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Abstract
Optimal control problems governed by a transport equation are investigated that are motivated by

optical flow problems. The control is given by the velocity field, corresponding to the optical flow, while
the state corresponds to the brightness of image points. The problem is studied in the setting of spatially
BV-regular vector fields under very low regularity requirements. Existing stability results for the control-
to-state operator are improved and based on this the existence of minimizers for several classes of optimal
control problems is proved under mild assumptions on the admissible sets.

1 Introduction
In this paper, we investigate optimal control problems governed by transport equations where the control is
the velocity field. The main focus lies on the analysis the problem, in particular existence of optimal controls,
under very low regularity requirements on the velocity field and also on the state. The considered problem class
is motivated by optical flow based image sequence interpolation. Optical flow basically describes the vector
field of velocities of apparent points in the 2D image plane. Assuming that image points of a scene do not
change their brightness over time while moving, the brightness u : (0, T )×Ω, with Ω ⊂ R2 denoting the image
domain, satisfies a transport equation where the velocity field is given by the optical flow b : (0, T )×Ω→ R2.
The goal of the optical flow problem is to recover b from image data that correspond to snapshots Yk of u(tk, ·)
at time instances tk. Classical approaches usually compute a steady optical flow between two images. The
well-known method by Horn and Schunck [20], e.g., obtains approximations δtY , δx1Y , and δx2Y of ∂tu, ∂x1u
and, ∂x2u, respectively, from two given images via finite differences and then computes b = (b1, b2)T—often
on a pixel grid—by minimizing

J(b) =
∫
Ω

(δtY + b1δx1Y + b2δx2Y )2 dx1dx2 + λ

∫
Ω

(|∇b1|2 + |∇b2|2) dx1dx2.

This function is a weighted sum of a least-squares term expressing the linearized brightness constancy assump-
tion and an H1-regularization. Since the 1980s, this and other approaches (e.g. [24]) were further explored in
numerous papers, see [7] for an overview.

The problem class studied in this paper arises in a different approach where an unsteady optical flow as
well as the corresponding brightness are computed from a given sequence of images by solving an optimal
control problem of the following form [19, 23]:

min
u,b

J(u, b) =
K∑
k=2

Υk

(
‖u(tk, ·)− Yk‖L2(Ω)

)
+R(b),

s.t. ∂tu+∇u · b = 0 in (0, T )× Ω,
u(0, ·) = Y1 in Ω.
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Formulations of this kind were first studied in [19, 23]. The optimization variables are the image brightness
u, which is the state, and the optical flow b = (b1, b2)T , which is the control. Both are defined on the spatio-
temporal domain (0, T )× Ω. The data Yk, k ∈ {1, . . . ,K}, are a given image sequence corresponding to time
instances tk ∈ [0, T ]. The brightness constancy assumption leads to the transport equation which constitutes
a constraint of the problem. The objective function consist of a term measuring the misfit between Yk and u
at the time instances and a regularization term R for b. In this case, a solution u of the transport equation
can be seen as a continuous interpolation in time of the image sequence and b is the corresponding optical flow
field.

The current paper focuses on the investigation of the optimal control problem (P) for vector fields b with
spatial BV -regularity. This low regularity requirement allows for the practically important situation where
b contains spatial discontinuities. We will use results by Ambrosio et al. [2, 11, 12, 13, 14] about existence
and uniqueness of solutions for the underlying transport equation. All these results build on the concept of
renormalized solutions of transport equations, developed and applied by DiPerna and Lions for Sobolev-regular
vector fields in [16]. A function u is called a renormalized solution if it satisfies the weak formulation of the
transport equation and if every composition β(u) of u with a C1-function β is again a weak solution of the
same equation.

DiPerna and Lions proved that any weak solution of the transport equation with Sobolev-regular vector
fields is a renormalized solution. This renormalization property then yields uniqueness of weak solutions for
the transport equation. In 2004, Ambrosio [2] extended this theory to vector fields with BV -regularity in
space and absolutely continuous divergence. Some refinements and extensions were developed in later work
by Ambrosio, Crippa, De Lellis and others [11, 14, 12, 13].

A crucial step in the theory of renormalized solutions is the proof of convergence to zero of the so-called
commutator

rε = b · ∇(u ∗ ρε)− (b · ∇u) ∗ ρε
as ε → 0, where b denotes some vector field, u the corresponding solution and ρε some mollifier. In contrast
to L1-convergence to zero of the commutator in the Sobolev regular case, the commutator only converges
weakly∗ to some measure σ for general BV -regular vector fields. Therefore, Ambrosio had to develop various
new techniques to give an upper bound for σ which then turns out to be zero. This problem appears again in
our second improved theorem of existing stability results for the control-to-state operator: in the proofs to this
theorem, a similar term as the commutator appears and we use the same techniques Ambrosio had developed
to prove convergence to zero of this term as ε→ 0. Due to these improvements in the results for stability we
are able to show existence of minimizing points of the optimization problem (P) under quite mild regularity
assumptions.

Kunisch et al. [23] discussed well-posedness of the transport equation in a setting with Sobolev regularity,
but did not study the existence of solutions to the optimal control problem. In 2011, Chen [8] and Chen and
Lorenz [9] developed further theory for a specific version of (P). For vector fields b with Sobolev regularity in
space and vanishing divergence, they showed existence of minimizing points for their optimal control problem.
Their theoretical results are based on results of DiPerna and Lions ([16]) about well-posedness of solutions for
the transport equation with Sobolev regular vector fields.

The goal of this paper is to show existence of optimal solutions (P) in spaces of minimal regularity. This
is done in several steps: Section 2 summarizes the required existence and uniqueness theory. For later use in
stability results for transport equations, it is essential to study the weak limit of products of weakly convergent
sequences of functions. Section 3 develops the required result of compensated compactness type. Since the
available stability results for transport equations are not sufficient for our purposes, suitable extensions are
developed in sections 4 and 5. Since Bochner integrability is not well suited for non-separable image spaces
such as BV , Gelfand integrability is used in this case. Hence, section 6 studies the predual of BV (Ω) in order
to interpret the weak∗-topology on BV (Ω) as the true weak∗-topology on dual spaces. Section 7 provides some
required prerequisites about closedness properties of certain sets of functions bounded in Lq((0, T ), BV (Ω)N ).
The paper’s main result, the existence of solutions to the considered class of optimal control problems, is
proved in section 8.

Notation. Throughout, T > 0 denotes the length of the time interval (0, T ) and Ω ⊂ RN is a bounded
domain with Lipschitz boundary ∂Ω. We distinguish two cases for functions f : (0, T ) → X with values in
a Banach space X: If X is separable, we assume that the functions f are Bochner integrable. Otherwise, if
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X = Y ′ is a non-separable dual space, we assume that the considered functions are Gelfand integrable, i.e.,
that the function t 7→ 〈f(t), y〉 is Lebesgue integrable for any y ∈ Y . Further information on Bochner and
Gelfand integrability can be found in [1, 17, 28, 27]. For the Banach space BV (Ω) we define the subspace

BV0(Ω) := {g ∈ BV (Ω)| T g = 0},

where T denotes the trace operator (see e.g. [4]). Further information on BV -functions and their properties
can be found in [4, 6]. In the following, for any q ∈ [1,∞] we set q′ ∈ [1,∞] as the value such that 1

q + 1
q′ = 1

is satisfied.

2 Existence and uniqueness of transport equation
In this section, we consider the transport equation

∂tu+ b · ∇u = 0 in (0, T )× Ω,
u(0, ·) = u0 in Ω

(1)

for some given initial value u0 ∈ L∞(Ω) and b ∈ L1((0, T ) × Ω)N . As mentioned in the introduction, we are
interested in vector fields b with spatial BV -regularity. For this vector field regularity, Ambrosio proved in [2]
the uniqueness of weak solutions of (1) using the concept of renormalized solutions of DiPerna and Lions (see
e.g. [16]): a solution u of the transport equation (1) is called a renormalized solution if for any β ∈ C1(R)
the composition β ◦ u is again a solution of the same equation with initial value β(u0). Furthermore, the
vector field b of the transport equation has the renormalization property if any solution of the equation is a
renormalized solution.

Ambrosio’s theory was refined in further works (see e.g. [11, 12, 13, 14]) by several authors. We will use
these results to obtain a well-defined control-to-state operator for our optimal control problem (P).

Before we start, we first need to clarify what is meant by b · ∇u when the vector field b is not smooth:
if u ∈ L∞((0, T ) × Ω), b ∈ L1((0, T ) × Ω)N and div b ∈ L1((0, T ) × Ω), then we define the distribution
b · ∇u ∈ D′(R× Ω) by

〈b · ∇u, ϕ〉 = −〈bu,∇ϕ〉 − 〈udiv b, ϕ〉 ∀ ϕ ∈ C∞c ([0, T )× Ω).

This leads us to the following general definition of weak solution for the transport equation (1):

Definition 2.1 (Weak solution) Let u0 ∈ L∞(Ω), b ∈ L1((0, T )× Ω)N with div b ∈ L1((0, T )× Ω). Then,
we call a function u ∈ C([0, T ], L∞(Ω)− w∗) a weak solution of (1), if the following equation is satisfied

T∫
0

∫
Ω

u (∂tϕ+ b · ∇ϕ+ ϕdiv b) dxdt = −
∫
Ω

u0ϕ(0, ·) dx

for all ϕ ∈ C∞c ([0, T )× Ω).

The following theorem states the existence and uniqueness of solutions for the transport equation (1) on
bounded spatial domains. This result can be easily concluded from Theorem 1.1 in [12], Theorem 1.1 in [13]
and Remark 2.2.2 in [11].

Theorem 2.2 (Existence and uniqueness of solutions) Let u0 ∈ L∞(Ω) and let b ∈ L∞((0, T )× Ω)N ∩
L1((0, T ), BV0(Ω))N with div b ∈ L1((0, T ), L∞(Ω)). Then, the transport equation (1) has a unique weak
renormalized solution u ∈ C([0, T ], L∞(Ω)− w∗). Furthermore,

‖u(t, ·)‖L∞(Ω) ≤ ‖u0‖L∞(Ω)

for any t ∈ [0, T ] and the vector field b has the renormalization property.
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For the subsequent sections, we define for q ∈ [1,∞) the sets of vector fields

Vq :=
{
b ∈ Lq((0, T ), BV (Ω))N ∩ L∞((0, T )× Ω)N | div b ∈ Lq((0, T ), L∞(Ω))

}
(2)

and
Vq

0 :=
{
b ∈ Vq| b ∈ Lq((0, T ), BV0(Ω))N

}
.

Then, due to Theorem 2.2, the solution operator S, given by

S : L∞(Ω)×V1
0 → C([0, T ], L∞(Ω)− w∗),

(u0, b) 7→ S(u0, b) = u,
(3)

is well-defined.

3 A compensated compactness result for weakly convergent se-
quences

In this section, we prove a result which is reminiscent of the compensated compactness results of Tartar [29]
and Murat [26]: the product of two weakly convergent sequences converges to the product of their weak limits
if the sequences satisfy some regularity assumptions. The theorem we present is a generalization of Proposition
1 in [25] to the case that one of the sequences has codomain BV (Ω) instead of Sobolev regularity as in [25].
We will use this statement in the proofs for the stability theorems in the subsequent sections where we will
be faced with the situation that we have to specify the limit of the product of weakly convergent vector fields
with their weakly convergent solutions. We start with two auxiliary lemmas.

Lemma 3.1 Let q ∈ [1,∞] and let (fn) ⊂ Lq((0, T ), BV0(Ω)) be a bounded sequence. Then

fn(·, ·+ h)− fn → 0 in Lq((0, T ), L1(Ω)) as h→ 0

uniformly in n ∈ N.

Proof: We take the standard mollifier ρε for ε > 0 and set gn,k := fn ∗ ρ1/k, where we extend fn by zero
to the entire RN in the spatial variable. Then, we estimate for almost all t ∈ (0, T ) and for h ∈ RN∫

RN

|gn,k(t, x+ h)− gn,k(t, x)| dx =
∫
RN

∣∣∣∣∣∣
1∫

0

∇gn,k(t, x+ rh)>h dr

∣∣∣∣∣∣ dx
≤ |h|∞

1∫
0

∫
RN

|∇gn,k(t, x)|1 dxdr ≤ |h|∞ ‖∇fn(t, ·)‖M(Ω)N ,

where we use Theorem 2.2 (b) in [4] for the last inequality. Integrating over (0, T ) yields T∫
0

‖gn,k(t, ·+ h)− gn,k(t, ·)‖qL1(Ω) dt

1/q

≤ |h|∞ ‖fn‖Lq((0,T ),BV (Ω)) ≤ C |h|∞ ,

where C > 0 denotes an upper bound for the sequence (fn). With the following estimate

‖fn(·, ·+ h)− fn‖Lq((0,T ),L1(Ω)) ≤ ‖fn(·, ·+ h)− fn‖Lq((0,T ),L1(RN )) ≤ ‖fn(·, ·+ h)− gn,k(·, ·+ h)‖Lq((0,T ),L1(RN ))

+ ‖fn − gn,k‖Lq((0,T ),L1(RN )) + ‖gn,k(·, ·+ h)− gn,k‖Lq((0,T ),L1(RN ))

≤ 2 ‖fn − gn,k‖Lq((0,T ),L1(RN )) + ‖gn,k(·, ·+ h)− gn,k‖Lq((0,T ),L1(RN )) ,

the statement can be directly concluded.
�
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Lemma 3.2 Let q ∈ [1,∞], ρ ∈ C∞c
(
R
N
)
some mollifier for the spatial variable and let (fn) ⊂ Lq((0, T ), BV0(Ω))

and (gn) ⊂ Lq′((0, T ), L∞(Ω)) be bounded sequences. Then, the commutator

Sn,k := fn(gn ∗ ρ1/k)− (fngn) ∗ ρ1/k

converges uniformly in n ∈ N to zero in L1((0, T )× Ω) as k →∞.

Proof: For t ∈ (0, T ) and x ∈ Ω we have

Sn,k(t, x) =
∫
RN

(fn(t, x)− fn(t, x− y)) gn(t, x− y)ρ1/k(y) dy

and thus, integrating over (0, T )× Ω yields

T∫
0

∫
Ω

|Sn,k(t, x)| dxdt ≤ ‖gn‖Lq′ ((0,T ),L∞(Ω))

∫
RN

ρ1/k(y) ‖fn − fn(·, · − y)‖Lq((0,T ),L1(Ω)) dy

≤ C
∫

{y| |y|≤1/k}

ρ1/k(y) ‖fn − fn(·, · − y)‖Lq((0,T ),L1(Ω)) dy,

where C > 0 denotes an upper bound for (gn) in Lq′((0, T ), L∞(Ω)). Then, Lemma 3.1 yields the statement.
�

Now, we turn to the main statement of this section. The proof of this theorem is a reproduction of the proof
of Proposition 1 in [25] adjusted and extended to functions fn, f ∈ Lq((0, T ), BV0(Ω)) and weak convergence
in L1((0, T )× Ω).

Theorem 3.3 Let q ∈ (1,∞]. Furthermore, let (gn) ⊂ Lq
′((0, T ), L∞(Ω)) ∩ L∞((0, T ) × Ω) and (fn) ⊂

Lq((0, T ), BV0(Ω)) be bounded sequences in each of these spaces such that

fn ⇀ f in L1((0, T )× Ω) and gn ⇀ g in Lq
′
((0, T )× Ω),

where f ∈ Lq((0, T ), BV0(Ω)) and g ∈ Lq′((0, T ), L∞(Ω)) ∩ L∞((0, T ) × Ω). If (∂tgn) is a bounded sequence
in L1((0, T ), (Wm,2(Ω))′) for some m ∈ N, then

fngn
∗
⇀ fg inM((0, T )× Ω).

Proof: We do the same steps as in the previously mentioned proof. With Lebesgue’s dominated conver-
gence theorem we obtain

f(g ∗ ρ1/k)→ fg in L1((0, T )× Ω) as k →∞. (4)

Furthermore, since (gn) ⊂ Lq′((0, T ), L∞(Ω)) is bounded we obtain for a fixed k ∈ N that

(gn ∗ ρ1/k)n and
(
∇(gn ∗ ρ1/k)

)
n

=
(
gn ∗ ∇ρ1/k

)
n

are bounded in L1((0, T ) × Ω) and L1((0, T ) × Ω)N , respectively. In addition, if we consider ∂tgn(t, ·) as a
distribution on RN for almost all t ∈ (0, T ), i.e. if we define its application on ϕ ∈ C∞c (RN ) as ∂tgn(t, ·)(ϕ|Ω),
then the convolution is defined as

(∂tgn(t, ·) ∗ ρ1/k)(x) = ∂tgn(t, ·)(ρ1/k(x− ·)|Ω).
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Hence, we conclude for ϕ ∈ C0((0, T )× Ω)∣∣∣∣∣∣
T∫

0

∫
Ω

(∂tgn(t, ·) ∗ ρ1/k)(x)ϕ(t, x) dxdt

∣∣∣∣∣∣
≤ ‖ϕ‖C((0,T )×Ω)

T∫
0

∫
Ω

∥∥ρ1/k(x− ·)
∥∥
Wm,2(Ω) ‖∂tgn(t, ·)‖(Wm,2(Ω))′ dxdt

≤ |Ω| ‖ϕ‖C((0,T )×Ω)
∥∥ρ1/k

∥∥
Wm,2(RN ) ‖∂tgn‖L1((0,T ),(Wm,2(Ω))′)

≤ Ck ‖ϕ‖C((0,T )×Ω) ,

where Ck > 0 denotes a bound depending on k ∈ N. Thus,
(
∂t(gn ∗ ρ1/k)

)
is a bounded sequence inM((0, T )×

Ω). Summing up, we have that (gn ∗ ρ1/k)n is a bounded sequence in BV ((0, T ) × Ω) for any k ∈ N. As a
consequence, there exists a subsequence (gnl

∗ ρ1/k)l being convergent to some hk in L1((0, T )×Ω) for a fixed
k ∈ N. Since gn ⇀ g in Lq′((0, T )×Ω) we easily obtain that gn ∗ ρ1/k ⇀ g ∗ ρ1/k in L1((0, T )×Ω) as n→∞
and thus hk = g ∗ ρ1/k. With a proof by contradiction we deduce that the whole sequence gn ∗ ρ1/k → g ∗ ρ1/k
in L1((0, T ) × Ω) as n → ∞. Now, using a standard diagonal argument, we can find a subsequence (labeled
by n again) such that

gn ∗ ρ1/k(t, x)→ g ∗ ρ1/k(t, x) for almost all (t, x) ∈ (0, T )× Ω and for all k ∈ N

as n → ∞. In addition, we have that (gn ∗ ρ1/k)n is a bounded subset of L∞((0, T ) × Ω) for each k ∈ N
due to the boundedness of (gn) in L∞((0, T ) × Ω). Thus, gn ∗ ρ1/k → g ∗ ρ1/k in Lp((0, T ) × Ω) for any
p < ∞. Furthermore, (fn) is bounded in Lr((0, T ) × Ω) for r = min(q,N/(N − 1)) and we obtain for any
ϕ ∈ L∞((0, T )× Ω) and k ∈ N∣∣〈fn(gn ∗ ρ1/k)− f(g ∗ ρ1/k), ϕ〉

∣∣ ≤ ‖ϕ‖L∞((0,T )×Ω) ‖fn‖Lr((0,T )×Ω)

·
∥∥gn ∗ ρ1/k − g ∗ ρ1/k)

∥∥
Lr′ ((0,T )×Ω)

+
∣∣〈fn − f, (g ∗ ρ1/k)ϕ〉

∣∣→ 0

(5)

as n→∞, i.e. fn(gn ∗ ρ1/k) ⇀ f(g ∗ ρ1/k) in L1((0, T )×Ω). Since (fn) is bounded in L1((0, T )×Ω) and (gn)
is bounded in L∞((0, T ) × Ω), we obtain that (fngn) is bounded in L1((0, T ) × Ω). Finally, we deduce that
for any fixed ϕ ∈ C0((0, T )× Ω)∣∣〈(fngn) ∗ ρ1/k − fngn, ϕ〉

∣∣ =
∣∣〈fngn, ϕ ∗ ρ1/k − ϕ〉

∣∣
≤ ‖fngn‖L1((0,T )×Ω)

∥∥ϕ ∗ ρ1/k − ϕ
∥∥
C((0,T )×Ω)

≤ C
∥∥ϕ ∗ ρ1/k − ϕ

∥∥
C((0,T )×Ω) → 0

(6)

since ϕ is uniformly continuous in (0, T )× Ω. Summing up, we conclude for any ϕ ∈ C0((0, T )× Ω):

|〈fg − fngn, ϕ〉| ≤
∣∣〈fg − f(g ∗ ρ1/k), ϕ〉

∣∣
+
∣∣〈f(g ∗ ρ1/k)− fn(gn ∗ ρ1/k), ϕ〉

∣∣
+
∣∣〈fn(gn ∗ ρ1/k)− (fngn) ∗ ρ1/k, ϕ〉

∣∣
+
∣∣〈(fngn) ∗ ρ1/k − fngn, ϕ〉

∣∣ .
Then, the first, third and fourth term on the right side converge uniformly in n ∈ N as k →∞ due to Lemma
3.2 and estimates (4) and (6). Therefore, for any ε we choose k(ε) ∈ N such that the sum of the first, third
and fourth term is smaller than ε for any k ≥ k(ε). Then for fixed k(ε), we can choose n(ε) ∈ N such that the
second term is smaller than ε for all n ≥ n(ε) due to estimate (5). Consequently,

|〈fg − fngn, ϕ〉| ≤ 2ε ∀ n ≥ n(ε)

which proves the statement.
�
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4 Stability of solution operator: first improvement
In the works [11, 16] of Crippa, DiPerna and Lions, it is mentioned (and proven) that solutions of the transport
equation are elements of C

(
[0, T ], Lploc

(
R
N
))

for any p ∈ [1,∞). This can be easily deduced from the
renormalization property of solutions. In [16] it is additionally shown that sequences of solutions are strongly
convergent in C

(
[0, T ], Lploc

(
R
N
))

if the sequences of vector fields and initial data satisfy some convergence
assumptions. For the proof, arguments of Arzelà-Ascoli type are used. Arzelà-Ascoli is also used by Crippa
in [11], but it is just shown that sequences of solutions are convergent in C

(
[0, T ], Lp

(
R
N
)
− w

)
. In the first

stability theorem we present the proof for convergence in C([0, T ], Lp(Ω)−w) based on the theorem of Arzelà-
Ascoli in locally convex spaces. In contrast to Crippa where strong convergence of the vector fields is required,
our assumptions only demand weak convergence of the vector fields in L1((0, T ) × Ω)N . In [16], it is shown
that weak convergence of the vector fields is sufficient if the uniform convergence of the translation relation
appearing in Lemma 3.1 is satisfied by the sequence of vector fields. In addition, it is also mentioned that this
condition is fulfilled if the vector fields are a bounded sequence in Lq((0, T ), X)N , where X is a Banach space
embedding compactly into L1(Ω). In Lemma 3.1, we have shown this for the special case X = BV0(Ω). These
results were sufficient for DiPerna and Lions to prove weak convergence of bnun to bu in L1((0, T )×Ω)N which
we summed up to the compensated compactness result in the previous section. With the aid of some auxiliary
statements building on renormalization arguments we additionally show strong convergence of solutions in
C([0, T ], Lp(Ω)) for any p ∈ [1,∞). Again, we start this section with two auxiliary lemmas.

Lemma 4.1 Let g, g2 ∈ C([0, T ], L2(Ω)− w). Then g ∈ C([0, T ], L2(Ω)).

Proof: For ϕ ≡ 1 ∈ L2(Ω) we deduce

‖g(t, ·)‖2L2(Ω) =
∫
Ω

g2(t, x)ϕ dx→
∫
Ω

g2(s, x)ϕ dx = ‖g(s, ·)‖2L2(Ω) as t→ s in [0, T ].

Since in addition g(t, ·) ⇀ g(s, ·) in L2(Ω) as t→ s, the statement is proven.
�

Lemma 4.2 Let (gn), (g2
n) ⊂ C([0, T ], L2(Ω)− w) be two sequences such that

gn → g and g2
n → g2 in C([0, T ], L2(Ω)− w),

with limits g, g2 ∈ C([0, T ], L2(Ω)− w). Then,

gn, g ∈ C([0, T ], L2(Ω)) for all n ∈ N and gn → g in C([0, T ], L2(Ω)).

Proof: Due to Lemma 4.1 we know that gn, g ∈ C([0, T ], L2(Ω)) for all n ∈ N. Furthermore, considering
that g2

n → g2 in C([0, T ], L2(Ω)− w) and choosing ϕ ≡ 1 ∈ L2(Ω), we conclude that

sup
t∈[0,T ]

∣∣∣‖gn(t, ·)‖L2(Ω) − ‖g(t, ·)‖L2(Ω)

∣∣∣→ 0 as n→∞. (7)

In addition, we estimate

sup
t∈[0,T ]

∣∣∣∣∣∣
∫
Ω

(gn(t, x)− g(t, x))2
dx

∣∣∣∣∣∣ ≤ sup
t∈[0,T ]

∣∣∣∣∣∣
∫
Ω

(
gn(t, x)2 − g(t, x)2) dx

∣∣∣∣∣∣ (8)

+ 2 sup
t∈[0,T ]

∣∣∣∣∣∣
∫
Ω

g(t, x)(g(t, x)− gn(t, x)) dx

∣∣∣∣∣∣ (9)
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Obviously, term (8) tends to zero as n→∞. For the second term (9) we introduce the functions

Ln : L2(Ω)→ R, ϕ 7→ sup
t∈[0,T ]

|hn,ϕ(t)| with hn,ϕ(t) :=
∫
Ω

ϕ(x)(g(t, x)− gn(t, x)) dx.

These functions are Lipschitz continuous: obviously hn,ϕ ∈ C([0, T ]) for any ϕ ∈ L2(Ω) and n ∈ N and we
estimate

|Ln(ϕ)− Ln(ψ)| =
∣∣∣‖hn,ϕ‖C([0,T ]) − ‖hn,ψ‖C([0,T ])

∣∣∣ ≤ ‖hn,ϕ − hn,ψ‖C([0,T ]) ≤ C ‖ϕ− ψ‖L2(Ω) .

The constant C > 0 is independent of n ∈ N due to the uniform boundedness of sup
t∈[0,T ]

‖gn(t, ·)‖L2(Ω) with

respect to n ∈ N shown in (7). We define the set A := {g(t, ·)|t ∈ [0, T ]} ⊂ L2(Ω). This set is compact since
it is the image of a compact set under a continuous function. Hence, for each function Ln, there exists an
element ϕn ∈ A such that

Ln(ϕn) = max
ψ∈A

Ln(ψ).

Since (ϕn) ⊂ A, there exists a subsequence (ϕnk
) converging to some ϕ ∈ A in L2(Ω). Furthermore, for any

n ∈ N, we have the estimate
∣∣hn,g(t,·)(t)∣∣ ≤ sup

s

∣∣hn,g(t,·)(s)∣∣ ≤ Ln(ϕn). Thus, we conclude

sup
t∈[0,T ]

∣∣hnk,g(t,·)(t)
∣∣ ≤ sup

t∈[0,T ]

∣∣∣hnk,ϕnk
−ϕ(t)

∣∣∣+ sup
t∈[0,T ]

|hnk,ϕ(t)| ≤ C ‖ϕnk
− ϕ‖L2(Ω) + sup

t∈[0,T ]
|hnk,ϕ(t)| .

Both terms on the right side tend to zero as k →∞. Summing up, the term in (9) converges to 0 for n = nk,
k → ∞ and therefore, gnk

→ g in C([0, T ], L2(Ω)). Now a standard proof by contradiction yields that the
whole sequence (gn) converges to g in C([0, T ], L2(Ω)).

�
With the aid of these two lemmas we can prove the first (improved) stability theorem for the solution operator
S.

Theorem 4.3 (First stability theorem) Let b ∈ V1
0 and let the initial value satisfy u0 ∈ L∞(Ω). Further-

more, let (bn) ⊂ V1
0 and (u0,n) ⊂ L∞(Ω) be two sequences with the following properties:

(i) (u0,n) is bounded in L∞(Ω) and converges to u0 in L1(Ω),

(ii) (a) (bn) converges strongly to b in L1((0, T )× Ω)N or
(b) (bn) is bounded in Lq((0, T ), BV0(Ω))N for some q > 1 and bn ⇀ b in L1((0, T )× Ω)N .

(iii) (div bn) converges strongly to div b in L1((0, T )× Ω).

Then, for any 1 ≤ p < ∞, the sequence of unique solutions (un) ⊂ C([0, T ], L∞(Ω) − w∗) of (1) with vector
fields bn and initial data u0,n is a subset of C([0, T ], Lp(Ω)) and converges in C([0, T ], Lp(Ω)) to the unique
solution u ∈ C([0, T ], Lp(Ω)) of (1) with vector field b and initial value u0.

Proof: We first prove the theorem for the special case p = 2 and then derive the general statement
from this. Let (bn) ⊂ V1

0 and (u0,n) be sequences with limits b ∈ V1
0 and u0 ∈ L∞(Ω) as assumed in the

theorem. Then, ‖un(t, ·)‖L∞(Ω) ≤ C1 < ∞ for any t ∈ [0, T ] and any n ∈ N due to Theorem 2.2. Therefore,
(un(t, ·)) ⊂ L2(Ω) represents a relatively compact subset with respect to the weak topology in L2(Ω) for all
t ∈ [0, T ]. In addition, we set gn,ϕ := 〈un(t, ·), ϕ〉 for ϕ ∈ C∞c (Ω) and we conclude with ψ ∈ C∞c ((0, T ))

T∫
0

ψ(t) d
dt
〈un(t, ·), ϕ〉dt = −

T∫
0

ψ′(t)〈un(t, ·), ϕ〉dt =
T∫

0

ψ(t) [〈un(t, ·)bn(t, ·),∇ϕ〉+ 〈un(t, ·) div bn(t, ·), ϕ〉] dt,
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i.e. (gn,ϕ) is weakly differentiable with derivative g′n,ϕ(t) = 〈un(t, ·)bn(t, ·),∇ϕ〉 + 〈un(t, ·) div bn(t, ·), ϕ〉. We
estimate for r, s ∈ [0, T ] with s < r

r∫
s

∣∣g′n,ϕ(t)
∣∣ dt ≤ r∫

s

hn(t)dt,

where hn(t) = C1 ·C(ϕ)
[
‖bn(t, ·)‖L1(Ω)N + ‖div bn(t, ·)‖L1(Ω)

]
and C(ϕ) > 0 is a bound depending on ϕ. The

set of functions (hn) form a uniformly integrable set in both cases: due to the strong convergence of (div bn)
in L1((0, T )×Ω) and in case (a) due to the strong convergence of (bn) to b in L1((0, T )×Ω)N and in case (b)
due to the estimate

r∫
s

‖bn(t, ·)‖L1(Ω)N dt ≤ ‖bn‖Lq((0,T ),L1(Ω))N |r − s|1/q
′
≤ C2 |r − s|1/q

′
.

Hence, the set of functions
(∣∣g′n,ϕ∣∣) is also uniformly integrable for fixed ϕ ∈ C∞c (Ω) and thus, we deduce

equicontinuity for the sequence (gn,ϕ) for any ϕ ∈ L2(Ω) in the following: let (ϕk) ⊂ C∞c (Ω) be a sequence
converging to ϕ in L2(Ω) and let 0 ≤ s < r ≤ T . Then, we obtain

|gn,ϕ(r)− gn,ϕ(s)| ≤
(
‖un(r, ·)‖L2(Ω) + ‖un(s, ·)‖L2(Ω)

)
‖ϕk − ϕ‖L2(Ω) +

r∫
s

∣∣g′n,ϕk
(t)
∣∣ dt.

Now for ε > 0, we find k(ε) ∈ N and δ(ε) > 0 such that ‖ϕk − ϕ‖L2(Ω) ≤ ε and
∫ r
s

∣∣g′n,ϕk
(t)
∣∣ dt ≤ ε for

all k ≥ k(ε) and |r − s| ≤ δ(ε). Then, |gn,ϕ(r)− gn,ϕ(s)| ≤ (C3 + 1)ε, where C3 = |Ω|1/2 C1. Consequently,
Arzelà-Ascoli yields that there exists a subsequence (unk

) and some v ∈ C([0, T ], L2(Ω)−w) such that unk
→ v

in C([0, T ], L2(Ω)−w). Using Lebesgue’s dominated convergence theorem and some simple calculations yield
in case (a) that v satisfies the weak formulation with vector field b and initial data u0. Hence, v is a weak
solution of the transport equation with vector field b and initial value u0 and thus unique, i.e. u = v. In case
(b), the same calculations yield that for any ψ ∈ C∞c ([0, T )× Ω)

∫
Ω

u0,nψ(0, ·) dx+
T∫

0

∫
Ω

un∂tψ + unψ div bn dxdt→
∫
Ω

u0ψ(0, ·) dx
T∫

0

∫
Ω

v∂tψ + vψ div b dxdt.

It remains to show that
T∫

0

∫
Ω

unbn · ∇ψ dxdt→
T∫

0

∫
Ω

vb · ∇ψ dxdt

is satisfied. Our aim is to use Theorem 3.3. Therefore, we have to show that (∂tun) is a bounded subset of
L1((0, T ), (Wm,2(Ω))′). We choose m so large that Wm,2(Ω) ↪→ C1(Ω). We know from above that for any
ϕ ∈Wm,2(Ω) and for almost all t ∈ (0, T )

〈∂tun(t, ·), ϕ〉 = 〈un(t, ·)bn(t, ·),∇ϕ〉+ 〈un(t, ·) div bn(t, ·), ϕ〉,

i.e. ∂tun(t, ·) ∈ (Wm,2(Ω))′ and thus, we estimate for ϑ ∈ L∞((0, T ),Wm,2(Ω))

|〈∂tun, ϑ〉| ≤ C4 ‖ϑ‖L∞((0,T ),Wm,2(Ω))

for some C4 > 0 independent of n ∈ N. The principle of uniform boundedness now yields that (∂tun) is a
bounded sequence in L1((0, T ), (Wm,2(Ω))′) and we can apply Theorem 3.3 leading to

T∫
0

∫
Ω

unbn · ∇ψ dxdt→
T∫

0

∫
Ω

vb · ∇ψ dxdt
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for any ψ ∈ C∞c ((0, T ) × Ω). The general case, i.e. for test functions in C∞c ([0, T ) × Ω) can be deduced
using smooth cut-off functions in time, i.e. (ηk) ⊂ C∞c ((0, T )) with 0 ≤ ηk(t) ≤ 1, ηk(t) → χ(0,T )(t) and
η′k

∗
⇀ δ0 − δT for all t ∈ (0, T ), k ∈ N as k → ∞. Thus, v satisfies the weak formulation and as above we

deduce that v = u. Finally, by a standard proof of contradiction, we obtain that the whole sequence (un)
converges to u in C([0, T ], L2(Ω) − w). Furthermore, following the previous argumentation, we obtain that
(un)2 converges to u2 in C([0, T ], L2(Ω) − w) due to the renormalization property of b. Then, Lemma 4.2
yields that un, u ∈ C([0, T ], L2(Ω)) for all n ∈ N and un → u in C([0, T ], L2(Ω)).
It remains to show the result for general p <∞. The case 1 ≤ p ≤ 2 is obviously satisfied due to the continuous
embedding of C([0, T ], L2(Ω)) into C([0, T ], Lp(Ω)) for p ≤ 2. Therefore, it remains to show the statement for
the case 2 < p <∞. So, let 2 < p <∞ and let t, s ∈ [0, T ]. Then, we estimate

‖un(t, ·)− un(s, ·)‖pLp(Ω) ≤ C
p−2
4 ‖un(t, ·)− un(s, ·)‖2L2(Ω) → 0

as t→ s. Obviously, the estimate also works for u. In the same way we estimate for t ∈ [0, T ]

‖un(t, ·)− u(t, ·)‖pLp(Ω) ≤ C
p−2
5 ‖un(t, ·)− u(t, ·)‖2L2(Ω)

and taking the supremum over [0, T ] yields the statement.
�

5 Stability of solution operator: second improvement
In this section, we improve the previous stability result. The improvement consists in replacing the strong
convergence of (div bn) to some div b in L1((0, T )×Ω) with boundedness of (div bn) in L1((0, T ), L∞(Ω)). This
refined result will be needed in the proof of existence of minimizing points for the optimal control problems in
the last section. In [16], this result is shown in Theorem II.5 for vector fields with spatial Sobolev regularity
under stronger assumptions on the convergence of the vector fields than we require. The idea of DiPerna and
Lions’ proof is the following: they convolve the unique solution u, corresponding to the vector field b, with
some mollifier ρε and obtain uε := u ∗ ρε. Then, they show that the function uε satisfies the same transport
equation but with some inhomogeneity rε. This inhomogeneity converges strongly to zero in some Lebesgue
space as ε → 0 (Theorem II.1 in [16]). As a next step they consider the difference un − uε of unique weak
solutions un corresponding to the vector fields bn and the smoothed uε. For this difference they can show that
it is uniformly bounded in n by two terms: by the L1-norm of the difference u−uε and by the Lebesgue norm
of rε. Taking the limit in ε yields their statement in the end. We take the same route to show our results
for vector fields with spatial BV -regularity. Unfortunately, the proof is much more complicated and we are
confronted with the same problem as Ambrosio had with the commutator rε = (div(bu)) ∗ ρε − div(b(u ∗ ρε)):
DiPerna and Lions had the case that their commutator converged strongly to zero in some Lebesgue space
as ε → 0 whereas Ambrosio’s commutator can only be split into a strongly convergent part r1,ε and some
weakly∗-convergent part r2,ε. Then, Ambrosio had to show carefully that this second term also vanishes as
ε→ 0. The same problem appears here with the inhomogeneity rε appearing in the transport equation satisfied
by the convolved solution uε. This inhomogeneity can only be split into a „good“ part r1,ε being convergent
in some Lebesgue space and a „bad“ part for which we have some estimate for the limit as ε→ 0. Therefore,
most parts of this section resemble the approach of Crippa in his thesis [11] and we use the same techniques to
tackle the problems. We start with some lemma that is a reproduction with some modifications of Proposition
3.2 in [14]. An incomplete proof of the statement is given in [14] and a complete, but longer proof is given in
Lemma 3.1.11 in [21].

Lemma 5.1 Let 1 ≤ q <∞, let g ∈ Lq
(
(0, T ), BV (RN )

)N and let z, w ∈ RN . Then, the difference quotient

w>(g(t, x+ δz)− g(t, x))
δ

can be written as w>g1,δ,z + w>g2,δ,z, where
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(i) w>g1,δ,z → w>Jgz in Lq
(
(0, T ), L1(RN )

)
as δ → 0, where Jg denotes the Radon-Nikodym derivative of

the absolutely continuous part Dag of Dg with respect to LN .

(ii) For any compact set K ⊂ RN and for almost all t ∈ (0, T ) we have

lim sup
δ→0

∫
K

∣∣w>g2,δ,z(t, x)
∣∣ dx ≤ ∣∣(w>Dsgz)(t, ·)

∣∣ (K)

where Dsg denotes the singular part of the measure Dg with respect to LN . Furthermore, for any
measurable set I ⊂ (0, T ) we have

lim sup
δ→0

∫
I

(∫
K

∣∣w>g2,δ,z(t, x)
∣∣ dx)q dt ≤

∫
I

(∣∣(w>Dsgz)(t, ·)
∣∣ (K)

)q
dt.

(iii) For every compact set K ⊂ RN , for almost all t ∈ (0, T ) and ε > 0 we have

sup
δ∈(0,ε)

∫
K

(∣∣w>g1,δ,z(t, x)
∣∣+
∣∣w>g2,δ,z(t, x)

∣∣) dx ≤ |w||z||Dg(t, ·)|(Kε),

where Kε = {x ∈ RN |dist(x,K) ≤ ε}. Furthermore, for any measurable set I ⊂ (0, T ) we have

sup
δ∈(0,ε)

∫
I

(∫
K

(∣∣w>g1,δ,z(t, x)
∣∣+
∣∣w>g2,δ,z(t, x)

∣∣) dx)q dt ≤
∫
I

(|w||z||Dg(t, ·)|(Kε))q dt.

The next theorem is an adaption of Theorem II.1 in [16] for vector fields with spatial BV -regularity instead
of Sobolev regularity. It plays an important role in the proof for the second (improved) stability theorem.

Theorem 5.2 Let 1 ≤ q < ∞ and b ∈ Lq((0, T ), BV0(Ω))N with div b ∈ Lq((0, T ), L∞(Ω)) and denote u the
unique weak solution of the transport equation with initial data u0 ∈ L∞(Ω). We set uε := u ∗ ρε, where ρ
denotes an even mollifier for the spatial variable with supp(ρ) ⊂ B1(0) and where we extended u (by zero) to
(0, T )×RN . Then uε satisfies

∂tuε + div(buε)− uε div b = rε in (0, T )×RN ,
uε(0, ·) = u0 ∗ ρε on RN ,

where
rε = r1,ε + r2,ε with r1,ε, r2,ε ∈ Lq

(
(0, T ), L1(RN )

)
and r1,ε, r2,ε having the following properties:

(i) There exists some compact set K ⊂ RN independent of ρ such that

r1,ε|(0,T )×(RN\K) ≡ 0 and r2,ε|(0,T )×(RN\K) ≡ 0

for any 1 ≥ ε > 0.

(ii) r1,ε → 0 in Lq
(
(0, T ), L1(RN )

)
as ε→ 0 and

(iii) for any measurable set I ⊂ (0, T ) and any compact set W ⊂ RN we have

lim sup
ε→0

∫
I

(∫
W

|r2,ε(t, x)| dx
)q

dt ≤ C
∫
I

(∫
W

Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)
)q

dt.

Here,Mb denotes the matrix valued Borel function such that Dsb = Mb |Dsb| and C > 0 is a constant depending
only on u.

11



Proof: We have

0 = [∂tu+ div(bu)− udiv b] ∗ ρε
= ∂t(u ∗ ρε) + div(b(u ∗ ρε))− u ∗ ρε div b+ div(bu) ∗ ρε
− (udiv b) ∗ ρε − div(b(u ∗ ρε)) + u ∗ ρε div b

and thus
∂t(uε) + div(b(uε))− uε div b = rε,

where rε is given by

rε = (udiv b) ∗ ρε − u ∗ ρε div b+ div(b(u ∗ ρε))− div(bu) ∗ ρε.

Obviously, the term (udiv b)∗ρε−u∗ρε div b converges to zero in Lq
(
(0, T ), L1(RN )

)
. Thus, we have a closer

look at the commutator
Rε := div(bu) ∗ ρε − div(b(u ∗ ρε)).

We can rewrite Rε using Lemma 5.1 as

Rε(t, x) = −
∫
RN

u(t, x+ εz)b1,ε,z(t, x)>∇ρ(z) dz − (u ∗ ρε)(t, x) div b(t, x) (10)

−
∫
RN

u(t, x+ εz)b2,ε,z(t, x)>∇ρ(z) dz. (11)

Then we define s1,ε as the function given in (10) and s2,ε as the function given in (11). We set

K :=
{
x ∈ RN | dist(x,Ω) ≤ 2

}
.

Then, since u is zero outside of Ω we immediately obtain that

r1,ε|(0,T )×(RN\K) ≡ 0 and r2,ε|(0,T )×(RN\K) ≡ 0,

where we define r1,ε := (udiv b) ∗ ρε − u ∗ ρε div b − s1,ε and r2,ε = −s2,ε. The functions s1,ε and s2,ε are
elements of Lq

(
(0, T ), L1(RN )

)
due to the following reason: we set i = 1, 2 and estimate

T∫
0

(∫
RN

∣∣∣∣∫
RN

u(t, x+ εz)bi,ε,z(t, x)>∇ρ(z) dz
∣∣∣∣ dx)q dt

≤ ‖u‖L∞((0,T )×Ω)

T∫
0

(∫
B1(0)

∫
K

∣∣bi,ε,z(t, x)>∇ρ(z)
∣∣ dxdz)q dt

≤ ‖u‖L∞((0,T )×Ω) |B1(0)|q−1
∫
B1(0)

T∫
0

(|∇ρ(z)| |z| |Db(t, ·)| (Kε))q dtdz <∞,

where we used point (iii) of Lemma 5.1. To finish the proof of point (ii) it remains to show that s1,ε → 0 in
Lq
(
(0, T ), L1(RN )

)
. For almost all t ∈ (0, T ) we deduce that

∫
RN

∫
RN

u(t, x+ εz)b1,ε,z(t, x)>∇ρ(z) dzdx→
∫
RN

u(t, x)
N∑

i,j=1
e>i Jb(t, x)ej

∫
RN

zj∂ziρ(z) dzdx

= −
∫
RN

u(t, x) div b(t, x) dx
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as ε→ 0. Using Lebesgue’s dominated convergence theorem and point (iii) of Lemma 5.1 then yields that

s1,ε → 0 in Lq
(
(0, T ), L1(RN )

)
as ε→ 0. It remains to show the property of s2,ε. Due to point (ii) in Lemma 5.1 we know that for almost all
t ∈ (0, T ) and for any compact set W ⊂ RN

lim sup
ε→0

∫
W

∣∣b2,ε,z(t, x)>∇ρ(z)
∣∣ dx ≤ ∣∣(∇ρ(z))>Dsb(t, ·)z

∣∣ (W ).

Moreover, since the support of ρ is a subset of B1(0) we obtain with Fubini for a measurable set I ⊂ (0, T )

lim sup
ε→0

∫
I

(∫
RN

∫
W

∣∣b2,ε,z(t, x)>∇ρ(z)
∣∣ dxdz)q dt ≤ ∫

I

(∫
RN

∣∣(∇ρ(z))>Dsb(t, ·)z
∣∣ (W ) dz

)q
dt.

The last term can be rewritten as∫
I

(∫
RN

∣∣(∇ρ(z))>Dsb(t, ·)z
∣∣ (W ) dz

)q
dt =

∫
I

(∫
W

Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)
)q

dt.

Thus, we conclude

lim sup
ε→0

∫
I

(∫
W

|s2,ε(t, x)| dx
)q

dt ≤ lim sup
ε→0

∫
I

(∫
W

∫
RN

∣∣u(t, x+ εz)b2,ε,z(t, x)>∇ρ(z)
∣∣ dzdx)q dt

≤ ‖u‖qL∞((0,T )×RN )

∫
I

(∫
W

Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)
)q

dt.

�
Now, we are prepared for the main result of this section which is a generalization of Theorem II.5 in [16] to
vector fields with spatial BV -regularity.

Theorem 5.3 (Second stability theorem) Let q ∈ (1,∞), u0 ∈ L∞(Ω) and let b ∈ L∞((0, T ) × Ω)N ∩
Lq((0, T ), BV0(Ω))N with div b ∈ Lq((0, T ), L∞(Ω)). Furthermore, let (bn) ⊂ VF0 and (u0,n) ⊂ L∞(Ω) be two
sequences with the following properties:

(i) (u0,n) is bounded in L∞(Ω) and converges to u0 in L1(Ω),

(ii) (bn) ⊂ Lq((0, T ), BV0(Ω))N is bounded and converges weakly to b in L1((0, T )× Ω)N ,

(iii) (div bn) ⊂ Lq((0, T ), L∞(Ω)) and is bounded in L1((0, T ), L∞(Ω)).

Then, for any 1 ≤ p < ∞, the sequence of unique solutions (un) ⊂ C([0, T ], L∞(Ω) − w∗) of (1) with vector
fields bn and initial data u0,n is a subset of C([0, T ], Lp(Ω)) and converges in C([0, T ], Lp(Ω)) to the unique
solution u ∈ C([0, T ], Lp(Ω)) of (1) with vector field b and initial value u0.

In the following, if some Lebesgue function is just defined on a proper subset of RN in the spatial variable,
then we extend this function by zero to the whole RN if we consider the function as some function defined on
R
N in our calculations.
We take some even mollifier ρ ∈ C∞c (B1(0)) and we set uε := u ∗ ρε for the unique solution u of the

transport equation with vector field b and initial value u0. We will prove the theorem in several consecutive
lemmas. In the first lemma we obtain an expression for the difference of un − uε.

Lemma 5.4 Under the assumptions of Theorem 5.3 the following expression for the difference un− uε holds:

∂t

∫
K

(un − uε)2 dx−
∫
K

(un − uε)2 div bn dx = 2
∫
K

(un − uε) (−r1,ε − r2,ε + (b− bn) · ∇uε) dx, (12)

where K ⊂ RN denotes the compact set of Theorem 5.2.
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Proof: Due to Theorem 5.2 we obtain that uε satisfies

∂tuε + div(buε)− uε div b = r1,ε + r2,ε in (0, T )×RN ,
uε(0, ·) = u0 ∗ ρε on RN .

We first assume that u0,l ∈ C∞c (Ω) and bl ∈ C∞c ((0, T ) × Ω). Then, the corresponding solution ul of the
transport equation is also smooth with zero spatial boundary value. These functions can be obviously extended
in a smooth way to RN in the spatial domain. We take β ∈ C1(R) such that β(0) = 0. Then, we write

∂tβ(ul − uε) + div(blβ(ul − uε))− β(ul − uε) div bl (13)
= β′(ul − uε) (∂t(ul − uε) + div(bl(ul − uε))− (ul − uε) div bl)
= β′(ul − uε) (−r1,ε − r2,ε + (b− bl) · ∇uε) . (14)

For the initial value we have that β(ul(0, ·)−uε(0, ·)) = β(u0,l−u0 ∗ ρε). In the following we denote by K the
compact set given in point (i) in Theorem 5.2 and we know that Ω ⊂ K. Now, integrating over K yields

∂t

∫
K

β(ul − uε) dx−
∫
K

β(ul − uε) div bl dx =
∫
K

β′(ul − uε) (−r1,ε − r2,ε + (b− bl) · ∇uε) dx.

Choosing β(t) = t2 for t ∈ R yields that

∂t

∫
K

(ul − uε)2 dx−
∫
K

(ul − uε)2 div bl dx = 2
∫
K

(ul − uε) (−r1,ε − r2,ε + (b− bl) · ∇uε) dx.

Our first assumption was that ul, bl and u0,l are smooth functions. Therefore, we take a sequence of smooth
functions (bn,k)k such that

bn,k → bn in L1((0, T )× Ω)N and div bn,k → div bn in L1((0, T )× Ω) as k →∞.

In addition, we take a sequence of smooth and bounded functions (u0,n,k)k ⊂ C∞c (Ω) converging to u0,n in
L1(Ω). Then, the above equation is valid for bn,k and un,k and Theorem 4.3 yields for k →∞

∂t

∫
K

(un − uε)2 dx−
∫
K

(un − uε)2 div bn dx = 2
∫
K

(un − uε) (−r1,ε − r2,ε + (b− bn) · ∇uε) dx.

�

Lemma 5.5 Under the assumptions of Theorem 5.3 the following estimate holds:

∫
K

((un − uε)(t, ·))2 dx ≤ (C2 + 1) ·

C1

T∫
0

∫
K

|r1,ε| dxds+
∫
K

((u0,n − u0,ε)2 dx

+ 2

∣∣∣∣∣∣
t∫

0

∫
K

(un − uε)r2,ε dxds

∣∣∣∣∣∣
+ 2C2 max

s∈[0,T ]

∣∣∣∣∣∣
s∫

0

∫
K

(un − uε)r2,ε dxdr

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
t∫

0

∫
K

(un − uε)(b− bn) · ∇uε dxds

∣∣∣∣∣∣
+ 2C3

t∫
0

‖div bn(s, ·)‖L∞(Ω)

∣∣∣∣∣∣
s∫

0

∫
K

(un − uε)(b− bn) · ∇uε dxdr

∣∣∣∣∣∣ ds
(15)

for some constants C3, C2, C1 > 0 and any t ∈ [0, T ].

14



Proof: We use expression (12) of Lemma 5.4 and estimate:

∂t

∫
K

((un − uε))2 dx ≤ ‖div bn(t, ·)‖L∞(Ω)

∫
K

(un − uε)2
dx+ C1

∫
K

|r1,ε| dx− 2
∫
K

(un − uε)r2,ε dx

+ 2
∫
K

(un − uε)(b− bn) · ∇uε dx

where C1 > 0 can be chosen as C1 := 2 sup
n
‖u0,n‖L∞(Ω) + 2 ‖u0‖L∞(Ω). Integrating in time yields

∫
K

((un − uε)(t, ·))2 dx ≤
t∫

0

‖div bn(s, ·)‖L∞(Ω)

∫
K

((un − uε))2 dxds+ 2

∣∣∣∣∣∣
t∫

0

∫
K

(un − uε)(b− bn) · ∇uε dxds

∣∣∣∣∣∣
+ C1

T∫
0

∫
K

|r1,ε| dxds+ 2

∣∣∣∣∣∣
t∫

0

∫
K

(un − uε)r2,ε dxds

∣∣∣∣∣∣+
∫
K

((u0,n − u0,ε)2 dx.

Using Grönwall’s Lemma yields

∫
K

((un − uε)(t, ·))2 dx ≤

C1

T∫
0

∫
K

|r1,ε| dxds+
∫
K

((u0,n − u0,ε)2 dx


·

1 +
t∫

0

‖div bn(s, ·)‖L∞(Ω) e
∫ t

s
‖div bn(r,·)‖L∞(Ω)dr ds


+ 2

∣∣∣∣∣∣
t∫

0

∫
K

(un − uε)r2,ε dxds

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
t∫

0

∫
K

(un − uε)(b− bn) · ∇uε dxds

∣∣∣∣∣∣
+ 2

t∫
0

∣∣∣∣∣∣
s∫

0

∫
K

(un − uε)r2,ε dxdr

∣∣∣∣∣∣ ‖div bn(s, ·)‖L∞(Ω) e
∫ t

s
‖div bn(r,·)‖L∞(Ω)dr ds

+ 2
t∫

0

∣∣∣∣∣∣
s∫

0

∫
K

(un − uε)(b− bn) · ∇uε dxdr

∣∣∣∣∣∣ ‖div bn(s, ·)‖L∞(Ω) e
∫ t

s
‖div bn(r,·)‖L∞(Ω)dr ds.

Setting

C2 := esupn

∫ T
0 ‖div bn(t,·)‖L∞(Ω)dt sup

n

T∫
0

‖div bn(t, ·)‖L∞(Ω) dt and C3 := esupn

∫ T
0 ‖div bn(t,·)‖L∞(Ω)dt

yields the statement of the lemma.
�
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Lemma 5.6 Under the assumptions of Theorem 5.3 we have

lim sup
n→∞

∫
K

|un(t, ·)− u(t, ·)| dx

2

≤ C5

∫
K

|uε(t, ·)− u(t, ·)| dx+ C4

∫
K

(uε(t, ·)− u(t, ·))2 dx+ 2CC1Rε(s∗)

+ C4C1(C1 + 1)
T∫

0

∫
K

|r1,ε| dxds+ C4(C2 + 1)
∫
K

((u0 − u0,ε)2 dx

+ 2C4

∣∣∣∣∣∣
t∫

0

∫
K

(w1 − uε)r2,ε dxds

∣∣∣∣∣∣
(16)

for some specific w1 ∈ L∞((0, T )× Ω), s∗ ∈ [0, T ] and some function Rε ∈ C([0, T ]).

Proof: The proof of Theorem 4.3 shows that there are subsequences (un), (u2
n) ∈ C([0, T ], L∞(Ω)− w∗)

and (un div bn), (u2
n div bn) ∈ L1((0, T ), L∞(Ω)) (labeled by n again) and w1, w2 ∈ L∞((0, T )×Ω) and w3, w4 ∈

L1((0, T )× Ω) such that un
∗
⇀ w1 in L∞((0, T )× Ω) and

un ⇀ w1 and u2
n ⇀ w2 in C([0, T ], L2(Ω)− w),

un div bn ⇀ w3 and u2
n div bn ⇀ w4 in L1((0, T )× Ω).

In particular, w1(0, ·) = u0 and w2(0, ·) = u2
0. We restrict to these subsequences. Furthermore, the mappings

Rn,ε : [0, T ] → R defined by s 7→ Rn,ε(s) :=
∣∣∫ s

0
∫
K

(un − uε)r2,ε dxdr
∣∣ are equicontinuous in n: for 0 ≤ s ≤

t ≤ T we obtain that

|Rn,ε(t)−Rn,ε(s)| ≤

∣∣∣∣∣∣
t∫
s

∫
K

(un − uε)r2,ε dxdr

∣∣∣∣∣∣ ≤ C1

t∫
s

∫
K

|r2,ε| dxdr.

We set Rε : [0, T ] → R, s 7→ Rε(s) :=
∣∣∫ s

0
∫
K

(w1 − uε)r2,ε dxdr
∣∣ and obtain that Rn,ε(s) → Rε(s) for all s ∈

[0, T ]. As Rn,ε are continuous functions for all n ∈ N, we find sn ∈ [0, T ] such that Rn,ε(sn) := max
s∈[0,T ]

Rn,ε(s).

Then, (sn) represents a bounded sequence and thus, there is a convergent subsequence (sn) (which is labeled
by n again) with limit s∗ ∈ [0, T ]. We restrict to this subsequence. We conclude for the subsequence

|Rn,ε(sn)−Rε(s∗)| ≤ |Rn,ε(sn)−Rn,ε(s∗)|+ |Rn,ε(s∗)−Rε(s∗)| → 0 (17)

as n→∞ since Rn,ε are equicontinuous. Now, we estimate∫
K

|un − u| dx

2

≤

∫
K

|un − uε| dx

2

+

∫
K

|uε − u| dx

2

+ 2
∫
K

|un − uε| dx
∫
K

|uε − u| dx

≤ C4

∫
K

(un − uε)2 dx+ C4

∫
K

(uε − u)2 dx+ C5

∫
K

|uε − u| dx (18)

with C4 = |K|1/2. As in the proof of Theorem 4.3 we obtain as a consequence of Theorem 3.3 that

unbn
∗
⇀ w1b inM((0, T )× Ω)N . (19)

Since (un) is bounded in L∞((0, T )× Ω) and (bn) is bounded in Lp((0, T )× Ω)N for p = min(q,N/(N − 1)),
we obtain that (unbn) is bounded in Lp((0, T ) × Ω)N and thus with (19) we deduce that unbn ⇀ w1b in
Lp((0, T )× Ω)N . Consequently, we obtain that∣∣∣∣∣∣

s∫
0

∫
K

(un − uε)(b− bn) · ∇uε dxdr

∣∣∣∣∣∣→ 0 as n→ 0
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for any s ∈ [0, T ] and with Lebesgue’s dominated convergence theorem we conclude that

t∫
0

‖div bn(s, ·)‖L∞(Ω)

∣∣∣∣∣∣
s∫

0

∫
K

(un − uε)(b− bn) · ∇uε dxdr

∣∣∣∣∣∣ ds→ 0

as n→∞ for any t ∈ [0, T ]. Taking the limes superior over n and using estimates (15), (18) as well as relation
(17) yield

lim sup
n→∞

∫
K

|un(t, ·)− u(t, ·)| dx

2

≤ C5

∫
K

|uε(t, ·)− u(t, ·)| dx+ C4

∫
K

(uε(t, ·)− u(t, ·))2 dx+ 2C4C2Rε(s∗)

+ C4C1(C2 + 1)
T∫

0

∫
K

|r1,ε| dxds+ C4(C2 + 1)
∫
K

((u0 − u0,ε)2 dx

+ 2C4

∣∣∣∣∣∣
t∫

0

∫
K

(w1 − uε)r2,ε dxds

∣∣∣∣∣∣ .
�

Lemma 5.7 Under the assumptions of Theorem 5.3 there exists a sequence (εm) with 0 < εm ≤ 1 for all
m ∈ N and εm → 0 as m→∞ such that

2(w1 − uεm
)r2,εm

∗
⇀ σ inM([0, T ]×K) as m→∞.

The measure σ ∈M([0, T ]×K) is independent of the mollifier ρ.

Proof: We know that

2 sup
0<ε≤1

T∫
0

∫
K

|w1(t, x)− uε(t, x)| |r2,ε(t, x)| dxdt <∞

and thus, there exists a sequence (εm) with 0 < εm ≤ 1 for all m ∈ N and εm → 0 such that 2(w1− uεm
)r2,εm

converges to some σρ ∈M([0, T ]×K). This limit measure σρ is not depending on ρ:
for t ∈ (0, T ) we take the following sequence (ηt,k) ⊂ C∞c ([0, T )) such that

0 ≤ ηt,k(s) ≤ 1 ∀ s ∈ (0, T ), ηt,k(s)→ χ[0,t](s) ∀ s ∈ [0, T ) and η′t,k → δ0 − δt

in the distributional sense. Lebesgue’s dominated convergence theorem then yields that ηt,k → χ[0,t] in
Lr((0, T )) for all 1 ≤ r <∞ and for any t ∈ [0, T ). Hence, from the equation given by lines (13) and (14) we
deduce, setting β(t) = t2 for all t ∈ R and integrating over [0, T ]×K with test functions ϕ ∈ C∞c ([0, T ]×K)
and fixed s ∈ [0, T ):

0 =
T∫

0

η′s,k

∫
K

(un − uεm)2ϕ dxdt+
∫
K

ηs,k(0)ϕ(0, ·)(un(0, ·)− uεm(0, ·))2 dx

+
T∫

0

∫
K

(un − uεm)2ηs,k(∂tϕ+ bn · ∇ϕ+ ϕdiv bn) + 2(un − uεm)ϕηs,k(−r1,εm − r2,εm + (b− bn) · ∇uεm) dxdt.
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where un and bn denotes the above solutions and vector fields. Now, taking the limit in n yields with the same
argument as in the proof of the previous lemma for products of weakly convergent sequences

0 =
T∫

0

∫
K

(w2 − 2w1uεm + u2
εm

)(ϕη′s,k + ηs,k(∂tϕ+ b · ∇ϕ)) dxdt+
T∫

0

∫
K

ϕηs,k(w4 − 2w3uεm + u2
εm

div b) dxdt

+
∫
K

ηs,k(0)ϕ(0, ·)
(
u2

0 − 2uεm(0, ·)u0 + (uεm(0, ·))2) dx− 2
T∫

0

∫
K

(w1 − uεm)ϕηs,k(r1,εm + r2,εm) dxdt.

(20)

For the last term in (20), we have

2

∣∣∣∣∣∣
T∫

0

∫
K

(ηs,k − χ[0,s])(w1 − uεm
)ϕ(r1,εm

+ r2,εm
) dxdt

∣∣∣∣∣∣
≤ 2

 T∫
0

∣∣ηs,k − χ[0,s]
∣∣q′ dt

1/q′  T∫
0

∫
K

|(w1 − uεm
)ϕ(r1,εm

+ r2,εm
)| dx

q

dt

1/q

≤ 2C

 T∫
0

∣∣ηs,k − χ[0,s]
∣∣q′ dt

1/q′

→ 0 as k →∞,

where C > 0 is an upper bound for supm∈N
(∫ T

0
(∫
K
|(w1 − uεm

)ϕ(r1,εm
+ r2,εm

)| dx
)q
dt
)1/q

. Thus, we can
switch the limiting processes of k → ∞ and m → ∞ and we obtain using r1,εm

→ 0 in L1((0, T ) × K) as
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m→∞

lim
k→∞

〈σρ, ϕηs,k〉 = lim
m→∞

lim
k→∞

2
T∫

0

∫
K

(w1 − uεm
)r2,εm

ϕηs,k dxdt

= lim
m→∞

lim
k→∞

T∫
0

∫
K

(w2 − 2w1uεm
+ u2

εm
)(ϕη′s,k + ηs,k(∂tϕ+ b · ∇ϕ)) dxdt

+ lim
m→∞

lim
k→∞

∫
K

ηs,k(0)ϕ(0, ·)
(
u2

0 − 2uεm
(0, ·)u0 + (uεm

(0, ·))2) dx
+ lim
m→∞

lim
k→∞

T∫
0

ηs,k

∫
K

ϕ(w4 − 2w3uεm
+ u2

εm
div b) dxdt

= lim
m→∞

∫
K

ϕ(0, ·)
(
u2

0 − 2u0uεm
(0, ·) + (uεm

(0, ·))2 + w2(0, ·)

−2w1(0, ·)uεm
(0, ·) + (uεm

(0, ·))2) dx
−
∫
K

ϕ(s, ·)
(
w2(s, ·)− 2w1(s, ·)uεm

(s, ·) + (uεm
(s, ·))2) dx


+ lim
m→∞

 s∫
0

∫
K

(w2 − 2w1uεm
+ u2

εm
)(∂tϕ+ b · ∇ϕ) dxdt

+ϕ(w4 − 2w3uεm
+ u2

εm
div b) dxdt

]
=

s∫
0

∫
K

(w2 − 2w1u+ u2)(∂tϕ+ b · ∇ϕ) + ϕ(w4 − 2w3u+ u2 div b) dxdt

−
∫
K

ϕ(s, ·)
(
w2(s, ·)− 2w1(s, ·)u+ u(s, ·)2) dx

since

w2(0, ·)− 2w1(0, ·)uεm(0, ·) + (uεm(0, ·))2 = u2
0 − 2u0uεm(0, ·) + (uεm(0, ·))2 ⇀ 0 in L2(Ω).

From the above equation and the preceding estimates and equations we get the following information: if we
omit ηs,k at the beginning and just test with ϕ, we see that the measure σρ is given by

σρ = −∂t(w2 − 2w1u+ u2)− div(b(w2 − 2w1u+ u2)) + (w4 − 2w3u+ u2 div b)

and thus, independent of the mollifier ρ. Therefore, we call σρ just σ in the following. Furthermore, if we
restrict σ to the set [0, s] × K and denote the restriction σs we obtain from the above equation for any
ϕ ∈ Cc([0, T ]×K):∫

[0,s]

∫
K

ϕ dσs =
∫

[0,T ]

∫
K

χ[0,s]ϕ dσ = lim
k→∞

∫
[0,T ]

∫
K

ϕ(χ[0,s] − ηs,k) dσ + lim
k→∞

∫
[0,T ]

∫
K

ϕηs,k dσ

= −
∫
K

ϕ(s, ·)(w2(s, ·)− 2w1(s, ·)u+ (u(s, ·))2) dx

+
s∫

0

∫
K

(w2 − 2w1u+ u2)(∂tϕ+ b · ∇ϕ) + ϕ(w4 − 2w3u+ u2 div b) dxdt,
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i.e. the restriction 2[(w1 − uεm)r2,εm ]|[0,s]×KL1 ⊗ LN converges weakly∗ to

σs = −∂t
(
(w2 − 2w1u+ u2)|[0,s]×K

)
− div

(
b(w2 − 2w1u+ u2)|[0,s]×K

)
+ (w4 − 2w3u+ u2 div b)|[0,s]×K .

�
In the last lemma we use this measure to show that the right side of estimate (16) is zero. This gives us the
statement of Theorem 5.3. The conclusion works in the same way as in section 2.6 in [11]. Therefore, we first
introduce some definitions.

Definition 5.8 For any ρ ∈ C∞c
(
R
N
)
and any N ×N -matrix M we define

Λ(M,ρ) =
∫
RN

|(∇ρ(z))>Mz| dz.

In addition, we define the following set

K :=
{
ρ ∈ C∞c (B1(0)) such that ρ ≥ 0 is even, and

∫
B1(0)

ρ(x) dx = 1
}
.

Lemma 5.9 Under the assumptions of Theorem 5.3 the statement of the theorem holds.

Proof: So far, we have shown that our limits do not depend on the specific mollifier and we go back to
estimate (16). Taking the supremum over m ∈ N with t ∈ [0, T ] and ϕ ≡ 1 on [0,max(t, s∗)]×K yields:

lim sup
n→∞

∫
K

|un(t, x)− u(t, x)| dx

2

≤ 2C sup
m∈N

∣∣∣∣∣∣
t∫

0

∫
K

(w1(s, x)− uεm
(s, x))r2,εm

(s, x) dxds

∣∣∣∣∣∣
+ CC1 sup

m∈N
Rεm

(s∗)

= C |σt([0, t]×K)|+ CC1 |σs∗([0, s∗]×K)| .

Now, in the remaining part we show that σ = 0. This will work in the same way as it is shown that the limit
measure of the commutator is zero in [11]. The sequence (|(w1 − uεm)r2,εm |) is bounded in L1((0, T )×K) and
thus, a subsequence converges weakly∗ to some measure λ ∈M([0, T ]×K). Due to Proposition 1.62 in [4] we
have that |σ| ≤ λ. Hence, restricting to this subsequence we obtain for ϕ ∈ Cc([0, T ]×K)

∫
[0,T ]

∫
K

|ϕ(t, x)| d |σ| (t, x) ≤ lim sup
m→∞

T∫
0

∫
K

|ϕ(t, x)| |(w1(t, x)− uεm
(t, x))r2,εm

(t, x)| dxdt

≤ C lim sup
m→∞

T∫
0

∫
K

|ϕ(t, x)|
∫
RN

|b2,εm,z(t, x) · ∇ρ(z)| dzdxdt. (21)

Now, setting S := ‖ϕ‖C([0,T ]×K) and

Wt,y := {x ∈ K| |ϕ| (t, x) > y}
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we rewrite (21) and obtain

C lim sup
m→∞

T∫
0

S∫
0

∫
Wt,y

∫
RN

|b2,εm,z(t, x) · ∇ρ(z)| dzdxdydt

≤ C
T∫

0

S∫
0

∫
RN

lim sup
m→∞

∫
Wt,y

|b2,εm,z(t, x) · ∇ρ(z)| dxdzdydt

≤ C
T∫

0

S∫
0

∫
RN

∣∣(∇ρ(z))>(Dsb)(t, ·)z
∣∣ (Wt,y) dzdydt

= C

T∫
0

∫
K

|ϕ(t, x)|Λ(Mb(t, x), ρ) d |Dsb(t, ·)| (x)dt.

Thus, |σ| ≤ CΛ(Mb, ρ) |Dsb| and thus, there exists a Borel function f such that |σ| = f |Dsb| and

|f(t, x)| ≤ CΛ(Mb(t, x), ρ) for |Dsb| -a.e. (t, x).

Since |σ| is not depending on the mollifier ρ, we deduce with the same argumentation as in [11]

|f(t, x)| ≤ inf
ρ∈K′

CΛ(Mb(t, x), ρ) = inf
ρ∈K

CΛ(Mb(t, x), ρ) for |Dsb| -a.e. (t, x),

where K′ ⊂ K denotes a countable dense subset. Then, the Lemma of Alberti (see Lemma 2.6.6 in [11]) yields
that

|f(t, x)| ≤ C |trace(Mb(t, x))| = 0 for |Dsb| -a.e. (t, x),
since the singular part of Div b is zero. Therefore, we obtain that σ = 0 and thus for t ∈ [0, T )

lim sup
n→∞

∫
RN

|un(t, x)− u(t, x)| dx

2

= 0.

For the subsequence (un) being convergent to w1 in C([0, T ], L2(Ω)−w), we conclude that w1(t, ·) = u(t, ·) for
all t ∈ [0, T ]. Analogously, we obtain that w2(t, ·) = u2(t, ·) for all t ∈ [0, T ]. Using a proof by contradiction
as in the proof of Theorem 4.3, we obtain that the whole sequence (un) converges to u in C([0, T ], L2(Ω)) and
using the boundedness of (un) in L∞((0, T )× Ω), we get that the convergence is valid in C([0, T ], Lp(Ω)) for
any 1 ≤ p <∞.

�

6 Predual of the space BV (Ω)
In the space BV (Ω) an often used topology is the so-called weak∗ topology. The name of the topology is
misleading since this topology is not the standard weak∗ topology in functional analysis if BV (Ω) is seen as a
dual space of a separable Banach space. In Remark 3.12 in [4] it is mentioned that these two topologies coincides
if the domain is sufficiently regular. We will show that Lipschitz regularity for the domain is sufficient. With
this result we do not need to distinguish between these two topologies in the subsequent parts, in particular
in the case when we consider vector fields as Gelfand integrable functions where BV (Ω) is regarded as a dual
space with (dual) weak∗ topology.

In Remark 3.12 in [4], a sketch for constructing the predual of BV (Ω) is given. In the following, we call
Γ(Ω) the predual of BV (Ω) and we give a precise construction of Γ(Ω): we set X := C0(Ω)N+1 and

E :=
{

Φ = (Φ0, . . . ,ΦN ) ∈ X,ϕ = (Φ1, . . . ,ΦN ) ∈ C∞c (Ω)N such that divϕ = Φ0
}
.
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Then E is a subspace of X and we set Y as the closure of E with respect to ‖·‖C(Ω)N+1 . Now Remark 3.12 in
[4] yields that the map T given by

T : BV (Ω)→M(Ω)N+1, u 7→ (uLN , ∂x1u, . . . , ∂xN
u)

is an isomorphism between BV (Ω) and T (BV (Ω)) with

‖u‖BV (Ω) ≤ 2 ‖T (u)‖M(Ω)N+1 ≤ 2 ‖u‖BV (Ω) .

Furthermore, for all Φ ∈ E and u ∈ BV (Ω) we have that

(T (u),Φ)(M(Ω)N+1,C0(Ω)N+1) =
(
uLN ,Φ0

)
(M(Ω),C0(Ω)) +

N∑
k=1

(∂xk
u,Φk)(M(Ω),C0(Ω))

=
(
uLN ,divϕ

)
(M(Ω),C0(Ω)) +

N∑
k=1

(∂xk
u,Φk)(M(Ω),C0(Ω))

=
(
uLN ,divϕ

)
(M(Ω),C0(Ω)) −

(
uLN ,divϕ

)
(M(Ω),C0(Ω)) = 0.

(22)

Hence, we obtain that (T (u), y) = 0 for all u ∈ BV (Ω) and all y ∈ Y . This means that T (BV (Ω)) ⊂ Y ◦, the
annihilator of Y , which is the set of linear functionals L ∈ X ′ such that Y lies in the kernel of L. By using
the following result we conclude that Y ◦ = T (BV (Ω)).

Lemma 6.1 Let Ω ⊂ RN be an open set and µ, νi ∈M(Ω) for i = 1, . . . , N such that∫
Ω

∂xiϕ(x) dµ(x) = −
∫
Ω

ϕ(x) dνi(x) ∀ ϕ ∈ C1
c (Ω), i = 1, . . . , N.

Then, there exists a unique u ∈ BV (Ω) such that µ = uLN .

Proof: The proof can be found in Lemma 4.1.1 in [21].
�

Hence, Theorem III.1.10 in [30] yields that Y ◦ ' (X/Y )′ and an isomorphism is given by

T1 : Y ◦ → (X/Y )′ , y 7→ T1(y)

with
T1(y) : X/Y → R, [w] 7→ 〈T1(y), [w]〉((X/Y )′,X/Y ) = 〈y, w〉(X′,X)

which is well-defined due to (22). Hence, BV (Ω) is isomorphic to (X/Y )′ via T1 ◦ T and we can identify the
predual Γ(Ω) with X/Y . Now, for some u ∈ BV (Ω), we define

〈u, [w]〉(BV (Ω),Γ(Ω)) =
(
uLN , w0

)
(M(Ω),C0(Ω)) +

N∑
k=1

(∂xk
u,wk)(M(Ω),C0(Ω)) (23)

for all [w] ∈ Γ(Ω) with w ∈ X and w = (w0, w1, . . . , wN ). Therefore, we conclude for a sequence (un) ⊂ BV (Ω)
and some u ∈ BV (Ω) (we use the notation ∗

⇀ for the standard weak∗ topology in functional analysis and ∗∗⇀
for the usually used weak∗ topology in BV (Ω)):

un
∗
⇀ u⇔ 〈un − u, [w]〉(BV (Ω),Γ(Ω)) ∀ [w] ∈ Γ(Ω)

⇔ unLN
∗
⇀ uLN inM(Ω) and

∂xi
un

∗
⇀ ∂xiu inM(Ω) ∀ i ∈ {1, . . . , N}

⇔ un → u in L1(Ω) and

∂xi
un

∗
⇀ ∂xi

u inM(Ω) ∀ i ∈ {1, . . . , N}

⇔ un
∗∗
⇀ u.
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In the third equivalence relation we used the fact that for domains with compact Lipschitz boundary BV (Ω)
is compactly embedded in L1(Ω) (see Proposition 3.21 and Corollary 3.49 in [4]). Hence, for Lipschitz regular
and bounded domains, these two topologies coincides and in the following we will use the term weak∗ and the
notation ∗

⇀ for both topologies.

7 Closedness of bounded sets of time dependent vector fields
In this section, we have a closer look at norm bounded sets of vector fields. In the main theorem we will
prove that sequences (bn) ⊂ Vq which are bounded with respect to some norm contain subsequences which
are convergent in a weak sense and whose limits are again vector fields with the same temporal and spatial
regularities. The statement will play a crucial role in the next section: in the proof of existence of minima,
the result of this section will give us a limit for which it can be shown that it represents a minimum. We start
with the definition of K-convergence for vector-valued functions.

Definition 7.1 (Komlós convergence (K-convergence)) Let X be a separable Banach space. A sequence
of functions fn : (0, T )→ X ′ is said K-convergent to a mapping f : (0, T )→ X ′ if for every subsequence (nk)
of (n)

1
n

n∑
k=1

fnk
(t) ∗⇀ f(t)

for almost all t ∈ (0, T ).

This type of convergence plays an important role in the proof of the following main result of this section which
is based on results of [10].

Theorem 7.2 Let q ∈ (1,∞) and let (bn) ⊂ Vq be a sequence. If (bn) is bounded, i.e.

sup
n∈N
‖bn‖Lq((0,T ),BV (Ω))N ≤ C <∞

for some C > 0, then there exists a subsequence (bnk
) and a function b ∈ Vq such that the following properties

are satisfied:

(i) for almost all t ∈ (0, T ) b(t) ∈ conv({bn(t)|n ∈ N}
w∗

)
w∗

,

(ii) for any measurable set B ∈ B((0, T ))∫
B

bn(t, ·)dt ∗⇀
∫
B

b(t, ·)dt in BV (Ω)N ,

(iii) for any measurable set B ∈ B((0, T )) and any monotonically increasing, convex function g : R+
0 → R

+
0

with g(x) ∈ O(|x|) (for |x| → ∞)∫
B

g
(
‖Db(t, ·)‖qM(Ω)N×N

)
dt ≤ lim inf

n→∞

∫
B

g
(
‖Dbn(t, ·)‖qM(Ω)N×N

)
dt,

(iv) bn ⇀ b in Lp((0, T )× Ω)N as n→∞ for any p ∈ [1,min(q,N/(N − 1))).

Proof: We first show that for any [w] ∈ Γ(Ω)N the set of functions

t 7→ 〈bn(t, ·), [w]〉(BV (Ω)N ,Γ(Ω)N ) (24)
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is uniformly integrable in n ∈ N. Then, results from [10] will yield most of our statements. Let [w] ∈ Γ(Ω)N .
We take a fixed representative w ∈ C0(Ω)N×(N+1) and estimate for any measurable set B ⊂ (0, T )∫

B

∣∣∣〈bn(r, ·), [w]〉(BV (Ω)N ,Γ(Ω)N )

∣∣∣ dr ≤ N∑
i=1

∫
B

∣∣〈bi,n(r, ·)LN , wi,1〉
∣∣ dr (25)

+
N∑
i=1

N∑
j=1

∫
B

∣∣〈∂xj
bi,n(r, ·), wi,j+1〉

∣∣ dr. (26)

Now, we have a closer look at the terms (25) and (26). For term (25) we obtain

N∑
i=1

∫
B

∣∣〈bi,n(r, ·)LN , wi,1〉
∣∣ dr ≤ |B|1/q′ C1

N∑
i=1
‖wi,1‖C(Ω) (27)

for some C1 > 0 independent of n ∈ N. For the second term (26) we estimate

N∑
i=1

N∑
j=1

∫
B

∣∣〈∂xj bi,n(r, ·), wi,j+1〉
∣∣ dr ≤ |B|1/q′ C2

N∑
i=1

N∑
j=1
‖wi,j+1‖C(Ω) (28)

for some C2 > 0 independent of n ∈ N. The uniform integrability of the functions in (24) follows directly from
estimates (25)-(28). Now, Theorem 3.1 (b) in [10] yields that there exists a subsequence (labeled by n again)
and a Gelfand integrable function b ∈ L1((0, T ), BV (Ω))N such that〈∫

B

b(t, ·)dt, [w]
〉

=
∫
B

〈b(t, ·), [w]〉 dt ≤ lim inf
n→∞

∫
B

〈bn(t, ·), [w]〉 dt = lim inf
n→∞

〈∫
B

bn(t, ·)dt, [w]
〉

for any [w] ∈ Γ(Ω)N and for any measurable B ∈ B((0, T )). Since the above inequality is satisfied both for [w]
and −[w], we conclude that ∫

B

bn(t, ·)dt ∗⇀
∫
B

b(t, ·)dt in BV (Ω)N (29)

for any B ∈ B((0, T )). Due to Proposition 3.1 in [10] we can choose the subsequence (bn) such that it is
K-convergent to b. Furthermore, part (c) of Theorem 3.1 in [10] yields point (i). Since BV (Ω) is compactly
embedded in Lp(Ω) for any p < N/(N − 1), (29) yields that∫

B

bn(t, ·)dt→
∫
B

b(t, ·)dt in Lp(Ω)N

for any B ∈ B((0, T )) and any p < N/(N − 1). Now, Theorem 10.4 (i) in [28] yields that for p ∈
(1,min(q,N/(N − 1))) and for h ∈ Lp

′((0, T ) × Ω)N with 1/p′ + 1/p = 1, there is a sequence (hk) ⊂
Lp
′((0, T ), Lp′((Ω))N of simple functions such that hk → h in Lp

′((0, T ), Lp′(Ω))N . Denote Ak,i ⊂ (0, T ),
i = 1, . . . ,K(k) the different measurable subsets where hk is constant with value hk,i ∈ Lp

′(Ω). Then, we
conclude

|〈h, bn − b〉| ≤
K(k)∑
i=1

∣∣∣∣∣∣∣〈hk,i,
∫
Ak,i

bn(t, ·)− b(t, ·)dt〉

∣∣∣∣∣∣∣+ C ‖hk − h‖Lp′ ((0,T ),Lp′ (Ω))N

for some C > 0 since (bn) is bounded in Lp((0, T )×Ω)N . This yields that |〈h, bn − b〉| → 0 as n→∞. Thus,
bn ⇀ b in Lp((0, T ) × Ω)N and hence in L1((0, T ) × Ω)N . It remains to show that b ∈ Lq((0, T ), BV (Ω))N
and point (iii) holds. We consider the sequence (Dbn) ⊂ Lq((0, T ),M(Ω)N×N ). For this sequence we do the
same steps as in the proof of Theorem 3.1 (a) in [10] but with some differences: due to the boundedness of

24



(∫ T
0 ‖Dbn(t, ·)‖qM(Ω)N×N dt

)
and g(x) ∈ O(|x|), we obtain that supn∈N

∫ T
0 g

(
‖Dbn(t, ·)‖qM(Ω)N×N

)
dt < ∞.

Thus,

A := lim inf
n→∞

T∫
0

g
(
‖Dbn(t, ·)‖qM(Ω)N×N

)
dt <∞

and we choose a convergent subsequence (labeled by n again) such that

A = lim
n→∞

T∫
0

g
(
‖Dbn(t, ·)‖qM(Ω)N×N

)
dt.

Then, as in the above mentioned proof we construct a subsequence (Dbnk
) being K-convergent to some

f ∈ L1((0, T ),M(Ω)N×N ). On the other hand, we already know that the whole sequence (Dbn) is K-convergent
to Db. Thus, we conclude Db = f and we have as in [10]

‖Db(t, ·)‖M(Ω)N×N ≤ lim inf
n→∞

∥∥∥∥∥ 1
n

n∑
i=1

Dbi(t, ·)

∥∥∥∥∥
M(Ω)N×N

≤ lim inf
n→∞

1
n

n∑
i=1
‖Dbi(t, ·)‖M(Ω)N×N

for almost all t ∈ (0, T ). Since x 7→ |x|q is convex and continuous as well as g is monotonically increasing and
convex, we deduce that

g
(
‖Db(t, ·)‖qM(Ω)N×N

)
≤ lim inf

n→∞

1
n

n∑
i=1

g
(
‖Dbi(t, ·)‖qM(Ω)N×N

)
for almost all t ∈ (0, T ). In addition, due to g(x) ∈ O(|x|), the above expressions are integrable over measurable
sets B ⊂ (0, T ). Fatou’s lemma for positive functions then yields∫
B

g
(
‖Db(t, ·)‖qM(Ω)N×N

)
dt ≤ lim inf

n→∞

1
n

n∑
i=1

∫
B

g
(
‖Dbi(t, ·)‖qM(Ω)N×N

)
dt = lim inf

n→∞

∫
B

g
(
‖Dbn(t, ·)‖qM(Ω)N×N

)
dt

for any B ∈ B((0, T )). The boundedness of (bn) in Lq((0, T ), BV (Ω))N and the choice g(x) = x finally yields
that b ∈ Lq((0, T ), BV (Ω))N .

�
Beside this result for Gelfand integrable functions we need the following result for Bochner integrable functions
in the subsequent section.

Lemma 7.3 Let l ∈ N, g : R → R
+
0 be a monotonically increasing and convex function with g ∈ O(x)

and let (fn) ⊂ L2((0, T ), L2(Ω))l be a bounded sequence. Then, there exists a subsequence (fnk
) and some

f ∈ L2((0, T ), L2(Ω))l such that
T∫

0

g
(
‖f(t, ·)‖2L2(Ω)l

)
dt ≤ lim inf

n→∞

T∫
0

g
(
‖fn(t, ·)‖2L2(Ω)l

)
dt.

Proof: Due to the boundedness of (fn) in L2((0, T ), L2(Ω))l, there exists a subsequence (labeled by n
again) and some f ∈ L2((0, T ), L2(Ω))l such that fn ⇀ f in L2((0, T ), L2(Ω))l. Furthermore, due to the
properties of g, we have

sup
n∈N

T∫
0

g
(
‖fn(t, ·)‖2L2(Ω)l

)
dt <∞

and thus, we can choose a subsequence (fn) (labeled by n again) such that

lim inf
n→∞

T∫
0

g
(
‖fn(t, ·)‖2L2(Ω)l

)
dt = lim

n→∞

T∫
0

g
(
‖fn(t, ·)‖2L2(Ω)l

)
dt
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holds. Applying Theorem 2.1 in [15], we then obtain that there is a sequence (hn) ⊂ L2((0, T ), L2(Ω))l with
hn ∈ conv({fk| k ≥ n}) for n ∈ N such that (hn(t, ·)) is convergent to some h(t, ·) ∈ L2(Ω)l for almost all
t ∈ (0, T ), i.e.

hn =
N(n)∑
i=n

λn,ifi with 0 ≤ λn,i ≤ 1 for n ≤ i ≤ N(n) ∈ N and
N(n)∑
i=n

λn,i = 1

for all n ∈ N. We assume that h(t, ·) 6= f(t, ·) for t ∈ B ⊂ (0, T ) with L1(B) > 0. Then, we have for ϕ ∈ L2(Ω)l

T∫
0

|〈hn(t, ·), ϕ〉|2 dt ≤ ‖ϕ‖2L2(Ω)l sup
n∈N

T∫
0

‖fn(t, ·)‖2L2(Ω)l dt <∞.

Due to Theorem 1.35 in [4] we obtain that

[t 7→ 〈hn(t, ·), ϕ〉] ⇀ [t 7→ 〈h(t, ·), ϕ〉] in L2((0, T )).

Hence, we conclude for ψ ∈ L2(B)∫
B

∫
Ω

ψ(t)ϕ(x)h(t, x) dxdt←
∫
B

∫
Ω

ψ(t)hn(t, x)ϕ(x) dxdt→
∫
B

∫
Ω

ψ(t)ϕ(x)f(t, x) dxdt,

i.e. 〈h(t, ·), ϕ〉 = 〈f(t, ·), ϕ〉 for almost all t ∈ B. Since ϕ ∈ L2(Ω)l can be arbitrarily chosen, we obtain that
h(t, ·) = f(t, ·) in L2(Ω)l for almost all t ∈ B. But this is a contradiction to our assumption and thus h = f
in L2((0, T ), L2(Ω))l. Consequently, we obtain

g
(
‖f(t, ·)‖2L2(Ω)l

)
= lim
n→∞

g
(
‖hn(t, ·)‖2L2(Ω)l

)
≤ lim inf

n→∞

N(n)∑
i=n

λn,ig
(
‖fi(t, ·)‖2L2(Ω)l

)
for almost all t ∈ (0, T ). Thus, Fatou’s lemma finally yields

T∫
0

g
(
‖f(t, ·)‖2L2(Ω)l

)
dt ≤ lim inf

n→∞

N(n)∑
i=n

λn,i

T∫
0

g
(
‖fi(t, ·)‖2L2(Ω)l

)
dt = lim inf

n→∞

T∫
0

g
(
‖fn(t, ·)‖2L2(Ω)l

)
dt.

�

8 Existence of minima of optimal control problems
8.1 Optimal control problems
We consider the following type of optimal control problems

min
u,b

J(u, b) = 1
2

K∑
k=2

Υk

(
‖u(tk, ·)− Yk‖2L2(Ω)

)
+ α

2

T∫
0

Γ1

(
‖Db(t, ·)‖2M(Ω)N×N

)
dt (30)

+R(b) (31)

with regularization parameter α > 0, functions Υk,Γ1 : R→ R, k = 2, . . . ,K and constraints

ut + div(bu)− udiv(b) = 0 in (0, T ]× Ω, (32)
u(0, ·) = Y1 in Ω, (33)

b = 0 on (0, T )× ∂Ω, (34)

where Yk ∈ L∞(Ω), k = 1, . . . ,K are given. The term R denotes additional regularization terms and we will
cover the following ones in our investigations:
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(i) R1(b) ≡ 0, (ii) R2(b) = β
2

T∫
0

Γ2

(
‖∂tb(t, ·)‖2L2(Ω)N

)
dt,

(iii) R3(b) = γ
2

T∫
0

Γ3

(
‖div b(t, ·)‖2L2(Ω)

)
dt, (iv) R4(b) = R2(b) +R3(b),

where β, γ > 0 are regularization parameters and Γ2,Γ3 : R → R are given functions. In the first two cases,
we will additionally distinguish between two further cases: the set of constraints given by (32)-(34) and the
same set plus the additional constraint

div b = 0 in (0, T )× Ω. (35)

For the functions Υk, k = 2, . . . ,K and Γi, i = 1, 2, 3 we assume the following:

(a) the functions Υk : R→ R+
0 are lower semi-continuous,

(b) the functions Γi : R→ R+
0 are convex, monotonically increasing, in O(x) and lim

x→∞
Γi(x) =∞.

In this case, the regularization terms in (30) and in (ii)-(iv) are well-defined.

8.2 Admissible sets
Before we can introduce a setting for an admissible set we have a closer look on the BV -regularity for our
considered vector fields. So far, we have the obvious setting

b ∈ V2 =
{
b ∈ L∞((0, T )× Ω)N ∩ L2((0, T ), BV (Ω))N | div b ∈ L2((0, T ), L∞(Ω))

}
.

For the existence and uniqueness of solutions we need vector fields b which have zero trace at the boundary of
the spatial domain. The demand b ∈ L2((0, T ), BV0(Ω)) would not be enough since the trace operator is not
continuous with respect to the weak∗-convergence but with respect to the strict convergence in BV (Ω). As
we will get at best weak∗-convergence for a subsequence of a minimizing sequence, the weak∗-limit would not
need to have zero trace at ∂Ω for almost all t ∈ (0, T ). That means we need some control of the behavior of our
BV -functions close to the boundary to ensure that limits of weakly∗-convergent sequences of BV -functions
with zero boundary trace do have zero boundary trace. Therefore we introduce the following setting. Given
some ε > 0, we define for an open bounded set O ⊂ RN with Lipschitz boundary

Oε = {x ∈ O|dist(x, ∂O) ≤ ε} .

Then, we set for δ ≥ 0 and ε > 0

Wε,δ(O) :=
{
w ∈ L1(O)| |w(x)| ≤ δ dist(x, ∂O) for almost all x ∈ Oε

}
. (36)

and obtain the following result:

Lemma 8.1 Let O ⊂ RN be open and bounded with Lipschitz boundary ∂O and let ε > 0 and δ ≥ 0. Then,
any f ∈ BV (O) satisfying f ∈Wε,δ(O) lies in BV0(O).

Proof: The proof can be easily deduced by using properties of BV -functions and is presented in Lemma
4.2.1 in [21].

�

Lemma 8.2 Let O ⊂ RN be an open and bounded set with Lipschitz boundary ∂O and let ε > 0 and δ ≥ 0.
Furthermore, let (fn) ⊂ L1(O) be convergent to f ∈ L1(O) with fn ∈ Wε,δ(O) for all n ∈ N. Then f ∈
Wε,δ(O).
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Proof: The proof can be found in Lemma 4.2.2 in [21].
�

With this technical assumption we define the set of admissible vector fields Sad for the various optimal control
problems. We take fixed M > 0, δ ≥ 0 and ε > 0 and we consider vector fields b : (0, T )× Ω→ RN with

b ∈ Sε,δad :=
{
b ∈ V2| b(t, ·) ∈Wε,δ(Ω) for almost all t ∈ (0, T )

}
and define the admissible set for M , ε and δ

SM,ε,δ
ad :=

{
b ∈ Sε,δad | ‖b‖L∞((0,T )×Ω))N + ‖div b‖L2((0,T ),L∞(Ω)) ≤M

}
. (37)

Obviously, we have that Sε,δad ⊂ V2
0. Furthermore, for the case of the additional constraint div b ≡ 0 we define

the set
SM,ε,δ
ad,0 :=

{
b ∈ SM,ε,δ

ad | div b ≡ 0
}

(38)

and in the case of time regularization

SM,ε,δ
ad,∂t

:=
{
b ∈ SM,ε,δ

ad | ∂tb ∈ L2((0, T )× Ω)N
}
. (39)

The previous chapter yields that there is a well-defined solution operator

S : L∞(Ω)×V1
0 → C([0, T ], L∞(Ω)− w∗), (u0, b) 7→ S(u0, b).

Based on this solution operator we define the control-to-state operator LY1 as

LY1 : V1
0 → C([0, T ], L∞(Ω)− w∗), b 7→ LY1(b) = S(Y1, b) (40)

and its restriction to SM,ε,δ
ad as LY1,ad. We abbreviate the terms SM,ε,δ

ad , SM,ε,δ
ad,0 and SM,ε,δ

ad,∂t
to Sad, Sad,0 and

Sad,∂t
, respectively, if it is clear which constants M , ε and δ are used in the current setting. Incorporating

these control-to-state mappings into the objective function J leads to various reduced objective functions Fi
for our considered cases: we define

in the case the reduced objective function J(LY1,ad(·), ·) as with admissible set
R = R1 F1 Sad
R = R1 F1,0 Sad,0
R = R2 F2 Sad,∂t

R = R2 F2,0 Sad,0 ∩ Sad,∂t

R = R3 F3 Sad
R = R4 F4 Sad,∂t

For these reduced objective functions we show in the subsequent theorem that they attain their infima on their
admissible sets, i.e there are minima within the admissible sets for each optimal control problem.

8.3 Existence of minima
Theorem 8.3 (Existence of minima of optimal control problems) Let M > 0, ε > 0 and δ ≥ 0 be
fixed chosen. Then, the reduced objective functions Fi, i ∈ {1, . . . , 4} and Fj,0, j = 1, 2 attain their minima
on their admissible sets.

Proof: We just show the statement for the objective function F4 since the proof works in the same way
for the other problems.

The objective function F4 has a finite infimum in Sad,∂t
since F4(b) ≥ 0 for all b ∈ Sad,∂t

. Now, let
(bn) ⊂ Sad,∂t

be a minimizing sequence, i.e.

F4(bn) ≥ F4(bn+1) ∀ n ∈ N and lim
n→∞

F4(bn) = inf
b̃∈Sad,∂t

F4(b̃).
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The sequence (bn) is bounded in L2((0, T ), BV (Ω))N :

F4(b1) ≥ F4(bn) ≥ Tα

2 Γ1

 1
T

T∫
0

‖Dbn(t, ·)‖2M(Ω)N×N dt

 ∀ n ∈ N

and thus,

sup
n∈N

T∫
0

‖Dbn(t, ·)‖2M(Ω)N×N dt <∞.

In addition, ‖bn‖L∞((0,T )×Ω)N ≤ M for all n ∈ N and hence, (bn) is also bounded in L2((0, T ), L1(Ω))N .
Using Theorem 7.2, we obtain that there exists a subsequence (bn) (which is labeled by n again) and some
b ∈ L2((0, T ), BV (Ω))N such that

T∫
0

Γ1

(
‖Db(t, ·)‖2M(Ω)N×N

)
dt ≤ lim inf

n→∞

T∫
0

Γ1

(
‖Dbn(t, ·)‖2M(Ω)N×N

)
dt (41)

and bn ⇀ b in L1((0, T )×Ω)N . For the limit b we have that b(t, ·) ∈Wε,γ(Ω) for almost all t ∈ (0, T ): denote

Nn := {t ∈ (0, T ), bn(t, ·) /∈ BV (Ω)N} ∪ {t ∈ (0, T ), bn(t, ·) /∈Wε,δ(Ω)N}

and
N := {t ∈ (0, T ), b(t, ·) /∈ BV (Ω)N}.

Then Nn and N are null sets and
W = N ∪

⋃
n∈N
Nn

is also a null set as a countable union of null sets. Furthermore, due to Lemma 8.2 we conclude that for any
t ∈ (0, T )\W

g ∈ {bn(t, ·)| n ∈ N}
w∗

⇒ g ∈Wε,δ(Ω)N

is satisfied. Consequently, in the same way we conclude that for any t ∈ (0, T )\W

g ∈ conv
(
{bn(t, ·)| n ∈ N}

w∗
)w∗
⇒ g ∈Wε,δ(Ω)N

is satisfied. Thus b(t, ·) ∈ Wε,δ(Ω)N for almost all t ∈ (0, T ). In addition, since (bn), (∂tbn) and (div bn) are
bounded sequences in L∞((0, T )×Ω)N , in L2((0, T )×Ω)N and in L2((0, T ), L∞(Ω)), respectively, we conclude,
using standard arguments, that bn

∗
⇀ b in L∞((0, T )×Ω)N , ∂tbn ⇀ ∂tb in L2((0, T )×Ω)N and div bn ⇀ div b

in L2((0, T ) × Ω) with div b ∈ L2((0, T ), L∞(Ω)) for some subsequences. Due to Lemma 7.3, we know that
each of these subsequences contains a subsequence (labeled by n again) such that

T∫
0

Γ2

(
‖∂tb(t, ·)‖2L2(Ω)N

)
dt ≤ lim inf

n→∞

T∫
0

Γ2

(
‖∂tbn(t, ·)‖2L2(Ω)N

)
dt

and
T∫

0

Γ3

(
‖div b(t, ·)‖2L2(Ω)

)
dt ≤ lim inf

n→∞

T∫
0

Γ3

(
‖div bn(t, ·)‖2L2(Ω)

)
dt

holds. We restrict to those subsequences. Summing up, we have shown that b ∈ Sad,∂t
. Finally, using Theorem

5.3, we obtain that
LY1,ad(bn)→ LY1,ad(b) in C([0, T ], Lr(Ω)) for 1 ≤ r <∞
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and thus we get for all 2 ≤ k ≤ K

LY1,ad(bn)(tk, ·)− Yk → LY1,ad(b)(tk, ·)− Yk in L2(Ω) as n→∞.

In total, we obtain with estimate (41):

F4(b) = 1
2

K∑
k=2

Υk

(
‖LY1,ad(b)(tk, ·)− Yk‖

2
L2(Ω)

)
+ α

2

T∫
0

Γ1

(
‖Db(t, ·)‖2M(Ω)N×N

)
dt

+ β

2

T∫
0

Γ2

(
‖∂tb(t, ·)‖2L2(Ω)

)
dt+ γ

2

T∫
0

Γ3

(
‖div b(t, ·)‖2L2(Ω)

)
dt

≤ lim inf
n→∞

1
2

K∑
k=2

Υk

(
‖LY1,ad(bn)(tk, ·)− Yk‖2L2(Ω)

)
+ α

2

T∫
0

Γ1

(
‖Dbn(t, ·)‖2M(Ω)N×N

)
dt

+ β

2

T∫
0

Γ2

(
‖∂tbn(t, ·)‖2L2(Ω)

)
dt+ γ

2

T∫
0

Γ3

(
‖div bn(t, ·)‖2L2(Ω)

)
dt


= lim inf

n→∞
F4(bn) = inf

b̃∈Sad,∂t

F4(b̃).

Thus, the infimum is attained and F4 has a minimum in Sad,∂t
.

�
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