields

‖g − g̃‖H−1/2(ΓC) ≤ c
(
h2‖f‖−α + h

(
‖u‖−α + ‖f‖−α

))
. (5.30)

Finally, combining the results of (5.29) and (5.30) with (5.28) completes the proof.

5.2.5 Finite element approximation accuracy

After introducing technical approximation results in previous sections, we are finally

in the position to focus on the main result of this chapter.

Theorem 5.2.11. Let za, zb ∈ H
3/2
pw (ΓC), za < zb and f, u ∈ L2

−α(Ω) be given.

Furthermore, let z ∈ H
1/2
00 (ΓC) ∩ H3/2

pw (ΓC) and z̃h ∈ Uad,h be the unique solutions

of (5.12) and (5.27), respectively. Then the following error estimates hold for some

c(u, f, za, zb) > 0 independent of h

‖z − z̃h‖H1/2
00 (ΓC)

≤ c(u, f, za, zb)h. (5.31)



5.2. EC FEM FOR OPTIMAL BOUNDARY CONTROL 125

Moreover, let (u, p) ∈ (H1
0 (Ω,ΓD)∩H2

α(Ω))×(H1
0 (Ω)∩H2

α(Ω)) be the respective so-

lutions of primal problem (5.3) and dual problem (5.9). Then for the energy-corrected

finite element approximations also (umh , p
m
h ) ∈ Vh × Qh the following error estimates

hold

‖u− umh ‖α ≤ c(u, f, za, zb)h
2, (5.32)

and

‖p− pmh ‖α ≤ c(u, f, za, zb)h
2. (5.33)

Proof. The error estimate (5.31) in the energy norm H
1/2
00 (ΓC) is a consequence of

Lemma 5.2.10 together with Theorem 5.2.1.

The estimate for the primal state in (5.32) is a consequences of inequality (5.24)

and Lemma 5.2.3. Finally, the estimate for the adjoint state in (5.33) was already

presented in Lemma 5.2.5.

Theorem 5.2.11 shows that the convergence of the energy-corrected finite element

discretisation of the Dirichlet control problem yields optimal convergence in terms

of the interpolation error summarised in Theorem 5.1.10. Moreover, the applica-

tion of the energy-correction results in better convergence properties of the finite

element method on non-convex domains, when measured in H1/2(ΓC) norm, see The-

orem 5.1.13 for comparison. Similarly, the state variable u and the adjoint state p

are also approximated with the optimal order, however, in weighted norms.

Remark 5.2.12. An additional application of the post-processing approach described

in Section 2.3.3.2 further improves the approximation of the primal and dual states.

In particular, it yields second-order convergence in the standard L2(Ω) norm and the

first order convergence in the standard H1(Ω) norm.

The following result was given in [149, Corollary 4.6] and is a consequence of the

Aubin–Nitsche trick applied at the control boundary ΓC. It allows for the estimation

of the error in weaker norms than the energy norm of the H
1/2
00 (ΓC) space.

Proposition 5.2.13. Let T̃ρ : H
1/2
00 (ΓC) ∩ H1/2+s(ΓC) → H−1/2+s(ΓC) be bounded

for some s ∈ (0, 1/2], and assume za, zb ∈ Hσ(ΓC), z ∈ H
1/2
00 (ΓC) ∩ Hσ(ΓC), λ ∈

Hσ−1(ΓC) for some σ ∈ (1/2, 2]. Then the following error estimate holds

‖z − z̃h‖H1/2−s(ΓC) ≤ c
(
hs‖z − zh‖H1/2

00 (ΓC)
+ ‖za − Ihza‖H1/2−s(ΓC)

+ ‖zb − Ihzb‖H1/2−s(ΓC) + hσ−(1/2−s)‖λ‖Hσ−1(ΓC)

)
,

where Ih denotes a piecewise linear interpolation operator.
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Corollary 5.2.14. Let the assumptions of Theorem 5.2.11 be satisfied. Then we also

have

‖z − z̃h‖L2(ΓC) ≤ c(u, f, za, zb)h
3/2. (5.34)

Proof. Theorem 5.1.10 gives

‖za − Ihza‖L2(ΓC) ≤ ch3/2‖za‖H3/2
pw (ΓC)

, and ‖zb − Ihzb‖L2(ΓC) ≤ ch3/2‖zb‖H3/2
pw (ΓC)

.

Since u, p ∈ H2
α(Ω), we have ∂nu, ∂np ∈ H1/2(ΓC), see Theorem 2.1.19. Thus, accord-

ing to equation (5.13), we know that the Lagrange multiplier satisfies λ ∈ H1/2(ΓC).

The L2(ΓC) estimate in (5.34) follows from the application of Proposition 5.2.13, upon

the choice σ = 3/2.

5.2.6 Primal-dual active set strategy

We shortly recall the use of the primal-dual active set strategy for the solution of

the discrete variational inequality, see for instance [80, 81]. Let nC = dimZh, then

there exist canonical isomorphisms z ∈ RnC ↔ zh ∈ Zh and g̃ ∈ RnC ↔ g̃ ∈ Zh,

where z and g̃ denote the coefficient vectors of the control and the right-hand side g̃

respectively, when written in the nodal basis introduced in Section 5.1.4. We introduce

the system matrix corresponding to the system (5.17)


MII + %SmII MIC + %SmIC SmII
MCI + %SmCI MCC + %SmCC SmCI −ICC

SmII SmIC

IAk IIk

 , (5.35)

where we separate the degrees of freedom in the interior of the domain Ω and on

the control boundary ΓC, respectively indicated by I and C. Here,

M =

(
MII MIC

MCI MCC

)
and Sm =

(
SmII SmIC
SmCI SmCC

)
,

denote the finite element matrices which correspond to the mass matrix and the stiff-

ness matrix introduced in (2.12), where for the latter the energy-correction scheme

is applied. Furthermore, IAk , IIk are diagonal matrices, with entry 1, if the corre-

sponding degree of freedom belongs to one of the active sets, or with entry 0 if it

belongs to the inactive set. Finally, χAk(za, zb) represents the components of za and

zb corresponding to the active sets Aka and Akb , respectively.
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The discrete variational inequality (5.27) in matrix-vector notation then reads

(T̃%z − g̃,w − z) ≥ 0 for all w ∈ RnC ↔ wh ∈ Uad,h.

Here, T̃% ∈ RnC×nC denotes the Schur complement matrix of the system matrix (5.35)

with respect to the control boundary, see [127, Section 3.5]. For the solution of the

variational inequality, we apply a standard semi-smooth Newton method, see [25, 80],

which results in the primal-dual active set strategy. Therefore, we introduce the

following discrete Lagrange multiplier

λ = T̃%z − g̃ ∈ RnC .

Let us denote the mesh nodes of Th on the control boundary ΓC by xi, i = 1, . . . , nC.

Following [149] we introduce for the k-th iteration step of the primal-dual active set

strategy and some positive constant c ∈ R+ (we choose c = 1/10) the inactive set

Ik =
{
i : λki + c [za(xi)− zki ] ≤ 0

}
∪
{
i : λki + c [zb(xi)− zki ] ≥ 0

}
,

and active sets

Aka =
{
i : λki + c [za(xi)− zki ] > 0

}
, Akb =

{
i : λki + c [zb(xi)− zki ] < 0

}
.

Moreover, we denote the nodal interpolation vector of za and zb by za and zb ∈ RnC ,

respectively. For a given accuracy ε > 0 and maximal iterations kmax ∈ N the primal-

dual active set strategy is summarized in Algorithm 1.

Algorithm 1 primal-dual active set strategy

1: Initialize z0, λ0

2: for k ∈ {0, . . . , kmax} do
3: Set active and inactive sets Aka, Akb and Ik
4: Solve

T̃%z
k+1 − λk+1 = g̃

zk+1 = zj on Akj , j ∈ {a, b} and λk+1 = 0 on Ik.

5: if |zk+1 − zk|+ |λk+1 − λk| < ε then
6: Stop
7: end if
8: end for

For the implementation, it is impractical to realize the Schur complement T̃% in

step (4) of Algorithm 1. Thus, we replace it by the equivalent system matrix (5.35).
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The algebraic system reads then
MII + %SmII MIC + %SmIC SmII
MCI + %SmCI MCC + %SmCC SmCI −ICC

SmII SmIC

IAk IIk



uk+1
I

zk+1

pk+1
I

λk+1

 =


wI

wC

0

χAk(za, zb)

 ,

where uk+1
I , pk+1

I ∈ RnI , nI = dimQh, denote the coefficient vectors of primal- and

adjoint state, respectively.
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5.3 Numerical results

In this section, we present numerical results illustrating the benefits of the energy-

corrected finite element method. We consider the optimal control problem (5.2)–(5.4)

in a square domain with a hole inside as presented in Section 5.1, see Figure 5.1, with

maximal interior angles Θ = 3π/2. Again, we choose α = 1/3 for the weighted

norms, with weights applied in the neighbourhood of each corner. This choice of α

induces a slightly stronger norm than the one required in the analysis presented in

Theorem 5.2.11. The desired state is given by

u =
(
x2

1 + x2
2

)−1/4
+
(
(x1 + 1)2 + (x2 − 1)2

)−1/4
,

which satisfies u ∈ L2
−~α(Ω). Furthermore, we choose f = 0 and ρ = 1 for simplicity.

In this example, the desired state is less regular than in the previous one, presented

in Section 5.1 since the singularities are placed at the re-entrant corner and on the

control boundary ΓC.

In the following, we consider two cases: numerical results with and without box-

constraints, where we choose za = −1 and zb = 1 in the latter. Initially, we consider

a uniform mesh consisting of 32 triangles, locally symmetric around the re-entrant

corners, which are then uniformly refined. Thus, after L ∈ Z+ refinements the mesh

size is h ∼ 2−L. Since the exact solution is not known for the considered problem, we

shall use the solution on refinement level L = 9 as the reference solution. Moreover, for

the energy-corrected scheme, we use the asymptotic correction parameter γ∗ obtained

using semi-smooth Newton iterations discussed in Section 2.3.3.3. In the presence of

the box-constraints, a standard primal-dual set strategy is used, see Section 5.2.6,

with the accuracy ε = 10−10.

ΓC ΓD ΓC ΓD

Figure 5.2: Computational domain with a once and twice refined initial mesh, illus-
tration of the four correction patches (blue).
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γ = 0
L ‖uh9 − uh‖0 eoc ‖uh9 − uh‖α eoc ‖zh9 − zh‖L2(ΓC) eoc
1 3.2927e–01 – 5.1895e–01 – 4.0161e–01 –
2 1.2976e–01 1.34 1.9188e–01 1.44 1.5321e–01 1.39
3 5.0726e–02 1.36 7.2805e–02 1.40 5.8847e–02 1.38
4 1.9786e–02 1.36 2.8032e–02 1.38 2.2747e–02 1.37
5 7.6677e–03 1.37 1.0795e–02 1.38 8.7755e–03 1.37
6 2.9081e–03 1.40 4.0801e–03 1.40 3.3204e–03 1.40
7 1.0333e–03 1.49 1.4465e–03 1.50 1.1780e–03 1.50

Expected 1.33 1.33 1.33

γ = 0.1382555154
L ‖umh9

− umh ‖0 eoc ‖umh9
− umh ‖α eoc ‖zmh9

− zmh ‖L2(ΓC) eoc
1 2.1616e–01 – 3.2113e–01 – 2.3312e–01 –
2 5.4932e–02 1.98 6.5106e–02 2.30 5.5045e–02 2.08
3 1.6008e–02 1.78 1.4921e–02 2.13 1.3680e–02 2.01
4 4.8689e–03 1.72 3.5894e–03 2.06 3.4749e–03 1.98
5 1.5098e–03 1.69 8.9348e–04 2.01 9.0514e–04 1.94
6 4.7111e–04 1.68 2.2721e–04 1.98 2.3976e–04 1.92
7 1.4540e–04 1.70 5.7702e–05 1.98 6.2573e–05 1.94

Expected 1.66 2.00 1.50

Table 5.2: Errors and estimated convergence orders for the uncorrected and corrected
method, without box-constraints.

In Table 5.2 and Table 5.3, we present the errors and convergence rates of the finite

element approximations with and without the application of the energy-correction.

Note that the optimal second order convergence for the primal state u is only recovered

in weighted spaces, see Table 5.2. Also, the energy-corrected scheme gives better

results than the uncorrected one. The pollution effect, as in Theorem 2.3.21, is

eliminated, when the energy-corrected scheme is used. Thus, optimal approximation

order compared to the best approximation in the L2-norm is recovered. Moreover,

it is worth noting that the order of convergence of the approximation of the control

is half an order better than predicted by Corollary 5.2.14. Also in the presence of

box-constraints, the optimal convergence rates, compared to the interpolation error

stated in Theorem 5.1.10 are observed for the energy-corrected finite element method.

In Table 5.3, we also include the number of semi-smooth Newton iterations, de-

noted by I, when the initial guess is set to 0 everywhere at the control boundary

and I∗, when the initial guess for level L is set to be the solution obtained at level

L−1. For the iteration numbers I we observe the typical logarithmic behaviour with
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γ = 0
L I I∗ ‖uh9 − uh‖0 eoc ‖uh9 − uh‖α eoc ‖zh9 − zh‖L2(ΓC) eoc
1 3 3 2.6854e–01 – 4.0506e–01 – 2.9459e–01 –
2 4 3 1.1077e–01 1.28 1.5584e–01 1.38 1.2061e–01 1.29
3 5 3 4.1695e–02 1.41 5.6803e–02 1.46 4.4153e–02 1.45
4 5 2 1.6337e–02 1.35 2.1981e–02 1.37 1.7271e–02 1.35
5 7 2 6.2750e–03 1.38 8.3790e–03 1.39 6.5879e–03 1.39
6 8 4 2.3797e–03 1.40 3.1665e–03 1.40 2.4990e–03 1.40
7 9 4 8.4602e–04 1.49 1.1233e–03 1.50 8.8878e–04 1.49
Expected 1.33 1.33 1.33

γ = 0.1382555154
L I I∗ ‖umh9

− umh ‖0 eoc ‖umh9
− umh ‖α eoc ‖zmh9

− zmh ‖L2(ΓC) eoc
1 3 3 1.8026e–01 – 2.5346e–01 – 1.6928e–01 –
2 4 3 5.0371e–02 1.84 5.4724e–02 2.21 4.2410e–02 2.00
3 5 3 1.4646e–02 1.78 1.2164e–02 2.17 1.0091e–02 2.07
4 5 2 4.5100e–03 1.70 2.9774e–03 2.03 2.7256e–03 1.89
5 7 2 1.3952e–03 1.69 6.9192e–04 2.11 5.4485e–04 2.32
6 8 4 4.3743e–04 1.67 1.7295e–04 2.00 1.4431e–04 1.92
7 9 4 1.3548e–04 1.69 4.3587e–05 1.99 4.0949e–05 1.82
Expected 1.66 2.00 1.50

Table 5.3: Semi-smooth Newton iterations (I) and (I∗) for initial guess equal to 0
and equal to the approximation obtained at the previous refinement level, errors and
estimated convergence orders for the uncorrected and corrected method, with box-
constraints.

respect to the number of degrees of freedom, while in the latter case (I∗) almost ro-

bust iteration numbers with respect to the problem size are observed, see [81]. Also,

the iteration numbers do not differ for the standard and the energy-corrected finite

element approximation.
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Chapter 6

Conclusions and outlook

In this thesis, we discussed the applications of the energy-corrected finite element

method for problems defined on polygonal domains. We began by introducing the

necessary notation and mathematical background, including the regularity results for

the elliptic equations in the framework of weighted Sobolev spaces. We also pre-

sented the pollution effect, being the suboptimal approximation of the finite element

discretisation arising in the presence of corners in the computational domain. We then

showed the existing theory of the energy-corrected finite element for the elliptic equa-

tions. This method is a common denominator of all the following parts of the thesis.

In Chapters 3–5 we discussed the novel results concerning the energy-correction, sup-

porting the theoretical findings with the relevant numerical experiments. The known

auxiliary results are given without proofs but are always backed with the precise

citations. The proofs always follow new results of our authorship.

We began by extending the known results to the estimates in the weighted L∞(Ω)

norms. Using the dyadic decomposition of the computational domain, we showed that

the energy-corrected finite element approximation exhibits the optimal pointwise con-

vergence regarding the interpolation error in the whole computational domain. We

did not restrict our considerations to the standard piecewise linear discretisation and

treated the general case of the piecewise polynomial approximation spaces. Fur-

thermore, we proposed and analysed the post-processing approach for improving the

convergence order of the scheme, when measured in the standard norms.

The pollution effect is known to diminish the approximation properties of the

finite element methods also when parabolic problems are concerned. We showed that

the energy-correction method yields the optimal discretisation error of such problems

in the spatial dimensions. Moreover, since it allows for the use of uniform meshes,

it is a feasible choice in combination with the explicit time-stepping schemes, as

the CFL stability condition is naturally satisfied. We concluded this analysis with
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extensive numerical investigations, proposing the post-processing strategy and several

possible extensions. Among them, we considered the convection-diffusion problem

with pointwise error estimates and enriched cubic finite element spaces with mass

lumping techniques. We concluded the chapter proposing a potential application in

the computation of the heat distribution within the three-dimensional geometry of a

graphite nuclear moderator brick.

Finally, we investigated the discretisation error of the Dirichlet optimal control

problem on non-convex polygonal domains using the problem formulation involving

the regularisation in the energy H
1/2
00 (ΓC) space. We proved that the energy-corrected

approximation converges optimally in weighted Sobolev spaces. We also introduced

an iterative solver based on the primal-dual active set strategy, convenient for the

implementation.

The energy-corrected finite element is a relatively new method, first considered

in [69], and a lot of questions regarding it remain open. So far, we restricted our

interest to two-dimensional problems only. The derivation of an analogous method for

the three-dimensional polyhedra is a necessary, however a challenging problem. The

main difficulty posed in three dimensions is the presence of potentially two different

types of singularities, introduced both by edges and corners. A known benchmark

for this type of problems is the so-called Fichera corner, which is a domain created

upon subtracting a small cube from a larger one, namely Ω = (−1, 1)3 \ [0, 1]3. Mesh

grading techniques for such problems were studied in [2, Section 4.4], and the analysis

presented there could serve as the first step towards derivation of the corresponding

estimates for the energy-corrected finite element.

Here, we began our investigations with the Poisson problem. An important ex-

tension would be a similar treatment of semi-linear and nonlinear elliptic equations.

Also, different kinds of problems such as ones arising in continuum mechanics would

be of interest. Optimal convergence results for the energy-corrected discretisation in

weighted Sobolev spaces for the Stokes equation are already known [91]. Singular

behaviour in the vicinity of corners in polygonal domains also arises in many other

problems in fluid dynamis [24, 128]. We believe that the analysis of parabolic prob-

lems presented here, in combination with the energy-corrected discretisation for the

Stokes equation, could serve as the first step towards the development of numerical

solvers for the time-dependent flows.

Also, many interesting questions regarding the energy-corrected approximations

of optimal control problems remain open. Here, we assumed that the control is

located in some positive distance away from the re-entrant corners of the domain.
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It would be interesting to extend the analysis to a more general case of the control

supported on the whole boundary of an arbitrary polygon. This, however, introduces

additional difficulties such as the necessity of using weighted Sobolev spaces on the

boundary. Furthermore, the theory of the energy-corrected finite element would have

to be extended to cover the problems with nonhomogeneous boundary conditions

around the corners.

Furthermore, we observed that the energy-corrected scheme yields second order

convergence on the boundary, which is half-an-order better than predicted by The-

orem 5.2.11. This behaviour was already observed in [127] in the case of convex

polygons, which we also confirmed numerically. The gap between the numerical and

theoretical results can, in our opinion, be attributed to the higher regularity proper-

ties of the solution used in the experiments. We believe that the investigation of this

phenomenon would benefit from the techniques and results presented in [114]. The

first step in this direction was recently performed in [166].

Finally, different kinds of optimal control problems could be considered, such as

having the distributed control inside the domain or controlling the Neumann bound-

ary conditions of the state equation. These types of control could be combined with

different kinds of regularisation, for example, H−1/2(Γ) energy regularisation for the

Neumann control, as in [10]. Moreover, different types of state equations would be of

interest among them being the Stokes equation describing the stationary flow with

dominating viscous forces or the heat equation.
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