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Abstract

In this paper we introduce a new parallel solver for the weakly singular space-
time boundary integral equation for the heat problem. The space-time boundary
mesh is decomposed into a given number of submeshes. Pairs of the submeshes
represent blocks in the system matrices, which are distributed among compu-
tational nodes by an algorithm based on a cyclic decomposition of complete
graphs ensuring load balance. In addition, we employ vectorization and thread-
ing in shared memory to ensure intra-node efficiency. We present scalability
experiments on different CPU architectures to evaluate the performance of the
proposed parallelization techniques. All levels of parallelism allow us to tackle
large problems and lead to an almost optimal speedup.

Keywords: space-time boundary element method, heat equation,
parallelization, vectorization
2010 MSC: 65N38, 65Y05, 68W10

1. Introduction

Boundary integral equations and related boundary element methods have
been applied for the solution of the linear heat equation for decades [1, 2, 3, 4].
A survey on boundary element methods for the heat and the wave equation
is provided in [5]. One can use Laplace transform methods like the convolu-
tion quadrature method [6], time-stepping methods [7], and space-time integral
equations. Besides the Nyström [8] and collocation methods [9], the Galerkin
approach [1, 2, 3, 10, 11] can be applied for the discretization of space-time
integral equations.

∗Corresponding author
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The matrices related to the discretized space-time integral equations are
dense and their dimension is much higher than in the case of stationary prob-
lems. Even with fast methods, see, e.g. [10, 12], the computational times and
the memory requirements of the huge space-time system are demanding. Thus
the solution of even moderately sized problems requires the use of computer
clusters. Although there is a simple parallelization by OpenMP in the FMM
code of [11], parallelization of boundary element methods for the heat equation
in HPC environments has not been closely investigated yet, to the best of our
knowledge. In this paper we concentrate on hybrid parallelization in shared and
distributed memory.

The global space-time nature of the system matrices leads to improved paral-
lel scalability in distributed memory systems in contrast to time-stepping meth-
ods where the parallelization is usually limited to spatial dimensions. For this
reason, parallel-in-time algorithms have been considered suitable for tackling the
problems of the upcoming exascale era when more than 100 million way concur-
rency will be required [13, 14, 15]. Methods such as parareal [16] or space-time
parallel multigrid [17] are gaining in popularity. We present a method for par-
allelization of space-time BEM for the heat equation based on a modification of
the approach presented in [18, 19] for spatial problems. The method is based on
a decomposition of the input mesh into submeshes of approximately the same
size and a distribution of corresponding blocks of the system matrices among
processors. To ensure proper load balancing during the assembly of system ma-
trices and matrix-vector multiplication, a distribution of matrix blocks based
on a cyclic graph decomposition is used. We modify the original approach to
support the special structure of the space-time system matrices.

Numerical or semi-analytic evaluation of the surface integrals is one of the
most time-consuming parts of space-time BEM. The high computational inten-
sity of the method makes it well suited for current multi- and many-core pro-
cessors equipped with wide SIMD (Single Instruction Multiple Data) registers.
Vector instruction set extensions in modern CPUs (AVX512, AVX2, SSE) sup-
port simultaneous operations with up to eight double precision operands, con-
tributing significantly to the theoretical peak performance of a processor. While
current compilers support automatic vectorization to some extent, one has to
use low level approaches (assembly language, compiler intrinsic functions), ex-
ternal libraries (Vc [20], Intel MKL Vector Mathematical Functions [21], etc.),
or OpenMP pragmas [22] to achieve a reasonable speed-up. We focus on the
OpenMP approach due to its portability and relative ease of use. Moreover, we
also utilize OpenMP for thread parallelization in shared memory.

The structure of the paper is as follows. In Section 2 we introduce the
two-dimensional model problem, derive its boundary integral formulation, and
discretize it to obtain a BEM system. Section 3 is devoted to the description of
our parallel and vectorized implementation of the matrix assembly and solution
of the system of linear equations based on OpenMP and MPI. In Section 4 we
provide results of numerical and scalability experiments validating the suggested
approach and we conclude in Section 5.
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2. Boundary integral equations for the heat problem

2.1. Model problem and boundary integral equations
Let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary Γ := ∂Ω and

T > 0. As a model problem we consider the initial Dirichlet boundary value
problem for the heat equation

α∂tu−∆xu = 0 in Q := Ω × (0, T ),
u = g on Σ := Γ × (0, T ),
u = u0 in Ω

(2.1)

with the heat capacity constant α > 0, the given initial datum u0, and the
boundary datum g. The solution of (2.1) can be expressed by using the repre-
sentation formula for the heat equation [23], i.e. for (x, t) ∈ Q we have

u(x, t) = (M̃0u0)(x, t) + (Ṽ ∂nu)(x, t)− (Wg)(x, t) (2.2)

with the intial potential

(M̃0u0)(x, t) :=
∫
Ω

U?(x− y, t)u0(y) dy,

the single-layer potential

(Ṽ ∂nu)(x, t) := 1
α

∫
Σ

U?(x− y, t− τ) ∂

∂ny
u(y, τ) dsy dτ,

and the double-layer potential

(Wg)(x, t) := 1
α

∫
Σ

∂

∂ny
U?(x− y, t− τ)g(y, τ) dsy dτ.

The function U? denotes the fundamental solution of the two-dimensional heat
equation given by

U?(x− y, t− τ) =


α

4π(t− τ) exp
(
−α|x− y|2

4(t− τ)

)
for τ < t,

0 otherwise.
(2.3)

Hence, it suffices to determine the unknown Neumann datum ∂nu|Σ to compute
the solution of (2.1). It is well known [3, 24] that for u0 ∈ L2(Ω) and g ∈
H1/2,1/4(Σ) the problem (2.1) admits a unique solution u ∈ H1,1/2(Q,α∂t−∆x)
with the anisotropic Sobolev space

H1,1/2(Q,α∂t −∆x) :=
{
u ∈ H1,1/2(Q) : (α∂t −∆x)u ∈ L2(Q)

}
.

The unknown density w := ∂nu|Σ ∈ H−1/2,−1/4(Σ) can be found by apply-
ing the interior Dirichlet trace operator γint

0 : H1,1/2(Q) → H1/2,1/4(Σ) to the
representation formula (2.2) leading to

g(x, t) = (M0u0)(x, t) + (V w)(x, t) + ((1
2I −K)g)(x, t) for (x, t) ∈ Σ.

3



The operatorM0 : L2(Ω)→ H1/2,1/4(Σ), the single-layer boundary integral op-
erator V : H−1/2,−1/4(Σ) → H1/2,1/4(Σ), and the double-layer boundary inte-
gral operator 1

2I −K : H1/2,1/4(Σ)→ H1/2,1/4(Σ) are obtained by composition
of the potentials in (2.2) with the Dirichlet trace operator γint

0 , see [3, 23]. We
solve the variational formulation to find w ∈ H−1/2,−1/4(Σ) such that

〈V w, τ〉Σ = 〈(1
2I +K)g, τ〉Σ − 〈M0u0, τ〉Σ for all τ ∈ H−1/2,−1/4(Σ), (2.4)

where 〈·, ·〉Σ denotes the duality pairing on H1/2,1/4(Σ)×H−1/2,−1/4(Σ). The
single-layer boundary integral operator V is bounded and elliptic [2, 3], i.e. there
exists a constant cV1 > 0 such that

〈V w,w〉Σ ≥ cV1 ‖w‖
2
H−1/2,−1/4(Σ) for all w ∈ H−1/2,−1/4(Σ).

Thus, the variational formulation (2.4) is uniquely solvable.

2.2. Boundary element method
For the Galerkin boundary element discretization of the variational formu-

lation (2.4) we consider a space-time tensor product decomposition of Σ [1, 10].
For a given triangulation Γh = {γi}NΓi=1 of the boundary Γ and a given de-
composition Ih = {τj}NIj=1 of the time interval I := (0, T ) we define Σh :=
{σ = γi × τj : i = 1, ..., NΓ ; j = 1, ..., NI}, i.e. we have Σh = {σ`}N`=1 and

Σ =
N⋃
`=1

σ`

with N := NΓNI . In the two-dimensional case the space-time boundary ele-
ments σ are rectangular. A sample decomposition of the space-time boundary
of Q = (0, 1)3 is shown in Fig. 2.1a.

For the discretization of (2.4) we use the space X0,0
h (Σh) := span

{
ϕ0
`

}N
`=1

of piecewise constant basis functions ϕ0
` , which is defined with respect to the

decomposition Σh. For the approximation of the Dirichlet datum g we consider
the space X1,0

h (Σh) := span
{
ϕ10
i

}N
i=1 of functions that are piecewise linear and

globally continuous in space and piecewise constant in time, while the initial
datum u0 is discretized by using the space of piecewise linear and globally
continuous functions S1

h(Ωh) = span
{
ϕ1
i

}M
i=1, which is defined with respect

to a given triangulation Ωh := {ωi}NΩi=1 of the domain Ω. This leads to the
system of linear equations

Vhw =
(

1
2Mh + Kh

)
g −M0

hu0 (2.5)

where
Vh[`, k] := 1

α

∫
σ`

∫
σk

U?(x− y, t− τ) dsy dτ dsx dt, (2.6)
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(a) Tensor product decomposition. (b) Submeshes.

Figure 2.1: Sample space-time boundary decompositions for Q = (0, 1)3.

Kh[`, j] := 1
α

∫
σ`

∫
Σ

∂

∂ny
U?(x− y, t− τ)ϕ10

j (y, τ) dsy dτ dsx dt, (2.7)

M0
h[`, j] :=

∫
σ`

∫
Ω

U?(x− y, t)ϕ1
j (y) dy dsx dt, (2.8)

and
Mh[`, j] :=

∫
σ`

∫
Σ

ϕ10
j (y, τ) dsy dτ dsx dt. (2.9)

The vectors w, g ∈ RN and u0 ∈ RM in (2.5) represent the coefficients of the
trial function wh :=

∑N
`=1 w`ϕ

0
` , and the given approximations gh =

∑N
`=1 g`ϕ

10
`

and u0
h :=

∑M
i=1 u

0
iϕ

1
i of the Dirichlet datum g and the initial datum u0, respec-

tively. Due to the ellipticity of the single-layer operator V the matrix Vh is
positive definite and therefore (2.5) is uniquely solvable.

We assume that the elements of Ih, referred to as time layers, are sorted
from t = 0 to t = T . Due to the causal behaviour of the fundamental solution
(2.3) the matrices Vh and Kh are block lower triangular matrices, where each
block corresponds to one pair of time layers, see (2.10) in the case of Vh. The
structure of Kh is identical to Vh.

Vh =


V0,0 0 · · · 0
V1,0 V1,1 · · · 0
...

...
. . .

...
VNI−1,0 VNI−1,1 · · · VNI−1,NI−1

 (2.10)

The structure of the initial matrix M0
h is different. The number of its columns

depends on the number of vertices of the initial mesh Ωh, while the number of
rows depends on the number of space-time boundary elements σ. Due to the
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given sorting of the elements of Ih the matrix can be decomposed into block-
rows where each block-row corresponds to one time layer. For the mass matrix
Mh we obtain a block-diagonal structure, where each diagonal block represents
the local mass matrix of one time layer.

By using the representation formula (2.2) with the computed approximations
wh, gh and u0

h, we can compute an approximation ũ of u, i.e. for (x, t) ∈ Q we
obtain

ũ(x, t) =
M∑
i=1

u0
i (M̃0ϕ

1
i )(x, t) +

N∑
`=1

w`(Ṽ ϕ0
`)(x, t)−

N∑
`=1

g`(Wϕ10
` )(x, t).

(2.11)
For the evaluation of the discretized representation formula (2.11) in Q we define
a specific set of evaluation points. Let {x`}EΩ`=1 be a set of nodes in the interior
of the domain Ω, e.g. the nodes of the already given triangulation Ωh on a
specific level. Moreover let {tk}EIk=1 be an ordered set of time steps distributed
on the interval I = (0, T ). The set of evaluation points is then given as

{(x, t)i}Ei=1 = {(x`, tk) : ` = 1, ..., EΩ ; k = 1, ..., EI} (2.12)

with E = EΩEI . We have to evaluate the integrals in (2.11) for each evaluation
point, i.e. we have to compute

uh = M̃0
hu0 + Ṽhw − W̃hg (2.13)

where
M̃0
h[i, j] := (M̃0ϕ

1
j )((x, t)i),

Ṽh[i, `] := (Ṽ ϕ0
`)((x, t)i),

W̃h[i, j] := (Wϕ10
j )((x, t)i).

(2.14)

Note that we do not have to explicitly assemble the matrices (2.14) in order
to compute uh and the matrix representation (2.13) is only used to write the
introduced evaluation of (2.11) in multiple evaluation points in a compact form.

2.3. Computation of matrix entries
In this section we present formulas for a stable computation of the matrix

entries (2.6)–(2.8) and for the evaluation of the representation formula (2.11).
Due to the singularity of the fundamental solution (2.3) at (x, t) = (y, s) we
have to deal with weakly singular integrands. For the assembly of the boundary
element matrices Vh, Kh and M0

h we use an element-based strategy, i.e. we
loop over all pairs of boundary elements for Vh and Kh, and over boundary
elements and finite elements of the initial mesh Ωh for M0

h. Depending on the
mutual position of the two elements we use different integration routines. Let
us first consider the matrix Vh. In Fig. 2.2a the integration routines for the
computation of the matrix entries Vh[`, ·] are shown. The grid represents a
part of the space-time boundary element mesh Σh. The element σ` is fixed
and depending on where the element σk is located, we distinguish between the
following integration routines:
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A – analytic integration,

N – fully numerical integration,

S – semi-analytic integration, i.e. numerical in space and analytical in
time,

T – transformation of the integral to get rid of the weak singularity.

We give a sketch of the overall situation in Fig. 2.2a. For the computation
of the matrix entries corresponding to the elements marked with N, i.e. if two
elements σ` and σk are well separated, we use numerical integration in space and
time. The computation of these entries takes most of the computational time,
but the evaluation of these integrals can be vectorized, see Section 3.3. The
integrands corresponding to the elements marked with T have a singularity at
the shared space-vertex. In these cases we transform the integrals with respect to
the spatial dimensions to get rid of the weak singularity [25, 26] and then apply
semi-analytic integration, i.e. numerical integration in space and analytical
integration in time [27]. If the element σk is located above the element σ`, the
value of the integral is zero due to the causality of the fundamental solution (2.3).

The situation is quite the same for the matrix Kh. The only difference is
that the value of the integral is zero if the elements σ` and σk share the same
spatial element γ, see Fig. 2.2b.

N N N N N

S T+S A T+S S

S T+S A T+S S

0 0 0 0 0

σ`

Space

Ti
m

e

(a) Computation of Vh.

N N 0 N N

S T+S 0 T+S S

S T+S 0 T+S S

0 0 0 0 0

σ`

Space

Ti
m

e

(b) Computation of Kh.

Figure 2.2: Computation of the matrix entries Vh[`, ·] and Kh[`, ·] for a fixed boundary element
σ` and varying element σk.

For the computation of the matrix entries of M0
h, where we assemble a local

matrix corresponding to a boundary element and a triangular element of the
initial mesh, we proceed as follows. For the integral over the triangle we use the
seven-point rule [28], and for the integral over the boundary element we apply
semi-analytic integration, i.e. analytical in time and numerical in space. In this
case we do not have to handle weakly singular integrands separately. The sparse
mass matrix Mh can be assembled from local mass matrices in a standard way.
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(b) Spatial problem.
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(c) Space-time problem.

Figure 3.1: Distribution of the system matrix blocks among seven processes.

Similar integration techniques are used for the evaluation of the representa-
tion formula (2.11). However, since we evaluate (2.11) for (x, t) ∈ Q, we do not
have to handle weakly singular integrands.

3. Parallel implementation

In the following sections we focus on several levels of parallelism. In Sec-
tion 3.1 we start by modifying the method for the distribution of stationary
BEM system matrices to support time-dependent problems. In Sections 3.2–3.3
we describe the shared-memory parallelization and vectorization of the code.
Our aim is to fully utilize the capabilities of modern clusters equipped with
multi- or many-core CPUs with wide SIMD registers in this way.

3.1. MPI distribution
The original method presented in [18] for spatial problems decomposes the

input surface mesh into P submeshes which splits a system matrix A (the single-
or double-layer operator matrix) into P × P blocks

A =


A0,0 A0,1 · · · A0,P−1
A1,0 A1,1 · · · A1,P−1
...

...
. . .

...
AP−1,0 AP−1,1 · · · AP−1,P−1


and distributes these blocks among processes such that the number of shared
mesh parts is minimal and each process owns a single diagonal block (since these
usually include most of the singular entries). To find the optimal distribution,
each matrix block Ai,j is regarded as an edge (i, j) of a directed complete graph
KP on P vertices. Next, a generator graph G0 ⊂ KP is defined such that each
oriented edge of G0 corresponds to a block to be assembled by the process 0.
The graphs G1, G2, . . . , GP−1 correspond to the remaining processes and are
generated by a clock-wise rotation of G0 along vertices of KP placed on a circle
(see Figures 3.1a–3.1b). The remaining task is to find the generating graph
G0. Optimal graph decompositions are theoretically known for special values
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(b) Spatial problem.
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(c) Space-time problem.

Figure 3.2: Distribution of the system matrix blocks among five processes.

of P (P = 3, 7, 13, 21, ...) only and are provided in [18]. Since these numbers of
processes are rather unusual in high performance computing, a heuristic algo-
rithm for finding nearly optimal decompositions for the remaining odd and even
numbers of processes P is described in [19]. Notice that for odd numbers of
processes the respective graph is decomposed into smaller undirected generat-
ing graphs, therefore the matrix blocks are distributed symmetrically, i.e. every
process owns both blocks (i, j) and (j, i), see Figures 3.2a and 3.2b. However,
when decomposing graphs for even number of processes, some edges have to be
oriented and blocks are not distributed symmetrically (see Figures 3.3a–3.3b).
A table with decompositions for P = 2k, k ∈ {1, 2, . . . , 10} is presented in [19].

Adapting this method for the distribution of the matrices Vh and Kh from
(2.6)–(2.7) for the time-dependent problem (2.5) is relatively straightforward.
First, the space-time mesh is decomposed into slices in the temporal dimension
(see Figure 2.1b). Due to the properties of the fundamental solution and the se-
lected discrete spaces, the system matrices are block lower triangular with lower
triangular blocks on the main diagonal, see (2.10). This justifies the original
idea to assign a single diagonal block per process because of their different com-
putational demands. In the case of an odd number of processes, the remaining
blocks below the main diagonal are distributed according to the original scheme
and the distribution of the blocks above the main diagonal is ignored (see Fig-
ures 3.1c and 3.2c). In the case of an even number of processes, the original
decomposition is not symmetric, therefore some blocks have to be split between
two processes (see Figure 3.3c). The construction of the generating graph en-
sures that each process owns exactly one shared block not influencing the load
balancing. All shared blocks lie on the block subdiagonal starting with a block
at the position (P/2, 0).

Let us note that in [18, 19] the submatrices are approximated using the fast
multipole or adaptive cross approximation methods. Here we restrict to the
dense format and leave the data-sparse approximation as a topic of future work.

Next we define a distribution of the initial matrix M0
h from (2.8) which

has a different structure from the matrices Vh and Kh. The number of its
columns depends on the number of vertices of the initial mesh Ωh, while the
number of rows depends on the number of space-time elements σ`. We distribute
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Figure 3.3: Distribution of the system matrix blocks among four processes.

whole block-rows of the matrix among processes, i.e. the initial mesh is not
decomposed and the space-time mesh uses the same decomposition as for the
matrices Vh and Kh. In particular, each process is responsible for the block-row
corresponding to its first submesh.

The mass matrix Mh is block-diagonal, where each diagonal block represents
the local mass matrix of one of the generated submeshes. These blocks are
distributed among the processes. Hence each process assembles a single diagonal
block corresponding to its first submesh.

It remains to establish an efficient scheme for a distributed evaluation of the
discretized representation formula (2.11) in the given set of evaluation points
(2.12). In order to reach a reasonable speedup we have to make the following
assumption on the set of evaluations points. Recall that {tk}EIk=1 is an ordered
set of time steps distributed in the interval I = (0, T ). We assume that each of
the given time slices has the same amount of time steps EI/P . This is necessary
in order to balance the computation times between the processes.

In order to describe the parallel evaluation of (2.11) in the given set of
evaluation points we consider the matrix representation (2.13). We have to
distribute the matrix-vector products in an appropriate way. Therefore we split
the set of evaluation points into P subsets according to the already given time
slices and we obtain similar block structures for Ṽh, W̃h and M̃0

h as we have
had for the BEM matrices Vh, Kh and M0

h. To distribute the matrix-vector
multiplication we can thus use exactly the same decomposition as for the system
matrices. Note that, as already mentioned in Section 2.2, we do not have to
explicitly assemble the matrices Ṽh, W̃h and M̃0

h.

3.2. OpenMP threading
In this section we describe an efficient way of employing OpenMP threading

in order to decrease the computation times of the assembly of the BEM matrices
Vh, Kh, M0

h from (2.6)–(2.8), and the evaluation of the discretized representation
formula (2.11). For better readability we consider the non-distributed system of
linear equations (2.5), i.e. without the MPI distribution presented in Section 3.1.
The developed scheme can be transferred to the distributed matrices created by
the cyclic graph decomposition.
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In order to assemble the boundary element matrices Vh and Kh we use an
element-based strategy, where we loop over all pairs of space-time boundary
elements, assemble a local matrix and map it to the global matrix, see List-
ing 3.1. OpenMP threading is employed for the outer loop over the elements.
Recall that due to the given sorting of the elements of Ih both Vh and Kh are
lower triangular block matrices, see (2.10). Hence the computational complexity
is different for each iteration of the outer loop. Therefore, we apply dynamic
scheduling and the outer loop starts with the elements located in the last time
layer NI − 1. The number of iterations of the inner loop, denoted with N(l) in
Listing 3.1, depends on the current outer iteration variable l since we do not
have to assemble the blocks in the upper triangular matrix. The function N(l)
returns the number of boundary elements which are either located in the same
time layer as the element σ` or in one of the time layers in the past. In this way
we ensure that the length of the inner loop is decreasing. This is advantageous
for the load balance.

1 int N(l) { return N_gamma * (1 + floor (l/ N_gamma )); }
2
3 # pragma omp parallel for schedule (dynamic , 1)
4 for(int l = N -1; l >= 0; --l) {
5 for(int k = 0; k < N(l); ++k) {
6 getLocalMatrix (l, k, localMatrix );
7 globalMatrix .add(l, k, localMatrix );
8 } }

Listing 3.1: Threaded element-based assembly of Vh and Kh.

The structure of the initial matrix M0
h is different, see Section 2.2. In order

to assemble the matrix M0
h we again use the element-based strategy, where we

loop over all boundary elements and elements of the initial mesh Ωh, similarly
as in Listing 3.1. Threading is employed for the outer loop over the boundary
elements and dynamic scheduling is used again. The number of iterations of the
inner loop does not depend on the index of the outer loop, since there are no
vanishing entries in general compared to Vh and Kh.

A similar strategy is used for the evaluation of the discretized representation
formula (2.11). We iterate over an array of evaluation points, which are sorted
in the temporal direction, and, again, use dynamic scheduling, see Listing 3.2.

1 # pragma omp parallel for schedule (dynamic , 1)
2 for(int i = E -1; i >= 0; --i) {
3 representationFormula (i, result );
4 }

Listing 3.2: Threaded evaluation of the representation formula.

All presented threading strategies can be carried over to the assembly of the
blocks generated by the cyclic graph decomposition presented in Section 3.1.
The main diagonal blocks of the matrices Vh and Kh have are structured as
in (2.10), assuming that the time layers within the corresponding submesh are
sorted appropriately. Thus, we apply the same threading strategy for the di-
agonal blocks as already discussed in this section. For the non-diagonal blocks
of the matrices Vh and Kh we use dynamic scheduling as well, but the number
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of iterations of the inner loop does not depend on the index of the outer loop
anymore, since all the elements iterated over by the inner loop are located in the
past of the element σ`, and therefore each pair of elements σk and σ` contributes
to the block.

The threaded assembly of the block-rows of the initial matrix M0
h and the

threaded evaluation of the distributed representation formula work exactly the
same way as described before.

3.3. OpenMP vectorization
Let us describe the vectorization of the element matrix assembly for the

single-layer matrix (2.6) which is based on numerical quadrature over pairs of
space-time elements. We will limit ourselves to the case when the elements σ`
and σk are well separated since their processing takes most of the computational
time (the ‘N’ case from Figure 2.2a). The original scalar code consists of four
nested for loops, two in spatial and two in temporal dimensions (see Listing 3.3).
Inside each loop, coordinates of reference quadrature nodes are mapped to x and
y located in the current space-time elements defined by the coordinates xMin,
xMax, yMin, and yMax and the values tMin and tMax. Within the innermost
loop the actual quadrature is performed using arrays of quadrature weights w
and evaluations of the kernel function.

1 for ( int i = 0; i < N_GAUSS ; ++i ) {
2 getQuadraturePoints ( x, xMin , xMax );
3 for ( int j = 0; j < N_GAUSS ; ++j ) {
4 getQuadraturePoints ( y, yMin , yMax );
5 aux = innerProd ( x, y );
6 for ( int k = 0; k < N_GAUSS ; ++k ) {
7 getQuadraturePoints ( t, tMin , tMax );
8 for ( int l = 0; l < N_GAUSS ; ++l ) {
9 getQuadraturePoints ( s, sMin , sMax );

10 result += w[i] * w[j] * w[k] * w[l] *
11 exp( -0.25 * alpha * aux / (t - s)) / (t - s);
12 } } } }
13 return result * (xMax - xMin) * (tMax - tMin)
14 * (yMax - yMin) * (sMax - sMin) / ( 4.0 * M_PI );

Listing 3.3: Original scalar numerical quadrature over pair of space-time elements.

Since individual loops are too short to be efficiently vectorized (in our case,
N_GAUSS=4), one cannot employ the usual and most straightforward approach of
vectorizing the innermost loop. Therefore, the first step is to manually collapse
the four loops into a single one with the length N_GAUSS4. To ensure unit-strided
accesses to data within the loop the original array of quadrature weights w with
the size N_GAUSS is replaced by an array w_unrl of length N_GAUSS4 containing
precomputed products of four quadrature weights for each loop iteration. Sim-
ilar optimization is applied to the arrays containing coordinates of quadrature
points in the reference and the actual element. Moreover, to ensure unit-strided
memory access patterns, we split the spatial coordinates into two separate ar-
rays, such that unrl_x1 and unrl_x2 contain respectively the first and the
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x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

peel 

loop

main loop

body

remainder 

loop

(a) Unaligned array – compiler creates peel and re-
mainder loops.

0x607640 0x607660 0x607680

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

peel 

loop

main loop

body

remainder 

loop

x[11]

(b) Aligned array – all work is performed in the main loop body.
Element x[11] contains a dummy value.

Figure 3.4: Comparison of SIMD processing of unaligned and aligned arrays.

second spatial coordinates of the quadrature points in the current element (thus
converting the data from the array of structures to structure of arrays). Memory
buffers such as unrl_x1 or unrl_x2 are allocated on a per-thread basis (using
the threadprivate pragma) only once during the initialization of the program.
When assembling the local contribution, the arrays of actual quadrature points
are filled with values in a separate vectorized loop (see Listing 3.4).

Especially when dealing with relatively short loops, it is necessary to allocate
data on memory addresses which are multiples of the cache line length. When
vectorizing the loop, this prevents the compiler from creating the so-called peel
loop for elements stored in front of the first occurrence of such an address. For
the current Intel Xeon and Xeon Phi processors the cache line size is 64 bytes and
a proper alignment can be achieved using the __attribute__((aligned(64)))
clause in the case of static allocation, or by the _mm_malloc method instead
of malloc or new for dynamic allocation. To prevent creation of the so-called
remainder loop for elements at the end of an array not filling the whole vector
register, data padding can be used (see Figure 3.4). In our case, the collapsed
quadrature points are padded by dummy values to fill the whole multiple of the
cache line size while the quadrature weights are padded by zeroes in order not
to modify the result of the numerical integration.

The actual vectorized numerical quadrature is depicted in Listing 3.5. We
use the OpenMP pragma simd in combination with suitable clauses to assist
compilers with vectorization. We inform the compiler about the memory align-
ment of arrays by the aligned clause. The private and reduction clauses have
similar meaning as in OpenMP threading, and the simdlen clause specifies the
length of a vector.

Similar optimization and vectorization techniques can be applied to the eval-
uation of the representation formula (2.11). In this case the local contribution
consists of integration over a single space-time or spatial element and the quadra-
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1 int unrl_size = N_GAUSS * N_GAUSS * N_GAUSS * N_GAUSS ;
2
3 # pragma omp simd \
4 aligned ( unrl_x_ref , unrl_y_ref , unrl_t_ref , unrl_s_ref : 64 ) \
5 aligned ( unrl_x1 , unrl_x2 , unrl_y1 , unrl_y2 , unrl_t , unrl_s : 64 ) \
6 simdlen ( 8 )
7 for ( int i = 0; i < unrl_size ; ++i ) {
8 unrl_x1 [i] = xMin [0] + unrl_x_ref [i] * (xMax [0] - xMin [0]);
9 unrl_x2 [i] = xMin [1] + unrl_x_ref [i] * (xMax [1] - xMin [1]);

10 ... // same for unrl_y1 , unrl_y2 , unrl_t , unrl_s
11 }

Listing 3.4: Vectorized mapping of quadrature nodes to a pair of space-time elements.

1 # pragma omp simd \
2 aligned ( unrl_weights , unrl_x1 , unrl_x2 , unrl_y1 : 64 ) \
3 aligned ( unrl_y2 , unrl_t , unrl_s : 64 ) \
4 private ( abs_xy_squared , ts_inv ) \
5 reduction ( + : result ) \
6 simdlen ( 8 )
7 for ( int i = 0; i < unrl_size ; ++i ) {
8 aux = ( unrl_x1 [i] - unrl_y1 [i] ) * ( unrl_x1 [i] - unrl_y1 [i] )
9 + ( unrl_x2 [i] - unrl_y2 [i] ) * ( unrl_x2 [i] - unrl_y2 [i] );

10 inv = 1.0 / ( unrl_t [i] - unrl_s [i] );
11 result += unrl_w [i] * inv * exp( -0.25 * alpha * aux * inv );
12 }
13 return result * (xMax - xMin) * (tMax - tMin)
14 * (yMax - yMin) * (sMax - sMin) / ( 4.0 * M_PI );

Listing 3.5: Vectorized numerical quadrature over a pair of space-time elements.

ture is therefore performed in two nested loops. These may be collapsed and
optimized similarly as described for the system matrix assembly.

4. Numerical experiments

In this section we evaluate the efficiency of the proposed parallelization tech-
niques. The numerical experiments for testing the shared- and distributed-
memory scalability were executed on the Salomon cluster at IT4Innovations
National Supercomputing Center in Ostrava, Czech Republic. The cluster is
equipped with 1008 nodes with two 12-core Intel Xeon E5-2680v3 Haswell pro-
cessors and 128 GB of RAM. Nodes of the cluster are interconnected by the
InfiniBand 7D enhanced hypercube network. Vectorization experiments were
in addition carried out on the Marconi A2 and A3 systems in Cineca, Italy,
equipped respectively with one 68-core Intel Xeon Phi 7250 Knights Land-
ing and two 24-core Intel Xeon 8160 Skylake CPUs per node supporting the
AVX512 instruction set extension. The code was compiled by the Intel Compiler
2018 with the -O3 optimization level and either -xcore-avx2, -xcore-avx512
-qopt-zmm-usage=high, or -xmic-avx512 compiler flags respectively for the
Haswell, Skylake or Knights Landing architectures.
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nodes ↓ Vh assembly [s] Vh speedup Vh efficiency [%]
mesh → 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 138.0 — — 1.0 — — 100.0 — —
2 68.4 — — 2.0 — — 100.9 — —
4 33.9 — — 4.1 — — 101.8 — —
8 17.7 272.0 — 7.8 1.0 — 97.5 100.0 —
16 8.6 141.1 — 16.0 1.9 — 100.3 96.4 —
32 4.5 70.0 — 30.7 3.9 — 95.8 97.1 —
64 2.3 35.0 593.1 60.8 7.8 1.0 95.0 97.1 100.0
128 — 17.7 281.7 — 15.4 2.1 — 96.0 105.3
256 — — 145.9 — — 4.1 — — 101.6

Table 4.1: Assembly of Vh on 65 536, 262 144, and 1 048 576 space-time elements.

nodes ↓ Kh assembly [s] Kh speedup Kh efficiency [%]
mesh → 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 162.5 — — 1.0 — — 100.0 — —
2 80.8 — — 2.0 — — 100.5 — —
4 40.3 — — 4.0 — — 100.8 — —
8 21.8 317.4 — 7.5 1.0 — 93.2 100.0 —
16 10.2 163.4 — 15.9 1.9 — 99.6 97.1 —
32 5.2 81.2 — 31.2 3.9 — 97.6 97.7 —
64 2.6 40.9 673.4 62.5 7.8 1.0 97.6 97.0 100.0
128 — 20.7 325.6 — 15.3 2.1 — 95.8 103.4
256 — — 172.5 — — 3.9 — — 97.6

Table 4.2: Assembly of Kh on 65 536, 262 144, and 1 048 576 space-time elements.

All presented examples refer to the initial Dirichlet boundary value problem
(2.1) on the space-time domain Q := (0, 1)3. We consider the exact solution

u(x, t) := exp
(
− t
α

)
sin
(
x cos π8 + y sin π8

)
for (x, t) ∈ Q

and determine the Dirichlet datum g and the initial datum u0 accordingly. The
heat capacity constant is set to α = 10. The system of linear equations (2.5) is
solved by using the GMRES method with a relative precision of 10−8 without
a preconditioner. In order to obtain the boundary and finite element meshes,
we decompose the space-time boundary Σ and the domain Ω = (0, 1)2 into
4 space-time-rectangles and 4 triangles, respectively, and then apply uniform
refinement.

4.1. Scalability in distributed memory
In the first part of the performance experiments we focus on the parallel

scalability of the proposed solver presented in Section 3.1. We tested the assem-
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nodes ↓ M0
h assembly [s] M0

h speedup M0
h efficiency [%]

mesh → 65k 262k 1M 65k 262k 1M 65k 262k 1M
1 163.7 — — 1.0 — — 100.0 — —
2 82.8 — — 2.0 — — 98.9 — —
4 41.0 — — 4.0 — — 99.8 — —
8 20.8 332.0 — 7.9 1.0 — 98.4 100.0 —
16 10.4 167.3 — 15.7 2.0 — 98.4 99.2 —
32 5.3 83.4 — 30.9 4.0 — 96.5 99.5 —
64 2.7 42.5 687.3 60.6 7.8 1.0 94.7 97.6 100.0
128 — 21.5 343.8 — 15.4 2.0 — 96.5 100.0
256 — — 181.4 — — 3.8 — — 94.7

Table 4.3: Assembly of M0
h on 65 536, 262 144, and 1 048 576 space-time elements and the

same number of triangles in Ωh.

bly of the BEM matrices Vh, Kh and M0
h from (2.5), the related matrix-vector

multiplication, and the evaluation of the discrete representation formula (2.11).
Strong scaling of the parallel solver was tested using a tensor product decomposi-
tion of the space-time boundary Σ into 65 536, 262 144, and 1 048 576 space-time
surface elements and the same number of finite elements for the triangulation of
the domain Ω. This corresponds to 512, 1 024, 2 048 spatial boundary elements
and 128, 256, 512 time layers. In order to test the performance of the represen-
tation formula we chose 558 080 evaluation points for all three problem sizes.
More precisely, we used a finite element mesh of the domain Ω with 545 nodes
and computed the solution in these nodes in 1 024 different time steps, uni-
formly distributed in the interval [0, 1]. We used up to 256 nodes (6 144 cores)
of the Salomon cluster for our computations and executed two MPI processes
per node. Each MPI process used 12 cores for the assembly of the matrix blocks,
for the matrix-vector multiplication, and for the evaluation of the representa-
tion formula. Note that the number of nodes we can use for our computations
is restricted by the number of time layers of our boundary element mesh, i.e.
starting with one element of our temporal decomposition Ih at the level L = 0
and using a uniform refinement strategy we end up with 2L time layers at the
level L. Thus, due to the structure of the parallel solver presented in Section 3.1
we can use 2L MPI processes and therefore 2L−1 nodes at most. Conversely, for
fine meshes we need a certain number of nodes to store the matrices.

In Tables 4.1–4.4 the assembly and evaluation times including the speedup
and efficiency are listed. We obtain almost optimal parallel scalability of the
assembly of the BEM matrices and the evaluation of the representation formula.
Scalability of the matrix-vector multiplication is evaluated in Table 4.5. Since
the matrix blocks are distributed, each process only multiplies with blocks it
is responsible for and exchanges the result with the remaining processes. For
sufficiently large problems the scalability is optimal. In the case of smaller
problems, the efficiency decreases with the increasing number of compute nodes
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as the communication starts to dominate over the computation. Nevertheless
the efficiency is still good.

nodes ↓ ũ evaluation [s] ũ speedup ũ efficiency [%]
mesh → 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 420.3 — — 1.0 — — 100.0 — —
2 211.2 — — 2.0 — — 99.5 — —
4 110.7 — — 3.8 — — 94.9 — —
8 55.6 219.0 — 7.6 1.0 — 94.5 100.0 —
16 27.6 110.2 — 15.2 2.0 — 95.2 99.4 —
32 13.6 55.1 — 30.9 4.0 — 96.6 99.4 —
64 7.0 28.5 112.9 60.0 7.7 1.0 93.8 96.1 100.0
128 — 14.0 56.0 — 15.6 2.0 — 97.6 100.8
256 — — 30.0 — — 4.0 — — 100.4

Table 4.4: Evaluation of the representation formula ũ on 65 536, 262 144, and 1 048 576 space-
time elements in 558 080 evaluation points.

nodes ↓ Vhf time [s] Vhf speedup Vhf efficiency [%]
mesh → 65k 262k 1M 65k 262k 1M 65k 262k 1M

1 41.9 — — 1.0 — — 100.0 — —
2 22.4 — — 1.9 — — 93.5 — —
4 11.3 — — 3.7 — — 92.7 — —
8 5.6 89.8 — 7.5 1.0 — 93.5 100.0 —

16 2.8 45.8 — 15.0 2.0 — 93.5 98.0 —
32 1.5 22.5 — 28.1 4.0 — 87.9 99.9 —
64 0.9 11.5 182.2 46.6 7.8 1.0 72.7 97.6 100.0
128 — 6.5 96.8 — 13.8 1.9 — 86.0 94.1
256 — — 46.0 — — 4.0 — — 99.0

Table 4.5: 250 matrix-vector products Vhf on 65 536, 262 144, and 1 048 576 space-time ele-
ments.

4.2. Scalability in shared memory
In the second part we examine the parallel scalability in shared memory, i.e.

we test the performance of the OpenMP threading introduced in Section 3.2.
As before, we consider both the assembly of the BEM matrices Vh, Kh and
M0
h as well as the evaluation of the representation formula ũ. The presented

computation times refer to a space-time boundary element mesh Σh with 16 384
elements and a triangulation Ωh consisting of 16 384 finite elements. For testing
the efficiency of the parallel evaluation of ũ we used a finite element mesh of
Ω with 545 nodes and computed the solution in these nodes at 30 different
times, i.e. in 16 350 points in total. In Table 4.6 we provide the assembly and
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# threads 1 2 4 6 8 10 12

Vh
time [s] 190.9 94.8 51.6 33.2 25.6 20.0 16.9
speedup 1.0 2.0 3.7 5.8 7.5 9.5 11.3

Kh
time [s] 222.2 116.6 56.1 30.0 30.7 23.2 20.4
speedup 1.0 1.9 4.0 7.4 7.2 9.6 10.9

M0
h

time [s] 236.5 121.0 59.4 39.9 30.2 24.1 20.3
speedup 1 2.0 4.0 5.9 7.8 9.8 11.7

ũ
time [s] 81.1 44.5 20.4 14.6 10.2 8.2 7.5
speedup 1.0 1.8 4.0 5.6 8.0 9.9 10.8

Table 4.6: Assembly and representation formula evaluation times for different numbers of
OpenMP threads and a problem with 16 384 space-time surface elements, 16 384 triangles in
Ωh, and 16 350 evaluation points.

evaluation times for different numbers of OpenMP threads. Since each MPI
process uses 12 cores for its computations, we limited the maximum number
of threads in the experiments to 12. On the multi-core Xeon processors of the
Salomon cluster we obtain the almost optimal speedup of 11.3 (10.9, 11.7) for
the assembly of the BEM matrices and the speedup of 10.8 for the evaluation
of the representation formula.

4.3. Vectorization efficiency
Efficiency of the vectorized system matrix assembly on several architectures

was tested on a mesh consisting of 4 096 surface space-time elements. In Fig-
ure 4.1, the scalability of the vectorization is depicted with respect to the width
of the SIMD vector. The scalar version (64-bits vector width) was compiled
with -no-vec -no-simd -qno-openmp-simd in addition to the vectorization
flag, the remaining widths of the vectors were set during the runtime by the
simdlen OpenMP clause, see Listings 3.4–3.5. The tests presented in Fig-
ure 4.1 were carried out using a single thread in order to minimize the effects of
frequency scaling when running an AVX512 code on multiple cores. We obtain
almost optimal scaling on the Xeon Phi 7250 processor; the code running on
Xeon CPUs is less efficient, however, still scales reasonably well.

In Tables 4.7–4.8 we compare the speedup of vectorization using either a sin-
gle core or the maximum number of physical cores per socket. Here, AVX512(·)
or AVX2(·) refers to the length of the vector set by the simdlen(·) clause. One
can observe a drop in the speedup when using multiple cores per socket which
is especially prominent in the case of AVX512 on Xeon Phi 7250 and Xeon
8160. In this case, the core frequency may drop significantly since the AVX512
instructions consume a large amount of energy [29]. Moreover, a simultaneous
access of several threads to the main memory may influence the performance as
well.
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Figure 4.1: Scalability of the matrix assembly with respect to the SIMD vector width.

5. Conclusion

In the paper, we have presented a parallel space-time boundary element
solver for the heat equation. The solver is parallelized using MPI in the dis-
tributed memory, OpenMP is used for the shared memory parallelization and
vectorization. The distribution of the system matrices among computational
nodes is based on the method presented in [18, 19] for spatial problems. We
have successfully adapted the method to support the time-dependent problem
for the heat equation. A space-time computational mesh is decomposed into
slices which inherently define blocks in the system matrices. These blocks are
distributed among MPI processes using the graph-decomposition-based scheme.
The numerical experiments show optimal scalability of the global system ma-
trix assembly in distributed memory and almost optimal scalability of the in-
dividual blocks assembly in shared memory. An additional performance gain
is obtained using SIMD vectorization. We have also demonstrated distributed-
memory scalability of the matrix-vector multiplication and the evaluation of the
representation formula.

The presented method provides opportunities for further research and de-
velopment of numerical methods. While in [18, 19] the individual matrix blocks
are approximated using either the adaptive cross approximation or the fast mul-
tipole method, we limited ourselves to classical BEM leading to dense system
matrices. Their data-sparse approximation is a topic of future work. Together
with data-sparse methods the developed technology will serve as a base for the
development of a parallel fast three-dimensional solver.
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architecture threads matrix AVX512(2) AVX512(4) AVX512(8)

Xeon Phi 7250

1
Vh 2.27 4.17 7.79
Kh 2.16 3.98 7.18
M0
h 2.42 4.45 9.20

68
Vh 2.18 3.84 6.52
Kh 2.07 3.61 6.02
M0
h 2.35 4.18 7.86

Xeon 8160

1
Vh 1.44 2.68 4.24
Kh 1.59 2.89 4.57
M0
h 1.63 2.94 4.82

24
Vh 1.40 2.46 3.75
Kh 1.54 2.57 3.92
M0
h 1.60 2.73 4.28

Table 4.7: Speedup of the AVX512 code with respect to the scalar baseline.

architecture threads matrix AVX2(2) AVX2(4)

Xeon E5-2680v3

1
Vh 2.18 3.02
Kh 2.39 3.10
M0
h 2.63 3.27

12
Vh 2.09 2.74
Kh 2.34 2.95
M0
h 2.66 3.25

Table 4.8: Speedup of the AVX2 code with respect to the scalar baseline.
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