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Abstract. We present a systematic approach to the optimal placement of finitely many
sensors in order to infer a finite-dimensional parameter from point evaluations of the solu-
tion of an associated parameter-dependent elliptic PDE. The quality of the corresponding
least squares estimator is quantified by properties of the asymptotic covariance matrix
depending on the distribution of the measurement sensors. We formulate a design problem
where we minimize functionals related to the size of the corresponding confidence regions
with respect to the position and number of pointwise measurements. The measurement
setup is modeled by a positive Borel measure on the spatial experimental domain resulting
in a convex optimization problem. For the algorithmic solution a class of accelerated
conditional gradient methods in measure space is derived, which exploits the structural
properties of the design problem to ensure convergence towards sparse solutions. Con-
vergence properties are presented and our findings are compared to previous results. A
variational discretization of the continuous problem based on finite elements is investigated
and the presented results are confirmed by numerical experiments.
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1. Introduction

In this paper we propose a measure-valued formulation for the optimal design of a mea-
surement setup for the identification of an unknown parameter vector entering a system of
partial differential equations. Many applications in physics, medicine or chemical engineer-
ing for example rely on complex mathematical models as a surrogate for real-life processes.
Typically the arising equations contain unknown (material) parameters which have to be
identified in order to obtain a realistic model for the simulation of the underlying phenom-
enon. To illustrate the ideas, we consider a similar example as presented in [10]. Here, the
combustion process of a single substance on a two dimensional domain Ω is modeled by a
non-linear convection-diffusion equation with an Arrhenius-type reaction term, depending
on four scalar parameters D, E, d, and c, representing its material properties:

−∆y + α · ∇y +D exp {−E/(d− y)} y(c− y) = 0 in Ω, (1.1)
together with y = ŷ on an inflow boundary Γin ⊂ ∂Ω and ∂ny = 0 on ∂Ω \ Γin. While c
and d are known physical constants, the pre-exponential factor D and the activation energy
E are empirical and cannot be measured directly. Therefore one has to rely (for example)
on experimental data, for instance measurements of the mole fraction y. An estimate for
the true parameters is then obtained by finding a parameter vector matching the collected
data, which leads to a least-squares problem constrained by a partial differential equation.
However, due to errors in the measurement process the obtained estimate is biased and
could be far from the value which describes the physical process most accurately. This bias
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has to be quantified and the measurement procedure has to be adapted to mitigate the
influence of the perturbed data.

In this manuscript, we consider a general PDE-model based on a parameter-dependent
weak formulation with an unknown parameter vector q in an admissible set Qad ⊂ Rd (for
instance, q = (D,E) ∈ R2 for (1.1)). We refer to section 2.1 for the precise assumptions.
The parameter is estimated from point-wise observations of the solution y = S[q] of the PDE-
model at points {xj }mj ⊂ Ωo, where Ωo ⊂ Ω̄ is a closed set covering the possible observation
locations. We choose optimal designs according to criteria based on a linearization of the
model equation. To this purpose, we define the associated sensitivities {∂kS[q̂]}nk=1 of S[q̂]
with respect to pertubations of each parameter qk, k = 1, . . . , n at an initial guess q̂ ∈ Qad,
stemming either from prior knowledge or obtained from previous experiments. We note that
optimal design approaches based on first-order approximations have been studied for and
successfully applied to ordinary differential equations [5], differential-algebraic equations [8],
and also partial differential equations [31]. To each measurement location xj we assign
a positive scalar λj which is proportional to the quality of the sensor at this location
(or, alternatively corresponds to the number of repeated measurements performed with an
identical sensor). Associated to the measurement setup is the design measure

ω(x, λ) =
m∑
j=1

λjδxj , (1.2)

given by a weighted sum of Dirac delta functions. To quantify the quality of a given
measurement setup ω, we introduce the Fisher information matrix I(ω) with entries

I(ω)kl =
∫
Ωo
∂kS[q̂](x)∂lS[q̂](x) dω(x), k, l ∈ {1, . . . , n}. (1.3)

Furthermore, by Ψ we denote a scalar quality criterion, which is a positive, smooth, and
convex functional acting on the symmetric, positive-definite matrices. Examples for possible
choices of Ψ can be found in, e.g., [53, 45]; see also section 3.2. We consider optimal designs
given by the solutions to the optimization problem

min
xj∈Ωo, λj≥0, j=1,...,m

Ψ(I(ω(x, λ)) + I0) + β
m∑
j=1

λj , (1.4)

where I0 is a nonnegative-definite matrix (e.g., I0 = 0). It can be interpreted as a priori
knowledge on the distribution of the estimator, which may be obtained from previously
collected data, for instance in the context of sequential optimal design; cf. [39]. Here, we
would choose I0 = I(ωold) where the design measure ωold describes the previous experiments.
Alternatively, we may adopt a Bayesian viewpoint and consider I0 as the covariance matrix
of a Gaussian prior. The last term involving the total amount of measurements and a
cost parameter β > 0 takes into account the overall cost of the measurement process. For
other optimal design approaches with sparsity promoting regularization we refer to, e.g.,
[20, 30, 2]. We emphasize that neither we put any a priori restrictions on the number of
measurements nor on the possible locations of the sensors. For instance, we do not restrict
the set of candidate locations for the sensors to a finite set.

At first glance, problem (1.4) is a non-convex problem due to the parameterization in
terms of the points xj , and has a combinatorial aspect due to the unknown number of
measurements m. However, we can bypass these difficulties by embedding the problem
into a more general abstract formulation: introducing the set of positive Borel measures
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M+(Ωo) on Ωo we determine an optimal design measure from
min

ω∈M+(Ωo)
Ψ(I(ω) + I0) + β‖ω‖M(Ωo), (Pβ)

where ‖ω‖M(Ωo) is the canonical total variation norm. While it is clear that (Pβ) is a
more general formulation than (1.4), it can be shown that it always admits solutions of the
form ω = ∑m

j=1 λjδxj for some n ≤ m ≤ n(n + 1)/2, making both problem formulations
essentially equivalent; see Section 3.2. We give a brief description of the derivation of (1.4)
and its connection to (Pβ) in Section 2.

As an alternative to the penalization term β‖ω‖M(Ωo) in (Pβ) it is possible to consider a
fixed budget for the experiment leading to

min
ω∈M+(Ωo)

Ψ(I(ω) + I0) subject to ‖ω‖M(Ωo) ≤ K, (PK)

where K > 0 denotes the overall maximal cost of the measurements. Under certain
conditions on Ψ it can be shown that the inequality constraint in (PK) is attained for
every optimal design; see Proposition 3.8. This relates (PK) closely to the concept of
approximate designs introduced by Kiefer and Wolfowitz in [38] for general linear-regression,
where possible experiments are modeled by the probability measures on Ωo. We refer also
to [3, 45, 41, 26, 28] for the analysis of this kind of optimal design formulations. For the
adaptation of this approach to parameter estimation in distributed systems we refer to
[53, 6]. Both formulations, (Pβ) and (PK), are closely linked (see Section 3.2): On the
one hand, in the case of no a priori knowledge on the prior covariance, i.e. for I0 = 0, the
solutions of both problems coincide up to a scalar factor, depending on either K or β. On
the other hand, incorporating a priori knowledge, both problem formulations parameterize
the same solution manifold. The parameters β and K, respectively, provide some indirect
control over the number of measurements, which is the cardinality of the support of the
optimal solution, in this case.

This paper is mainly concerned with the analysis of the optimality system for (Pβ), its
efficient numerical solution and discretization. There exists a large amount of literature on
the solution of (PK) by sequentially adding new Dirac delta functions to a sparse initial
design measure. A description and proofs of convergence for several variants of these kind of
methods can be found in, e.g., [26, 57] for the special case of Ψ = det(·)−1. These methods
correspond to a conditional gradient, or Frank-Wolfe, algorithm, [29], for minimizing the
smooth functional Ψ(I(·)) over the ball with radius K in M+(Ωo). Despite the ease of
implementation the proposed methods suffer from some serious drawbacks. On the one hand
the speed of convergence is slow. Recently, in [13] a sub-linear O(1/k) rate of convergence
for the error in the objective function in terms of the iteration number k was proven by
using an equivalent reformulation of (PK) and results for the classical, finite dimensional
conditional gradient algorithm; see, e.g., [36]. Note, that without further assumptions on
Ψ than convexity and for example Lipschitz-continuity of its gradient, no better rate than
O(1/k) can be expected in general; see [22, 23].

On the other hand, if only point insertion steps are considered, the support points of the
iterates tend to cluster around the optimal ones. To mitigate this effect and accelerate the
convergence several modified variants of the sequential point insertion have been proposed.
In [48, 4] the authors propose to alternate between point insertion steps and Wolfe’s away
steps (see [56]) to remove mass from non-optimal points. Heuristically, adjacent support
points may be lumped together; see [27]. More recently several papers suggested to combine
the addition of a single Dirac-Delta in each iteration with the solution of a finite-dimensional
convex optimization problem in each iteration and point moving [13] or vertex exchange
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methods [58]. However it appears that there is no rigorous approach to guarantee the
convergence of the resulting algorithms towards a finitely supported optimal design on the
function space level.

In this paper we present a sequential point insertion algorithm for the (non-smooth)
optimal design problem (Pβ) and prove convergence towards a sparse minimizer of (Pβ)
comprising at most n(n+ 1)/2 support points. To this purpose, we adapt the generalized
conditional algorithm in measure space presented in [16] for the minimization of a linear-
quadratic Tikhonov-regularized problem to our setting. Additionally we incorporate a
post-processing step which ensures that the support size of the generated iterates stays
uniformly bounded. For further sparsification and a practical acceleration of convergence we
propose to alternate between inserting several Dirac delta functions and point removal steps
based on the (approximate) solution of finite-dimensional `1-regularized sub-problems, which
are amenable for semi-smooth Newton methods; see, e.g., [54, 40]. We note that strategies
based on point moving [16, 13] are difficult to realize for the employed discretization concept
introduced in Section 5, since we will employ standard C0-finite elements, which are not
continuously differentiable. A sublinear rate of convergence for the value of the objective
function is proven for a wide class of optimality criteria Ψ ; see Theorem 4.6. As a comparison,
we report on a path-following approach based on a Hilbert space regularization of (Pβ);
see [21].

Finally, to solve (Pβ) or (PK) one has to compute the state y = S[q] as well as the
sensitivities of the state with respect to the parameters {∂kS[q]}nk=1 for a given q ∈ Qad. In
general, the state and sensitivity PDEs cannot be solved analytically, but only numerically.
We present and analyze a discretization scheme for the optimal design problem by replacing
the state (and therefore the corresponding sensitivities) by a sequence of finite-element ap-
proximations. To discretize the optimal design measure, we adapt the concept of variational
discretization from [17, 35], and show the equivalence of a semidiscrete design problem with
solutions in M+(Ωo) to a fully discrete one with Dirac delta functions supported only in
the grid nodes. Furthermore we prove convergence for a vanishing discretization parameter;
see Section 5. To the best of the authors’ knowledge this is the first work on a rigorous
discretization concept and convergence analysis for an optimal design problem.

The paper is organized as follows: In Section 2 we present the optimal design formulation
under consideration. In Section 3 we introduce notation and state basic existence results for
solutions to (Pβ) as well as first order optimality conditions. In Section 4 the generalized
conditional gradient algorithm for the algorithmic solution of (Pβ) is proposed and analyzed.
Different acceleration/sparsification strategies are presented and a (worst-case) sub-linear
convergence rate for the objective functional is proven. Section 5 discusses the approximation
of (Pβ) by finite element methods. The paper is completed by two numerical examples, a
parameter identification problem with three parameters, and a variable parameter example
derived from a discretization of a distributed parameter problem; see Section 6. The results
serve to illustrate the theoretical results and show the practical efficiency of the proposed
algorithms. In particular, we investigate the effect of the described acceleration strategies.

2. From Parameter estimation to optimal design

In this section we derive the convex optimal design formulation (Pβ) and establish its
connection to the non-convex problem (1.4). Therefore we start by defining a least-squares
estimator for the identification of the unknown parameter and the notion of the associated
linearised confidence domains.
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2.1. Parameter estimation. Within the scope of this work we consider the identification
of a parameter q entering a weak form a(·, ·)(·) : Qad × Ŷ × Y → R, which can be non-
linear in its first two arguments but is linear in the last one. Here, Qad ⊂ Rn, n ∈ N,
denotes a set of admissible parameters, Y denotes a suitable Hilbert space of functions,
and Ŷ = ŷ + Y , where the function ŷ allows to include non-homogeneous (Dirichlet-type)
boundary conditions in the model. For every q ∈ Qad a function y = S[q] ∈ Ŷ is called the
state corresponding to q if it is a solution to

a(q, y)(ϕ) = 0 ∀ϕ ∈ Y. (2.1)

The operator S : Qad → Ŷ mapping a parameter q to the associated state is called the
parameter-to-state operator. For instance, one might think of a Sobolev space defined on
an open and bounded Lipschitz domain Ω ⊂ Rd, d ∈ {1, 2, 3} and as a(·, ·)(·) being the
weak formulation of an elliptic partial differential operator.

Remark 1. Concretely, in the case of PDE (1.1), we define
a(q, y)(ϕ) = (∇y,∇ϕ)L2(Ω) + (α∇y, ϕ)L2(Ω) + (D exp {−E/(d− y)} y(c− y), ϕ)L2(Ω) ,

and Y = {ϕ ∈ H1(Ω) | ϕ|Γin = 0 }. In this case the parameter vector is given by
q = (D,E) ∈ R2.

We make the following general regularity assumption.

Assumption 1. For every q ∈ Qad there exists a unique solution y ∈ Ŷ ∩ C(Ωo) to (2.1).
The parameter-to-state mapping S with

S : Qad → C(Ωo) with q 7→ S[q] = y,

is continuously differentiable in a neighborhood of Qad in Rn. We denote by ∂kS[q] ∈ C(Ωo)
the directional derivative of S in the direction of the k-th unit vector and by ∂S[q] ∈
C(Ωo,Rn) the vector of partial derivatives.

We emphasize that under suitable differentiability assumptions on the form a(·, ·) and
Assumption 1 the k-th partial derivative δyk = ∂kS[q] ∈ Y ∩ C(Ωo), k = 1, . . . , n is the
unique solution of the sensitivity equation

a′y(q, y)(δyk, ϕ) = −a′qk(q, y)(ϕ), ∀ϕ ∈ Y, (2.2)
where y = S[q] and a′y and a′qk denote the partial derivatives of the form a with respect to
the state and the k-th parameter; see, e.g., [55, 52].

In the following the exact value of the parameter vector q ∈ Rn appearing in (2.1)
is denoted by q∗. While, for the purposes of analysis we can assume this value to be
known, it will be replaced with an appropriate a priori guess in practice. To estimate
the parameter q we consider measurement data yd collected at a set of m disjoint sensor
locations {xj}mj=1 ⊂ Ωo, where Ωo ⊂ Ω̄ is a closed set. To take measurement errors into
account we assume that the data yjd ≈ S[q∗](xj) is additively perturbed by independently
unit normally distributed noise; see, e.g., [7]. Here S[q∗](xj) denotes the response of the
model to the exact parameter values. Taking into account that multiple measurements can
be performed at the same location, we obtain that

yjd = S[q∗](xj) + εj , εj ∼ N (0, 1/λj), Cov(εj , εi) = 0,
for all i, j = 1, . . . ,m, and j 6= i, where λj ∈ N \ { 0 } denotes the number of measurements
taken at the j-th location. More generally, we assume that λj can be chosen arbitrarily
in R+ \ { 0 } in the following. In this case the measurement weights λj > 0 should be
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interpreted as diligence factors giving information on how carefully the data should be
collected at the corresponding measurement point.

To emphasize that the data yd is a random variable conditional on the measurement
errors we will write yd(ε) in the following and define the least squares functional

J(q, ε) = 1
2

m∑
j=1

λj(S[q](xj)− yjd(ε))2 (2.3)

as well as the possibly multi-valued least squares estimator

q̃ : Rm → P(Rn), q̃(ε) = arg min
q∈Qad

J(q, ε), (2.4)

where P(Rn) denotes the power set of Rn. Note that this estimator is the usual Maximum-
Likelihood estimator using the assumption on the distribution measurement errors εj ∼
N (0, 1/λj).

2.2. Optimal design. Since the measurement errors are modelled as random variables,
the uncertainty in the data is also propagated to the estimator. This means that q̃ should
be interpreted as a random vector. To quantify the bias in the estimation and to assess the
quality of computed realizations of the estimator, one considers the non-linear confidence
domain of q̃ defined as

D(q̃, α)(ε) =
{
p ∈ Qad | J(p, ε)− min

q∈Qad
J(q, ε) ≤ γ2

n(α)
}
, (2.5)

where γ2
n(α) denotes the (1− α)-quantile of the χ2-distribution with n degrees of freedom;

see, e.g., [11, 9]. We emphasize that the confidence domain is a function of the measurement
errors and therefore a random variable whose realizations are subsets of the parameter space.
In this context, the confidence level α ∈ (0, 1) gives the probability that a certain realization
of D(q̃(ε), α)(ε) contains the true parameter vector q∗.

Consequently, a good performance indicator for the estimator q̃ is given by the size of its
associated confidence domains. The smaller their size, the closer realizations of q̃ will be
to q∗ with a high probability. Given a realization D(q̄, α)(ε̄) of the non-linear confidence
domain, its size only depends on the position and the number of the measurements. To
obtain a more reliable estimate for the parameter vector, the experiment, e.g. the total
number of measurements carried out, their positions xj , and the measurement weights λj
should be chosen a priori in such a way that confidence domains of the resulting estimator
are small. However, for general models and parameter-to-state mappings S the estimator q̃
cannot be given in closed form. Therefore it is generally not possible to provide an exact
expression for D(q̃, α).

To circumvent this problem we follow the approach proposed in, e.g., [44, 28] and consider
a linearisation of the original model around an a priori guess q̂ of q∗ which can stem from
historical data or previous experiments. In the following, ε ∈ Rm denotes an arbitrary vector
of measurement errors, and x ∈ Rd×m, x = (x1, . . . , xm), with xj ∈ Rd, j = 1, . . . ,m, stands
for the measurement locations. For abbreviation we write S[q̂](x) ∈ Rm for the vector of
observations with S[q̂](x)j = S[q̂](xj), j = 1, . . . ,m. Moreover the matrices X ∈ Rm×n and
Σ−1 ∈ Rm×m are defined as

Xjk = ∂kS[q̂](xj), Σ−1
ij = δijλi, i, j = 1, . . . ,m, k = 1, . . . , n,
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and are assumed to have full rank. We arrive at the linearised least-squares functional

Jlin(q, ε) = 1
2

m∑
j=1

λj(S[q̂](xj) + ∂S[q̂](xj)>(q − q̂)− yjd(ε))2,

which can be equivalently written as

Jlin(q, ε) = 1
2‖X(q − q̂) + S[q̂](x)− yd(ε)‖2Σ−1 ,

where ‖v‖Σ−1 = v>Σ−1v for v ∈ Rn. In contrast to the estimator q̃ (2.4), the associated
linearised estimator

q̃lin : Rm → Rn, q̃lin(ε) = arg min
q∈Rn

Jlin(q, ε), (2.6)

is single-valued and its realizations can be calculated explicitly (see, e.g., [51]), as

q̃lin(ε) = q̂ + (X>Σ−1X)−1X>Σ−1 (yd(ε)− S[q̂](x)) . (2.7)

Due to the assumptions on the noise ε the estimator q̃lin is a Gaussian random variable
with q̃lin ∼ N (q̃lin(0), (X>Σ−1X)−1). The associated realizations of its confidence domain
(see, e.g., [11]) are thus given by

D(q̃lin, α)(ε) =
{
q ∈ Rn | q = q̃lin + (X>Σ−1X)−1X>Σ−1/2δε, ‖δε‖2 ≤ γn(α)

}
, (2.8)

where ‖ · ‖2 denotes the Euclidean norm. We point out that the linearised confidence
domains are ellipsoids in the parameter space centered around q̃lin. Their half axes are
given by the eigenvectors of the Fisher-information matrix I = X>Σ−1X with lengths
proportional to the associated eigenvalues. Their sizes depend only on the a priori guess q̂
and the setup of the experiment, i.e. the position and total number of measurements, but
not on the concrete realization of the measurement noise. Consequently we can improve the
estimator by minimizing the linearised confidence domains as a function of the measurement
setup, which leads to (1.4).

To establish the connection to the sparse optimal design approach we observe that the
entries of the Fisher-information matrix can be written alternatively as

(X>Σ−1X)kl =
m∑
j=1

∂kS[q̂](xj)∂lS[q̂](xj)λj =
∫
Ωo
∂kS[q̂]∂lS[q̂] dω = I(ω)kl, (2.9)

with the design measure ω = ∑m
j=1 λjδxj . Furthermore we note that for such a design

measure there holds ‖ω‖M(Ωo) = ∑m
j=1 λj . Consequently, for some design criterion Ψ and

prior knowledge I0, the optimal design problem (1.4) can be equivalently expressed as

min
ω∈cone{ δx | x∈Ωo }

Ψ(I(ω) + I0) + β‖ω‖M(Ωo), (2.10)

where we minimize the objective functional over all non-negative linear combinations of
Dirac delta functions corresponding to points in the observational domain. A priori it is
however unclear if this reformulation admits an optimal solution, since the admissible set
is not closed in the weak* topology on M(Ωo). For a rigorous analysis one therefore has
to pass to the closure cone{ δx | x ∈ Ωo }

∗ = M+(Ωo). As (2.9) suggests, the definition of
I can be extended to the set of positive regular Borel measures M+(Ωo), resulting in the
more general problem formulation (Pβ).
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3. Analysis of the optimal design problem

3.1. Notation and assumptions. In the following we fix the general notation for the
remainder of the paper. We consider an observation set Ωo in which we allow the collection
of measurements. It is assumed to be a closed subset of Ω̄, which is the closure of the
bounded spatial domain Ω ⊂ Rd. On Ωo we define the space of regular Borel measures
M(Ωo) as the topological dual of C(Ωo), the space of continuous and bounded functions
(see, e.g., [25]), with associated duality pairing 〈·, ·〉. The norm on M(Ωo) is given by

‖ω‖M(Ωo) = sup
y∈C(Ωo), ‖y‖C(Ωo)≤1

〈y, ω〉,

where ‖ ·‖C(Ωo) is the supremum norm on C(Ωo). ByM+(Ωo) we refer to the set of positive
Borel measures on Ωo (see, e.g., [47, Def. 1.18]),

M+(Ωo) = {ω ∈M(Ωo) | 〈y, ω〉 ≥ 0, ∀y ∈ C(Ωo) y ≥ 0 } ,
with convex indicator function Iω≥0. Given a measure ω ∈ Ωo its support is defined as
usual by

suppω = Ωo\
{⋃

B ∈ B(Ωo) | B open, ω(B) = 0
}
.

Note that the support is a closed set. A sequence {ωk} ⊂M(Ωo) is called convergent with
respect to the weak*-topology with limit ω ∈M(Ωo) if 〈y, ωk〉 → 〈y, ω〉 for k →∞ for all
y ∈ C(Ωo) indicated by ωk ⇀∗ ω. Additionally we define the usual spaces of integrable and
square integrable functions L1(Ωo) and L2(Ωo), respectively, as well as the usual Sobolev
space H1

0 (Ωo) with their usual (semi)norm and inner product; see, e.g., [1]. Furthermore
we denote by Sym(n), NND(n), and PD(n) the sets of symmetric, symmetric non-negative
definite, and symmetric positive definite matrices, respectively. On Sym(n) we consider
the inner product (A,B)Sym(n) = Tr(AB>) for A,B ∈ Sym(n), where Tr denotes the trace,
and the Löwner partial order

0 ≤L A ⇔ A is positive semidefinite.

Last, for φ : M(Ωo)→ R ∪ {∞} and a convex set M ⊂M(Ωo) we define the domain of φ
over M as

domM φ = {ω ∈M | φ(ω) <∞} ,
where the index is omitted when M = M(Ωo).

We consider design criteria of the form Ψ(· + I0), where I0 ∈ NND(n) (e.g. I0 = 0)
incorporates prior knowledge, as described in the introduction. Concerning the function Ψ
the following assumptions are made.

Assumption 2. The function Ψ : Sym(n)→ R ∪ {+∞} satisfies:
A1 There holds domΨ = PD(n).
A2 Ψ is continuously differentiable for every N ∈ PD(n).
A3 Ψ is non-negative on NND(n).
A4 Ψ is lower semi-continuous and convex on NND.
A5 Ψ is monotone with respect to the Löwner ordering on NND(n), i.e. there holds

N1 ≤L N2 ⇒ Ψ(N1) ≥ Ψ(N2) ∀N1, N2 ∈ NND(n).

While Assumptions (A1) to (A4) are important for the existence of optimal designs and
the derivation of first order optimality conditions, Assumption (A5) is related to the size
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of the linearised confidential domains (2.8). Given two design measures ω1, ω2 ∈ M+(Ωo)
with I(ω1), I(ω1) ∈ PD(n) there holds

I(ω1) ≤L I(ω2)⇔ I(ω2)−1 ≤L I(ω1)−1,

where the latter statement implies
E2 = { δq ∈ Rn | δq> I(ω2)−1δq ≤ r } ⊂ E1 = { δq ∈ Rn | δq> I(ω1)−1δq ≤ r }

for any r > 0. This ensures that Ψ is indeed a suitable criterion for the size of the linearised
confidence ellipsoids (2.8). For a similar set of conditions; see [53, p. 41]. The given
assumptions can be verified for a large class of classical optimality criteria, among them
the A and D criterion

ΨA(N) =
{

Tr(N−1), N ∈ PD(n),
∞, else,

ΨD(N) =
{

det(N−1), N ∈ PD(n),
∞, else,

corresponding to the combined length of the half axis and the volume of the confidence
ellipsoids. Additionally, one may also use weighted versions of the design criteria: for
instance ΨwA (N) = Tr(WN−1W ) allows to put special emphasis on particular parameters
by virtue of the weight matrix W ∈ NND(n). However, we emphasize that the results
presented in this paper cannot be applied to other non-differentiable popular criteria such
as the E criterion defined by

ΨE(N) =
{

maxi
{
λi(N−1)

}
, N ∈ PD(n),

∞, else.
describing the length of the longest half axis and the length of the longest side of the
smallest box containing the confidence ellipsoid. In this case, one can for instance resort to
smooth approximations of the design criteria.

3.2. Existence of optimal solutions to (Pβ) and optimality conditions. In this
section we prove the existence of solutions as well as first order necessary and sufficient
optimality conditions for the optimal design problem (Pβ). Additionally, results on the
sparsity pattern of optimal designs are derived. First, we introduce the linear and continuous
Fisher-operator I by

I : M(Ωo)→ Sym(n), with I(ω)i,j = 〈∂iS[q̂]∂jS[q̂], ω〉 ∀i, j ∈ { 1, . . . , n }.
It is readily verified that it is the Banach space adjoint of the operator

I∗ : Sym(n)→ C(Ωo), with I∗(A) = ϕA,

where ϕA ∈ C(Ωo) is the continuous function given for A ∈ Sym(n) by

ϕA(x) = Tr
(
∂S[q̂](x)∂S[q̂](x)>A

)
= ∂S[q̂](x)>A∂S[q̂](x) ∀x ∈ Ωo. (3.1)

Now, we formulate the reduced design problem (Pβ) as
min

ω∈M+(Ωo)
F (ω) = ψ(ω) + β‖ω‖M(Ωo),

where ψ(ω) = Ψ(I(ω) + I0). In the following proposition we collect some properties of the
reduced functional.

Proposition 3.1. Let Assumptions (A1)–(A5) be fulfilled and let I0 ∈ NND(n) be given.
The operator I and the functional ψ satisfy:

1. For every ω ∈M+(Ωo) there holds I(ω) ∈ NND(n).
2. There holds domM+(Ωo) ψ =

{
ω ∈M+(Ωo) | I(ω) + I0 ∈ PD(n)

}
.
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3. ψ is differentiable with derivative ψ′(ω) = I∗ (Ψ ′(I(ω) + I0)) ∈ C(Ωo) for every
ω ∈ domM+(Ωo) ψ. The derivative can be identified with the continuous function[

ψ′(ω)
]
(x) = ∂S[q](x)>Ψ ′(I(ω) + I0) ∂S[q](x) ∀x ∈ Ωo. (3.2)

Moreover the gradient ψ′ : domM+(Ωo) ψ → C(Ωo) is weak*-to-strong continuous.
4. ψ is non-negative on domM+(Ωo) ψ.
5. ψ is weak* lower semi-continuous and convex on M+(Ωo).
6. ψ is monotone in the sense that

I(ω1) ≤L I(ω2)⇒ ψ(ω1) ≥ ψ(ω2) ∀ω1, ω2 ∈M+(Ωo).

Proof. To prove the first claim we observe that there holds
z> I(ω)z = 〈(∂S[q̂]>z)2, ω〉 ≥ 0 ∀z ∈ Rn (3.3)

for an arbitrary ω ∈ M+(Ωo), thus I(ω) ∈ NND(n). Statement 2. follows directly with
(A1). For ω ∈ domM+(Ωo) ψ the differentiability of ψ follows from assumption (A2) using
the chain rule. We obtain the derivative ψ′(ω) ∈M(Ωo)∗ characterized by

〈ψ′(ω), δω〉M∗,M = Tr(Ψ ′(I(ω) + I0) I(δω)) = 〈I∗ (Ψ ′(I(ω) + I0)
)
, δω〉M∗,M ,

for every δω ∈ M(Ωo), where 〈·, ·〉M∗,M denotes the duality pairing between M(Ωo) and
its topological dual space. Using the adjoint expression for I given in (3.1) we can identify
ψ′(ω) with the continuous function (3.2). Additionally, we directly see that the mapping
ψ′ : domM+(Ωo) ψ → C(Ωo), ω 7→ ψ′(ω) is weak*-to-strong continuous, using the continuity
of Ψ ′. Statements 4., 5., and 6. can be derived directly from Assumptions (A2), (A4), and
(A5) using I(ωk)→ I(ω) for every sequence {ωk}k∈N ⊂M+(Ωo) with weak* limit ω. �

Proposition 3.2. Assume that domM+(Ωo) ψ 6= ∅ and β > 0. Then there exists at least
one optimal solution ω̄β to (Pβ). Moreover the set of optimal solutions is bounded. If Ψ is
strictly convex on PD(n) then the optimal Fisher-information matrix I(ω̄β) is unique.

Proof. The proof follows standard arguments, using the direct method in variational calculus,
using the estimate ‖ω‖M(Ωo) ≤ F (ω)/β, the sequential version of the Banach-Alaoglu
theorem, and the facts that F is proper and weak* lower-semicontinuous. The boundedness
of the set of optimal solutions is another direct consequence. Additionally, uniqueness of
the otimal Fisher information matrix can be deduced from strict convexity of Ψ by a direct
contradiction arguments. �

Next we give conditions for the domain of ψ to be non-empty.

Proposition 3.3. Assume that β > 0 and
Rn = span (Ran I0 ∪{ ∂S[q̂](x) | x ∈ Ωo }) .

Then there exists at least one optimal solution of (Pβ). Furthermore, every ω ∈ domM+(Ωo) ψ
consists of at least n0 = n− rank I0 support points.

Proof. According to Proposition 3.2 we have to show that there exists ω ∈ domM+(Ωo) ψ.
By assumption we can choose a set of n− rank I0 distinct points xj ∈ Ωo such that

Rn = span (Ran I0 ∪{ ∂S[q̂](xj) | j = 1, . . . , n− rank I0}) .
Consequently, setting ω = ∑n0

j=1 δxj ∈M+(Ωo), we obtain

I(ω) + I0 =
n0∑
j=1

∂S[q̂](xj)∂S[q̂](xj)> + I0 ∈ PD(n),
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by straightforward arguments. For the last statement we simply observe that for a measure
ω with less than n0 = n − rank I0 support points, the associated information matrix
I(ω) + I0 has a non-trivial kernel. �

By standard results from convex analysis the following necessary and sufficient optimality
conditions can be obtained.

Proposition 3.4. Let ω̄β ∈ domM+(Ωo) ψ be given. Then ω̄β is an optimal solution to (Pβ)
if and only if holds:

〈−ψ′(ω̄β), ω − ω̄β〉+ β‖ω̄β‖M(Ωo) ≤ β‖ω‖M(Ωo) ∀ω ∈M+(Ωo). (3.4)

Proof. Since F is convex, a given ω̄β is optimal if and only if
0 ∈ ∂ (F (ω̄β) + Iω≥0(ω̄β)) ,

where the expression on the right denotes the subdifferential of F + Iω≥0 at ω̄β in M(Ωo)∗.
Since the total variation norm and the indicator function of M+(Ωo) are continuous at ω̄β
and ψ is differentiable on its domain there holds

0 ∈ ∂F (ω̄β) = ψ′(ω̄β) + ∂(β‖ω̄β‖M(Ωo) + Iω≥0(ω̄β),

which is equivalent to (3.4). �

Since the norm as well as the indicator function are positively homogeneous, their sub-
differentials can be characterized further. This yields an equivalent characterization of
optimality relating the support points of an optimal design to the set of minimizers of the
gradient of ψ in the optimum.

Lemma 3.5. Let ω̄β be an optimal solution to (Pβ). Condition (3.4) is equivalent to

−ψ′(ω̄β) ≤ β, supp ω̄β ⊂
{
x ∈ Ωo | ψ′(ω̄β)(x) = −β} . (3.5)

Proof. Assume that ω̄β satisfies (3.5). Then for an arbitrary measure ω ∈ M+(Ωo) there
holds

−〈ψ′(ω̄β), ω − ω̄β〉+ β‖ω̄β‖M(Ωo) = −〈ψ′(ω̄β), ω〉 ≤ β‖ω‖M(Ωo),

implying (3.4). Conversely, assume that ω̄β fulfills (3.4). Testing (3.4) with ω = 0, ω = 2ω̄β ,
and ω = δx for every x ∈ Ωo respectively, we obtain

−〈ψ′(ω̄β), ω̄β〉 ≥ β‖ω̄β‖M(Ωo),

−〈ψ′(ω̄β), ω̄β〉 ≤ β‖ω̄β‖M(Ωo),

−ψ′(ω̄β)(x) + 〈ψ′(ω̄β), ω̄β〉+ β‖ω̄β‖M(Ωo) ≤ β ∀x ∈ Ωo.
From this we deduce

〈−ψ′(ω̄β)− β, ω̄β〉 = 0 and − ψ′(ω̄β)(x) ≤ β ∀x ∈ Ωo.
The condition on the support of ω̄β in (3.5) follows with similar arguments as in [16,
Proposition 3]: Let an arbitrary x ∈ Ωo with −ψ′(ω̄β)(x) < β be given. Due to the
continuity of ψ′(ω̄β) there exists δ > 0 with −ψ′(ω̄β) < −β on Bδ(x) ⊂ Ωo. For an
arbitrary nonnegative y ∈ C(Bδ(x)) there exists t > 0 such that ψ′(ω̄β)− ty+ β ≥ 0. From
this we conclude

0 ≤ 〈ψ′(ω̄β)− ty − β, ω̄β〉 = −〈ty, ω̄β〉 ≤ 0

due to the positivity of y and ω̄β. Therefore ω̄|Bδ(x) = 0 and Bδ(x) ⊂ Ωo\ supp ω̄. �
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Remark 2. For (PK) a similar optimality condition can be derived by the same techniques.
A measure ω̄K ∈ domM+(Ωo) ψ is an optimal solution of (PK) if and only if

supp ω̄K ⊂
{
x ∈ Ωo

∣∣∣ ψ′(ω̄K)(x) = arg min
x∈Ωo

ψ′(ω̄K)(x)
}
,

where the condition on the support of ω̄K is equivalent to

−〈ψ′(ω̄K), ω̄K〉+ arg min
x∈Ωo

ψ′(ω̄K)(x)‖ω̄K‖M(Ωo) = 0,

yielding the well-known Kiefer-Wolfowitz equivalence theorem; see [38, 37] and [53, Theo-
rem 3.2].

Since the Fisher-operator I is a finite rank operator, uniqueness of the optimal solution is
usually not guaranteed. However, the existence of at least one solution with the practically
desired sparsity structure is addressed in the following theorem.

Theorem 3.6. Let ω ∈M+(Ωo) be given. Then there exists ω̃ ∈M+(Ωo) with

I(ω) = I(ω̃), ‖ω̃‖M(Ωo) ≤ ‖ω‖M(Ωo), # supp ω̃ ≤ n(n+ 1)/2.

Additionally, if there exists an optimal solution to (Pβ), then there exists an optimal solution
ω̄β with # supp ω̄β ≤ n(n+ 1)/2.

Proof. The proof is based on a refined version of Caratheodory’s theorem, [50], but will be
omitted here. For details we refer to the proof of [43, Proposition B.5]. �

The proof of Theorem 3.6 leads to an implementable sparsifying procedure which, given
an arbitrary finitely supported positive measure, finds a sparse measure choosing a subset of
at most n(n+1)/2 support points and yielding the same information matrix. The procedure
is summarized in Algorithm 1.

Proposition 3.7. Let ω = ∑m
i=1 λiδxi be given and assume that {I(δxi)}mi=1 is linearly

dependent. Denote by ωnew = ∑
{ i | λnew,i>0 } λnew,iδxi the measure that is obtained after one

execution of the loop in Algorithm 1. Then there holds

F (ωnew) ≤ F (ω), # suppωnew ≤ # suppω − 1.

Proof. See [43, Corollary 6.2] and [43, Proposition B.5] �

Algorithm 1 Support-point removal
1. Let ω = ∑m

i=1 λiδxi be given.
while {I(δxi)}mi=1 linearly dependent do
2. Find 0 6= λ̄ with 0 = ∑m

i=1 λ̄i I(δxi).
3. Set µ = maxi{ λ̄i/λi }, λnew,i = λi − λ̄i/µ.
4. Update ωnew = ∑

{ i | λnew,i>0 } λnew,iδxi .
end while

In the last part of this section we will further discuss structural properties of solutions
to (Pβ), mainly focusing on their connection to (PK) and their behaviour for β →∞.



OPTIMAL SENSOR PLACEMENT 13

Proposition 3.8. The problems (PK) and (Pβ) are equivalent in the following sense:
Given, for fixed K > 0, a solution ω̄K to (PK), there exists a β ≥ 0, such that ω̄K is an
optimal solution to (Pβ) and vice versa.

Furthermore, assuming that Ψ is strictly monotone with respect to the Löwner ordering
in the sense that

N2 −N1 ∈ PD(n)⇒ Ψ(N1) > Ψ(N2), N1, N2 ∈ PD(n),

we additionally obtain the following:
• We have ‖ω̄K‖M(Ωo) = K for each optimal solution ω̄K to (PK).
• There exists a function

β : R+ \ {0} → R+ \ {0}, K 7→ β(K),

such that each optimal solution ω̄K to (PK) is a minimizer of (Pβ(K)).

Proof. Fix an arbitrary K > 0. By well established results from convex analysis (see, e.g.,
[12, Proposition 2.153]) the norm-constrained problem (PK) is calm. Define the Lagrangian
L as

L : M+(Ωo)× R+ → R+ L(ω, β) = ψ(ω) + β(‖ω‖M(Ωo) −K).

A given measure ω̄K ∈M+(Ωo) is optimal for (PK) if and only if there exists a Lagrange
multiplier β ≥ 0 with

ω̄K ∈ arg min
ω∈M+(Ωo)

L(ω, β), β(‖ω̄K‖M(Ωo) −K) = 0. (3.6)

The set of Lagrange multipliers is independent of the choice of the optimizer ω̄K , i.e. given
two arbitrary optimal solutions ω̄K1 , ω̄K2 ∈ M+(Ωo) to (PK) and β ≥ 0 such that the pair
(ω̄K1 , β) fulfills (3.6), then so does (ω̄K2 , β). For a proof we refer to, e.g., [12, Theorem 3.4].
This proves the first statement.

Assume that Ψ is strictly monotone. Let ω̄K be an arbitrary optimal solution to (PK)
with ‖ω̄K‖M(Ωo) < K. Using the strict monotonicity of Ψ we deduce that ω̄K 6= 0. Defining
ω̃ = (K/‖ω̄K‖M(Ωo))ω̄K there holds ψ(ω̃) < ψ(ω̄K) since (K/‖ω̄K‖M(Ωo)) > 1. This gives
a contradiction and ‖ω̄K‖M(Ωo) = K.

It remains to show that for a given K the associated Lagrange multiplier denoted by
β(K) is positive, unique, and β(K1) ≤ β(K2) if K2 > K1. To prove the positivity, assume
that β(K) = 0. Then we obtain

L(ω̄K , β(K)) = inf
ω∈M+(Ωo)

L(ω, β(K)) = inf
ω∈M+(Ωo)

ψ(ω).

Given ω ∈ domM+(Ωo) ψ, we have ψ(2ω) < ψ(ω) and consequently the infimum in the
equality above is not attained, yielding a contradiction. Assume that β(K) is not unique, i.e.
there exist β1(K), β2(K) > 0 such that each optimal solution ω̄K of (PK) is also a minimizer
of L(·, β1(K)) and L(·, β2(K)) over M+(Ωo). First we note again that 0 ∈M+(Ωo) is not
an optimal solution to (PK) due to the strict monotonicity of Ψ . Additionally it holds
‖ω̄K‖M(Ωo) = K. Without loss of generality assume that β1(K) < β2(K). From the
necessary optimality conditions for (Pβ1(K)) and (Pβ2(K)), see (3.5), we then obtain

−ψ′(ω̄K) ≤ β1(K) < β2(K), supp ω̄β ⊂
{
x ∈ Ωo | − ψ′(ω̄β)(x) = β2(K)

}
,

implying ω̄K = 0 which gives a contradiction. �
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Many commonly used optimality criteria Ψ are positively homogeneous in the sense that
there exists a convex, strictly decreasing, and positive function γ fulfilling

Ψ(rN) = γ(r)Ψ(N) ∀r > 0, N ∈ PD(n); (3.7)
cf. also [27, p. 26]. For example, both the A and the D-criterion fulfill this homogeneity
with γA and γD given by

γA(r) = r−1, γD(r) = r−n.

The following lemma illustrates the findings of the previous result, provided that I0 = 0.
It turns out that solutions to (PK) can be readily obtained by scaling optimal solutions to
(Pβ).

Proposition 3.9. Assume that I0 = 0 and Ψ is positive homogeneous in the sense of (3.7).
Let ω̄β be a solution to (Pβ) for some fixed β > 0. Then

K ω̄β/‖ω̄β‖M(Ω) solves (PK). (3.8)

Proof. First we note that under the stated assumptions every optimal solution ω̄K to (PK)
fulfills ‖ω̄K‖M(Ωo) = K. Clearly, we have

min (PK) = min
ω∈M+(Ωo),
‖ω‖=K

ψ(ω) = min
ω′∈M+(Ωo),
‖ω′‖=1

ψ(Kω′) = γ(K) min(P 1),

by using the positive homogeneity of Ψ . Thus, the solutions of (PK) are given by Kω1,
where ω1 are solutions of (P 1). Now, using the fact that

min (Pβ) = min
K≥0

[
min

ω′∈M+(Ωo), ‖ω′‖=1
ψ(Kω′) + βK

]
= min

K≥0

[
γ(K) min(P 1) + βK

]
the solutions ω̄β of (Pβ) can be computed as ω̄β = Kω1, where K minimizes the above
expression and ω1 ∈ arg min(P 1). Together, this directly implies (3.8). �

As we have shown in the case I0 = 0, i.e. in the absence of a priori knowledge, the
optimal locations of the sensors x are independent of the cost parameter β (resp, K), which
only affects the scaling of the coefficients λ. However for I0 6= 0 this is generally not the
case. Loosely speaking, if the a priori information is relatively good (i.e. I0 ∈ PD(n)) and
the cost per measurement is too high, the optimal design is given by the zero function, i.e.
the experiment should not be carried out at all.

Proposition 3.10. Let I0 ∈ PD(n). Then the zero function ω̄ = 0 is an optimal solution
to (Pβ) if and only if β > β0 = −minx∈Ωo ψ′(0).

Proof. We first note that 0 ∈ domψ and β0 = −minx∈Ωo ψ′(0) < ∞. Clearly, for β ≥ β0,
the zero function fulfills the optimality conditions from Lemma 3.5. Thus, it is a solution
to (Pβ). Conversely, for β < β0, the optimality conditions are violated. �

4. Algorithmic solution

In this section we will elaborate on the solution of (Pβ). We consider two different
approaches. First, we present an algorithm relying on finitely supported iterates and the
sequential insertion of single Dirac Delta functions based on results for a linear-quadratic
optimization problem in [16] and [15]. We derive all necessary results to prove convergence
of the generated sequence of measures towards a minimizer of (Pβ) together with a sub-
linear convergence rate of the objective function value. Additionally we propose to alternate
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between point insertion and point deletion steps to benefit the sparsity of the iterates and
to speed up the convergence of the algorithm in practice. These sparsification steps are
based on the approximate solution of finite dimensional optimization problems in every
iteration. As an example we give two explicit realizations for the point removal and discuss
the additional computational effort in comparison to an algorithm solely based on point
insertion steps. Moreover the resulting algorithms can be combined with Algorithm 1 in a
straightforward manner, guaranteeing a sparse structure of the computed optimal design.

Secondly, we adapt an approach based on a Hilbert space regularization of the origi-
nal sparse optimization problem. Here, the optimal design problem (Pβ) is replaced by
a sequence of regularized optimization problems, which are amenable to proximal point
or semismooth Newton methods (which converge locally superlinearly). Algorithmic ap-
proaches for the solution of non-smooth optimization problems based on Hilbert space
regularizations have recently increased in interest in the context of PDE-constrained opti-
mization; see, e.g., [49, 21]. We briefly describe this approach for the sake of comparison at
the end of this section.

4.1. A generalized conditional gradient method. For the direct solution of (Pβ) on
the admissible setM+(Ωo) we adapt the numerical procedure presented in [16], which relies
on finitely supported iterates. A general description of the method is given in Algorithm 2.
For convenience of the reader we give a detailed description of the individual steps and their
derivation. The basic idea behind the procedure relies on a point insertion process (steps 2.–

Algorithm 2 Successive point insertion
1. Choose ω1 ∈ domM+(Ωo) ψ, # suppω1 ≤ n(n+ 1)/2. Set M0 = F (ω1)/β.
while Φ(ωk) ≥ TOL do
2. Compute ψ′k = ψ′(ωk). Determine x̂k ∈ arg minx∈Ωo ψ′k(x).

3. Set vk = θkδx̂k with θk =
{

0, ψ′k(x̂k) ≥ −β,
−(M0/β)ψ′k(x̂k), else

4. Select a step size sk ∈ (0, 1] and set ωk+1/2 = (1− sk)ωk + skvk.
5. Find ωk+1 with suppωk+1 ⊆ suppωk+1/2 and F (ωk+1) ≤ F (ωk+1/2).

end while

4. in Algorithm 2) related to a generalized conditional gradient method. More precisely,
they consist of conditional gradient steps for a surrogate optimization problem with the
same optimal solutions, in which the sublinear total variation norm is replaced by a coercive
cost term for designs of very large norm. Additionally, we consider the minimization of
the finite dimensional subproblem that arises from restriction of the design measure to the
active support of the current iterate (in step 5.). This is motivated on the one hand by
the desire to potentially remove non-optimal support points by setting the corresponding
coefficient to zero, and on the other hand by the desire to obtain an accelerated convergence
behavior in practice.

This section is structured as follows: First, we focus on the point insertion step and its
descent properties. By a suitable choice of the step size sk in each step of the procedure we
are able to prove a sub-linear convergence rate for the objective functional value. Secondly,
we consider two concrete examples for the point removal step 5. and discuss the applicability
of Algorithm 1 in the context of the successive point insertion algorithm.
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4.1.1. Convergence analysis. As already pointed out, Algorithm 2 relies on a coercive
surrogate design problem which admits the same optimal solutions as (Pβ). Given a
constant M0 > 0, we start by introducing the auxiliary function ϕM0 : R+ → R as

ϕM0(t) =
{
t, t ≤M0,

(1/(2M0))
[
t2 +M2

0
]
, else,

and consider the modified problem

min
ω∈M+(Ωo)

FM0(ω) = ψ(ω) + βϕM0(‖ω‖M(Ωo)) (PM0
β )

for the special choice of M0 = F (ω1)/β, with arbitrary but fixed ω1 ∈ domM+(Ωo) ψ. Note
that there holds ‖ω‖M(Ωo) ≤ M0 and consequently F (ω) = FM0(ω) for all ω ∈ M+(Ωo)
with F (ω) ≤ F (ω1). We additionally point out that

ϕM0(‖ω̄β‖M(Ωo)) = ‖ω̄β‖M(Ωo) (4.1)

for every optimal solution ω̄β of (PM0
β ). Connected to this auxiliary problem we additionally

define the primal-dual gap Φ : domψ → [0,∞) by

Φ(ω) = sup
v∈M+(Ωo)

[
〈ψ′(ω), ω − v〉+ β‖ω‖M(Ωo) − βϕM0(‖v‖M(Ωo))

]
.

Note that the value of Φ is finite for every v ∈ domψ, which follows with the coercivity
of ϕM0(·). In the next proposition we collect several results to establish the connection
between the optimal design problems (Pβ) and (PM0

β ).

Proposition 4.1. Let ω1 ∈ domM+(Ωo) ψ be arbitrary but fixed and set M0 = F (ω1)/β.
Given ω̄β ∈ domM+(Ωo) ψ the following three statements are equivalent:

• 1. The measure ω̄β is a minimizer of (Pβ).
• 2. The measure ω̄β is a minimizer of (PM0

β ).
• 3. The measure ω̄β fulfils Φ(ω̄β) = 0.

Furthermore there holds

Φ(ω) ≥ F (ω)− F (ω̄β) =: rF (ω), (4.2)

for all ω ∈ domM+(Ωo) ψ, ‖ω‖M(Ωo) ≤M0 and all minimizers ω̄β of (PM0
β ).

Proof. The equivalence between the first two statements can be proven as in [16]. We
only prove the third one. Similar to the proof of (3.4) (see Proposition 3.4) a given
ω̄β ∈ domM+(Ωo) ψ is a minimizer of (PM0

β ) if and only if it fulfills

−〈ψ′(ω̄β), ω − ω̄β〉+ βϕM0(‖ω̄β‖M(Ωo)) ≤ βϕM0(‖ω‖M(Ωo)) ∀ω ∈M+(Ωo).

By reordering and taking the minimum over all ω ∈ M+(Ωo) this can be equivalently
written as

sup
ω∈M+(Ωo)

[
〈ψ′(ω̄β), ω̄β − ω〉+ βϕM0(‖ω̄β‖M(Ωo))− βϕM0(‖ω‖M(Ωo))

]
= 0.

Utilizing (4.1) we find Φ(ω̄β) = 0 if and only if ω̄β is a minimizer of FM0 . It remains to
prove (4.2). Given ω ∈ domM+(Ωo) ψ with ‖ω‖M(Ωo) ≤M0 and a minimizer ω̄β we obtain

F (ω)− F (ω̄β) ≤ β‖ω‖M(Ωo) − β‖ω̄β‖M(Ωo) + 〈ψ′(ω), ω − ω̄β〉, (4.3)
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by convexity of ψ. Noting that
−[β‖ω̄β‖M(Ωo) + 〈ψ′(ω), ω̄β〉] ≤ − inf

v∈M+(Ωo)
[〈ψ′(ω), v〉+ βϕM0(‖v‖M(Ωo))],

the right-hand side in (4.3) is estimated by Φ(ω), which concludes the proof. �

With the result of the last proposition we may consider a minimization algorithm
for (PM0

β ) in order to compute optimal solutions to (Pβ). Additionally, the result sug-
gests the use of Φ as a convergence criterion, since it gives an upper bound for the residual
error in the objective function value. As can be seen below, the evaluation of Φ can be
easily computed as a by-product of steps 2.–3. in Algorithm 2.

The algorithm operates on finitely supported iterates ωk = ∑mk
i=1 λ

k
i δxki

with distinct
support points xki ∈ Ωo and positive coefficients λki , i ∈ { 1, . . . ,mk },mk ∈ N. A decrease
of the objective function value in every iteration will be ensured, which implies

β‖ωk+1‖M(Ωo) ≤ FM0(ωk+1) ≤ FM0(ωk) ≤ FM0(ω1),

and consequently FM0(ωk) = F (ωk) for all iterates ωk. In steps 2.–4. the intermediate
iterate ωk+1/2 is obtained as a convex combination between the previous iterate ωk and a
scaled Dirac delta function θkδx̂k inserted at the global minimum of the gradient ψ′(ωk).
The initial coefficient θk is determined by the current maximal violation of the lower bound
on the gradient of ψ; see (3.5). In the following lemma we relate this definition to the
computation of a descent direction in the context of a generalized conditional gradient
method (cf. [46, 16, 15]) for the auxiliary problem (PM0

β ).

Lemma 4.2. Let ωk ∈ domM+(Ωo) ψ be given. Then the measure vk = θkδx̂k with x̂k ∈ Ωo
and θk ≥ 0 as defined in steps 2.–3. of Algorithm 2 is a minimizer of

min
v∈M+(Ωo)

〈ψ′(ωk), v〉+ βϕM0(‖v‖M(Ωo)). (P lin
β )

Moreover, vk realizes the supremum in the definition of the primal-dual gap: it holds
Φ(vk) = 〈ψ′(ωk), ωk − vk〉+ β‖ωk‖M(Ωo) − βϕM0(‖vk‖M(Ωo)).

Proof. We note that (P lin
β ) can be equivalently expressed as

min
r∈[0,∞)

min
ṽ∈M+(Ωo),
‖ṽ‖M(Ωo)=1

r〈ψ′(ωk), ṽ〉+ βϕM0(r) = min
r∈[0,∞)

r min
x∈Ωo

ψ′(ωk) + βϕM0(r).

The concrete expression of vk follows now by a straightforward computation using the
positive homogeneity of the total variation norm and the definition of ϕM0(·). Clearly,
Φ(vk) agrees to −min (P lin

β ) up to a constant value. �

Remark 3. At this point, replacing (Pβ) by the equivalent formulation (PM0
β ) is crucial. In

fact, the partially linearized problem corresponding to the original problem
min

v∈M+(Ωo)
〈ψ′(ω), v〉+ β‖v‖M(Ωo),

is either unbounded or has an unbounded solution set in the case minx∈Ωo ψ′(ω) ≤ −β.
Note that, as a by-product of the last result, the convergence criterion Φ(ωk) can be

evaluated cheaply once the current gradient ψ′(ωk), and its minimum point are calculated.
We form the intermediate iterate as convex combination ωk+1/2 = (1− sk)ωk + skvk

between the old iterate and the new sensor, where sk ∈ (0, 1] is suitably chosen. This
ensures ωk+1/2 ∈M+(Ωo). The step size sk will be chosen by the following generalization
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of the well-known Armijo-Goldstein condition; see, e.g., [15]. This choice of the step size
ensures a sufficient decrease of the objective function value in every iteration of Algorithm 2
and the overall convergence of the presented method. More precisely, for fixed γ ∈ (0, 1),
α ∈ (0, 1/2], the step size is set to sk = γnk , where nk is the smallest non-negative integer
with

αskΦ(ωk) ≤ FM0(ωk)− FM0(ωk + sk(vk − ωk)). (4.4)

Note that given an arbitrary non-optimal ωk ∈ domM+(Ωo) ψ with ‖ωk‖M(Ωo) ≤ M0 this
choice of the step size sk is always possible since the function W : [0, 1]→ R ∪ {−∞}

W (s) = FM0(ωk)− FM0(ωk + s(vk − ωk))
sΦ(ωk) , (4.5)

fulfills lims→0W (s) ≥ 1, similarly to [15, Remark 2]. To obtain quantifiable estimates for
the descent in the objective function value we impose additional regularity assumptions on
Ψ ′ until the end of this section.

Assumption 3. Assume that Ψ ′ is Lipschitz-continuous on compact sets: Given a compact
set N ⊂ domΨ there exists LN > 0 with

sup
N1,N2∈N

‖Ψ ′(N1)− Ψ ′(N2)‖
‖N1 −N2‖

≤ LN , (4.6)

where ‖A‖ = ‖A‖Sym(n) =
√

Tr(AA>) is the Frobenius norm.

Note that this additional assumption is fulfilled if the design criterion Ψ is two-times
continuously differentiable on its domain. This is the case for, e.g., the already mentioned
A and D-criterion , see Section 3.2. We immediately arrive at the following proposition.

Proposition 4.3. Let Assumption 3 hold and let ω1 ∈ domM+(Ωo) ψ be given. Define the
associated sub-level set Eω1 as

Eω1 =
{
ω ∈M+(Ωo) | F (ω) ≤ F (ω1)

}
.

Then there exists Lω1 such that

sup
ω1,ω2∈Eω1

‖ψ′(ω1)− ψ′(ω2)‖C(Ωo)
‖ω1 − ω2‖M(Ωo)

≤ Lω1 . (4.7)

Proof. First we observe that Eω1 is convex, bounded, and weak* closed. Consequently the
set of associated information matrices

I(Eω1) = { I(ω) + I0 | ω ∈ Eω1 }
is compact. For ω1, ω2 ∈ Eω1 we obtain

‖ψ′(ω1)− ψ′(ω2)‖C(Ωo) = ‖ I∗ Ψ ′(I(ω1) + I0)− I∗ Ψ ′(I(ω2) + I0)‖
≤ ‖I∗ ‖Sym(n)→C(Ωo)‖Ψ ′(I(ω1) + I0)− Ψ ′(I(ω2) + I0)‖

≤ LI(Eω1 )‖ I∗ ‖Sym(n)→C(Ωo)‖ I(ω1)− I(ω2)‖
≤ LI(Eω1 )‖ I∗ ‖Sym(n)→C(Ωo)‖ I ‖M+(Ωo)→Sym(n)‖ω1 − ω2‖M(Ωo),

completing the proof. �

Using this additional local regularity we obtain the following estimate on the growth
behavior of the function F at ωk in the search direction.
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Lemma 4.4. Assume that Ψ ′ fulfills (4.6). Let ωk ∈ domM+(Ωo) ψ with ‖ωk‖M(Ωo) ≤ M0
and vk as in Lemma 4.2 be given. Moreover, define ωk+1/2 = (1 − sk)ωk + skvk with sk
determined from (4.4). Then there holds

FM0(ωk+1/2)− FM0(ωk) ≤ −skΦ(ωk) + Lωk

2 sk
2‖vk − ωk‖2M(Ωo),

where Lωk denotes the Lipschitz constant of ψ′ on Eωk .

Proof. By choosing sk from (4.4) there holds FM0(ωk+1/2) ≤ FM0(ωk) and consequently
ωk+1/2 ∈ Eωk . Therefore we obtain

FM0(ωk+1/2)− FM0(ωk) = −sk〈ψ′(ωk), ωk − vk〉

+ βϕM0(‖ωk+1/2‖M(Ωo))− βϕM0(‖ωk‖M(Ωo)) +
∫ sk

0
〈ψ′(ωσ)− ψ′(ωk), vk − ωk〉 dσ,

with ωσ = ωk + σ(vk − ωk) for σ ∈ [0, 1]. Using the convexity of ϕM0(‖ · ‖M(Ωo)) we obtain

− sk〈ψ′(ωk), ωk − vk〉+ βϕM0(‖ωk+1/2‖M(Ωo))− βϕM0(‖ωk‖M(Ωo))

≤ −sk
(
〈ψ′(ωk), ωk − vk〉+ ϕM0(ωk)− ϕM0(vk)

)
,

where the right-hand side simplifies to −skΦ(ωk). Due to the Lipschitz continuity of ψ′ on
Eωk we get

∫ sk

0
〈ψ′(ωσ)− ψ′(ωk), vk − ωk〉dσ ≤ ‖vk − ωk‖M(Ωo)

∫ sk

0
‖ψ′(ωσ)− ψ′(ωk)‖C(Ωo) dσ

≤ Lωk‖vk − ωk‖2M(Ωo)

∫ sk

0
σdσ = Lωk(sk)2

2 ‖vk − ωk‖2M(Ωo).

Combining both estimates yields the result. �

In order to prove the main result we additionally need the following technical lemma.

Lemma 4.5. Let ωk ∈ domM+(Ωo) ψ with Φ(ωk) > 0 be given. The function W : (0, 1] →
R ∪ {−∞} from (4.5) is continuous on (0, 1). Furthermore, denoting by sk the step size
from (4.4), there exists ŝk ∈ [sk, sk/γ] with W (ŝk) = α if sk < 1.

Proof. First, note that for s ∈ [0, 1) we have ωs = (1− s)ωk + svk ∈ domM+(Ωo) ψ due to
I(ωs) + I0 = (1 − s) I(ωk) + sθk ∂S[q̂](x̂k)∂S[q̂](x̂k)> + I0 ∈ PD(n). Furthermore, using
Assumption 2 it can be verified that

W (s) = (FM0(ω0)− FM0(ωs))/(sΦ(ω0))

is continuous on s ∈ (0, 1). Additionally, with lower semi-continuity of Ψ , we verify that
W (s) → −∞ for s → 1 in case that I(vk) 6∈ domΨ . We conclude the proof by applying
the mean value theorem on [sk, sk/γ] ⊂ (0, 1], taking into account that W (sk) ≥ α >
W (sk/γ). �

Combining the previous results we are able to prove sub-linear convergence of the pre-
sented algorithm.
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Theorem 4.6. Let the sequence ωk be generated by Algorithm 2 using the Quasi-Armijo-
Goldstein condition (4.4). Then there exists at least one weak* accumulation point ω̄β of
ωk and every such point is an optimal solution to (Pβ). Additionally there holds

rF (ωk) ≤ rF (ω1)
1 + q(k − 1) (4.8)

with

q = αmin
{

c1
Lω1(M0 + c2)2 , 1

}
, (4.9)

where Lω1 is the Lipschitz-constant of ψ′ on Eω1, M0 = F (ω1)/β, c1 = 2γ(1 − α)rF (ω1)
and a constant c2 > 0 with ‖vk‖M(Ωo) ≤ c2 for all k.

Proof. Assume without restriction that Φ(ωk) > 0, i.e. the algorithm does not terminate
after finitely many steps. By construction and the choice of sk there holds ωk ∈ Eω1 and
consequently ‖ωk‖M(Ωo) ≤ M0, FM0(ωk) = F (ωk) for all k. The same can be proven for
ωk+1/2. Note that ωk is bounded and ψ′ is weak*-to-strong continuous. Therefore, there
exists c2 > 0 with ‖vk‖M(Ωo) ≤ c2 for all k s.

Due to the boundedness of ωk there exists a subsequence denoted by the same symbol
with weak* limit ω̄β. By the definition of the step size sk as well as (4.2) there holds

αskrF (ωk) ≤ αskΦ(ωk) ≤ rF (ωk)− rF (ωk+1/2),
which yields

rF (ωk+1/2) ≤ (1− αsk)rF (ωk). (4.10)

Since Φ(ωk) > 0 we obtain sk 6= 0 for all k. Two cases have to be distinguished. If sk is
equal to one we immediately arrive at

rF (ωk+1/2) ≤ (1− α)rF (ωk) ≤ rF (ωk)− αrF (ωk)2

rF (ω1) .

In the second case, if sk < 1, there exists ŝk ∈ [sk, sk/γ] with

α = F (ωk)− F (ωk + ŝk(vk − ωk))
ŝkΦ(ωk) ,

using Lemma 4.5. Consequently ωk + s(vk − ωk) ∈ Eω1 for all 0 ≤ s ≤ ŝk due to the
convexity of F . Because of the Lipschitz-continuity of ψ′ on Eω1 , Lemma 4.4 can be applied
and, defining δωk = vk − ωk, there holds

α = F (ωk)− F (ωk + ŝkδωk)
ŝkΦ(ωk) ≥ 1− Lω1 ŝk

2
‖δωk‖2M(Ωo)
Φ(ωk) ≥ 1− Lω1sk

2γ
‖δωk‖2M(Ωo)
Φ(ωk) .

The last estimate is true because of ŝk ≤ sk/γ. Reordering and using(4.2) yields

1 ≥ sk ≥ 2γ(1− α) Φ(ωk)
Lω1‖vk − ωk‖2M(Ωo)

≥ 2γ(1− α) r(ωk)
Lω1‖vk − ωk‖2M(Ωo)

.

Combining the estimates in both cases and using rF (ωk+1) ≥ rF (ωk+1/2), the inequality

0 ≤ rF (ωk+1)
rF (ω1) ≤

rF (ωk+1/2)
rF (ω1) ≤ rF (ωk)

rF (ω1) − qk
(
rF (ωk)
rF (ω1)

)2

∀k ∈ N (4.11)
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holds, where the constant qk is given by

qk = rF (ω1)αmin
{

2γ(1− α)
Lω1‖vk − ωk‖2M(Ωo)

,
1

rF (ωk)

}
≥ αmin

{
2γ(1− α)rF (ω1)
Lω1(M0 + c2)2 , 1

}
=: q,

if sk < 1 and qk = α otherwise. The claimed convergence rate (4.8) now follows directly
from the recursion formula (4.11); see [23, Lemma 3.1]. Consequently each subsequence of
ωk is a minimizing sequence and each weak* accumulation point ω̄β is a minimizer of (Pβ)
due to the weak* lower semi-continuity of F . �

4.2. Acceleration and sparsification strategies. As we have seen in the previous sec-
tion, an iterative application of steps 2.–4. in Algorithm 2 is sufficient to obtain weak*
convergence of the iterates ωk, as well as a sublinear convergence rate for the objective
function. However, it is obvious that the support size of the iterates ωk grows monotonically
in every iteration unless the current gradient is bounded from below by −β or, more unlikely,
the step size sk is chosen as 1. Therefore, while the implementation of steps 2.–4. is fairly
easy, an algorithm only consisting of point insertion steps will likely yield iterates with
undesirable sparsity properties, e.g., a clusterization of the intermediate support points
around the support points of a minimizer to (Pβ). In the following we mitigate those effects
by augmenting the point insertion steps by point removal steps, where we incorporate ideas
from [16, 13]. We define the parameterization:

ω(λ) :=
∑

xi∈suppωk+1/2

λiδxi ∀λ ∈ Rmk , mk = # suppωk+1/2. (4.12)

Now, we set ωk+1 = ω(λk+1), where the improved vector λk+1 ∈ Rmk is chosen as an
approximate solution to the (finite dimensional) coefficient optimization problem

min
λ∈Rmk , λ≥0

F (ω(λ)) = ψ(ω(λ)) + β‖λ‖1, (4.13)

that fulfills F (ωk+1) ≤ F (ωk+1/2). In this manuscript, we focus on two special instances of
this removal step, which are detailed below.

In the first strategy, the new coefficient vector λk+1 = λk+1(σk) is obtained by

λk+1(σk)i = max
{
λ
k+1/2
i − σk

[
ψ′(ωk+1/2)(xi) + β

]
, 0
}
∀i ∈ {1, . . . ,mk}, (4.14)

where σk > 0 is a suitably chosen step size that avoids ascend in the objective function
value. This corresponds to performing one step of a projected gradient method on (4.13)
using the previous coefficient vector λk+1/2 as a starting point. Thus, step 5. in Algorithm 2
subtracts or adds mass at support point xi for −ψ′(ωk+1/2)(xi) < β or −ψ′(ωk+1/2)(xi) > β,
respectively. Furthermore, the new coefficient λk+1

i of the Dirac delta function δxi is set to
zero if

λ
k+1/2
i − σk(ψ′(ωk+1/2)(xi) + β) ≤ 0,

removing the point measure from the iterate.
Secondly, we suppose that the finite-dimensional sub-problems (4.13) can be solved

exactly and choose
λk+1 ∈ arg min

λ∈Rmk , λ≥0
F (ω(λ)). (4.15)

In this case, the conditions
suppωk+1 ⊂ suppωk+1/2, F (ωk+1) ≤ F (ωk+1/2)
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are trivially fulfilled. If all finite dimensional sub-problems are solved exactly, the method
can be interpreted as a method operating on a set of active points Ak = suppωk; cf. [43]:
In each iteration, the minimizer x̂k of the current gradient ψ′k is added to the support set to
obtain Ak+1/2 = Ak ∪{ x̂k }. Then, the problem (4.15) is solved on the new support set (i.e.
with suppωk+1/2 replaced by Ak+1/2 in the definition of (4.12)) to obtain the next iterate
ωk+1. Note that the next active set is given by Ak+1 = suppωk+1, which automatically
removes support points corresponding to zero coefficients in each iteration.

Finally, to be able to guarantee the a priori bound # suppωk ≤ n(n + 1)/2 for the
algorithmic solutions, we can apply Algorithm 1 to the intermediate iterate ωk+1/2 in step 5.
of Algorithm 2. This ensures the convergence of the presented procedure towards a sparse
minimizer of (Pβ).

Proposition 4.7. Assume that # suppω1 ≤ n(n+1)/2 and let ωk+1 be obtained by applying
Algorithm 1 to ωk+1/2 in each iteration of Algorithm 2. Then the results of Theorem 4.6
hold. Furthermore we obtain # suppωk ≤ n(n + 1)/2 for all k ∈ N and consequently
# supp ω̄β ≤ n(n+ 1)/2 for every weak* accumulation point ω̄β of ωk.

Proof. The statement for the support of ωk readily follows from an inductive application
of Proposition 3.7 by noting that{

I(δx) | x ∈ suppωk
}
⊂ Sym(n),

and dim Sym(n) = n(n + 1)/2. The sparsity statement for every accumulation point ω̄
follows directly from the uniform bound on the number of support points in each of the
iterates ωk; see [43, Proposition C.1]. �

We emphasize that the sparsifying procedure from Algorithm 1 can be readily combined
with the previously presented point removal steps in a straightforward fashion. In practical
computations we optimize the coefficients of the Dirac delta functions in the current support
either by (4.14) or (4.15) obtaining an intermediate iterate ωk+3/4. Subsequently we apply
Algorithm 1. Since in both cases, the number of support points cannot increase, the
statements of the last proposition remain true.

Remark 4. Note that Algorithm 2 can be easily generalized to allow for the insertion of
more than one point in every iteration, which yields an additional practical speed up of the
method; see Section 6.2.3. In detail, the results of Theorem 4.6 and Proposition 4.7 hold
true if the search direction vk ∈M+(Ωo) from Lemma 4.2 is more generally chosen as

vk =
m∑
i=1

λiδxi , {xi}mi=1 ⊂ arg min
x∈Ωo

ψ′(ωk), ‖vk‖M(Ωo) = −M0 min
x∈Ωo

ψ′(ωk)/β

if minx∈Ωo ψ′(ωk) ≤ −β. Moreover, in the case that all finite-dimensional sub-problems are
solved exactly, all results remain valid if we compute ωk+1 as the solution of the coefficient
minimization problem (4.15) with suppωk+1/2 replaced by some finite point set Ak+1/2
which contains suppωk ∪ { x̂k }.
4.3. Computational cost of the sparsification steps. It remains to comment on the
computational cost associated with the various point removal steps presented in this section.
First, we address the costs for the point removal steps based on the approximate solution
of the finite dimensional subproblems. Computing the new coefficient vector λk from (4.14)
requires the computation of the pointwise evaluation of ψ′(ωk+1/2) at the current support
points once. In our numerical experiments a suitable step size σk is found by a simple
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backtracking line search to avoid ascend. Consequently, for each trial step size, the max-
operator in (4.14) as well as the objective function is evaluated once. This can be done
efficiently with cost scaling linearly with the current support size mk.

Secondly, if λk is determined from (4.15), we have to solve a finite-dimensional convex
optimization problem in every iteration. Since the most common choices for the optimal
design criterion Ψ are twice continuously differentiable, we choose to implement a semi-
smooth Newton method. To benefit from the fast local convergence behavior for this class of
methods we warm-start the algorithm using the coefficient vector λk+1/2 of the intermediate
iterate ωk+1/2. This choice of the starting point often gives a good initial guess for λk+1.
However, we emphasize that essentially any algorithm for smooth convex problems with
positivity constraints on the optimization variables can be employed instead. In particular,
interior point methods provide complexity bounds for the solution up to machine precision
in terms of the support size mk; see, e.g., [14, Section 11.5]. In light of this fact, the
computational cost for the point removal steps can be regarded as a constant, assuming
that mk is uniformly bounded through the iterations, e.g., by employing Algorithm 1.
However, interior point methods cannot be warm-started in general, which is why we prefer
semi-smooth Newton methods in practice.

Finally, we consider the application of Algorithm 1, given a sparse input measure ω
with suppω = {xi}mi=1. Step 1. amounts to the computation of the symmetric rank one
matrices {I(δxi)}mi=1 ⊂ NND(n), which we identify with vectors {I(δxi)}mi=1 ⊂ Rn(n+1)/2.
Additionally, in each execution of the loop step 2. has to be executed, which requires to
compute a vector λ̄ in the kernel of the matrix I(ω) ∈ Rn(n+1)/2×m, defined by

[I(ω)]j,i = I(δxi)j , i = 1, . . . ,m, j = 1, . . . , n(n+ 1)/2.

This can be done efficiently employing either a SVD-decomposition or a rank-revealing
QR-decomposition. Furthermore, assuming that Algorithm 1 is applied to ωk+1/2 for every
k, this loop will run at most in each iteration. This can be seen in the following way:
Let the k-th iterate ωk in Algorithm 2 be given such that rank I(ωk) = # suppωk. Note
that this implies # suppωk ≤ n(n+ 1)/2. Consequently we have either rank I(ωk+1/2) =
# suppωk+1/2 or rank I(ωk+1/2) = # suppωk+1/2 − 1. In the first case no sparsification
by the post-processing can be achieved. In the second case ωk+1/2 = ∑m

j=1 λjδxj is at
least sparsified once. After the first execution of the sparsification loop, we obtain the
measure ωnew = ∑

{ i | λnew,i>0 } λnew,iδxi with rank I(ωnew) = # suppωnew, i.e. Algorithm 1
terminates.

4.4. Algorithmic solution by path-following. As an alternative to Algorithm 2, we
briefly describe a path-following approach. To compute a minimizer of (Pβ) we solve a
sequence of regularized problems given by:

min
ω∈L2(Ωo))

ψ(ω) + β‖ω‖L1(Ωo) + ε

2‖ω‖
2
L2(Ωo). (P εβ)

In the limiting case for ε→ 0, the regularized optimal solutions approximate solutions of
(Pβ). We state first order optimality conditions for solutions of the regularized problem
and investigate the case ε→ 0. For the sake of brevity, we omit most proofs.

Proposition 4.8. Let the assumptions of Proposition 3.2 be fulfilled. Then the following
statements hold:

• For every ε > 0 there exists a unique solution ω̄εβ ∈ L2(Ωo) to (P εβ).
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• A non-negative function ω̄εβ ∈ L2(Ωo) is optimal if and only if

ω̄εβ = max
{
−1
ε

(ψ′(ω̄εβ) + β), 0
}
. (4.16)

Consequently there holds ω̄εβ ∈ C(Ωo) and

ω̄εβ(x) > 0 if and only if − ψ′(ω̄εβ)(x) > β.

• Given any sequence {εk}k∈N with εk > 0, εk → 0, the associated sequence ω̄εkβ
admits at least one weak* accumulation point and every such point is an optimal
solution to (Pβ).

Proof. By assumption there exists ω ∈ M+(Ωo) with ψ(ω) < ∞, i.e. I(ω) + I0 ∈ PD(n).
Following [42, Appendix A.1], there exists a sequence {ωk}k∈N ⊂ L2(Ωo), ωk ≥ 0 with
ωk →∗ ω. Consequently there also holds

I(ωk) + I0 → I(ω) + I0 ∈ PD(n),

due to the weak*-to-strong continuity of I. Thus we observe I(ω) + I0 ∈ PD(n) and
ψ(ωk) < ∞ for all k large enough. The existence of at least one optimal solution ω̄εβ now
follows by similar arguments as in Proposition 3.2. Its uniqueness follows due to the strict
convexity of Fε. The necessary and sufficient optimality condition can be derived as in
[49] and [18]. For the last result we observe that given an arbitrary positive null sequence
{εk}k∈N there holds

β‖ω̄εβ‖L1(Ωo) ≤ Fεk(ω̄εkβ ) ≤ F (ω) + 1
2‖ω‖L2(Ωo)

for an arbitrary but fixed ω ∈ L2(Ωo), ω ≥ 0 and all k large enough. Following the lines of
the proof in [42, Section 2.5] existence of at least one weak* accumulation point of ω̄εkβ as
well as its optimality for (Pβ) can now easily be deduced. �

Note that for fixed ε > 0 the unique minimizer ω̄εβ is a solution of

ω −max
{
−1
ε

(ψ′(ω)(x) + β), 0
}

= 0. (4.17)

Under additional regularity assumptions on the optimal design criterion Ψ , the solution of
this non-smooth operator equation can be computed by a semi-smooth Newton method
in function space; see, e.g., [54]. To compute a solution for the original problem (Pβ) we
employ a continuation strategy for the regularization parameter ε. For an initial small value
ε we compute the unique minimizer ω̄εβ to (P εβ) by solving (4.17). Then, in an outer loop,
we decrease ε, and use the previous optimal solution as an initial guess for the next iteration.
The procedure is summarized in Algorithm 3. For further references on path-following we
refer to, e.g., [32, 33, 34].

Algorithm 3 Path-following
1. Choose ε1 > 0 and initial guess ω1

ε ∈ domM+(Ωo) ψ ∩ L2(Ωo).
while residual (4.17) large do
2. Compute ω̄εlβ from (4.17) using ω̄εl−1

β as initial guess.
3. Get εl+1 < εl, l = l + 1.

end while
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5. Discretization

In the following, the sets Ω as well as Ωo are assumed to be polytopal (i.e. polygonal in
two dimensions and polyhedral in three dimensions). We discuss the approximation of (Pβ)
by linear finite elements. For this purpose we consider a family of triangulations { Th }h>0
of Ω with

Ω =
⋃
T∈Th

T̄ , Ωo =
⋃

T∈T o
h

T̄ , (5.1)

where T oh ⊂ Th denotes the union of all cells making up the observational domain. We
assume that the triangulation fulfills the usual regularity conditions (cf., e.g., [19]). By Nh
we denote the set of nodes of the triangulation. For each h > 0 we now define the space of
continuous piecewise linear finite elements Vh on Th and its dual space V ∗h 'Mh as

Vh = { yh ∈ C(Ω̄) | yh|T ∈ P1 ∀T ∈ Th } , Mh = {ωh ∈M(Ω̄) | suppωh ⊂ Nh } .
In the following assume that Yh = Vh ∩ Y is not empty. For each xi ∈ Nh we denote by
ehi ∈ Vh the associated nodal basis function. Finally, we introduce the nodal interpolation
operators ih : C(Ω̄)→ Vh and Λh : M(Ω̄)→Mh as

ih(y) =
∑
xi∈Nh

y(xi)ehi , Λh(ω) =
∑
xi∈Nh

〈ehi , ω〉δxi

see, e.g., [17]. Note that Λhω ∈M+(Ωo) ∩Mh for all ω ∈M+(Ωo) due to (5.1).
We define the discrete state space Ŷh = ŷh + Yh where ŷh denotes an approximation of

the Dirichlet boundary data ŷ. For a given q ∈ Qad the discrete state equation yh = Sh[q]
is defined as

yh ∈ Ŷh such that a(q, yh)(ϕh) = 0 ∀ϕh ∈ Yh. (5.2)

Analogously, for all k ∈ { 1, . . . , n }, the discrete sensitivity δyh = ∂kS
h[q̂] ∈ Yh ∩ C(Ωo) at

the given a priori guess q̂ is given as the solution to
a′y(q̂, yh)(δyh, ϕh) = −a′qk(q̂, ŷh)(ϕh) ∀ϕh ∈ Yh, (5.3)

where ŷh = Sh[q̂]. For the remainder of this section we make the following assumption.

Assumption 4. There exists h0 > 0 such that for all h ≤ h0 and q̂ ∈ Qad the discrete state
and sensitivity equations, (5.2) and (5.3), admit unique solutions. Moreover the discrete
sensitivities fulfill

lim
h→0

max
k
‖∂kS[q̂]− ∂kSh[q̂]‖C(Ωo) = 0.

Note that these assumptions can be verified for a variety of settings, in particular the
ones considered in Section 6.

5.1. Discretization of (Pβ). We define the discrete approximation to (Pβ) by
min

ωh∈M+(Ωo)
Fh(ω) = [ψh(ωh) + β‖ωh‖M(Ωo)], (Pβ,h)

where ψh(ωh) = Ψ(Ih(ωh) + I0) and the operator Ih results from the discretization of the
Fisher operator I as

Ih : M(Ωo)→ Sym(n), Ih(ωh)i,j = 〈∂iSh[q̂]∂jSh[q̂], ωh〉. (5.4)
Initially, we do not discretize the optimal design space M+(Ωo), which corresponds to a
variational discretization approach; cf. [35, 18]. However, we will show below that this is
essentially equivalent to an additional discretization of the measure space by Mh.
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Turning to the study of (Pβ,h), we observe that existence of at least one discrete optimal
solution ω̄β,h ∈M+(Ωo) can be concluded in the same way as for the continuous problem
(cf. Proposition 3.2), provided that the discrete sensitivities fulfill

Rn = span
(
Ran I0 ∪{ ∂Sh[q̂](x) | x ∈ Ωo }

)
.

Due to Assumption 4, this property of the discrete problem follows from the analogous
property of the continuous problem for h small enough. In the next theorem we show that,
in addition, there exists at least one discrete optimal solution located in the nodes of the
triangulation.

Theorem 5.1. Assume that ∂S[q̂] fulfills the assumptions from Proposition 3.3 and let
Assumption 4 hold. Then there exists h0 > 0 such that for every h ≤ h0 the problem (Pβ,h)
admits at least one optimal solution ω̄β,h ∈M+(Ωo) fulfilling

ψ′h(ω̄β,h) ≥ −β, supp ω̄β,h ⊂
{
x ∈ Ωo| − ψ′h(ω̄β,h)(x) = β

}
,

and # supp ω̄β,h ≤ n(n + 1)/2. Moreover, for every optimal solution ω̄β,h of (Pβ,h) the
interpolated measure Λh(ω̄β,h) ∈Mh is also optimal.

Proof. We have to show that the domain of ψh on M+(Ωo) is not empty for all h small
enough, existence of at least one discrete optimal solution as well as the necessary and
sufficient optimality conditions follow as for the continuous problem. By assumption there
exists ω ∈ M+(Ωo) with I(ω) + I0 ∈ PD(n). Due to the uniform convergence of the
sensitivities ∂Sh[q], we have Ih(ω)→ I(ω) for h→ 0. Therefore, for h small enough there
holds Ih(ω) + I0 ∈ PD(n), since the set of invertible matrices is open.

It remains to prove the existence of a solution supported in Nh. Given an arbitrary but
fixed ω ∈M+(Ωo) we have

Ih(Λhω)ik =
〈
∂iS

h[q̂]∂kSh[q̂], Λhω
〉

=
〈
ih
(
∂iS

h[q̂]∂kSh[q̂]
)
, ω
〉

for all i, k ∈ {1, . . . , n}, by using properties of Λh; see [17, Theorem 3.5]. Now, let z ∈ Rn
be arbitrary. Then there holds

zT Ih(ω)z =
〈
z>∂Sh[q̂]∂Sh[q̂]>z, ω

〉
=
〈(
∂Sh[q̂]>z

)2
, ω

〉

=
〈 ∑

xj∈Nh
ehj ∂S

h[q̂](xj)>z

2

, ω

〉
,

using ∑xi∈Nh e
h
i (x) = 1 for all x ∈ Ωo. Now, we estimate〈 ∑
xj∈Nh

ehj z
>∂Sh[q̂](xj)

2

, ω

〉
≤
〈 ∑
xj∈Nh

ehj

(
z>∂Sh[q̂](xj)

)2
, ω

〉
,

with Jensen’s inequality, using the convexity of the square function. Expanding and rear-
ranging yields〈 ∑

xj∈Nh
ehj

(
z>∂Sh[q̂](xj)

)2
, ω

〉
=
〈 ∑
xj∈Nh

ehj z
>∂Sh[q̂](xj)∂Sh[q̂](xj)>z, ω

〉

=
〈
ih
(
z>∂Sh[q̂]∂Sh[q̂]>z

)
, ω
〉

=
〈
z>∂Sh[q̂]∂Sh[q̂]>z, Λhω

〉
= zT Ih(Λhω)z.
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Since z ∈ Rn was arbitrary, this implies Ih(ω) ≤L Ih(Λhω) and therefore also
Ψ(Ih(ω) + I0) ≥ Ψ(Ih(Λhω) + I0),

due to the monotonicity of Ψ with respect to the Löwner ordering. Let ω̄β,h be an optimal
solution of (Pβ,h). From this and ‖Λhω̄β,h‖M(Ωo) ≤ ‖ω̄β,h‖M(Ωo) we deduce that Λhω̄β,h is
an optimal solution to (Pβ,h). �

Note that this result, together with Theorem 3.6, implies in particular that there exists
an optimal solution to (Pβ,h) in Mh ∩M(Ωo) which is comprised of at most n(n + 1)/2
distinct support points.

Finally, we prove subsequential convergence of discrete optimal solutions for h→ 0.

Proposition 5.2. For h ≤ h0 denote by ω̄β,h an arbitrary optimal solution to (Pβ,h). There
exists at least one subsequence of { ω̄β,h }h>0 (denoted in the same way), converging in the
weak* topology for h → 0. Every accumulation point ω̄β of { ω̄β,h }h>0 is a minimizer of
(Pβ) and

‖ω̄β,h‖M(Ωo) → ‖ω̄β‖M(Ωo), ψh(ω̄β,h)→ ψ(ω̄β).
Furthermore, if there holds

# supp ω̄β,h ≤ n(n+ 1)/2, ∀h > 0
then the same holds for every accumulation point.

Proof. Let { ω̄β,h }h>0 be a sequence of discrete optimal solutions and let ω̄ be an optimal
solution to (Pβ). For h sufficiently small there holds

β‖ω̄β,h‖M(Ωo) ≤ ψh(ω̄β,h) + β‖ω̄β,h‖M(Ωo) ≤ ψh(ω̄) + β‖ω̄‖M(Ωo). (5.5)
Due to Ih(ω̄β)→ I(ω̄β) the right-hand side in this inequality is bounded independently of
h. From this, we deduce the boundedness of the sequence { ω̄β,h }h>0. Thus, there exists a
subsequence denoted in the same way and a measure ω̄β ∈ M+(Ωo) with ω̄β,h ⇀∗ ω̄β for
h→ 0. Due to the weak* lower semi-continuity of the norm and the uniform convergence
of the sensitivities there holds

ψ(ω̄β) + β‖ω̄β‖M(Ωo) ≤ lim inf
h→0

[ψh(ω̄β,h) + β‖ω̄β,h‖M(Ωo)] ≤ ψ(ω̄) + β‖ω̄‖M(Ωo)

by taking the limes inferior on both sides of (5.5). Therefore ω̄β is also an optimal solution
of (Pβ) and

ψh(ω̄β,h) + β‖ω̄β,h‖M(Ωo) → ψ(ω̄β) + β‖ω̄β‖M(Ωo).

Furthermore, due to the weak* convergence of ω̄β,h, we obtain
‖ω̄β,h‖M(Ωo) = 〈1, ω̄β,h〉 → ‖ω̄β‖M(Ωo) = 〈1, ω̄β〉 = ‖ω̄β,h‖M(Ωo).

The convergence of ψh(ω̄β,h) is a direct consequence of the convergence of the objective
function values as well as the the convergence of the norms. The result on the number of
support points follows from [43, Proposition C.1], again using that dim Sym(n) = n(n +
1)/2. �

Observe that the different implementations of Algorithms 2 presented in Section 4.1 can
be directly applied to (Pβ,h). Following Theorem 5.1 the position x̂k of the new Dirac
delta function can be chosen from Nh. Therefore step 2. in Algorithm 2 amounts to the
computation of the discrete gradient ψ′h(ωk) and the determination its maximum in Nh.
The latter one can be done efficiently by O(#Nh) operations.
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5.2. Post-processing of the discrete design measure. By Theorem 3.6 the support
of an optimal design ω̄β can be limited to n(n+ 1)/2 points. In practice, this upper bound
is often rather pessimistic. However, due to discretization error, the support of a discrete
solution ω̄β,h ∈Mh of (Pβ,h) can be bigger than that of the continuous counterpart ω̄β , while
still respecting the upper bound n(n+ 1)/2. Usually, a sensor at a specific location in the
continuous solution appears spread out over several adjacent grid points in the numerical
solution. A similar effect has been observed and theoretically investigated in the context
of sparse deconvolution in the presence of noise; cf. [24]. As a remedy, we employ the
following heuristic post-processing of the discrete solution: First, we cluster the support of
ω̄β,h into Nc ≤ # supp ω̄β,h sets Si ⊂ Ωo, with diam(Si) ≤ Ch. Then, we construct a new
design ω̄S = ∑

i=1,...,Nc λ
S
i δxSi

with λSi =
∫
Si

dω̄h summing up the coefficients of each cluster,
and xSi =

∫
Si
xdω̄h/λSi the locations by the center of mass. Note that this introduces an

additional error in the location of the support points of order h, which is not worse than
what we can expect from ω̄h. Additionally, the weak*-convergence result for h → 0 from
Proposition 5.2 is not affected by this post-processing.

5.3. Discretization of (P εβ). We briefly comment on the discretization of the regularized
sub-problems (P εβ). We adapt the approach from [42, 18] and discretize the design by
piece-wise linear finite elements on the observation set, denoted by Uh. We endow this
space with the lumped inner product defined for any ϕ,ψ ∈ Uh ⊂ C(Ωo) in the usual way
as

(ϕ,ψ)Ωo,h =
∫
Ωo
ih(ϕψ)(x) dx.

The approximation of (P εβ) is then defined as

min
ωh∈Uh,ωh≥0

[
ψh(Λhωh) + β‖ωh‖L1(Ωo) + ε

2‖ωh‖
2
L2(Ωo),h

]
, (P εh,β)

where ‖ωh‖2L2(Ωo),h = (ωh, ωh)Ωo,h is the lumped regularization term. Here, the appearance
of Λhωh turns integrals involving the finite element function ωh into appropriate lumped
integrals, i.e., we obtain

Ih(Λhωh)ij = (∂iSh[q̂]∂jSh[q̂], ωh)h.
Note also that ‖ωh‖L1(Ωo) = ‖ωh‖M(Ωo) = ‖Λhωh‖M(Ωo). The existence of an optimal
solution to (P εh,β), for h small enough, can be shown by similar arguments as for the unreg-
ularized discrete problem. Additionally uniqueness of the solution follows using the strict
convexity of the regularization term. The necessary and sufficient optimality conditions
can be derived and are equivalent to the point-wise projection formula

ω̄εβ,h(xi) = max
{
−1
ε

(ψ′l,h(ω̄εβ,h)(xi) + β), 0
}
∀xi ∈ Nh ∩Ωo. (5.6)

For a discussion and comparison of different discretization schemes of the regularized
problem we refer to [42, Section 4.5.3].

6. Numerical examples

We end this paper with a numerical study of two test examples. In the following we
consider the unit square Ω̄ = Ωo = [0, 1]2 and a sequence Thk , k ∈ { 1, 2, . . . , 9 }, of uniform
triangulations of Ωo with hk =

√
2/2k. Our aim in this section is twofold. First, we want

to numerically illustrate the theoretical results. Secondly, we want to study the practical
performance of the Algorithms according to various criteria including the computational
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time, the evolution of the sparsity pattern throughout the iterations and the influence
of the fineness of the triangulation. In all examples we consider the A-optimal design
problem, i.e. Ψ = Tr (·)−1 and the discrete state and the associated sensitivities ∂S[q̂] are
computed for a fixed q̂ once at the beginning. During the execution of the different variants
of Algorithms 2 and 3 no additional PDEs need to be solved. Moreover, the gradient of the
reduced cost functional is given by[

ψ′(ω)
]
(x) = −Tr(I(ω)−1 I(δx) I(ω)−1) = −‖I(ω)−1∂S[q̂](x)‖2Rn ∀x ∈ Ω,

which relates the pointwise value of the gradient directly to the corresponding sensitivity
vector ∂S[q̂](x) ∈ Rn. A corresponding computation on the discrete level allows for an
efficient implementation based on a single Cholesky-decomposition of I(ω) in each iteration.
Moreover, a corresponding expression for the Hessian-vector-product [ψ′′(ω)(δω)] (x) for
δω ∈ M(Ω) can be derived by differentiating the above expression. In both examples,
the assumptions on the continuous and discrete state equation, see Assumption 1 and
Assumption 4, respectively, can be easily verified.

6.1. Example 1. As a first example for the state equation (2.1), we take a convection-
diffusion process where for a given q ∈ Qad = { q ∈ R3 | 5 ≥ q1 ≥ 0.25 } the associated state
y = S[q] ∈ H1

0 (Ω) ∩ C(Ωo) is the unique solution to

a(q, y)(ϕ) =
∫
Ω

[
q1∇y · ∇ϕ+ q2ϕ

∂y

∂x1
+ q3ϕ

∂y

∂x2

]
dx =

∫
Ω
fϕdx, (6.1)

for all ϕ ∈ H1
0 (Ω). The forcing term f is chose as exp(3(x2

1 + x3
2)). This corresponds to the

linear elliptic equation

−q1∆y +
(
q2
q3

)
· ∇y = f in Ω,

together with homogeneous Dirichlet boundary conditions on ∂Ω. Here, the parameter q
contains the scalar diffusion and convection coefficients of the elliptic operator. As a priori
guess for the parameter we choose q̂ = (3, 0.5, 0.25)>. Note that while (6.1) is a linear
equation, the state y ∈ H1

0 (Ω) ∩ C(Ωo) depends non-linearly but differentiable on q. For
each k ∈ { 1, 2, 3 } the sensitivity δyk = ∂kS[q̂] ∈ H1

0 (Ω)∩C(Ωo) can be computed from (2.2).
Due to the tri-linearity of the form a(·, ·)(·) it fulfills

a(q̂, δyk)(ϕ) = a(ek, ŷ)(ϕ) ∀ϕ ∈ H1
0 (Ω),

where ŷ = S[q̂] and ek ∈ R3 denotes the k-th canonical unit vector.

6.1.1. First order optimality condition. In this section we numerically verify the discrete
first-order necessary and sufficient optimality conditions from Theorem 5.1. Therefore we
compute an A-optimal design for Example 1 on grid level nine Th9 for β = 1 and I0 = 0.
For the computation we use Algorithm 2 (together with Algorithm 1 and a full resolution
of the arising finite-dimensional subproblems), until the residual is below machine precision.
We obtain a discrete optimal design ω̄h in M+(Ωo)∩Mh with five support points. By closer
inspection we observe that two of the computed support points are located in adjacent
nodes of the triangulation. Applying the post-processing from Section 5.2, we obtain the
design given in Figure 1. Alongside we plot the isolines of −ψ′h(ω̄β,h). As predicted by
Theorem 5.1, −ψ′h(ω̄β,h) is bounded from above by the cost parameter β = 1 and the
support points of ω̄β,h align themselves with those points in which this upper bound is
achieved.
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(a) Optimal design ω̄β,h.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3

0.6

0.9

0.9

0.6

0.3

0.99

0.99

x1

x 2

(b) Isolines of −ψh(ω̄β,h).

Figure 1. Optimal design and isolines of the gradient.

6.1.2. Confidence domains of the optimal estimator. Given the optimal design ω̄h from
Figure 1a, and K > 0 we note that the measure ω̄Kh = (K/‖ω̄β,h‖M(Ωo))ω̄β,h is an optimal
solution to

min
ω∈M+(Ωo)

Tr(Ih(ωh)−1) subject to ‖ωh‖M(Ωo) ≤ K,

since the A-optimal design criterion is positive homogeneous; see Proposition 3.9. In this
section we compute the linearised confidence domains (2.8) of the least-squares estimator q̃
from (2.4) corresponding to ω̄Kh for K = 3 · 104.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10000.000

10000.000

10000.000

x1

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16089.525

5245.116

1337.423

7327.937

x1

x 2

Figure 2. Reference measures ω1 (left) and ω̄K,Wh (right).

Note that, given a sparse design measure ω, and the associated linearised estimator
q̃lin = (q̃1

lin, q̃
2
lin, q̃

3
lin)T , see (2.7), there holds Cov[q̃lin, q̃lin] = Ih(ω)−1; see the discussion in

Section 2. Consequently we have

Ih(ω)−1
kk = Var[q̃klin], k ∈ { 1, 2, 3 } and Tr(Ih(ω)−1) =

3∑
k=1

Var[q̃klin].

As a comparison, we also consider the estimators corresponding to two reference designs of
the same norm. The first measure ω1 is chosen as a linear combination of three Dirac delta



OPTIMAL SENSOR PLACEMENT 31

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4−4

−3

−2

−1

0

1

2

3

4

5

q1

q 2

(a) Ellipsoids for (q1, q2)T .
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(c) Ellipsoids for (q3, q1)T .

Figure 3. Confidence ellipsoids for the estimators associated to ω̄Kh (blue),
ω1 (red) and ω̄K,Wh (yellow).

functions with equal coefficients while the second measure ω̄K,Wh is a solution to

min
ω∈M+(Ωo)

Tr(W Ih(ωh)−1W ) subject to ‖ωh‖M(Ωo) ≤ K, (6.2)

where W = diag(1, 1, 4), i.e. we place more weight on the variance for the estimation of q3.
The designs ω1 and ω̄K,Wh are depicted in Figure 2.

For a better visualization we plot the 50%-linearised confidence domains of the obtained
estimators for the two dimensional parameter vectors (q1, q2)T , (q2, q3)T , and (q3, q1)T in
Figure 3. Additionally, for each design we report Tr(Ih(ω)−1) as well as the diagonal entries
of Ih(ω)−1 in Table 1. As expected, since ω̄β,h is chosen by the A-optimal design criterion,

Table 1. Trace and diagonal entries of Ih(ω)−1

ω Ih(ω)−1
11 Ih(ω)−1

22 Ih(ω)−1
33 Tr(Ih(ω)−1)

ω̄Kh 0.019 5.627 5.955 11.601
ω1 0.091 7.388 20.678 28.157
ω2 0.023 14.12 3.831 17.974

we observe that

Tr(Ih(ω̄Kh )−1) ≤ Tr(Ih(ω2)−1) ≤ Tr(Ih(ω1)−1). (6.3)

Moreover we note that Ih(ω̄Kh )−1
kk < Ih(ω1)−1

kk for all k, i.e. the optimal estimator estimates
all unknown parameters with a smaller variance than the estimator associated to the
reference design ω1. As a consequence, the linearised confidence domains of the optimal
estimator are contained in those of the one corresponding to ω1; see Figure 3. In contrast,
considering ω2, we have Ih(ω2)−1

33 < Ih(ω̄Kh )−1
33 and Ih(ω̄Kh )−1

kk < Ih(ω2)−1
kk for k = 1, 2, i.e.

the third parameter is estimated more accurately by choosing the measurement locations
and weights according to ω2 while the variance for the estimation of the other parameters
is larger. This is a consequence of the different weighting of the matrix entries in (6.3). On
the one hand, the obtained results show the efficiency of an optimally chosen measurement
design at least for the linearised model. On the other hand, they also highlight that the
properties of the obtained optimal estimators crucially depend on the choice of the optimal
design criterion Ψ .
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6.1.3. Comparison of point insertion algorithms. In this section we investigate the perfor-
mance of the successive point insertion algorithm presented in Section 4.1. We consider the
same setup as in Section 6.1.1, i.e. we solve the A-optimal design problem for Example 1
on grid level nine with β = 1 and I0 = 0. The step size parameters α and γ in (4.4) are
both chosen as 1/2 throughout the experiments and the iteration is terminated if either
Φ(ωk) ≤ 10−9 or if the iteration number k exceeds 2 · 104. The aim of this section is to
confirm the theoretical convergence results for Algorithm 2 and to demonstrate the necessity
of additional point removal steps. Additionally we want to highlight the differences between
the three presented choices of the new coefficient vector λk+1 concerning the sparsity of
the iterates and the practically achieved acceleration of the convergence. Specifically, we
consider the following implementations of step 4. in Algorithm 2:
GCG: In the straightforward implementation of the GCG algorithm we set λk+1 = λk+1/2,

i.e. only steps 1. to 4. are performed.
SPINAT: Here, we employ the procedure suggested in [16], termed “Sequential Point

Insertion and Thresholding”. In step 5., λk+1 is determined from a proximal gradient
iteration (4.14). The step size is chosen as σk = (1/2)nσ0,k, where σ0,k > 0 for
the smallest n ∈ N giving F (ω(λk+1(σk))) ≤ F (ω(λk+1/2)). In particular, given
ωk+1/2 = ∑

i λ
k+1/2
i δxi , we choose σ0,k as

σ0,k = max
{

100,−2 min
i

{
λi

−ψ′(ωk+1/2)(xi)− β

}}
.

Note that by this choice of σ0,k, the coefficients of all points x ∈ suppωk+1/2 with
−ψ′(ωk+1/2)(x) < β are set to zero in the first trial step (i.e. for n = 0).

PDAP: Here, the coefficient vector λk+1 is chosen as in (4.15) by solving the finite di-
mensional sub-problem (4.13) up to machine precision in each iteration. For the
solution we use a semi-smooth Newton method with a globalization strategy based
on a backtracking line-search. The convergence criterion for the solution of the
sub-problems is based on the norm of the Newton-residual. Since, this method can
be interpreted as a method operating on a set of active points Ak = suppωk (see
section 4.2), we reference it by the name: “Primal-Dual Active Point”.

All three versions of the algorithm are also considered with an application of the sparsifica-
tion step in Algorithm 1 at the end of each iteration. In the following this will be denoted
by an additional “+PP”.

In Figure 4a we plot the residual rF (ωk) for all considered algorithms over the iteration
counter k. For GCG as well as SPINAT we observe a rapid decay of the computed residuals
in the first few iterations. However, asymptotically both admit a sub-linear convergence
rate, suggesting that the convergence result derived in Theorem 4.6 is sharp in this instance.
The additional application of Algorithm 1 has no significant impact on the convergence
behavior. We additionally note that both GCG and SPINAT terminate only since the
maximum number of iterations is exceeded while the computed residuals rF (ωk) and thus
also the primal-dual gap Φ(ωk) remain above 10−3. In contrast, PDAP terminates after
few iterations within the tolerance. The results clearly indicate a better convergence rate
than the one derived in Theorem 4.6.

Next, we study the influence of the different point removal steps on the sparsity pattern
of the obtained iterates in Figure 4b. For GCG we notice that the number of support points
increases monotonically up to approximately 60. This suggests a strong clusterization of
the intermediate support points around those of ω̄β,h which is possibly caused by the small
curvature of −ψ′h(ω̄β,h) (see Figure 1b) in the vicinity of its global maxima. A similar
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Figure 4. Residual and support size plotted over iteration number k.

behavior can be observed for the iterates obtained through SPINAT. However, compared to
GCG the support size grows slower due to the additional projected gradient step in every
iteration. Additionally, after reaching a threshold at approximately k = 110, the support
size decreases monotonically in the remaining iterations. Concerning the application of
Algorithm 1, we observe that the support remains bounded by 6 = 3(3 + 1)/2 as predicted
by Proposition 4.7. We note that this upper bound is achieved in almost all but the first
few iterations for GCG and SPINAT. In contrast, PDAP yields iterates comprising less
than six support points independently of the additional post-processing. A closer inspection
reveals that the loop in Algorithm 1 is not carried out in any iteration, i.e. the sparsity of
the iterates is fully provided by the exact solution of the finite-dimensional sub-problems.
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Figure 5. Residual rF (ωk) plotted over the first second of the running time.

Last, we report on the computational time for the setup considered before, in order to
account for the numerical effort of the additional point removal steps. The evolution of the
residuals in the first second of the running time for GCG and SPINAT can be found in
Figure 5a. We observe that neither the additional projected gradient steps nor the additional
application of Algorithm 1 lead to a significant increase of the computational time. For
PDAP, the measurement times and residuals for all iterations are shown in Figure 5b. We
point out that PDAP converges after 12 iterations computed in approximately 0.4 seconds
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in this example. This is comparable to the elapsed computation time for computing 25
iterations of the GCG method. The small average time for a single iteration of PDAP is on
the one hand a consequence of the uniformly bounded, low dimension of the sub-problem
(4.15). On the other hand, using the intermediate iterate ωk+1/2 to warm-start the semi-
smooth Newton method greatly benefits its convergence behavior, restricting the additional
numerical effort in of PDAP in comparison to GCG to the solution of a few low-dimensional
Newton systems in each iteration. These results again underline the practical efficiency of
the presented acceleration strategies.

6.1.4. Mesh-independence. To finish our numerical studies on Example 1 we examine the
influence of the mesh-size h on the performance of Algorithm 2. We again consider the
A-optimal design problem for β = 1 and I0 = 0 on consecutively refined meshes Thl ,
l = 5, . . . , 9. On each refinement level l the optimal design problem is solved using GCG
and PDAP, respectively. The computed residuals are shown in Figure 6. For both versions
we observe that the convergence rate of the objective function value is stable with respect to
mesh-refinement. We point out that this indicates a better convergence behavior of PDAP
also on the continuous level. A theoretical investigation of this improved rate is beyond
the scope of this work but will be given in a future manuscript. Additionally, in Figure 7,
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Figure 6. Evolution of residuals rF (ωk) over iterations k on different re-
finement levels.

we plot the support size over the iteration counter for each refinement level. For GCG we
observe a monotonic growth of the support size up to a certain threshold. Note that the
upper bound on the support size seems to depend on the spatial discretization: the finer the
grid, the more clusterization around the true support points can be observed. In contrast,
for PDAP, the evolution of the support size admits a mesh-independent behavior in this
example.

6.2. Example 2. Secondly, we compare the performance of the successive point insertion
algorithm and the path-following Algorithm presented in Section 4.4. Since the practical
performance is aided by the low number of parameters in the previous example, we construct
an example with a variable number of parameters.

The setting is motivated by the task of estimating spatially varying diffusion parameters,
which is a common problem in, e.g., geophysical applications. Therefore we consider a
stationary diffusion process, where the unknown parameter q is the diffusion coefficient. We
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Figure 7. Evolution of the support size on different refinement levels.

set Ω = [0, 1]2 to be the unit square and define the Dirichlet boundary as ΓD = {0, 1}×(0, 1)
(corresponding to the left and right boundaries). Then we define the solution space

Y =
{
ϕ ∈ H1(Ω)

∣∣∣ ϕ|ΓD = 0
}
,

and the function ŷ(x1, x2) = x1 encoding the Dirichlet data. For q ∈ Rn ' RN×N for some
N ∈ N we set

m[q](x) =
N∑
i=1

N∑
j=1

q(i,j)φ(i,j), where φ(i,j)(x1, x2) = sin(πix1) sin(πjx2).

Given q ∈ RN×N the associated state y = S[q] is the unique element of Ŷ = ŷ+Y satisfying

a(q, y)(ϕ) =
∫
Ω

exp(m[q])∇y · ∇ϕdx = 0 ∀ϕ ∈ Y. (6.4)

It can be easily seen that (6.4) corresponds to the linear equation
−∇ · (exp(m[q])∇y) = 0 in Ω,

y = x1 on ΓD,
exp(m[q])∂ny = 0 on ∂Ω \ ΓD.

(6.5)

Note that due to the linearity of the equation, the sensitivity δy(i,j) = ∂(i,j)S[q] ∈ Y with
respect to the (i, j)-th entry of q for i, j ∈ {1, . . . , N} defined in (2.2) satisfies

a(q, δy(i,j))(ϕ) = −
∫
Ωo
φ(i,j) exp(m[q])∇y · ∇ϕdx ∀ϕ ∈ Y.

6.2.1. Comparison of point-insertion and path-following: No a priori knowledge. In this
section we compare the performance of the proposed successive point-insertion (Algorithm
2) and the algorithmic solution approach based on the Hilbert-space regularization (Algo-
rithm 3). Since both algorithms are fundamentally different and partly rely on different
computational routines, a comparison in terms of number of steps is difficult. For this
reason, we focus on the computation times in the following. We place special emphasis on
the qualitative influence of the mesh width and the support size of the optimal design.

Therefore we consider the A-optimal design problem for Example 2 with different N ∈ N
and on different refinement levels of the spatial discretization. The cost parameter is chosen
as β = 1 and no a priori knowledge is assumed, i.e. IN0 = 0. The parameter-to-state
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mapping is linearised at q̂ = 0 ∈ RN×N . Given a fixed N ∈ N and h small enough such
that the semi-discrete design problem (Pβ,h) admits an optimal solution ω̄Nβ,h we note that
# supp ω̄Nβ,h ≥ n = N2; cf. Proposition 3.3. Consequently, by increasing N we also raise the
number of optimal Dirac delta functions that both algorithms have to identify.

Concerning the different implementations of the point insertion algorithm we will restrict
ourselves to PDAP as described in Section 6.1.1 without the additional application of
Algorithm 1 in every iteration. As in the previous example the iteration is stopped at step
k if Φ(ωk) ≤ 10−9. For Algorithm 3 we set ε1 = 10−3 and εl = εl−1/

√
10 for l > 1. For each

l the regularized sub-problem (P εh,β) is solved by using the semi-smooth Newton method
presented in [42]. We include a globalization strategy based on a damping of the Newton
steps to ensure a decrease of the regularized objective function value in every iteration. The
arising linear systems are solved by a cg-method up to machine precision. If the norm of
the right-hand side in the Newton system is smaller than some tolerance, εl is decreased
as described above. For a relevant comparison, we compute the residual at the end of
each iteration in PDAP and at the end of each step in the semi-smooth Newton method
for (P εlh,β), where l = 1, . . . , lmax. Note that, as for the previous example, we only take
the computational time for the iterations of each Algorithms into account; the state and
sensitivity equations are solved beforehand.

In the following we choose N ∈ { 5, 15 } and consider the discretized design problems
(Pβ,h) and (P εh,β) on grid Thk for levels k ∈ { 5, 8 }. Since 0 6∈ suppψ we construct an initial
iterate different from zero. To account for the different regularities of the solutions of (Pβ)
and (P εβ), we choose the initial iterate ω1 for the solution of (Pβ,h) as a linear combination
of (N + 1)2 Dirac delta functions (located in nodes of the coarse grid) while the starting
point ω̄1

ε ∈ Uh ⊂ L2(Ωo) for the solution of (P ε1
β,h) is chosen as ω̄1

ε ≡ 1. Observe that
rF (ω̄1

ε) 6= rF (ω1). However, we stress that we are interested in a qualitative comparison
of both algorithms rather than a quantitative one. The results can be found in Figure 8.
First, we note that the runtime for both algorithms is affected by the increased number
of support points for larger N . In fact, on grid level eight, we obtain # supp ω̄Nβ,h = 58
for N = 5 and # supp ω̄Nβ,h = 630 for N = 15, respectively. Clustering adjacent support
points as described in section 5.2, we obtain 30 and 240 clusters, respectively, and the
post-processed solutions (as described in section 5.2) are given in Figure 9. On both grid
levels we observe that the computation time for PDAP is affected more than the one for
Algorithm 3 by the increased support size of the optimal design. This is a consequence of
the different update strategies for the iterates in both algorithms. In each semi-smooth
Newton step in Algorithm 3 the current iterate is updated globally on Ωo. In contrast, at
most one new support point is added in each iteration of PDAP. Hence, if the support of the
optimal solution is increased, so is the number of necessary iterations in PDAP, explaining
the increase of the computation time.

Let us now consider the influence of the number of grid points of the spatial discretization.
Here, we observe that the path-following algorithm is affected more, which can be explained
as follows: for each ε > 0 the unique optimal solution to (P εh,β) is given by the component-
wise projection formula (5.6). This indicates that the set of nodes in the support of the
solution depends on the fineness of the discretization. As a consequence, the path-following
method can only exploit the increased sparsity in later iterations (for smaller ε), which
leads to larger computational times on finer grids. In contrast, in PDAP we only need
to calculate the gradient ψ′h(ωk) as well as its maximum on the whole domain, while the
dimension of the occurring sub-problems and thus also the size of the linear systems in
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(a) Residual for N = 5 on grid level five.

0 10 20 30 40 50 60 70 80
10−9

10−7

10−5

10−3

10−1

101

103

105

107

109

computation time t

re
sid

ua
l

Path-following
PDAP

(b) Residual for N = 5 on grid level eight.
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(c) Residual for N = 15 on grid level five.
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(d) Residual for N = 15 on grid level eight.

Figure 8. Residuals rF (·) for various number of parameters and discretiza-
tions plotted over computation time t in seconds for IN0 = 0.
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Figure 9. Optimal designs for IN0 = 0 and N = 5 (left) and N = 15 (right)
on grid level eight.

the semi-smooth Newton method can be bounded independent of the discretization in
every iteration. Together with the mesh-independence observations for the residual and
the support size from Section 6.1.4 this explains the better scaling of the successive point
insertion algorithm with respect to the number of nodes in the triangulation.
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6.2.2. Comparison of point-insertion and path-following: A priori knowledge. To conclude
this section, we consider the previous setup with incorporated a priori knowledge. Con-
cretely, we choose IN0 ∈ PD(N2) as a diagonal matrix where the entries on the main
diagonal are given by[

IN0
]
k,k

= α
(
λ(i,j) + 10

)2
, k = N(i− 1) + j, i, j ∈ { 1, . . . N }, (6.6)

where λ(i,j) = π2(i2 + j2) is an eigenvalue of the Dirichlet Laplacian for the corresponding
eigenfunction φ(i,j) as given above (with norm ‖φ(i,j)‖L2(Ω) = 1/2). This choice of I0
corresponds to a Bayesian optimal design (for the linearized problem), where the a priori
knowledge is described by a Gaussian random field on L2(Ω) with expectation q̂ and
covariance operator 2α−1(−∆+10 Id)−2; see, e.g, [2]. In this context, the function m[q] can
be interpreted as a truncated Karhunen-Loève expansion corresponding to the Bayesian
prior.
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(a) Residual for N = 5 on grid level five.
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(b) Residual for N = 15 on grid level five.
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(c) Residual for N = 5 on grid level eight.
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(d) Residual for N = 15 on grid level eight.

Figure 10. Residual rF (·) for different N and discretizations plotted over
computation time t in seconds for IN0 given by the prior (6.6) with α = 10−5.

Since I0 is positive definite we can choose the starting point for both algorithms as ω1 = 0.
In Figure 10 the computed residuals for the path-following algorithm and PDAP are shown
for α = 10−5. For the path-following algorithm we again observe an increased computation
time with respect to the spatial discretization in comparison to PDAP. Due to the positive
definite I0, the support of the solution is not bounded from below by n = N2. Concretely,
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on grid level eight there holds # supp ω̄Nβ,h = 26 for N = 5 and # supp ω̄Nβ,h = 38 for N = 15,
i.e. the number of optimal Dirac delta functions does not increase as significantly as in
the case of I0 = 0 for larger N . Consequently, we also observe a better behavior of the
computation time for PDAP with respect to N . The corresponding optimal designs can
be found in Figure 11. As in the first example, the displayed designs are obtained by the
post-processing procedure described in Section 5.2, which leads to 10 and 18 connected
clusters of the support for N = 5 and N = 10, respectively.
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Figure 11. Optimal designs for IN0 given by the prior (6.6) with α = 10−5

and N = 5 (left) and N = 15 (right) on grid level eight.

6.2.3. Further acceleration strategies. In the previous sections we observed that PDAP scales
well with respect to the spatial discretization while it does not scale well with respect to the
support size of the optimal design. As discussed earlier, this is mainly caused by inserting
only one point in every iteration. To remedy this, we propose a heuristic acceleration
strategy. From Remark 4 we know that the convergence results from Theorem 4.6 hold for
PDAP if we choose the intermediate iterate as ωk+1/2 = ωk+vk, where vk ∈M(Ωo) is chosen
such that x̂k ∪ suppω1 ⊂ suppωk+1/2. Additionally, we recall that every optimal design
ω̄Nβ,h fulfills the support condition (3.5). We therefore choose vk = −(M0/β)ψ′hδx̂k + ṽk,
where x̂k ∈ arg minΩo ψ′h(ωk) and ṽk is a positive linear combination of Dirac delta functions
corresponding to sufficiently large local maxima of −ψ′h(ωk). In more detail, we set

ṽk ∈
{

m∑
i=1
−M0
β
ψ′h(ωk)(xi)δxi

∣∣∣ xi is local maximum of − ψh(ωk), −ψh(ωk)(xi) > β

}

such that # supp vk ≤ n(n + 1)/2. This ensures that the dimension of the sub-problems
in PDAP stays uniformly bounded throughout the iterations. However, we note that in
our numerical experiments this upper bound on the support of vk was never attained. The
resulting algorithm will be referenced as Multi-PDAP in the following.

To compare the three algorithms we again consider the A-optimal design problem for
Example 2 on Th8 with N ∈ { 5, 15 }. The cost parameter and a priori knowledge are chosen
as β = 1 and I0 = 0, respectively. The computed residuals over the computation time are
plotted in Figure 12. We observe that the insertion of multiple points in each iteration
significantly improves the speed of convergence of the successive point insertion algorithm,
which shows the practical efficiency of the proposed heuristic strategy. Finally, we again
stress that all comparisons between the two implementations of PDAP and Algorithm 3
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should not be understood quantitatively; the path-following algorithm may possibly be
accelerated by, e.g., the inexact solution of the regularized sub-problems.
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(a) Residual for N = 5 on level eight.
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Figure 12. Evolution of the residual rF (·) over the computation time t in
seconds on grid level eight for different numbers of parameters.
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