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Abstract. The problem of recovering acoustic sources, more specifically mono-
poles, from point-wise measurements of the corresponding acoustic pressure
at a limited number of frequencies is addressed. To this purpose, a family
of sparse optimization problems in measure space in combination with the
Helmholtz equation on a bounded domain is considered. A weighted norm
with unbounded weight near the observation points is incorporated into the
formulation. Optimality conditions and conditions for recovery in the small
noise case are discussed, which motivates concrete choices of the weight. The
numerical realization is based on an accelerated conditional gradient method
in measure space and a finite element discretization.
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1. Introduction

In this paper, we consider the problem of recovering a sound source u, consisting
of an unknown number time-harmonic monopoles, from pointwise measurements
of the acoustic pressure. It is well known that under the assumption of a time-
harmonic signal consisting of N frequencies, the acoustic wave equation can be
reduced to a family of Helmholtz equations. Concretely, let Ω ⊂ Rd, d ∈ {2, 3} be
a bounded, convex, and polygonal (two dimensional) or polyhedral (three dimen-
sional) domain. The boundary ∂Ω is partitioned into perfectly reflecting walls
contained in ΓN ⊂ ∂Ω, and ΓZ = ∂Ω \ ΓN modeling absorbing walls or artificial
boundaries arising from a truncation of an unbounded domain. We model the
acoustic pressure pn ∈ L2(Ω) at the n-th frequency as the solution of





−∆pn − k2
npn = un|Ω in Ω,

∂νpn − iκnpn = un|ΓZ
on ΓZ ,

∂νpn = un|ΓN
on ΓN ,

(1.1)

where n = 1, 2, . . . , N . Here, kn > 0 is a sequence of wavenumbers, which are
defined as usual by kn = ωn/c, where c is the speed of sound and {ωn}n a set
of circular frequencies. The numbers κn ∈ C with Reκn 6= 0 are related to the
properties of walls that are modeled on the boundary ΓZ ; cf. [2]. In the simplest
case, we set κn = kn, and obtain the well-known zeroth-order absorbing boundary
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conditions [19, 26]. We model the source un by a superposition of Nd acoustic
monopoles,

un =
Nd∑

j=1
uj,nδx̂j , (1.2)

where uj,n ∈ C and x̂j ∈ Ωc, where Ωc ⊂ Ω is a set containing all possible
source locations. We suppose that for a finite number of observation points Ξ =
{xm | m = 1, . . . ,M} pressure values pmd ∈ CN of (1.1) are given (in the form
of noisy recordings at M microphones, i.e. pmd = p(xm) + zm, zm ∈ CN ). Based
on these observations the number of point sources Nd, the positions x̂j ∈ Ωc and
coefficients uj ∈ CN are to be reconstructed. Inverse problems of this kind are
of great importance in engineering applications such as beamforming [36, 39, 40,
41]. For instance, one is interested in locating a source of noise pollution using
processed data captured by a microphone array.

Due to the fact that we have only partial observations of the acoustic pressure,
the problem is under-determined, and therefore ill-posed. Thus we solve it based
on a regularized least-squares formulation. We follow the approach of [6] and
consider the following convex problem:

min
u∈Mw(Ωc,CN )

1
2

M∑

m=1
|p(xm)− pmd |

2
CN + α‖u‖Mw(Ωc,CN ),

subject to (1.1),
(1.3)

where p = (p1, . . . , pN ) and u = (u1, . . . , uN ). In this problem, the solution of
(1.3) is searched in the space of CN -valued Radon measures which satisfy

‖u‖Mw(Ωc,CN ) =
∫

Ωc

|wu′|CN d|u| <∞

for a vector-valued weighting function w : Ωc → CN . Here, the point-wise product
w(x)u′(x) = (w1(x)u′1(x), . . . , wN (x)u′N (x)) should be understood in the sense of
the Hadamard-product. The regularization functional promotes the sparsity of
the support of the solution in Ωc independent of the frequency components (also
referred to as group or directional sparsity [24]); see [6, 32]. More concretely, it
promotes solutions of the structure (1.2).

Note that, a more direct reconstruction approach would be the solution of the
problem

min
xj∈Ωc,uj∈CN

1
2

M∑

m=1
|p(xm)− pmd |

2
CN + α

Nd∑

j=1
|w(xj)uj |CN ,

subject to (1.1) with u = (un)n as in (1.2),
(1.4)

where the number of sources Nd is fixed, but can be regarded as an additional
discrete optimization variable. Since the locations xj are now considered optimiza-
tion variables, this is a non-convex finite-dimensional optimization problem with
constraints xj ∈ Ωc, which complicates the numerical solution. At first glance, the
problem formulation (1.3) seems to be more general than (1.4) since we discard
the structural assumption on the source u by considering general Borel measures.
However, the existence of minimizers to (1.3) of the form (1.2) can be guaranteed
for Nd ≤ 2NM . Hence, if the number of sources Nd is left free, both problems are
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essentially equivalent, i.e. we can obtain a solution to the nonconvex problem (1.4)
by solving the convex version (1.3).

The objective of this work is to provide a systematic theoretical development
of the above recovery approach, including analysis of the problem, conditions
for recovery, and algorithmic solution and numerical discretization strategies. In
the case w ≡ 1 the analysis of the problem (1.3) relies on the assumption that
the observation points and the control set Ωc are separated from each other.
However, by using weighting functions in the regularization functional with specific
properties this restriction can be overcome. Moreover, an optimal choice of the
weight function is shown to lead to improved theoretical and practical properties
of the approach.

1.1. Related works. The analysis of the recovery approach is based on the analy-
sis of the noise-free case, which leads to the corresponding minimum norm problem

min
u∈Mw(Ωc,CN )

‖u‖Mw(Ωc,CN )

subject to p(xm) = pmd , m = 1, . . . ,M,
(1.5)

where p is the solution of (1.1); see, e.g., [6, 8, 17]. For w ≡ 1 it is shown in [6]
that the solutions of (1.3) converge for α → 0 and |z|2CMN /α → 0 to a solution
of (1.5) in the weak-star sense; see also [7, 25]. This can be carried over to the
weighted case easily. We also note that the inverse problem under consideration
can be interpreted as a deconvolution problem for measures involving the Green’s
function corresponding to (1.1) as convolution kernel. Problems of this form have
been studied recently in [1, 8, 9, 17]. In [9] the recoverability of an exact source
from convolutions with the Féjer kernel is proven under the assumption that the
exact point sources are sufficiently well separated from each other. Concerning
the use of a non-constant weight w 6= 1 we refer to [34]. By an appropriate choice
of the weighting function the authors prove an exact recoverability result for a
general deconvolution problem on a one-dimensional domain without requiring a
minimum separation distance between the exact source points. However, these
results are not directly applicable in our setting due to the more complicated
structure of the convolution kernel under consideration.

Robustness with respect to noise has been investigated in [1, 8, 17]. In [17] it
is shown that a strengthened source condition for small enough noise level δ and
regularization parameter α the solution of (1.3) is unique and consists of the same
number of point sources as the exact solution. Convergence rates for coefficients
and positions of the reconstructed source to the exact coefficients and positions
are derived.

Moreover, we mention that, after discretization on a finite grid, the inverse
problem under consideration corresponds to an inverse problem involving an over-
complete dictionary; see, e.g., [38]. The dictionary is given by point-evaluations
of the Green’s functions of (1.1). In the noise-free case such problems are often
solved by a problem formulation corresponding to (1.5) (Basis Pursuit), and in
the noisy case a problem corresponding to (1.3) is solved (LASSO). In most of the
literature concerning over-complete dictionaries it is assumed that the entries of
the dictionary have unit norm, in order to prevent bias in the dictionary. In our
problem this is not the case. However, a particular form of the weight function
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w(x) leads to reweighted versions of the problems (1.3) and (1.5) in the variable
v = wu, which have a dictionary with entries of unit norm.

Finally, concerning the discretization of the PDE-constrained optimization prob-
lem, a problem similar to (1.4) has been proposed [2] for a fixed number Nd and
FE-discretizations have been analyzed in (cf. also [15]). Concerning the regularity
and numerical analysis for sparse control problems with measures, in combination
with different PDEs, we also refer to [10,11,27,28].

1.2. Contribution. Concerning the analysis of (1.3), we first focus on the case
w ≡ 1, which is complicated by the presence of point-wise sources (which lead to
unbounded solutions) with point-wise observations of the solution. Nevertheless,
based on regularity results for (1.1), we show that (1.3) and (1.5) are well-posed if
the sources are restricted to some compact set Ωc which does not contain the set of
observation points Ξ. Note that this implies dist(Ωc, Ξ) > 0. While this may not
seem like a severe restriction, it introduces additional questions: On the one hand,
a large distance restricts the possible location from where sources can be recovered.
On the other hand, for a too small distance the problem favors sources close to
the observation points, which introduces undesirable reconstruction artifacts. In
fact, it can be proven that the problem with w ≡ 1 has no solutions if Ξ ∩Ωc 6= ∅;
see Proposition 4.1. By introduction of a weight function w that is unbounded
in the observation points, well-posedness of (1.3) can be shown for arbitrary Ωc;
see Section 4. Concerning the structure of the solutions, we show both problems
always admit solutions of the form (1.2) with Nd ≤ 2NM .

Clearly, not all sources of the form (1.2) can be recovered by (1.3). However, we
show that all minimum norm solutions of (1.5) fulfill a source condition, which al-
lows us to deduce convergence rates for the convergence of the solutions of (1.3) to
solutions of (1.5) for vanishing noise and appropriately chosen α; see Section 5. Ad-
ditionally, we give numerical examples of recoverable and non-recoverable sources.
Even in the simple case of one unknown source, recoverability can fail unless an
appropriate weight is employed. Moreover, numerical experiments suggest that
the use of specific weights increases the number of recoverable sources. This is
confirmed by statistical test involving randomly chosen positions and coefficients
of the exact sources. In the case of a single point source we are able to prove that
the exact source is the unique solution of (1.5) when using a specific weighting
function and under additional assumption on the forward operator; see Proposi-
tion 5.9.

Concerning the numerical solution of (1.3), we adopt the algorithmic strategy
proposed in [6] (see also [4]), which operates on the linear span of Dirac delta func-
tions and combines point-insertion and removal steps. Moreover, a function space
convergence theory is available, which bounds the number of necessary steps to
obtain a prescribed accuracy in the functional value. We augment the procedure
by an additional step which guarantees that the size of the support of the itera-
tions of the algorithm can not grow beyond 2NM . In [6] Dirac deltas are removed
using one step of a proximal gradient method applied to (1.3) for the magnitudes
with fixed positions. To further promote the sparsity of the iterates, this finite
dimensional non-smooth optimization problem is resolved in every iteration (cf.
also [4]) by means of a globalized semi-smooth Newton method. Additionally, we
employ a discretization of (1.3) with finite elements for p and Dirac delta func-
tions in the grid nodes. Although this transforms (1.3) into a finite dimensional
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optimization problem (amenable to a wide range of optimization algorithms), the
function space analysis of the presented algorithm ensures that the number of
iterations stays (uniformly) bounded for arbitrarily fine meshes.

This paper is organized in the following way. In Section 2 we establish regularity
properties of the Helmholtz equation needed for the analysis of the optimization
problem. Section 3 is devoted to the analysis of the problem with w ≡ 1. Section 4
is concerned with the weighted problem for a general weight. In Section 5, the reg-
ularization properties of the reconstruction procedure are investigated. Section 6
describes the optimization algorithm we use for the solution of the measure-valued
optimal control problem. Finally, in Section 7 we conduct several numerical ex-
periments.

1.3. Notation and conventions. Throughout the paper we adopt the following
conventions: The complex numbers C are regarded as a R-linear vector space en-
dowed with the inner product (z, v)C = Re(zv̄) = Re(z) Re(v)+Im(z) Im(v). Cor-
respondingly, we denote the inner product on the Hilbert space L2(Ω) = L2(Ω,C)
by

(v, ϕ)Ω =
∫

Ω
Re(vϕ̄) dx.

This convention extends to all other inner products or duality pairings defined on
derived spaces. We identify the space of CN -valued vector measures as

M(Ωc,C)N ∼=M(Ωc,CN ) ∼= C(Ωc,CN )∗,

where the second isomorphism is isometric if C(Ωc,CN ), the space of contin-
uous functions with values in CN , is endowed with the norm ‖ϕ‖C(Ωc,CN ) =
supx∈Ωc

|ϕ(x)|CN . The duality pairing is defined by

〈u, ϕ〉 = Re
(∫

Ωc

ϕ̄ du
)

=
∫

Ωc

(u′, ϕ)CN d|u| =
N∑

n=1
Re
(∫

Ωc

ϕ̄n dun
)
,

with the total variation measure |u| ∈ M+(Ωc) (in the space of positive Borel
measures), the Radon-Nikodym derivative u′ = du/d|u| ∈ L1(Ωc,CN ,d|u|), and
un ∈ M(Ωc) the signed real valued measures arising as the component measures
of u. By C we denote a generic constant, which has different values at different
appearances.

2. Analysis of the Helmholtz equation

Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded, convex, and polytopal domain. Fol-
lowing [2], we assume that the boundary is of the form Γ = ∂Ω = ΓN ∪ ΓZ
where ΓN = ∪mΓm can be written as the union of some subset of plane faces
of Γ and that ΓZ = ∂Ω \ ΓN . We note that these assumption on the boundary
could be relaxed considerably, at the expense of making the following arguments
more technical; see Remark 1 below. For simplicity, we follow the setting of [2].
Moreover, we assume that ΓZ has positive measure, which is needed to ensure
unique solvability for all wave numbers. We denote the characteristic function of
ΓZ by χΓZ

: Γ → {0, 1}.
Denote by Ωc ⊂ Ω the control set, which is required to be closed (and therefore

compact). The state equation problem reads as: find p = (p1, . . . , pN ) for n ∈
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{1, 2, . . . , N} where pn : Ω → C solves
{

−∆pn − k2
npn = un|Ω in Ω,

∂νpn − iκnχΓZ
pn = un|Γ on Γ,

(2.1)

kn > 0 are real numbers and u = (u1, u2, . . . , uN ) ∈ M(Ωc,CN ) is a vector
measure. Note that, in the interest of generality, we allow the measure to be
supported on the boundary. These contributions of the measure appear in the
boundary conditions, but are included in the weak formulation given below in a
natural way.

In this section, we assume without restriction that N = 1 and suppress the
dependency on n of k, κ, u and p. The general case of the results follows directly
from the (complex) scalar case.

Definition 1 (Very weak solutions for (2.1)). Let u ∈ M(Ω̄) be a complex val-
ued measure. A complex valued function p ∈ L2(Ω) is said to be a solution by
transposition to (2.1) if it satisfies

(p, q)Ω = 〈u, r〉 for all q ∈ L2(Ω), (2.2)
where r ∈ H2(Ω) is the solution to the dual problem

{
−∆r − k2r = q in Ω,

∂νr + iκ̄χΓZ
r = 0, on Γ.

(2.3)

Note, that the duality pairing 〈u, r〉 is well defined due to the continuous em-
bedding H2(Ω) ↪→ C(Ω) for spatial dimension d ≤ 3. It can be shown that the
solution by transposition also satisfies the following very weak formulation:

− (p,∆ϕ+ k2ϕ)Ω = 〈u, ϕ〉
for all ϕ ∈ H2(Ω) with ∂νϕ+ iκ̄χΓZ

ϕ = 0 on Γ. (2.4)

Theorem 2.1. For any u ∈ M(Ωc), there exists a unique very weak solution
p ∈ L2(Ω) to (2.1) and there holds

‖p‖L2(Ω) ≤ C‖u‖M(Ωc).

Proof. This result is proven by the method of transposition as in Definition 1
(cf. [29]) using the H2(Ω)-regularity of the unique solution of the dual equa-
tion (2.3); see [2, Theorem 3.3]. For the underlying regularity theory for the
Neumann problem on convex polytopal domains we refer also to [13,23]. �

Lemma 2.2. The very weak solution p ∈ L2(Ω) from Theorem 2.1 has the im-
proved regularity p ∈W 1,s(Ω) for any s < d/(d− 1) and there holds

‖p‖W 1,s(Ω) ≤ C‖u‖M(Ωc).

Proof. This result can be proved by using a Hölder continuity result for the dual
equation (2.3) with weak formulation

(∇ϕ,∇r)Ω − (k2ϕ, r)Ω − (iκ̄χΓZ
ϕ, r)Γ = 〈q, ϕ〉W−1,s′ (Ω),W 1,s(Ω)

with data q ∈ W−1,s′(Ω) = (W 1,s(Ω))∗, i.e., with 1/s′ + 1/s = 1 and the corre-
sponding a priori estimate

‖r‖C(Ω) ≤ C‖q‖W−1,s′ (Ω).
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Such a result can be found, e.g., in [22] (cf. also [16]). To apply the result, which is
derived for real systems of equations, we split the solution into real and imaginary
part, apply [22, Theorem 7.1 (i)], and use the embedding properties of Sobolev-
Campanato spaces; see, e.g., [22, Theorem 2.1 (i)]. �

Based on the previous existence and regularity results, certain observations of
the state solution p (e.g., in L2(Ω) or Ls(Γ ) for s ≤ d/(d − 1)) are possible. To
obtain the continuity of point evaluations, we use the smoothness of the solution
away from the support of the source u. First we analyze the fundamental solutions.

Lemma 2.3. Let y ∈ Ω. Then the very weak solution Gy to the equation
{

−∆Gy − k2Gy = δy|Ω, in Ω,
∂νG

y − iκχΓZ
Gy = δy|Γ , on Γ,

(2.5)

satisfies for ε > 0 the estimate

‖Gy‖H2(Ω\Bε(y)) ≤ C(ε), (2.6)

where Bε(y) is the ε-ball around y, and C depends continuously on ε.

Proof. We follow standard arguments based on a smoothed indicator function.
For completeness, we give a short sketch of the proof. Multiply Gy with a weight
function ζε ∈ C∞c (Ω \ Bε/2(y)), such that ζε(x) = 1 for x ∈ Ω \ Bε(y). Now, by
the chain rule and (2.5), the product Gyζ = ζεG

y fulfills
{

−∆Gyζ − k
2Gyζ = −∆ζεGy − 2∇ζε∇Gy, in Ω,

∂νG
y
ζ − iκχΓZ

Gyζ = Gy∂νζε − iκχΓZ
Gyζε, on Γ.

(2.7)

Now, we use the facts that Gy ∈ L2(Ω) with Theorem 2.1 and ∇Gy ∈ Ls(Ω) for
s < d/(d − 1) arbitrary with Lemma 2.2. With the trace theorem it additionally
follows Gy|Γ ∈ Ls(Γ ). By the Sobolev embedding in dimensions d ≤ 3, we obtain
∇Gy ∈ H−1(Ω) (choose s > 2d/(d+2)) andGy|Γ ∈ H−1/2(Γ ) (choose s > 2−2/d).
Together with ‖∇2ζε‖L∞(Ω̄) ≤ Cε−2 it follows now from a classical result for (2.7)
that Gyζ ∈ H1(Ω) with ‖Gyζ‖H1(Ω) ≤ C/ε2. By the trace theorem, it follows that
Gyζ |Γ ∈ H1/2(Γ ). Now, we introduce Gyζ2 = ζεG

y
ζ and repeat the argument to

derive regularity of Gyζ2 from the previous results for Gyζ . By a H2 regularity
result (see, e.g., [2, Theorem 3.3]), we obtain Gyζ2 ∈ H2(Ω), with norm bounded
by C/ε−4. Since by construction Gyζ2(x) = Gy(x) for all x ∈ Ω with |x − y| ≥ ε,
we obtain (2.6). �

Lemma 2.4. Let Nε(Ωc) = {x ∈ Ω | dist(x,Ωc) < ε}. The solution p to (2.1)
belongs to C(Ω \ Nε(Ωc)) for all ε > 0 together with

‖p‖C(Ω\Nε(Ωc)) ≤ C(ε)‖u‖M(Ωc).

Proof. We approximate u by a sequence of finite sum of Dirac delta measures, i.e.,
there exists a sequence uK ⇀∗ u inM(Ωc) with ‖uK‖M(Ωc) ≤ ‖u‖M(Ωc) and

uK =
K∑

k=1
ukδyk
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with uk ∈ C and yk ∈ Ωc. By linearity, we have for the unique solution pK of (2.1)
corresponding to uK that pK =

∑K
k=1 ukG

yk where Gyk is the solution of (2.5)
with δyk

in place of δy. For every ε > 0 there exists a C = C(ε) with

‖pK‖L2(Ω) + ‖pK‖H2(Ω\Nε(Ωc)) ≤ C
K∑

k=1
|uk| = C‖uK‖M(Ωc) ≤ C‖u‖M(Ωc)

using Theorem 2.1 and Lemma 2.3. Hence, there exists a function p ∈ L2(Ω) ∩
H2(Ω \ Nε(Ωc)) such that

pK ⇀ p in L2(Ω) ∩H2(Ω \ Nε(Ωc))

up to a subsequence. Using this weak convergence and uK ⇀∗ u in M(Ωc) we
can pass to the limit K → ∞ to obtain that p is the very weak solution to the
problem (2.1) and the estimate

‖p‖L2(Ω) + ‖p‖H2(Ω\Nε(Ωc)) ≤ C(ε)‖u‖M(Ω).

holds for some C(ε) > 0. Thus, the proof is complete when we use the embedding
H2(Ω \ Nε(Ωc)) ↪→ C(Ω \ Nε(Ωc)) for dimensions d ≤ 3. �

Clearly, the same regularity results also hold for the dual equation,
{

−∆Ḡy − k2Ḡy = δy, in Ω,
∂νḠ

y + iκ̄χΓZ
Ḡy = 0, on Γ.

(2.8)

Note that the only difference between (2.5) and (2.8) occurs in the boundary
conditions on ΓZ . It is therefore easy to see that the solutions to (2.5) are (2.8)
are the same up to complex conjugation, which justifies the notation Ḡy. In the
case y ∈ Ω (and not on Γ ), we can give a more precise description of the nature
of the singularity. We will need this for the adjoint equation in section 4.

Proposition 2.5. Let y ∈ Ω. Then the very weak solution Ḡy to the dual equa-
tion (2.8) can be written as Ḡy(x) = Φ̄y(x) + ξ̄y(x) for x ∈ Ω, where

Φy(x) = φk(|x− y|) =
{

(i/4)H(1)
0 (k|x− y|) for d = 2,

exp(ik|x− y|)/(4π|x− y|) for d = 3,
(2.9)

is a fundamental solution of the free space Helmholtz equation

−∆Φy − k2Φy = δy, x ∈ Rn, (2.10)

(fulfilling the Sommerfeld radiation condition), and ξy ∈ H2(Ω) is the solution
to (2.11). The special function H

(1)
0 is the Hankel function of the first kind; see,

e.g., [12, Section 3.4].

Proof. We follow [2]. First, we consider a fundamental solution Φy to the Helmholtz
equation in the whole domain (2.10). In fact Φy can be written explicitly as
in (2.9); see, e.g., [12]. We will use the facts that Φy ∈ C∞(Rn \ {y}) and
‖Φy‖C1(K) ≤ C(dist(y,K))|K| for any K ⊂⊂ Ω. Then Ḡy is a solution of (2.8) if
and only if Ḡy = Φ̄y + ξ̄y, with ξy satisfying

{
−∆ξy − k2ξy = 0, in Ω,

∂νξ
y − iκχΓZ

ξy = −∂νΦy + iκχΓZ
Φy, on Γ.

(2.11)
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We have the following estimate for ξy (see, e.g., [2, Theorem 3.3]):

‖ξy‖H2(Ω) ≤ C
(
‖∂νΦy − iκΦy‖H1/2(ΓZ) + ‖∂νΦy‖H1/2(ΓN )

)
.

Thus, it follows directly ‖ξy‖H2(Ω) ≤ C(dist(y, Γ )). �

Remark 1. The H2 regularity of Gy in Lemma 2.3 (and of ξy in Proposition 2.5)
uses the structural assumption on the polygonal domain, namely that the bound-
ary conditions can only change on different plane faces of the boundary (based
on the results in [2]). It is possible to relax this assumption, and consider more
general domains Ω in two or three dimensions. We will comment on two possible
options, which we however do not pursue here for the sake of brevity.

Hölder-regularity: By using the regularity results from, e.g., [16, 22] (as in
Lemma 2.2), which are valid for much more general configurations of the boundary,
we can get continuous solutions without H2 regularity. The solution by transpo-
sition can be based on these regularity results directly; cf. [35, 37]. Additionally,
Lemma 2.3 can be modified to show local Hölder-continuity, which again leads to
the result of Lemma 2.4. A similar comment applies to Proposition 2.5.

Interior regularity: If we introduce a Ω′ ⊂⊂ Ω, we can show alternative to
Lemma 2.3 the result Gy ∈ H2(Ω′ \Bε(y)) without using any assumptions on the
boundary beyond Lipschitz-continuity. The proof can be done as in Lemma 2.3,
by suitably modifying the smoothed indicator function. For interior regularity
results of elliptic equations cf. also [31, Theorem 47.1] [20, Theorems 9.11 and
9.13]. However, interior results do not allow to include point sources or pointwise
observations on the boundary of the domain.

3. Analysis of the optimization problem

We suppose that for some points {xm}m=1,2,...,M ⊂ Ω \Ωc the acoustic pressure
values pmd ∈ CN are given. We consider the following optimization problem:

min
u∈M(Ωc,CN )

J(p, u) = 1
2

M∑

m=1
|p(xm)− pmd |

2
CN + α‖u‖M(Ωc,CN ), (3.1)

subject to
{

−∆pn − k2
npn = un|Ω, in Ω,

∂νpn − iκnχΓZ
pn = un|Γ , on Γ,

n = 1, 2, . . . , N. (3.2)

Since xm /∈ Ωc, there exists ε0 > 0 such that xm /∈ Nε0(Ωc) for allm = 1, 2, . . . ,M .
Due to Lemma 2.4 we can evaluate pn at xk and thus define the control-to-
observation operator

S :M(Ωc,CN )→ (CN )M as Su = (p(x1), p(x2), . . . , p(xM )).
We introduce the reduced optimal control problem

min
u∈M(Ωc,CN )

j(u) = 1
2

M∑

m=1
|(Su)m − pmd |

2
CN + α‖u‖M(Ωc,CN ), (Pα)

which is clearly equivalent to (3.1)–(3.2).
We will see that S can alternatively be defined as the dual of a linear bounded

operator S∗, to be introduced below.

Lemma 3.1. un ⇀∗ u inM(Ωc,CN ) implies Sun → Su in CNM .

By established arguments, we obtain the following basic existence result.
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Proposition 3.2. The problem (Pα) has an optimal solution û.

To derive optimality conditions, we consider the adjoint equation,
{

−∆ξn − k2
nξn =

∑
{m | xm∈Ω} qn,mδxm , in Ω,

∂νξn + iκ̄nχΓZ
ξn =

∑
{m | xm∈Γ} qn,mδxm , on Γ,

n = 1, 2, . . . , N, (3.3)

for given q ∈ CNM . We denote the by S∗ the operator that maps a given q to the
restriction ξ|Ωc , where ξ = (ξ1, . . . , ξN ) is the corresponding solution to (3.3).

Proposition 3.3. The linear operator S∗ : CNM → C is bounded.

Proof. First we note that the equation (3.3) has a measure right-hand side. How-
ever, since xm ∈ Ω \ Nε0(Ωc) for all m = 1, 2, . . . ,M , we have ξn ∈ C(Nε0(Ωc)) ⊂
C(Ωc) thanks to Lemma 2.3. Thus the operator S∗ is well defined. The linearity
of S∗ is trivial. The boundedness of S∗ follows with linearity from Lemma 2.3. �

Proposition 3.4. The operator S is the dual of the operator S∗, that is

(Su, q) = 〈u, S∗q〉 =
M∑

m=1

N∑

n=1
〈un, Ḡxm

n qn,m〉 (3.4)

for all q ∈ CNM and all u ∈ M(Ωc,CN ), where Ḡxm
n is defined in (2.8) with

k = kn.

Proof. Similar to Lemma 2.4, we approximate u by a sequence uK of the form
uK =

∑
k=1,...,K ukδyk

. From [2, Theorem 7.2], with a slight modification, we have
for all K that

(SuK , q) = 〈uK , S∗q〉.
Passing to the limit as K → ∞ and using Lemma 3.1 and uK ⇀∗ u we get the
desired result. The last equality in (3.4) follows by linearity of S∗. �

As in [6], the following optimality conditions system can be derived.

Proposition 3.5. A measure û ∈ M(Ωc,CN ) is a solution to (Pα) if and only
if ξ̂ = −S∗(Sû − pd) satisfies ‖ξ̂‖C(Ωc,CN ) ≤ α and the polar decomposition dû =
û′ d|û|, with û′ ∈ L1(Ωc, |û|,CN ), satisfies

αû′ = ξ̂ |û|-almost everywhere.

Thereby, supp|û| ⊂ {x ∈ Ωc | |ξ̂(x)|CN = α} for each solution û.

Proof. The proof follows the one of [6, Proposition 3.6] with minor modification
concerning the complex valued measure and the compact control domain. �

Since the operator S maps into a finite dimensional space, the solution set
of (Pα) always contains linear combinations of Dirac delta function. This can be
seen by interpreting the corresponding dual problem as a semi-infinite optimiza-
tion problem; see, e.g., [3, Section 5.4]. For the convenience of the reader, we
provide an independent exposition in Appendix B.

Corollary 3.6. There exists an optimal solution û to (Pα) which consists of Nd ≤
2NM point sources,

û =
Nd∑

j=1
ûjδx̂j

where ûj ∈ CN , x̂j ∈ Ωc.
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Proof. This follows by combining Proposition B.3 with Theorem B.4. Note that
it holds dim RanS ≤ dimCNM = 2NM , since C is regarded as a real vector
space. �

Corollary 3.7. Any solution û =
∑Nd
j=1 ûjδx̂j

from Corollary 3.6 is uniquely
characterized by the optimality conditions

‖ξ̂‖C(Ωc,CN ) ≤ α, α ûj = |ûj |CN ξ̂(x̂j), j ∈ {1, 2, . . . , Nd},

where ξ̂ = −S∗(Sû− pd) is the associated adjoint state.

4. Weighted norm approach

In practical computations, the recovery based on (Pα) succeeds only in some
cases. In particular, there exist single point-sources which can not be recovered
even in the noise-free case. These cases occur when the boundary of the set Ωc
is close to the observation points (in which case several spurious sources tend to
be placed in these spots), or if the exact source is located in a spot with “bad”
acoustical properties; see section 7. Consider for a moment the case N = 1, and
assume that the exact source is given by u? = u?δx? . The magnitude of the
observed signal is given by

|Su?|CM = |u?|

√√√√
M∑

m=1
|Gxm(x?)|2 = |u?|ŵ(x?)

Thus, the magnitude of the observation for a unit source originating from x ∈ Ω
is described by the function ŵ : Ω → R+ ∪ {+∞}. Empirically, the cases of non-
identifiability coincide with the cases where ŵ(x?) is small, compared to a global
value such as, e.g., maxx∈Ωc ŵ(x) or the mean of ŵ. However, if the magnitude of
each source is computed in the weighted norm,

‖u?‖Mŵ(Ωc,CN ) =
∫

Ωc

ŵ d|u?| = |u?|ŵ(x?),

a source of unit size leads to an observation of unit size.
Motivated by this, we introduce for each frequency n a weight wn and consider

a weighted problem:

min
u∈Mw(Ωc,CN )

Jw(p, u) = 1
2

M∑

m=1
|p(xm)− pmd |

2
CN + α‖u‖Mw(Ωc,CN ),

subject to (3.2).
(4.1)

In the interest of generality, we consider a formulation with a general class of
weights. We will define the weighted norm ‖·‖Mw(Ω,CN ) for admissible choices of
the weight w below.

In a weighted problem formulation, the technical condition on the observation
points xm /∈ Ωc can be avoided. Therefore, in the following, we only assume that
Ωc ⊂ Ω is closed in Ω. Let Ξ = {xm | m = 1, 2, . . . ,M} ⊂ Ω be the observation
points (pairwise distinct). For simplicity, we do not consider boundary observation
in this section. Note that the original problem (3.1)–(3.2) is not necessarily well-
posed in such cases.
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Proposition 4.1. Suppose that Ωc does not contain isolated points and that
dist(Ξ,Ωc) = 0. Then, without restriction, xm ∈ Ωc for 1 ≤ m ≤ M1 ≤ M
and xm /∈ Ωc for m > M1. If (pmd )m=1,...,M1 ∈ CNM1 is sufficiently large (or
M1 = M), (3.1)–(3.2) does not admit a solution.

Proof. For simplicity of notation, we assume without restriction that N = 1.
Denote the optimization problem (3.1)–(3.2) by (Porig). Consider first a modified
optimization problem, where we minimize

Jaux(p, u) = 1
2

M∑

m=M1+1
|p(xm)− pmd |

2
C + α‖u‖M(Ωc,C),

subject to (3.2). We denote the corresponding optimization problem by (Paux). By
similar arguments as in section 3, there exists an optimal solution u0 ∈M(Ωc,C)
to the modified problem (Paux). By optimality, we obtain that

‖u0‖M(Ωc,C) ≤
‖(pmd )m=M1+1,...,M‖2CM−M1

2α .

By continuity, it holds ‖Su0‖CM ≤ C‖(pmd )m=M1+1,...,M‖2CM−M1 for a generic C > 0
and any solution of (Paux). Clearly, min(Paux) ≤ inf(Porig). In fact, equality holds:
We show that for

un = u0 +
M1∑

m=1
unmδxn

m
, (4.2)

with appropriate unm → 0 ∈ C, xnm → xm it holds J(Sun, un) → min(Paux). To
this purpose, we first fix xnm ∈ Ωc with |xm − xnm| = rnm, for rnm > 0 with rnm → 0
as n → ∞. Then, we consider the matrix Mn ∈ CM1×M1 , which results from
the restriction of S to the span of δxn

m
in the domain space and to the first M1

observations in the image space, that is

Mn
m,k = Gx

n
k (xm) for m, k = 1, . . . ,M1.

Moreover, recalling the definition of φk, see (2.9), we introduce the diagonal matrix

Dn = diag
(

1
|φk1(rn1 )| , . . . ,

1
|φk1(rnM1

)|

)
.

By Proposition 2.5 and the properties of the Green’s functions, we derive that

DnMn → IdCM1 for n→∞.

Thus we have |det(Dn)||det(Mn)| = |det(DnMn)| > 1/2 for n large enough.
Consequently, for n large enough the matrix Mn is invertible. We can there-
fore choose un = (un1 , . . . ,unM1) to be the solution of the system of equations
(Mnun)m = pmd − (Su0)m for m = 1, . . . ,M1. Therefore we have (S(un))m = pmd
for m = 1, . . . ,M1, thanks to (4.2), and since |φk1(rnm)| → ∞ for n→∞, it follows
additionally that unm → 0 for m = 1, . . . ,M1. This shows that un → u0 strongly
inM(Ωc,CN ) and inf(Porig) ≤ J(Sun, un) → min(Paux) ≤ inf(Porig) for n → ∞.
Assume now that (Porig) admits a solution û. With J(Sû, û) = inf(Porig) =
min(Paux) we immediately deduce that (Sû)m = pmd for m = 1, . . . ,M1, and û
also solves (Pα). However, choosing ‖(pmd )m=1,...,M1‖CM1 large enough contradicts
the bound ‖Sû‖CM ≤ C‖(pmd )m=M1+1,...,M‖2CM−M1 which follows from the optimal-
ity of û for (Paux). �
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Now, we introduce the class of admissible weight functions.

Definition 2 (Admissible weights). We call a family of weight functions wn : Ωc →
R ∪ {+∞}, n ∈ {1, 2, . . . , N} admissible, if they fulfill the following properties:

i) infx∈Ω w
n(x) > 0,

ii) wn is upper semi-continuous and wn restricted to Ωc \Ξ is continuous.
iii) The function Gxm

n /wn can be continuously extended from Ωc \Ξ to Ωc.
For admissible weights, we denote [Gxm

n /wn](xm) = limx→xm Gxm
n (x)/wn(x). The

case [Gxm
n /wn](xm) = 0 for all m is of special interest.

Due to the fact that |Gxm
n (x)| → ∞ for x → xm, the upper semi-continuity of

wn and Property iii) imply that wn(xm) = +∞. Now, we construct functions wn
such that the above conditions hold. With regard to the representation formula
from Lemma 2.3, we can take for instance the functions

wnfree =
M∑

m=1
|Φxm
n | (4.3)

In the following, we will again suppress the dependency on n, for convenience of
notation.

Proposition 4.2. The weights given in (4.3) are admissible.

Proof. Property i) holds by the properties of the Green’s functions. In both the
two- and three-dimensional case, the functions |Φ0(x)| are radially symmetric and
monotonously decreasing towards zero for |x| → ∞. Therefore, |Φxm(x)| = |Φ0(x−
xm)| is uniformly bounded from below on Ω for all m. By a similar argument,
property ii) follows. It remains to verify iii). With Lemma 2.3, we notice that

Gxm(x)
wfree(x) = ξxm(x) + Φxm(x)

wfree(x) = ξxm(x)
wfree(x) + Φxm(x)

wfree(x)

with ξxm ∈ H2(Ω). Since infx∈Ω wfree(x) > 0 and for all points x̂ where wfree is
discontinuous it holds limx→x̂wfree(x) = +∞, the first term is continuous and we
have

lim
x→xm

ξxm(x)
wfree(x) = 0.

Furthermore, wfree has the form wfree(x) = fm(x) + |Φxm(x)| for an fm : Ω →
R+ ∪ {+∞}, which is finite and continuous in a neighborhood of xm. Thus we
have

lim
x→xm

Φxm(x)
wfree(x) = lim

x→xm

Φxm(x)
|Φxm(x)| = 1.

In fact, for this, we use the concrete formulas for Φxm ; see Lemma 2.3. In the
case d = 3, it holds that Φxm(x) = exp(ik|x − xm|)/4π|x − xm|, and the equality
follows directly. In the case d = 2, we use that for t = k|x− xm| we have

Φxm(x) = i

4H
(1)
0 (t) = −1

4Y0(t) + i

4J0(t),

where J0 : R+ → R and Y0 : R+ → R are the Bessel functions of the first and
second kind. It is known that J0 is continuous at t = 0 and Y0 is diverging
towards +∞ at t = 0; see, e.g., [12, Section 3.4]. �
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Remark 2. We verify that wnfree is independent of the wave number kn in three
dimensions, since |Φxm

n (x)| = 1/(4π|x − xm|). In two dimensions, the singularity
of |Φxm

n | is of same type as the singularity of the Green’s function of the Laplacian,
g(x) = −1/(2π) ln|x−xm|, and kn enters only in an additive constant; see, e.g., [12,
Section 3.4]. Therefore, we could alternatively take the same weight for all n.

Other families of weight functions can be based on the Green’s function on the
domain. For instance, they are given by

wnΩ,1 =
M∑

m=1
|Gxm

n |, wnΩ,2 =

√√√√
M∑

m=1
|Gxm

n |2. (4.4)

Note that these weights depend on the shape of Ω and the wave number kn. As
for (4.3), we obtain the admissibility of (4.4).

Proposition 4.3. Suppose that for any n there exists no x ∈ Ω̄, such that
Gxm
n (x) = 0 for all m. Then, the weights given in (4.4) are admissible.

Proof. With Lemma 2.3, the verification of ii) and iii) follows by straightforward
computations, since the local behavior of wfree and wnΩ,1, wnΩ,2 at the observation
points are the same. For the uniform boundedness from below it suffices to observe
that wn(x) > 0 for all x ∈ Ωc \ Ξ, the wn are continuous on the same set, and
wn(x)→∞ for x→ xm. �

Remark 3. Certainly, there are many more possibilities to define admissible weights.
For instance, we can use a different discrete norm for the absolute values of the
Green’s functions associated with the xm or employ a weighed sum. Moreover,
the weight for each m could be used as a separate regularization parameter, to
obtain a more flexible regularization strategy.

For any vectors v, w ∈ CN , we define by vw ∈ CN the coordinate-wise, or
Hadamard product. Define now the weighted norm

‖u‖Mw(Ωc,CN ) =
∫

Ωc

|wu′| d|u| =
∫

Ωc

√√√√
N∑

n=1
(wn(x)|u′n(x)|)2 d|u|(x)

Since u′ ∈ L∞(Ωc, |u|,CN ) and w is upper semi-continuous, the function under
the integral is positive and Borel-measurable, and the integral is well-defined for
any u ∈M(Ωc,CN ) (but not necessarily finite). Note that if wn = w for all n, we
obtain the more intuitive form

‖u‖Mw(Ωc,CN ) =
∫

Ωc

w d|u|.

We define the corresponding subspace ofM(Ωc,CN ) as

Mw(Ωc,CN ) =
{
u ∈M(Ωc,CN )

∣∣∣
∫

Ωc

|wu′| d|u| <∞
}
.

Next, we introduce the mapping W : M(Ωc,CN )→Mw(Ωc,CN ) defined by

dW (v) = v′

w
d|v|.

Again, the division v/w for v, w ∈ CN is understood in a coordinate-wise fashion.
We adopt the convention z/(+∞) = 0 for any z ∈ C.
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Proposition 4.4. Let w fulfill property i) and ii) and w(Ξ ∩ Ωc) ≡ +∞. The
mapping W is well-defined and surjective. Moreover, the restriction

W |M(Ωc\Ξ,CN ) : M(Ωc \Ξ,CN )→Mw(Ωc,CN )
is an isometric isomorphism.

Proof. The function x 7→ 1/w(x) is continuous on Ωc according to the assump-
tions. Thus W (v) is an element of M(Ωc,CN ). Trivially, there holds W (v) ∈
Mw(Ωc,CN ) for any v ∈M(Ωc,CN ). Additionally, for any u ∈Mw(Ωc,CN ), the
product uw defined by

d(uw) = wu′ d|u|
gives an element inM(Ωc,CN ) since w is upper semi-continuous. Clearly, we have
W (uw) = u and thus W is surjective. However, W is not injective, and the kernel
of W can be characterized as

kerW =M(Ξ,CN ) =
{

M∑

m=1
umδxm

∣∣∣ um ∈ CN
}

In fact, let v be an element of kerW . Thus there holds ‖W (v)‖M(Ωc,CN ) =∫
Ωc

1/w d|v| = 0, which is equivalent to
supp v = supp|v| ⊆ {x ∈ Ωc | 1/w(x) = 0} = Ξ ∩Ωc.

As a direct consequence of the isomorphism theorem, we obtain that
W : M(Ωc,CN )/ kerW →Mw(Ωc,CN )

is an isomorphism. It can be directly verified that the quotient space is isomorphic
toM(Ωc \Ξ,CN ); see, e.g., [33, Theorem 4.9 a)]. �

Based on these observations, we transform the weighted problem to one with
weight one, which enables us to reuse the general results. We introduce a new
optimization variable v = uw ∈M(Ωc,CN ) and employ a reduced formulation in
terms of v. The corresponding observation operator and its adjoint are defined as

(Swv, q) = 〈v, (Sw)∗q〉 =
N∑

n=1

M∑

m=1
〈v, (Ḡxm

n /wn) qn,m〉, (4.5)

for any v ∈M(Ωc,CN ), q ∈ CNM . For any admissible weight, due to property iii),
this yields a well defined operator.

Proposition 4.5. For any admissible w, the operators Sw : M(Ωc,CN )→ CNM
and (Sw)∗ : CNM → C(Ωc,CN ) are well-defined and continuous with respect to the
weak-∗ topology and bounded, respectively.

Now, we consider the reduced optimization problem

min
v∈M(Ωc,CN )

jw(v) = 1
2

M∑

m=1
|(Swv)m − pmd |

2
CN + α‖v‖M(Ωc,CN ). (Pα,w)

Since the reweighed problem (Pα,w) has exactly the same structural properties as
the reduced problem (Pα), all results from sections 3 and 5 can be transferred
without modification. In particular, for any admissible weight the problem (Pα,w)
admits optimal solutions v̂ ∈ M(Ωc,CN ) consisting of at most 2NM Dirac delta
functions.
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Given a solution v̂ of (Pα,w) which does not contain any Dirac delta functions
in the observation points (i.e., v̂ ∈ M(Ωc \ Ξ,CN )), we can apply W to obtain
a solution of the original problem. First, we need some result to connect the
algebraically defined operator Sw to the point evaluations of the solutions of (3.2).

Lemma 4.6. For ε > 0 define Ξε = ∪m=1,...,MBε(xm). Let the observation
operator Sε : M(Ωc \ Ξε,CN ) → CNM be defined as Sε(u) = (p(xm))m=1,...,M ,
where p is the solution to (3.2) (defined with Lemma 2.4).

If w is admissible, the operator Sw : M(Ωc \ Ξ,CN ) → CNM is the unique
weak-∗ continuous extension of the family of operators Swε = Sε ◦W .

Proof. By a simple computation, Sw|M(Ωc\Ξ,CN ) extends all Swε and by Proposi-
tion 4.5 it is continuous. Clearly, the spacesM(Ωc \Ξε,CN ) are weak-∗ dense in
M(Ωc \Ξ,CN ), which proves the uniqueness of the extension. �

Lemma 4.7. Let w be admissible.
i) Suppose that (Pα,w) possesses a solution v̂ with supp v̂ ⊂ Ωc \ Ξ. Then,
û = Wv̂ is a solution of (4.1).

ii) Conversely, suppose that any solution of (Pα,w) fulfills |v̂|(Ξ) > 0 and that
Ωc contains no isolated points. Then (4.1) possesses no solution.

Proof. Based on Proposition 4.5 and Lemma 4.6, the point evaluations of the so-
lutions to (3.2) with sources inMw(Ωc,CN ) are well-defined. Moreover, using the
isometric isomorphism property of W from Proposition 4.5, the infimum of (4.1)
is equal to

̂ = inf
v∈M(Ωc\Ξ,CN )

jw(v). (4.6)

Clearly, the minimum of (Pα,w) fulfills minv∈M(Ωc,CN ) jw(v) ≤ ̂.
Now, if (Pα,w) admits a solution v̂ ∈ M(Ωc \ Ξ,CN ), it follows that jw(v̂) = ̂

and the infimum of (4.1) is assumed by û = Wv̂.
Conversely, if any solution to (Pα,w) is not in M(Ωc \ Ξ,CN ), the infimum

in (4.6) is not assumed. To see this, we first show that it in fact holds that
minv∈M(Ωc,CN ) jw(v) = ̂. Take any sparse solution v̂ of (Pα,w). By the assump-
tion, it contains Dirac delta functions supported on Ξ. Since the support points
which coincide with observation points are not isolated in Ωc, we can slightly per-
turb them, such that xm 6= x̃`m → xm for `→∞. Denote the perturbed measure
by ṽ`. It holds ‖ṽ`‖M(Ωc,CN ) = ‖v̂‖M(Ωc,CN ) and ṽ` ∈ M(Ωc \ Ξ,CN ) for ` big
enough and with the weak-∗ continuity of Sw we obtain ̂ ≤ limn→∞ jw(ṽ`) =
jw(v̂). Therefore, jw can not assume its minimum on M(Ωc \ Ξ,CN ), which
directly implies that (4.1) has no minimum, using again Proposition 4.5 and
Lemma 4.6. �

To obtain well-posedness of the weighted problem (4.1) without any assumptions
on the structure of the solutions of the auxiliary problem (Pα,w), we can impose the
additional condition [Gxm/w](xm) = 0 for all m. For instance, for any admissible
weight w (such as given in (4.3) or (4.4)) and some monotonously increasing
function ψ : R → R+ with ψ(0) = 0, ψ(t) > 0 for t > 0, and ψ(t)/t → ∞ for
t→∞, the weight w̃ = ψ ◦ w has this property.

Proposition 4.8. Suppose that w is admissible with [Gxm/w](xm) = 0 for all m.
Then, the operator Sw is weak-∗ continuous on the spaceM(Ωc \Ξ,CN ).
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Proof. This follows directly from the observation that
(Sw)∗ : CN → C0(Ωc \Ξ,CN ) = {v ∈ C(Ωc,CN ) | v(xm) = 0, xm ∈ Ξ ∩Ωc}.

and the identification C0(Ωc \Ξ,CN )∗ =M(Ωc \Ξ,CN ). �

In this case, the solutions of (Pα,w) are always supported on Ωc \ Ξ, which
follows from the optimality conditions and the fact that ξ̂ = −(Sw)∗(Sw(v̂)− pd)
fulfills ξ̂(Ξ ∩Ωc) = 0. We summarize all results in the following theorem.

Theorem 4.9. Let w be admissible and suppose that (Pα,w) admits solutions
in the space M(Ωc \ Ξ,CN ) or that [Gxm/w](xm) = 0 for all m. Then, the
problem (4.1) has a minimum û ∈ Mw(Ωc,CN ) which consists of finitely many
Dirac delta functions, û =

∑Nd
j=1 ûjδx̂j

. Together with the associated

ξ̂ = −S∗(Sû− pd),
it is uniquely characterized by the optimality conditions

‖ξ̂/w‖C(Ωc,CN ) ≤ α, αw(x̂j)ûj = |w(x̂j)ûj |CN ξ̂(x̂j)/w(x̂j),

j ∈ {1, 2, . . . , Nd}. Moreover, supp|û| ⊂ {x ∈ Ωc | |ξ̂(x)/w(x)|CN = α} for each
solution û.

5. Regularization properties

In this section, we study (loosely speaking) if the minimization problem delivers
an appropriate solution for the inverse problem: solve Su = p for u. We mainly
rely on general results for nonsmooth Tikhonov regularization [7, 25] and sparse
spike deconvolution [6, 17]. To that purpose, we assume that we are given the
exact source u? of the form

u? =
N?∑

j=1
u?jδx?

j
, where u?j ∈ CN \ {0}, x?j ∈ Ωc \Ξ (5.1)

and noisy observations pd = Su? + f = p? + f with small noise ‖f‖CNM ≤ δ.
In the following we state conditions on u? and a parameter choice rule for α
in dependence of δ which are sufficient for the convergence of the solutions ûα
of (3.1)–(3.2) (or the weighted problem (4.1)) towards the exact solution u? for
vanishing noise δ → 0 and for α(δ)→ 0. Moreover, convergence rates are given.

Without loss of generality, we only study the reduced weighted problem (Pα,w)
for a general admissible weight w. The case of w ≡ 1 with Ωc ∩ Ξ = ∅ from
section 3 is then included as a simple special case. In the case of solutions v̂α of
formulation (Pα,w), we are interested in the convergence of Wv̂α towards u?. We
define

v? =
N?∑

j=1
v?jδx?

j
, where v?j = w(x?j )u?j , (5.2)

In the following, we study the convergence of solutions v̂α(δ) towards v?. Clearly,
since 1/w is a continuous function on Ωc, this implies convergence ofWv̂α towards
Wv? = u?. We first analyse the following minimum norm problem, (cf., e.g.,
[6, 17,25]):

min
v∈M(Ωc,CN )

‖v‖M(Ωc,CN ) subject to Swv = p?. (P0,w)
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By assumption, the admissible set of (P0,w) is not empty, since p? = Swv?. There-
fore, with Lemma 3.1, we can derive the following basic result; see Appendix B.

Proposition 5.1. There exists a solution v† ∈ M(Ωc,CN ) to (P0,w), which con-
sists of Nd ≤ 2NM point sources,

v† =
Nd∑

j=1
v†jδx†j

where v†j ∈ CN , x†j ∈ Ωc.

We now turn to the limiting behavior of (Pα,w) for small α and δ. From [25]
(cf. [6, Section 4]), we have the following result.

Theorem 5.2. For any monotonously increasing parameter choice rule α(δ) for
which δ2/α(δ) → 0 and α(δ) → 0 for δ → 0, any sequence v̂α(δ) of solutions
to (Pα,w) contain a subsequence which converges towards a solution v† of (P0,w)
(weakly-∗ in M(Ωc,CN )). If additionally v† is unique, the whole sequence con-
verges towards v†.

Under a source condition convergence rates can be derived in a generalized
Bregman distance (see, e.g., [7]). It has the following form:

There exists a y† ∈ CNM , such that (Sw)∗y† ∈ ∂‖v?‖M(Ωc,CN ). (5.3)
A concrete form of this condition can be given by using the characterization of
the subdifferential.

Proposition 5.3. The source condition (5.3) can be equivalently expressed as:
There exists a y† ∈ CNM , such that the associated adjoint state ξ† = S∗y† fulfills

‖ξ†/w‖C(Ωc,CN ) ≤ 1, v?j = |v?j |CN ξ
†(x?j )/w(x?j ), j ∈ {1, 2, . . . , N?}.

The last condition can also be given by w(x?j )u?j = |w(x?j )u?j |CN ξ†(x?j )/w(x?j ).

In our situation, the source condition is satisfied if v? is a minimum norm solu-
tion, since (5.3) is a necessary and sufficient optimality condition of the minimum
norm problem problem (P0,w).

Proposition 5.4. For any solution v† of (P0,w) there exists a corresponding y†
such that (Sw)∗y† ∈ ∂‖v†‖M(Ωc,CN ). Conversely, for any pair y† and v? fulfill-
ing (5.3), v? is a solution of (P0,w).

Proof. This result follows by an application of Fenchel duality (see Propositions A.1
and A.2 in the Appendix). �

Corollary 5.5. The element v? satisfies the source condition (5.3) if and only if
v? is a solution of the minimum norm problem (P0,w).

Remark 4. The equivalence between the minimum norm problem and the source
condition is due the semi-infinite character of the dual problem of (Pα); see Appen-
dix A. In an general setting (with infinite dimensional observation) this equivalence
is not always given; cf. [25].

The convergence rates for the regularized solutions will now be given in terms
of a generalized, set-valued Bregman distance D : M(Ωc,CN )×M(Ωc,CN )→ R
defined by
D(v1, v2) = {‖v1‖M(Ωc,CN ) − ‖v2‖M(Ωc,CN ) − 〈ξ, v1 − v2〉 | ξ ∈ ∂‖v2‖M(Ωc,CN )}
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for any v1, v2 ∈M(Ωc,CN ). In [7, Theorem 2] (cf. also [6, Section 4]) the following
convergence result is proven.

Theorem 5.6. Let the source condition (5.3) be satisfied and let δ/c1 ≤ α(δ) ≤
c1δ for some fixed c1 ≥ 1. Then for each minimizer ûα of (3.1) there exists a
d ∈ D(ûα, u?) such that d ≤ Cδ holds (for some generic constant C).

Based on Theorem 5.2 and Proposition 5.4 we see that the only missing part
for the convergence of v̂α(δ) to v? is the uniqueness of the solution of the minimum
norm problem. Due to Proposition 5.1 unique solutions must necessarily consist of
finitely many Dirac delta functions. Additionally, criteria for uniqueness based on
the source condition can be derived. We give without proof the following popular
one; cf. [14, Lemma 1.1] or [17, Proposition 5]:

Proposition 5.7. Let v? ∈ M(Ωc,CN ) with v? =
∑
j=1,...,Nd

v?jδx?
j
, where vj ∈

CN \ {0}, x?j ∈ Ωc \ Ξ pairwise different. Suppose further that the source con-
dition (5.3) holds with ξ†/w = (Sw)∗y†, the vectors zj = Sw(ξ†w(x?j )δx?

j
) ∈ CMN

form a R-linearly independent set, and for every x ∈ Ωc \ {x?j | j = 1, 2, . . . , N?}
there holds ‖ξ†(x)/w(x)‖CNM < 1. Then v? is the unique solution of (P0,w).

Finally, we sum up the findings of this section.

Corollary 5.8. Let u? = Wv?, where v? is a solution of (P0,w) (or equivalently let
v? satisfy the source condition (5.3)) and let the conditions from Proposition 5.7
be satisfied. Furthermore, let δ/c1 ≤ α(δ) ≤ c1δ for some c1 > 0 as δ → 0. Then
for any sequence of minimizers ûα(δ) of (Pα,w) it holds

Wv̂α(δ) ⇀
∗ u?,

and there exists d ∈ D(v̂α(δ), v
?) such that d ≤ Cδ (for some generic C).

Due to the complex geometrical setup of (1.1) (in the general case, analytical so-
lutions are not known), we know of no way to further characterize the set of sources
for which the assumptions of Corollary 5.8 hold. However, we refer to [1, 8, 17],
where for certain classes of analytically given convolution operators similar results
to Corollary 5.8 can be guaranteed under simple structural assumptions on the
source, such as, e.g., a minimum separation distance between the support points
of (5.1). In our situation, we will investigate the assumptions of Corollary 5.8
numerically in section 7. The numerical results suggest that, even in the case of
an arbitrary number of measurements, the source condition holds only in some
cases. However, for a special choice of the weight, reconstruction of a single point
source can be guaranteed.

5.1. Exact reconstruction of a single source. In this section we prove that,
using the weight wΩ,2 as defined in (4.4), a source consisting of a single Dirac-
delta function can always be reconstructed using the weighted problem. We first
consider the noise free case:

Proposition 5.9. Suppose that wnΩ,2(x) > 0 for all x ∈ Ωc, n = 1, . . . , N . Let
u? = u?δx? with x? ∈ Ωc \ Ξ, u? ∈ CN and consider noise-free observations
pd = Su?. Then, for any α > 0 and w = wΩ,2 the function

û = ûδx? with û = max{0, 1− α/|u?w(x?)|CN }u?
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is a solution of (4.1). Furthermore, u† = u? solves the corresponding minimum
norm problem defined as in section 5.

Proof. We verify that the first order conditions from Theorem 4.9 are fulfilled.
First, we compute ξ̂ = −S∗(Sû − pd) at every point and frequency. We directly
obtain that

ξ̂n(x) =
M∑

m=1
Ḡxm
n (x)Gxm

n (x?)(u?n − ûn), x ∈ Ωc, n = 1, . . . , N.

We compute that (u?n − ûn) = min{1, α/|w(x?)u?|CN }u?n. Introducing the
rescaled Green’s functions hnm = Gxm

n /wn, we obtain

ξ̂n(x)/wn(x) =
M∑

m=1
h̄nm(x)hnm(x?) min{1, α/|w(x?)u?|CN }wn(x?)u?n. (5.4)

By the definition of w = wΩ,2, we compute that |hn(x)|CM =
√∑

m|hnm(x)|2 =
|Gn(x)|CM /wΩ,2(x) = 1 for all x ∈ Ωc \ Ξ. Therefore, we can apply the Cauchy-
Schwarz inequality to the term

∑
m h̄

n
m(x)hnm(x?) in (5.4) and obtain

|ξ̂n(x)|/wn(x) ≤ min{1, α/|w(x?)u?|CN }wn(x?)|u?n|.

Summing the squares of both sides and taking the square root, we derive that

|ξ̂(x)/w(x)|CN ≤ min{|w(x?)u?|CN , α} ≤ α, x ∈ Ωc.

In the case that α < |w(x?)u?|CN , it remains to verify the optimality condition
for û: Taking x = x?, we have

∑
m h̄

n
m(x?)hnm(x?) = 1 in (5.4), and it follows that

ξ̂n(x?)/wn(x?) = αwn(x?)u?n/|w(x?)u?|CN , n = 1, . . . , N,

which implies the desired condition, since û and u? are scalar multiples of each
other. Thus, ûα solves the weighted problem by Theorem 4.9.

In the case α = 0, we show that the solution of the dual problem is given by
y† = pd/|w(x?)u?|CN . In light of Proposition 5.4, we have to verify that ξ† = S∗y†

fulfills the source condition, i.e., ξ†/w ∈ ∂‖wu?‖M(Ωc,CN ). We have

ξ†n(x)/wn(x) =
M∑

m=1
h̄nm(x)pmd /|w(x?)u?|CN

=
M∑

m=1
h̄nm(x)hnm(x?)wn(x?)u?n/|w(x?)u?|CN .

Similarly, it follows ‖ξ†/w‖C(Ωc,CN ) ≤ 1 and ξ†(x?)/w(x?) = w(x?)u?/|w(x?)u?|CN ,
which implies the result by Proposition 5.3. �

Note that (5.9) also applies in the case of only one measurement, i.e.M = 1. In
this case, for any ξ = S∗y with y ∈ CN , the expression ‖ξ/w‖CN is constant in the
domain Ω, and any source uδx for arbitrary x ∈ Ωc \ Ξ and appropriate u ∈ CN
solves the minimum norm problem. A criterion for u? to be the unique solution,
which can be derived by straightforward extension of the previous result, is given
next.
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Proposition 5.10. In addition to the requirements of Proposition 5.9, assume
that the observations for different source locations are complex linearly independent
(i.e., there exist no x, x′ ∈ Ωc, such that Sδx = zSδx′ for z ∈ C).

Then the functions given in Proposition 5.9 are the unique solutions of the
respective problems.

6. Optimization algorithm

We base the numerical optimization of (1.3) upon the successive peak insertion
and thresholding algorithm proposed in [6]. It is based on iterates of the form
uk =

∑
j=1,...,Nk

d
ukj δxk

j
(with distinct xkj and ukj 6= 0) and performs alternating

steps, combining insertion of Dirac delta functions at new locations with removal
steps.

For the convenience of the reader, we give a general description of the resulting
procedure in Algorithm 1. Note, that the point insertion is performed at the
maximum of the norm of the current adjoint state. For more details we refer
to [6, Section 5]. The following convergence result is obtained there:

Algorithm 1 Successive peak insertion framework [6]
while “duality-gap large” do
1. Compute ξk = S∗(Suk − pd). Determine x̂k ∈ arg maxx∈Ωc

|ξk(x)|CN .

2. Set θk =





0, ‖ξk‖C(Ωc,CN ) ≤ α,
−
[
α−2‖pd‖2/2

]
ξk(x̂k), else.

3. Select stepsize sk ∈ (0, 1] and set uk+1/2 = (1− sk)uk + skθkδx̂k
.

4. Set A = supp(uk+1/2) and find uk+1 ∈ CN#A such that uk+1 = UA(uk+1)
with j(uk+1) ≤ j(uk+1/2).

Theorem 6.1 ( [6, Theorem 5.8]). Let the sequence uk be generated by Algo-
rithm 1. Then every subsequence of uk has a weak-∗ convergent subsequence that
converges to a minimizer û. Furthermore:

j(uk)− j(û) ≤ C

k
.

To discuss different possible implementations of step 4 in Algorithm 1, we define
for a ordered set of distinct points A = {xj ∈ Ωc | j = 1, . . . ,#A} the operator
UA : CN#A →M(Ωc,CN ) by

UA(u) =
#A∑

j=1
ujδxj .

The removal steps are based on the consideration of the finite-dimensional problem

min
u∈CNNd

j(UA(u)) = 1
2‖S(UA(u))− pd‖2CNK + α‖UA(u)‖M(Ωc,CN )

= 1
2‖SAu− pd‖2CNK + α

#A∑

j=1
|uj |CN ,

(6.1)

for A determined by an intermediate iterate and (SA)j,n = Sδxjen. Different
concrete choices of step 4 are discussed in [6, Section 5]: it is suggested to perform
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one step of the well-know proximal gradient/iterative tresholding algorithm for
the finite dimensional problem (6.1). In this way, step 5 is easy to implement, has
a small cost (depending linearly on the current size of the support), and has the
potential to set some coefficients to zero (by virtue of the soft shrinkage operator).
Additional steps of the proximal gradient method could be performed, to possibly
increase this “sparsifying” effect. Note that if we omit step 4, the size of the
support will grow monotonically throughout the iterations due to the particular
form of step 3 (except for the unlikely case that sk = 1).

In our setting, we additionally know that solutions consisting of at most 2NM
Dirac delta functions exist; see Corollary 3.6. Since the proof of the underlying
result is constructive, it directly suggests an algorithm to remove excess point
sources; see Proposition B.5.

Corollary 6.2. For given uk+1/2 with #supp(uk+1/2) > 2NM , the algorithm
from the proof of Proposition B.5 constructs a new iterate uk+1 = UA(u), such
that u̂ = 0 for one ̂ and j(uk+1) ≤ j(uk+1/2).

Proposition 6.3. Suppose that step 5 of Algorithm 1 includes the procedure from
Corollary 6.2 and that u0 consists of at most 2NM Dirac delta functions. Then
the iterates uk and each weak-∗ accumulation point û of uk consists of at most
2NM Dirac delta functions (in addition to the properties from Theorem 6.1).

Proof. The bound on the support size for uk is a direct consequence of Corol-
lary 6.2. The bound for the limit follows from a general result on the weak-∗
convergence of measures consisting of a uniformly bounded number of Dirac delta
functions; see Appendix C. �

Additionally, [6] suggests acceleration strategies based on point moving and
merging. Since they cannot be easily realized in our numerical setup using C0 finite
elements (see section 7), we do not discuss them here. Alternatively, we suggest
to solve the subproblem (6.1) exactly (up to machine precision) to accelerate
the convergence. The resulting procedure is given in Algorithm 2. Since the

Algorithm 2 Primal-Dual-Active-Point strategy
while “duality-gap large” do
1. Calculate ξk = S∗(Suk − pd). Determine x̂k ∈ arg maxx∈Ωc

|ξk(x)|CN .
2. Set A = supp(uk) ∪ {x̂k}, compute a solution û ∈ CN#A of (6.1) with
# supp(UA(û)) ≤ 2NM , and set uk+1 = UA(û).

point insertion is the same in both algorithms, Algorithm 2 is a special case of
Algorithm 1.

Proposition 6.4. The iterates of Algorithm 2 coincide with the iterates of Algo-
rithm 1, if in step 4, uk+1 is chosen as a solution û ∈ CN#A of (6.1).

Proof. This is a direct consequence of the fact that step 1 and the choice of A
coincide for both algorithms, and that j(UA(û)) ≤ j(uk+1/2) ≤ j(uk); see [6,
Proposition 5.6]. �

Remark 5. Another possible stopping criterion for Algorithm 2 would be the con-
dition that the active set A coincides in two subsequent iterations k and k + 1
i.e., that x̂k+1 ∈ A(uk+1) in step k + 1. Clearly, if this holds true, we have
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uk+1 = uk+2 = û. In fact, the optimality of uk+1 can be obtained in this situation
by formulating the optimality conditions of (6.1) from step k for uk+1 = UA(û),
concluding that x̂k+1 ∈ A(uk+1) implies that ‖ξk+1‖C(Ωc,CN ) ≤ α and verifying
the first order conditions from Corollary 3.7, which are sufficient for optimality.

It remains to address the cost associated with the numerical solution of sub-
problem (6.1). It is well-known that this problem can be reformulated as a second
order cone constrained linear optimization problem, by introducing #A+ 1 addi-
tional variables. Such problems can be solved efficiently by interior point methods.
Since we can bound the number of active points #A a priori by 2NM+1, the cost
for the approximate numerical solution of (6.1) (up to machine precision) can be
regarded as a constant; see, e.g., [5]. In practice, we choose to implement a semi-
smooth Newton method; see, e.g., [30]. While there are no complexity bounds
for this class of methods, the local superlinear convergence properties (which, in
contrast to interior point methods, allows for warm starts) makes this alterna-
tive seem appealing, since we have a potentially good initial guess for û from the
previous iteration.

7. Numerical Results

In this section we briefly describe the discretization methods used for the so-
lution of the Helmholtz equation in a bounded domain and for the sources from
M(Ωc,CN ). Let p = p1

n + ip2
n, n = 1, . . . , N the solution of (2.1) for the control

un = u1
n + iu2

n, u ∈ M(Ωc,CN ). For the numerical computations we rewrite the
state equation (2.1) in following equivalent real-valued form





(
−∆− k2

nI 0
0 −∆− k2

nI

)(
p1
n

p2
n

)
= 1
wn

(
u1
n|Ω
u2
n|Ω

)
in Ω,

(
∂ν κnχΓZ

−κnχΓZ
∂ν

)(
p1
n

p2
n

)
= 1
wn

(
u1
n|Γ
u2
n|Γ

)
on Γ,

(7.1)

where w is one of the weight functions introduced in Section 4. Based on this for-
mulation of the state equation we employ linear finite elements on a triangulation
of Ω for the approximation of the state variables p1

n and p2
n; cf. [2, 15, 26]. We

only mention that the discretized state equation has unique and stable solutions
(p1
h, p

2
h) for a small enough grid size h; see, e.g., [2, Theorem 4.4].

We denote the set of grid nodes in the triangulation with N . Moreover we
denote the number of grid points with Nh and denote number of grid nodes in Ωc
with Nc. Corresponding to the discretization of the state space by finite elements,
we discretize the control space by Dirac-delta functions in the gird nodes (see [10]):

Mh =
{
u ∈M(Ωc,CN )

∣∣∣ u =
Nc∑

i=1
uiδxi , ui ∈ CN , xi ∈ Ωc ∩N

}
. (7.2)

Since the measure is discretized in the grid nodes, we only need to compute the
values of the weight w in the grid nodes to obtain a fully discrete problem. For
instance, for the weight function wnΩ,2 =

√∑M
m=1|G

xm
n |2, the functions Gxm

n are
approximated again by linear finite elements. Based on the pointwise values of
the finite element approximations we obtain a discrete approximation of the given
weight in the grid nodes.
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We introduce the discrete reweighed observation mapping Swh : Mh → CNM
defined by

Swh : u 7→ {p1
n,h(xm) + ip2

n,h(xm)}N,Mn,m=1.

Based on the operator Swh we formulate the reweighed discrete control problem

min
u∈Mh

jh(u) = 1
2

M∑

m=1
|(Swh u)m − pmd |

2
CN + α‖u‖M(Ωc,CN ). (7.3)

For an u ∈Mh the regularization functional has the form

α‖u‖M(Ωc,CN ) = α
Nc∑

j=1
|uj |CN .

Thus, problem (7.3) is a finite dimensional non-smooth and convex optimization
problem. There are several algorithms which can be used for its solution. For
example, the CVX toolbox [21] reformulates the problem as a cone constrained
problem and solves the resulting problem using an interior point method. While
highly efficient for medium sized problems, the performance of such a method
suffers dramatically from the high dimension 2NNc of the optimization variable
in problem (7.3) (in the case of a fine discretization).

Finally, we implement the algorithms from section 6 on the discrete level. To
adapt Algorithm 1 and Algorithm 2 to the discrete level, it suffices to note that
the maximization of the adjoint variable ξk needs to be performed only over the
grid points, which is done by a direct search. The other steps can be implemented
directly. Since the dimension of the observation 2NM is low in comparison to
dimMh = 2NNc, we build up the matrix representation (Sw)∗ ∈ CNM×NNc of
(Swh )∗ in a preprocessing step. This step involves M -times the solution of the
discrete adjoint state equation. By transposition we get the matrix representation
Sw of Swh . Note that this matrix is often referred to as the mixing matrix of a
microphone array in Beamforming applications; see [32]. Thus, the evaluation
of the solution operator and the adjoint equation needed for the application of
Algorithm 1 resp. 2 reduces to a matrix vector multiplication. Due to the con-
vergence analysis on the continuous level, we can expect the algorithms to behave
independently of the number of grid points, where the cost of each iteration scales
linearly in Nc.

7.1. Interpretation of discrete solutions. It is known that a discretization of
a measure on a finite grid introduces artifacts: Roughly speaking, a source present
in the continuous problem at a off-grid location tends to appear spread out over
the adjacent grid cells, which artificially increases the number of support points
in the discrete solution, and makes the direct interpretation of the numerical solu-
tions difficult. For a theoretical analysis of this effect we refer to [17]. For practical
purposes, we employ the following post-processing strategy: First, we build the
connectivity graph of the sparsity pattern of the finite element discretization, and
interpret all point sources less than two nodes away from each other as part of a
cluster. Then, for each cluster we replace the sources of hat cluster by a source
located at the center of gravity of the cluster with a coefficient given by the sum
of the coefficients. Mathematically, this can be regarded as an interpolation oper-
ation on the space of measures, which introduces an additional error proportional
to h under reasonable assumptions.
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7.2. Numerical experiments. In this section we conduct several numerical ex-
periments based on an acoustic inverse source problem involving the Helmholtz
equation. In all considered scenarios we are given a computational domain Ω with
reflecting as well as absorbing boundary conditions. We give examples to demon-
strate the applicability of the general approach, and investigate the influence of
the choice of the weight w and the performance of the presented algorithms. In
all examples, we use the following setting:

• The computational domain is given by a square of four by four meters,
i.e., Ω = [0, 4]2.
• The computational grid Th is given by an uniform triangular discretization
of Ω with h =

√
2/2l with grid level l ∈ {6, . . . , 9}.

• Two reflecting walls ΓN are located on the left and top and two absorbing
walls ΓZ (with κn = kn) on the bottom and right.
• The speed of sound is set to c = 345 [m/s].

7.2.1. Deterministic comparison of weights. The results of Proposition 5.9 show
that one point source can be exactly recovered in the noise free case for the
weighted approach (4.1). However, we can construct a simple example, which
numerically demonstrates that the reconstruction based on the non-weighted ap-
proach (3.1) does not necessarily yield the exact positions and intensities in this
scenario. To this purpose, we choose an exact source located close to the re-
flecting boundaries of Ω and compute a minimum norm solution for different
problem formulations. More precisely, we set u? = eiπ/4δx? with x? = (0.5; 3.75).
Furthermore, for simplicity, we consider the case with only one frequency ω =
2π 261.6, which corresponds to the tone C4, and three microphones located in
(3.75, 1), (3.75, 2), (3.75, 3) as depicted in Figure 1.

ΩΓN ΓZ

ΓN

ΓZ

Microphones

Exact source location

Figure 1. The computational domain Ω, the array of micro-
phones and the exact source position.

Since we compare different problems settings under ideal conditions, we consider
noise-free observations which are generated on the same grid as the subsequent
computations. Therefore, we set pd = ph(u?) generated by solving the discrete
Helmholtz equation (3.2) with the exact source u?. In Figure 2a the real part
of the acoustic pressure p(u?) is displayed. Circular waves are generated from
the point source and intensified by the reflections on ΓN . Figure 2b shows the
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(a) Real part of the acoustic pressure
ph(u?).

(b) Discrete approximation of wΩ,2.

Figure 2. Exact pressure and weight w = wΩ,2.

weight w = wΩ,2 =
√∑M

m=1|Gxm |2. As mentioned before, the value of the weight
at point in the domain corresponds to the magnitude of the signal that will be
received at the microphones. We clearly see that w has a relatively low value
in a neighborhood of the exact source position. This behavior of w is caused
by negative interference of the generated and reflected waves. Furthermore, we
clearly observe the large values of the weight close to the microphones.

In the following, we numerically approximate the minimum norm solutions u†
for different weights. To this purpose, we solve the respective discrete problems
for a decreasing sequence of cost parameters (α = 10−0, . . . , 10−10) up to machine
precision (using Algorithm 2). Then, we take the solution ûα for the smallest
α as an approximation of u† (which is justified by Corollary 5.8). Furthermore,
an approximation of the element ξ† from the source condition (5.3) is given by
ξ̂α = −S∗(Sûα − pd)/α.

0 1 2 3 4
0

1

2

3

4

1.0 · 100

|u†|CN

(a) Positions and source intensities of the
minimum norm solution u†.

(b) Discrete approximation of |ξ†(x)/w|CN .

Figure 3. Noise free reconstructions for Ωc = Ω, weight w = wΩ,2.

We give the results for w = wΩ,2 in Figure 3a. Here, for the reconstruction we
admit all possible sources and set Ωc = Ω. In agreement with Proposition 5.9
we observe that the support of the solution is recovered exactly, and that the
coefficient coincides to the exact one up to the seventh digit. Moreover, a close in-
spection of the variable |ξ†(x)/w|CN shows that its maximum value one is uniquely
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attained at the exact source position; the next biggest local minimum has a value
of ∼ 0.995. This demonstrates uniqueness of the discrete minimum norm solution
in this case (cf. Proposition 5.7).

0 1 2 3 4
0

1

2

3

4

5.7 · 10−2

4.1 · 10−2

1.3 · 10−1

|u†|CN

(a) Positions and source intensities of the
minimum norm solution u†.

(b) Discrete approximation of |ξ†(x)|CN .

Figure 4. Noise free reconstructions for Ωc = Ω, no weight (w ≡ 1).

Next, we consider the case without weight. According to Proposition 4.1 the
corresponding problem with Ωc = Ω\Ξ has no solution since there exists vanishing
sequences of point sources which generate the exact measurements and converge
to the positions of the microphones. However, in the discrete setting the prob-
lem always has a solution, since the discrete Green’s functions are bounded by
a mesh-dependent constant. We give the numerical results in Figure 4a. Here,
the minimum norm solution u† consists of three point sources located in the mi-
crophone positions. The maximum of the absolute value of the adjoint state is
assumed only there; see Figure 4b. Note that this numerical solution is highly
sensitive to the grid resolution. In fact, for h → 0 the minimum norm solution
and dual variable converge to zero.

0 1 2 3 4
0

1

2

3

4

1 · 10−12.9 · 10−1
3.5 · 10−2

8.5 · 10−2

5.5 · 10−2

|u†|CN

(a) Positions and source intensities of the
minimum norm solution u†.

(b) Discrete approximation of |ξ†(x)|CN .

Figure 5. Results for Ωc = [0, 3]× [0, 4], no weight (w ≡ 1).

To obtain a well-posed optimization problem without weight we choose the
control domain Ωc = [0, 3]× [0, 4], which excludes the observation positions. The
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results are given in Figure 5a, where we observe that the optimal solution consists
of five point sources: three are located on the reflecting boundary ΓN and three
are located in the interior of the domain. The corresponding function |ξ†(x)|CN

attains its global maximum on the support points of u†. However, the region close
to the exact source position assumes a visibly lower function value, and no source
is placed there. This can be connected to the negative interference at this point;
cf. Figure 2b.

These examples show that even in simple settings the reconstruction results of
the non-weighted approach (3.1) is affected by negative interference caused by the
reflecting boundaries, as well as the fact that the adjoint state takes arbitrarily
large values close to the microphone positions.

7.2.2. Statistical comparison of weights. Now, we consider a more involved prob-
lem setup to evaluate the reconstruction quality for different weights. We consider
the same model as before, but consider the frequencies ω = 2π(349.2, 523.3, 659.3)
(corresponding to F4, C5, and E5). The number of microphones is increased to 30,
and the control domain is chosen as Ωc = [0, 3]× [0, 4], which does not contain the
microphone locations at (x1, x2) with x1 = 3.25 and x1 = 3.75 and x2 regularly
spaced from 0 to 4; see Figure 7a. All computation are performed on grid level
l = 8.

To evaluate to reconstruction quality of different weights, we follow a statistical
approach: for each number of point sources N?

d ∈ {1, 2, . . . , 5}, we generate a ran-
dom source by selecting N?

d random indices from the mesh nodes on the control
domain and generating corresponding random coefficients by drawing from a mul-
tivariate complex Gaussian distribution with unit variance. Then, we compute a
minimum norm solution (P0,w) from the corresponding exact observations for the
given weight, which is either w ≡ 1 or w = wΩ,2. Here, we again approximate the
minimum norm solution by the solution for a value of α = 10−9, which we compute
by a continuation strategy in the regularization parameter using Algorithm 2.

Finally, we evaluate the average reconstruction error for each weight. Since the
generalized Bregman distance is multivalued, we focus on two simple citeria. The
first is simply the relative difference of the norms with respect to the employed
weight,

e1 =
[
‖u?‖Mw(Ωc,CN ) − ‖u

†‖Mw(Ωc,CN )

]
/‖u?‖Mw(Ωc,CN ) (7.4)

Note that it can be easily verified that ‖u?‖Mw(Ωc,CN )−‖u†‖Mw(Ωc,CN ) ∈ D(u?, u†)
(for the specific choice ξ = S∗y†), which relates this criterion to the Bregman
distance; cf. Theorem 5.6. The results are given in Figure 6a. We observe that
the difference is smaller for the weight wΩ,2, and that it is zero for the case of one
source, as predicted by theory. However, we can expect the norm difference to
severely underestimate the reconstruction error. Moreover, the results for different
weights are not directly comparable, due to the fact that the error criterion itself
depends on the weight. Therefore, we also consider a second error criterion, which
is based on convolution. We introduce the componentwise convolution operator
Sσheat : M(Ω,CN ) → L1(Ω,CN ), which computes the solution at time T = σ2/2
of the heat equation (endowed with homogeneous Neumann boundary conditions
on the domain Ω) with the given initial data at time zero. Then we define the
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second error criterion by
e2 = ‖Sσheat(u? − u†)‖L1(Ω,CN )/‖u

?‖M(Ω,CN ). (7.5)

Here, we compare the reconstruction error in the canonical norm after convolution
with a regular kernel with approximate width σ. Roughly speaking, we can expect
small errors in the source location to lead to small error terms (which is not the
case if we apply the total variation norm directly), whereas location errors larger
than σ lead to big error contributions. Mathematically, the backwards uniqueness
property of the heat equation guarantees that e2 = 0 can only occur for u† = u?.
We implement Sσheat by a finite element approximation on the given grid and an
implicit Euler time discretization (with five steps). The results for σ = 0.2 and
σ = 0.05 are given in Figures 6b and 6c, respectively. We observe that, although
the errors increase for more strict error criteria, the average errors are consistently
smaller when the weight wΩ,2 is employed.

N∗d w ≡ 1 w = wΩ,2

1 0.0087 0.0000
2 0.0233 0.0030
3 0.0599 0.0174
4 0.0867 0.0404
5 0.1443 0.0754

(a) Average relative norm
error (7.4).

N∗d w ≡ 1 w = wΩ,2

1 0.0875 0.0000
2 0.1894 0.0387
3 0.4364 0.2042
4 0.6416 0.4394
5 0.8326 0.6691

(b) Convolution error (7.5)
with σ = 0.2.

N∗d w ≡ 1 w = wΩ,2

1 0.1453 0.0000
2 0.2660 0.0625
3 0.6129 0.2971
4 0.8689 0.6271
5 1.1181 0.9556

(c) Convolution error (7.5)
with σ = 0.05.

Figure 6. Average reconstruction error for 200 randomly gener-
ated sources with different numbers of point sources N?

d .

7.2.3. Comparison of algorithms. Now, we evaluate the practical performance of
the algorithms from section 6. We consider the same setting as in the previous
section (frequencies ω = 2π(349.2, 523.3, 659.3) and 30 microphones). We recover
a source consisting of three point sources as depicted in Figure 7a with random
coefficients (drawn from a multivariate complex Gaussian distribution with unit
variance). The control domain is chosen as Ωc = [0, 3]× [0, 4] and the weight wΩ,2
is employed in all experiments.

We want to study the algorithms for a setting with noise and useful values of
the parameter α. Therefore, we compute synthetic measurements on the finest
grid level l = 9 and perturb them by additive Gaussian noise, such that ‖Su? −
pd‖/‖Su?‖ = 5%. We then solve the problem on a coarser grid level l = 8, to
also take into account a possible discretization error. To determine a useful range
of regularization parameters, we numerically compute an L-curve: we solve the
problem (Pα,w) for a sequence of regularization parameters αj = 10−j/4, j =
0, 1, . . . , 20 and plot the norm of the solution ûα over the data misfit term ‖Sûα−
pd‖CNM ; see Figure 7b. We observe that the data misfit term is reduced below the
noise level at α7 ≈ 1.8 · 10−2 (corresponding to the popular Morozov-criterion for
the selection of a regularization parameter), and at α9 ≈ 5.6 ·10−3 the norm of the
reconstruction starts to exceed the norm of the exact solution u?. We conclude
that practically relevant values of α are around 10−2 in this particular instance.
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0

1

2

3

4

2.5 · 100

1.2 · 100

1.7 · 100

(a) Exact source locations and source in-
tensities on the left, microphone loca-
tions on the right.

10−1 100

100

101

α4 = 10−1
α8 = 10−2

α12 = 10−3

α16 = 10−4

α20 = 10−5
‖ûα‖Mw(Ω,CN )
‖u?‖Mw(Ω,CN )
‖Su? − pd‖CNM

(b) Norms of the solutions ûα over the
data misfit ‖Sûα − pd‖CNM for different
α for noisy observations pd (5% noise).

Figure 7. Problem setup and L-curve at grid level l = 8.

In a first test, we compute reconstructions (on grid level l = 8) starting from
an initial guess of u0 = 0 for α = 10−1, 10−2, 10−3 with different algorithms. A
visualization of the corresponding numerical solutions (computed with Algorithm 2
up to machine precision) is given in Figure 8.
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(a) α = 10−1

0 1 2 3 4
0

1
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3
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(b) α = 10−2

0 1 2 3 4
0

1

2

3

4

(c) α = 10−3

Figure 8. Visualization of the numerical reconstructions; each
dot is one support point and dot area is proportional to source
magnitude.

In the following, we consider Algorithm 2 (denoted by PDAP), and different
versions of the accelerated conditional gradient method 1 without exact resolution
of the subproblems. The unaccelerated version is denoted by GCG, and the version
performing one iterative tresholding step for the subproblem in each iteration is
denoted by SPINAT (cf. [6]). An suffix +PP denotes an additional application of
the sparsifying post-processing step from Corollary 6.2. The numerical results are
given in Figure 9, where we plot the evolution of the residual over the computation
time (in seconds). We opt for computation times over the step counter k to
account for the fact that one step of an accelerated method may be more costly.
We note that all algorithms are implemented in MATLAB (version R2017a) and
the computations are performed on a compute node with a Intel R© Xeon R© CPU



INVERSE POINT SOURCE LOCATION WITH THE HELMHOLTZ EQUATION 31

E5-2670 with eight cores at 2.60GHz. We observe that PDAP outperforms the

10−2 10−1 100 101 102 10310−7

10−6

10−5

10−4

10−3

10−2

10−1

100

PDAP
GCG
GCG+PP
SPINAT
SPINAT+PP

(a) α = 10−1

10−2 10−1 100 101 102 103

PDAP
GCG
GCG+PP
SPINAT
SPINAT+PP

(b) α = 10−2

10−2 10−1 100 101 102 103

PDAP
GCG
GCG+PP
SPINAT
SPINAT+PP

(c) α = 10−3

Figure 9. Residuals j(uk)−j(ûα) over computation time in s. for
different α.

other versions in almost all situations. With the exception of α = 10−1 it is the
only implementation that is able to solve the problem up the tolerance within
the computational budget of 50000 iterations (in fact it performs 10, 96, and 129
iterations, respectively). We also see that SPINAT improves upon GCG, but not
by as much as PDAP.

Additionally, we also give the current support size in Figure 10. In the case of

10−2 10−1 100 101 102 103
0

50

100

150

200

250

PDAP
GCG
GCG+PP
SPINAT
SPINAT+PP

(a) α = 10−1

10−2 10−1 100 101 102 103

PDAP
GCG
GCG+PP
SPINAT
SPINAT+PP

(b) α = 10−2

10−2 10−1 100 101 102 103

PDAP
GCG
GCG+PP
SPINAT
SPINAT+PP

(c) α = 10−3

Figure 10. Support size # suppuk over computation time in s.
for different α.

α = 10−1, which is under-fitting the data, all algorithms quickly identify a set of
grid points which contain the support of the discrete numerical solution and thus
effectively stop to insert new points. However, note that this is only the possible
due to the finite grid, which limits the number of support point a priori. Note also
that PDAP terminates once all support points have been identified; cf. Remark 5.
In the other cases, the size of the support of the iterates is negatively impacted
by the spurious point sources introduced from over-fitting the data. We note
that for PDAP the support size of the iterates stays bounded by the numerical
support of the optimal solution (see Figure 10), which keeps the cost of resolution
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of the subproblems small. The theoretical upper bound on the support size is
2NM = 180, which is very pessimistic for this example, and only provides an
advantage for GCG in the third setting.

Finally, we comment on the computation of the L-curve: Due to the fact that the
solution for a big α can be used as an initial guess for a smaller α, the computation
of the L-curve up to α12 = 10−3 with PDAP up to machine precision is not
much more expensive than computing just the solution for the last α starting
from zero. For instance, in this case the number of iterations for each α are
(1, 3, 3, 6, 2, 3, 7, 20, 27, 40, 34, 33, 49), which results in a combined ∼ 24 seconds of
computation time versus 129 iterations in ∼ 7 seconds for just the last value.

7.2.4. Mesh independence. Additionally, we investigate the behavior of the algo-
rithms with respect to the mesh width. Here, we only focus on PDAP, since we
want to investigate if the improved convergence observed before depends on the
finite discretization. Here, we compare iteration numbers, since the computation
times are dominated by the assembly of the gradients pkh, which scales linearly
in Nh. We give the results for the previous example on mesh levels l = 7, 8, 9 in
Figure 11. We observe that although the number of iterations to reach machine
precision increases on finer meshes, the functional residual follows a similar tra-
jectory in the initial iterations. In the later iterations, the finite termination of
the method is reached earlier on coarse grids. Concerning the maximal support of

0 10 20 30

10−7

10−5

10−3

10−1
l = 9
l = 8
l = 7

(a) α = 10−1

0 50 100

l = 9
l = 8
l = 7

(b) α = 10−2

0 50 100 150 200

l = 9
l = 8
l = 7

(c) α = 10−3

Figure 11. Function residuals j(uk) − j(ûα) over iterations for
different mesh levels l.

the numerical solution throughout the iterations, we observe that it seems to be
dependent on α, but bounded by a similar constant independent of the grid level.

Appendix A. Sparse minimization with finite rank operators

Let H1 be a separable real Hilbert space, and M(D,H1) = C0(D,H1)∗ be the
associated space of vector measures. Introduce the solution operator

S : M(D,H1)→ H2,

where H2 is another separable real Hilbert space. S is assumed to be linear, and
weak-∗ to weak continuous (the weak-∗ topology on the dual of the separable space
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Figure 12. Support size # suppuk over iterations for different
mesh levels l.

C0(D,H1) can be normed, therefore, this is the same as the sequential equivalent).
Moreover, S can be written as the Banach space dual of a continuous operator

S∗ : H2 → C0(D,H1).
In this section, we give some results for the two abstract minimization problems

relevant for this paper. Most of these results are slight generalizations of known
results, which we could not directly find in the literature. We consider the problem

min
u∈M(D,H1)

[ 1
2α‖Su− pd‖

2
H2

+ ‖u‖M(D,H1)

]
, (Pα)

for given pd ∈ H2 and α > 0. Note, that in contrast to (1.3), we have multiplied
the objective function by 1/α, which obviously does not change the solution set,
but leads to a more convenient form of the dual problem below. Moreover, we
consider the associated minimum norm problem

min
u∈M(D,H1)

‖u‖M(D,H1) subject to Su = pd, (P0)

for some pd = Su?, u? ∈M(D,H1). It is know that under the general assumptions
on S, both problems have solutions. This can be verified with the direct method
of the calculus of variations. Moreover, the dual problem of (Pα),

max
y∈H2

[
(pd, y)H2 −

α

2 ‖y‖
2
H2

]
subject to ‖S∗y‖C0(D,H1) ≤ 1, (Dα)

has a unique solution, and the strong duality max (Dα) = min (Pα) holds; see [6,
Proposition 3.5] (the proof is only given for H1 = Rn, but works unmodified in
the general case). For (P0), the dual problem is given by

max
y∈H2

(pd, y) subject to ‖S∗y‖C0(D,H1) ≤ 1. (D0)

Since pd = Su?, strong duality holds with sup (D0) = min (P0); see [17, Proposi-
tion 13] (the proof is only given for H1 = R and D equal to the torus, but works
unmodified in the general setting).

Proposition A.1 ( [17, Proposition 13]). Let pd = Su?, u? ∈ M(D,H1). Then,
strong duality (see, e.g., [18, Chapter 3.4]) holds for the problem (P0) and the
dual problem (D0). If the dual problem admits a solution, any pair of solutions
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(u†, y†) to both problems is characterized by the subdifferential inclusion S∗y† ∈
∂‖u†‖M(D,H1).

In general, (D0) does not necessarily have a solution. However, if S is a finite
rank operator (the range of S or S∗ is finite dimensional), the dual problem (D0)
admits a solution. This result is mentioned and used in [17]; however, since no
proof is given, we provide one for the general setting above.

Proposition A.2. Suppose that RanS is finite dimensional and pd ∈ RanS.
Then, the dual problem (D0) admits a solution. Suppose additionally that the
adjoint S∗ : H2 → C0(D,H1) is injective. Then, the above result holds for any
pd ∈ H2 and the solution set of (D0) is bounded.

Proof. We first assume that S∗ : H2 → C0(D,H1) is injective. Note that this
implies H2 is finite dimensional. In this case, (D0) can be reformulated as a semi-
infinite optimization problem, and the result can be deduced as an application of
the general result [3, Theorem 5.99] (injectivity of S∗ is equivalent to the regularity
condition mentioned there). However, in our case, it can be also shown directly.
In fact, any maximizing sequence for (D0) is bounded: Take by contradiction {yk}
with ‖S∗yk‖C0(D,H1) ≤ 1 and ‖yk‖H2

→ ∞. Considering the renormed sequence
{ỹk}k∈N with ỹk = yk/‖yk‖H2

there exists a subsequence denoted by the same
symbol and a ŷ ∈ H2 with ỹk → ŷ and ‖ŷ‖H2

= 1 (since H2 is finite dimensional).
Consequently there holds

‖yk‖H2
‖S∗ỹk‖C0(D,H1) = ‖S∗yk‖C0(D,H1) ≤ 1.

From this we directly conclude that ‖S∗ŷ‖C0(D,H1) = 0 since S∗ is bounded. Then
the injectivity of S∗ implies a contradiction to ‖ŷ‖H2

= 1 . Consequently, any
minimizing sequence is bounded, and by using the continuity of S∗, it follows that
there exits at least one optimal solution to (D0). Boundedness of the solution set
follows in the same way.

Now, we address the general case, where S∗ is not necessarily injective, and
show that it can be reduced to the previous case. Consider the problem

max
y∈RanS

(y, pd) subject to ‖S∗y‖C0(D,H1) ≤ 1. (A.1)

Since RanS is finite dimensional (and therefore a closed subspace), we have
(RanS)⊥ = KerS∗, and H2 = RanS⊕KerS∗. For any y ∈ H2 we have y = y1+y0
with y1 ∈ RanS = (KerS∗)⊥ and y0 ∈ KerS∗. Let u? ∈M(D,H1) be an element
with Su? = pd which exists according to our assumptions. Then we have

(pd, y) = 〈u?, S∗y1〉 = (pd, y1), and ‖S∗y‖C0(D,H1) = ‖S∗y1‖C0(D,H1)

which implies that (A.1) and (D0) have the same value. Moreover, the restricted
operator S∗|RanS : RanS → C0(D,H1) is injective. Using the result from be-
fore, (A.1) admits a solution, and for any solution y1 and any y0 ∈ KerS∗,
y = y1 + y0 is a solution of (D0). �

Appendix B. Extremal solutions

Since the dual problems (Dα) and (D0) fall into the category of semi-infinite
optimization problems, it follows that solutions of (Pα) and (P0) consisting of
finitely many Dirac delta functions exist; see, e.g., [3, Section 5.4.2].
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For the convenience of the reader, we provide a direct proof, which also leads to
an algorithmic strategy for reducing the support of any suboptimal point of (Pα)
or (P0). To this purpose, we analyze the corresponding solution sets, which we
denote for α ≥ 0 by

Upd,α = {u ∈M(D,H1) | u solves (Pα) for α > 0 or (P0) for α = 0}.
This is a convex bounded subset of M(D,H1). Furthermore the following prop-
erties are easily derived.

Proposition B.1. Let û ∈ Upd,α be arbitrary, and p̂ = Sû. For all elements
u ∈ Upd,α we have

Su = p̂, ‖u‖M(D,H1) = ‖û‖M(D,H1).

Proof. The statement is clear for α = 0, where p̂ = pd. For α > 0 the first
part follows from the strict convexity of the tracking term and the linearity of S.
Therefore, the value of the first term of the objective assumes a unique value for
all optimal solutions. By the optimality follows that also the second term must
be of the same value for all optimal solutions. �

As a corollary, we obtain a characterization of Upd,α.

Corollary B.2. Let û ∈ Upd,α be arbitrary, and p̂ = Sû. It holds,
Upd,α = {u ∈M(D,H1) | Su = p̂ and ‖u‖M(D,H1) = ‖û‖M(D,H1)}

= {u ∈M(D,H1) | Su = p̂ and ‖u‖M(D,H1) ≤ ‖û‖M(D,H1)}.

Now, we recall the concept of extremal points of convex set: A point in the
convex set Upd,α is called extremal, if it can not be written as a nontrivial convex
combination of other elements of Upd,α. Furthermore, we have the theorem of
Krein and Milman.

Proposition B.3. The closure (in the sense of the weak-∗ topology) of the convex
combinations of the extremal points of Upd,α is equal to Upd,α, i.e.,

Upd,α = conv{u ∈ Upd,α | u extremal }weak−∗

Proof. Corollary B.2, the Banach-Alaoglu Theorem and the weak-∗ continuity of
S imply that Upd,α is compact with respect to the weak-∗ topology. Then the
assertion is a direct application of the theorem of Krein-Milman; see, e.g., [3,
Theorem 2.19]. �

Furthermore, if S is a finite rank operator, the extremal points can be charac-
terized as follows (cf., e.g., [3, Proposition 2.177]).

Theorem B.4. Suppose that dim RanS = NS <∞. The extremal points of Upd,α

can be written as a linear combinations of no more than NS Dirac delta functions:

{u ∈ Upd,α | u extremal } ⊂





NS∑

j=1
ujδxj

∣∣∣ uj ∈ H1, xj ∈ D



 .

Proof. Let u ∈ Upd,α be extremal. The proof will be done by contradiction. As-
sume, therefore, that suppu consists of more than NS points. Then, there exists
a disjoint partition {Dn}n=1,...,NS+1 of the set D with the properties

|u|(Dn) > 0 for all n = 1, . . . , NS + 1.
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Define for n = 1, . . . , NS + 1 the restrictions

un = u|Dn ∈M(D,H1).

It is clear that ‖un‖M(D,H1) = |u|(Dn) > 0. Now, we consider the renormalized
measures and their image under S, i.e.

vn = un
‖un‖M(D,H1)

,

wn = Svn ∈ RanS ⊂ H2,

and look for a nontrivial solution λ ∈ RNS+1\{0} of the system of linear equations
NS+1∑

n=1
λnSvn =

NS+1∑

n=1
λnwn = 0 ∈ RanS.

Since the number of equations is one smaller than the number of variables, such
a solution exists. Without restriction, we may assume

∑
n=1,...,NS+1 λn ≥ 0 (oth-

erwise, we take the negative of λ). We define

τ = max
n=1,...,NS+1

|λn|
‖un‖M(D,H1)

and u+ and u− as

u± = u± 1
τ

NS+1∑

n=1
λnvn =

NS+1∑

n=1

(
1± λn

τ ‖un‖M(D,H1)

)
un.

Clearly, u+ 6= u− 6= u. By construction and linearity of S we have Su± = Su = p̂.
Furthermore, we directly verify that

‖u±‖M(D,H1) =
∫

D
d|u±| =

NS+1∑

n=1

∫

Dn

d|u±|

=
NS+1∑

n=1

(
‖un‖M(D,H1) ±

λn
τ

)
= ‖u‖M(D,H1) ±

1
τ

NS+1∑

n=1
λn

since |λn|/τ ≤ ‖un‖M(D,H1). Since
∑
n=1,...,NS+1 λn ≥ 0 we have ‖u−‖M(D,H1) ≤

‖u‖M(D,H1), and u− is an optimal solution of (1.3), i.e., u− ∈ Uα,pd
(Corollary B.2).

Moreover, we see that it must hold
NS+1∑

n=1
λn = 0,

since the norm cannot be strictly smaller, since u ∈ Uα,pd
. It follows that also u+

is optimal. We conclude the proof with the observation that

u = 1
2u+ + 1

2u−,

which contradicts the assumption that u is extremal in Uα,pd
. �

The given proof can be modified into a constructive procedure to remove excess
points from the support of an existing (suboptimal) solution of (1.3).
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Proposition B.5. Suppose that dim RanS = NS <∞. Let u =
∑
n=1,...,P unδxn

be a arbitrary with P ∈ N, un ∈ H1, xn ∈ D (pairwise distinct). Then, there
exists a unew =

∑
n=1,...,P unewn δxn such that
‖unew‖M(D,H1) ≤ ‖u‖M(D,H1), Sunew = Su,

and all but NS of the coefficients unewn are equal to zero.
Proof. The proof is done by induction on P . We only perform the step NS + 1 to
NS . As in the previous proof, we define

un = u|{xn} = unδxn , and wn = S(vnδxn), where vn = un
‖un‖H1

.

We find the nontrivial solution of
∑
n=1,...,NS+1 λnwn = 0 with

∑
n=1,...,NS+1 λn ≥

0. Now, in contrast to the previous proof, we set

τ = max
n=1,...,NS+1

λn
‖un‖H1

≥ 0.

We set

unew = u− 1
τ

NS+1∑

n=1
λnvnδxn =

NS+1∑

n=1

(
1− λn

τ‖un‖H1

)
unδxn

Thus, the coefficients of unew are given as unewn = [1 − λn/(τ‖un‖H1
)]un. It

holds that ‖unew‖M(D,H1) = ‖u‖M(D,H1)−
∑
n=1,...,NS+1 λn/τ ≤ ‖u‖M(D,H1) since

λn/τ ≤ ‖un‖H1
and we finish the proof with the observation that

unew
n̂

= 0 for n̂ ∈ arg max
n=1,...,NS+1

λn
‖un‖H1

. �

Appendix C. Weak-∗ convergence of discrete measures

We prove the closedness of sets comprising vector measures supported on a
uniformly bounded number of support points with respect to the weak-∗ topology
onM(D,H1).
Proposition C.1. Let D be compact. For any Nd ∈ N the set

PNd =





Nd∑

j=1
ujδxj

∣∣∣ uj ∈ H1, xj ∈ D





is weak-∗ closed.
Proof. Let an arbitrary weak-∗ convergent sequence {uk}k∈N ⊂ PNd with limit û
be given. For each k ∈ N there exist ukj ∈ H1, xkj ∈ D, j = 1, . . . , Nd with

uk =
Nd∑

j=1
ukj δxk

j
and ‖uk‖M(D,H1) =

∑

j=1,...,Nd

‖ukj ‖H1
≤ C,

for some C > 0. Introducing the vectors uk = (uk1, . . . ,ukNd
)T ∈ HNd

1 and xk =
(xk1, . . . , xkNd

)T ∈ DNd , there exist a subsequence of (uk, xk) ∈ HNd
1 ×DNd denoted

by the same symbol and (u, x) ∈ HNd
1 ×DNd with uk ⇀∗ u and xk → x due to

the compactness of D and the boundedness of uk. Defining
u =

∑

j=1,...,Nd

ujδxj ,
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we arrive at

〈ϕ, u〉 = lim
k→∞

∑

j=1,...,Nd

(ukj , ϕ(xkj ))H1 = lim
k→∞
〈ϕ, uk〉 = 〈ϕ, û〉

for all ϕ ∈ C0(D,H1) since ukj ⇀ uj and ‖ϕ(xkj ) − ϕ(xj)‖H1
→ 0. Due to the

uniqueness of the weak-∗ limit we get û = u ∈ PNd yielding the weak-* closedness
of PNd . �

As a corollary each accumulation point of a sequence of measures with uniformly
bounded support size is also finitely supported.

Corollary C.2. Let D be compact. Consider a sequence uk ∈ M(D,H1) with
# supp|uk| ≤ Nd for some Nd ∈ N. Then every accumulation point û of uk fulfills
# supp|û| ≤ Nd.

Proof. Since every measure of support less that Nd can be written as a sum over
Nd Dirac delta functions (by possibly adding additional Dirac delta functions with
zero coefficient), applying Proposition C.1 yields the result. �
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