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Abstract. We consider distributionally robust optimization problems (DROPs) with nonlinear
and nonconcave dependence on uncertain parameters. The DROP can be written as a nonsmooth,
nonlinear program with a bilevel structure; the objective and each constraint function is the supre-
mum of the expectated value of a parametric function taken over an ambiguity set of probability
distributions. We define ambiguity sets through moment constraints and to make the computation of
first order stationary points tractable, we approximate nonlinear functions using quadratic expansions
w.r.t. parameters, resulting in lower level problems defined by trust-region problems and semidefinite
programs. Subsequently, we construct smoothing functions for the approximate lower level functions
which are computationally tractable, employing strong duality for trust-region problems, and show
that gradient consistency holds. We formulate smoothed DROPs and apply a homotopy method
dynamically decreasing smoothing parameters and establish its convergence to stationary points of
the approximate DROP under mild assumptions. Through our scheme, we provide a new approach
to robust nonlinear optimization as well. We perform numerical simulations on a well-known test
set, assuming design variables are subject to implementation errors, providing a representative set
of numerical examples.
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1. Introduction. We develop an approximation scheme for the nonlinear dis-
tributionally robust optimization problem (DROP)

min
x∈X

sup
P∈P

EP [f0(x, ξ)] s.t. sup
P∈P

EP [fj(x, ξ)] ≤ 0, j ∈ J \ {0},(1.1)

where X ⊂ Rn is the set of design variables and fj : Rn × Rp → R, j ∈ J ⊂ N0. The
ambiguity set P is defined through moment constraints of the random vector ξ and
entropic dominance similar to [17, 20, 48]:

P = {P ∈M : ‖Σ̄− 1
2 (EP [ξ]− µ̄)‖2 ≤ ∆, Σ̄0 4 CovP [ξ] 4 Σ̄1,

lnEP [exp (yT (ξ − EP [ξ]))] ≤ yT Σ̄1y for all y ∈ Rp },
(1.2)

where ∆ > 0, µ̄ ∈ Rp, and Σ̄0, Σ̄1, Σ̄ ∈ Rp×p are symmetric, Σ0, Σ1 and Σ1 − Σ0

are positive semidefinite, and Σ̄ is positive definite. The vector µ̄ and the matrices
Σ̄0, Σ̄1, Σ̄ are estimates for the mean and the covariance of the random vector ξ,
respectively. Moreover, M denotes the set of probability distributions of ξ on Rp.

In order to obtain tractable approximations of the objective and constraint func-
tions of (1.1), we approximate fj(x, ·) using second order expansions mj(x, ·) defined
by

mj(x, ξ) = aj(x) + bj(x)T (ξ − µ̄) + (1/2)(ξ − µ̄)TCj(x)(ξ − µ̄),(1.3)
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where aj : Rn → R, bj : Rn → Rp, Cj : Rn → Sp. We formulate the approximated
DROP

min
x∈X

sup
P∈P

EP [m0(x, ξ)] s.t. sup
P∈P

EP [mj(x, ξ)] ≤ 0, j ∈ J \ {0}.(1.4)

The definition of the ambiguity set P (see (1.2)) and

EP [mj(x, ξ)] = aj(x) + bj(x)T d+ (1/2)dTCj(x)d+ (1/2)Cj(x) • Σ,

where d = EP [ξ] − µ̄ and Σ = CovP [ξ] implies that each lower level optimization
problem of (1.4) separates into the semidefinite program (SDP)

(1.5) ϕj(x) = max
Σ∈Sp

{
(1/2)Cj(x) • Σ : Σ̄0 4 Σ 4 Σ̄1

}
,

and the nonconvex trust-region problem (TRP)

ψj(x) = aj(x) + max
d∈Rp

{
bj(x)T d+ (1/2)dTCj(x)d : ‖Σ̄−1/2d‖2 ≤ ∆

}
,(1.6)

where ψj : Rn → R and ϕj : Rn → R.
The optimal value functions (1.5) and (1.6) provide a tractable approximation of

the lower level problems in (1.1). These functions lack higher order differentiability,
motivating us to construct smoothing functions for them. We propose a homotopy
method similar to smoothing methods in [15, 56] to solve a sequence of smoothed
DROPs to obtain a Clarke stationary point of the approximated DROP (1.4).

The SDP in (1.5) can be solved analytically after computing the eigenvalues of
a transformation of Cj(x) (see [57, Thm. 2.2]). We make use of this and and apply
results on spectral functions, such as statements established in [37, 53] to obtain a
smoothing function of (1.5). Our approach for the value function of the TRP (1.6)
utilizes strong duality for TRPs; see, e.g., [51]. We apply a reciprocal barrier function
to its dual and observe that the dual is equivalent to a TRP.

Using Lagrangian duality for both (1.5) and (1.6) (see [5, Chap. 4] and [51]) we
can show that (1.4) can be reformulated equivalently as a nonlinear SDP (NSDP).
However, our approach allows the numerical treatment of (1.4) via a sequence of
standard nonlinear programs (NLPs). Derivatives required for each NLP may be easier
to obtain than those the NSDP formulation. In particular, our approach requires the
derivative the function Rn 3 x 7→ dTCj(x)d, d ∈ Rp, rather than of the mapping
Cj : Rn → Sp.

Distributionally robust optimization (DRO) is a popular methodology used to
obtain robust solutions to optimization problems under uncertainty; cf. [20, 23, 29, 46,
55]. It “robustifies” against distributions contained in an ambiguity set. If this set is a
singleton, DRO is reduced to stochastic optimization; see [47]. A very popular choice
for constructing an ambiguity set is based on moment constraints of the parameters,
such as the one in (1.2); cf. [20, 47, 48, 55]. Another approach is to define the set by
measures close to a reference measure w.r.t. a certain distance; cf. [28, 46, 59].

Some special classes of DROPs can be transformed into one-level problems using
Lagrangian duality. For example, if ambiguity sets are conic representable, maxi-
mization problems w.r.t. probability measures become conic linear programs and,
therefore, can be transformed into minimization problems and concatenated with
upper-level problems; cf. [20]. If suitable assumptions, such as the convexity of the
objective function w.r.t. design variables, are satisfied, the resulting optimization
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problem is tractable [20, 55]. The reformulation of the lower level problems of (1.4)
as linear matrix inequalities has been discussed in the supplementary material of [55].

If the SDP (1.5) is removed from (1.4), we obtain the robust optimization problem
(ROP)

min
x∈X

ψ0(x) s.t. ψj(x) ≤ 0, j ∈ J \ {0}.(1.7)

Research on robust optimization (RO) may be divided into contributions assuming
concave dependence w.r.t. parameters, see e.g., [2, 3, 5, 7], and those assuming non-
concave dependence; see e.g., [21, 32, 58]. The authors of [21] and of [58] use a
linearization scheme for nonlinear RO to obtain tractable approximations of lower
level problems, resulting in a nonlinear second-order cone program if an ellipsoidal
uncertainty set is used. Instead of linearization, second order models are applied in
[34, 35]. These expansions may be more effective than linearizations and may provide
a trade off between accuracy and tractability; cf. [32, 35]. This approach results
in constraints such as the one in (1.7), which are reformulated using its canonical
necessary and sufficient optimality conditions in [34, 35]. The resulting problem is a
mathematical program with complementarity constraints (MPCCs); see e.g., [33, 50].
In addition, the constraint set contains linear matrix inequalities, requiring the Hes-
sian matrix of the Lagrangian of each robustified constraint to be positive semidefinite.
In [34, 35] the inequalities are reformulated using eigenvalue constraints, introducing
nonsmooth constraint functions. Moreover, in [32] a numerical scheme for nonlinear
min-max optimization problems has been developed. Nonconvex ROPs without ap-
proximation schemes have been considered in, e.g., [8, 9]. The lower level problems
in (1.7) may be reformulated as SDPs; see [3, sect. 1.4 and Lem. 14.37].

Smoothing methods are popular schemes for the solution of nonconvex, nons-
mooth, and Lipschitz optimization problems; see, e.g., [12, 15, 56]. Our algorithmic
scheme is related to recent contributions, such as [12, 13, 15, 56], in that it provides
further examples of smoothing functions and applies their concepts and methodology.
We apply an NLP solver to compute stationary points of a sequence of smoothed
DROPs generated by the decreasing parameters and, therefore, our algorithmic ap-
proach is similar to [15, 56].

Our scheme relies on the approximations of the lower level problems in (1.1).
However, we are able to compute stationary points of the approximation (1.4) of (1.1)
without the assumption that computationally available bounds on the Hessian matrix
of fj(x, ·) as in [32] are known, and we do not require expensive numerical schemes as
in [8, 9]. Our reformulation does not result in an MPCC or an NSDP, and we do not
increase the dimension of the initial DROP or ROP. A further advantage is that we
obtain standard NLPs with tractable objective and constraints. These conditions are
all favorable from a computational point of view because, e.g., an implementation of
further algorithms is not required, making our approach applicable to many problems.

Outline of the paper. In Section 2, the choice of the ambiguity set P (see (1.2))
is explained. Section 3 introduces the concept of smoothing function, a smoothed
DROP of (1.4) and a homotopy method used for the numerical solution of (1.4).
Section 4 presents our smoothing approach for the SDPs in (1.5), which utilizes theory
of spectral functions. In Section 5 our smoothing scheme for the TRPs in (1.6) is
presented. It is based on strong duality of TRPs. Global convergence of the homotopy
method is shown in Section 6. Section 7 presents numerical examples illustrating that
the approximation scheme (1.4) of (1.1) can be effective. Section 8 presents a concise
summary of our contributions.
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Notation. The set of symmetric m × m-matrices is denoted by Sm. We refer
to Sm++ ⊂ Sm (Sm+ ⊂ Sm) as the set of positive (semi)definite matrices. The identity
matrix is I. The eigenvalue mapping is λ : Sp → Rp, where λ(A) contains the
eigenvalues of A in decreasing order, i.e., λmax(A) = λ1(A) ≥ · · · ≥ λp(A) = λmin(A).
Here, A < B (A � B) for A,B ∈ Sm means A − B ∈ Sm+ (A − B ∈ Sm++). We use
• to denote the Frobenius inner-product on Sm. The set N(A) is the null space of
A ∈ Sm. The matrix A1/2 ∈ Sm is a square root of A ∈ Sm+ , B+ is the Moore-Penrose
inverse of B ∈ Rm×m, |J | is the cardinality of the set J , and (·)+ = max{0, ·}. For
a ∈ Rm, Diag(a) ∈ Sm is the diagonal matrix with (Diag(a))ii = ai. The Euclidean
norm (∞-norm) on Rm is ‖ · ‖2 (‖ · ‖∞). The convex hull of A ⊂ Rn×m is convA. A
function h : Rm → R is symmetric if it is invariant under coordinate permutations;
see, e.g., [36]. The gradient of G : Rn×Rm → R w.r.t. x evaluated at (x, y) is denoted
by ∇xG(x, y). For A : Rn → Sp, we denote by DA(x) its derivative and with DA(x)∗

its adjoint operator evaluated at x ∈ Rn. The set ∂G(y) is the Clarke subdifferential
of G : Rn → R at y ∈ Rn (cf. [18, p. 27]) consisting of column vectors. If ξ ∈ Rp is
a random vector, we use EP [ξ] and CovP [ξ] to denote its mean and covariance w.r.t
P ∈M, respectively. Here, M is the set of probability distributions of ξ on Rp. The
normal distribution with mean µ ∈ Rp and covariance matrix Σ ∈ Sp+ is N(µ,Σ).

2. Choice of Ambiguity Set. We comment on the choice of the ambiguity
set P defined in (1.2), discuss conditions implying that the objective and constraint
functions of the DROPs (1.1) and (1.4) are finite-valued, and suggest choices to define
the quadratic model functions mj (see (1.3)) of fj .

We require that the mappings ξ : Ω→ Rp and fj(x, ·)◦ξ are random variables for
all x ∈ X. The first two conditions on EP [ξ] and CovP [ξ] imposed by P (see (1.2)),
model confidence regions of the mean and the covariance of ξ under suitable assump-
tions, respectively; cf. [48, Thm. 9]. The condition lnEP [exp (yT (ξ − EP [ξ]))] ≤
yT Σ̄1y for all y ∈ Rp implies that CovP [ξ] 4 Σ̄1; cf. [17, Thm. 2]. Furthermore, it
can be shown that EP [‖ξ‖γ2 ] < ∞ for all γ > 0; cf. [11, sect. 1.1, sect. 7.1]. This
implies that the objective and constraint functions of (1.1) are finite-valued for a large
class of functions fj , j ∈ J . For example, if fj , j ∈ J , are q-times continuously dif-
ferentiable, and their qth derivatives are uniformly Lipschitz continuous w.r.t. (x, ξ),
we can show that the objective and constraint functions in (1.1) are finite-valued for
all x ∈ X.

A worst-case distribution P ∗j of each lower level optimization problem in (1.4)
exists and is contained in the ambiguity set P. We have that P ∗j = N(µ̄+d∗j ,Σ

∗
j ) ∈ P

(see [11, sect. 7.1]), where Σ∗j is an optimal solution of (1.5) and d∗j of (1.6).
We can choose the functions aj , bj and Cj as aj = fj(·, µ̄), bj = ∇ξfj(·, µ̄) and

Cj = ∇ξξf(·, µ̄), where ∇ξξf(x, µ̄) denotes the Hessian matrix of f(x, ·) evaluated at
(x, µ̄). If x ∈ Rn and the second derivative of fj(x, ·) is Lipschitz continuous w.r.t.
ξ with Lipschitz constant L > 0, i.e., |fj(x, ξ) − mj(x, ξ)| ≤ (L/6)‖ξ − µ̄‖32, for all
ξ ∈ Rp, it can be shown that the worst-case expected value of the truncation error

sup
P∈P

EP [|fj(x, ξ)−mj(x, ξ)|]

converges to zero as Σ̄1 → 0+ and ∆ → 0+. If fj(x, ·) are quadratic functions for
each x ∈ Rn and aj , bj and Cj chosen as above, the functions fj and mj are equal
and, hence, the approximation scheme is exact, i.e., (1.1) and (1.4) are equivalent.

3. Smooth DROPs, smoothing functions and a homotopy method. We
outline our algorithmic scheme to compute a stationary point of (1.4). Introducing
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Algorithm 3.1 Homotopy method

Choose parameters t0 ∈ R3
++, tmin ∈ R3

+, ε0 > 0, εmin ≥ 0 and ρ ∈ (0, 1).
For k = 0, 1, . . .

1. Compute an εk-KKT-tuple (xk, ϑk) of (3.2) for t = tk.
2. If tk ≤ tmin and εk ≤ εmin hold, STOP and return (xk, ϑk).
3. Compute 0 < tk+1 ≤ ρtk and εk+1 = ρεk.

the functions Fj : Rn → R, Fj(x) = ϕj(x) + ψj(x), j ∈ J , the DROP (1.4) becomes

min
x∈X

F0(x) s.t. Fj(x) ≤ 0, j ∈ J \ {0},(3.1)

which is generally a nonsmooth optimization problem. In the subsequent sections,
we construct smooth approximations F̃j : Rn × R3

++ → R of Fj parameterized by

t ∈ R3
++. The formal definition of the functions F̃j are given in (6.1). They are used

in Algorithm 3.1 to compute a sequence of approximate KKT-points of

min
x∈X

F̃0(x, t) s.t. F̃j(x; t) ≤ 0, j ∈ J \ {0},(3.2)

as t → 0+. Since these DROPs are smooth, we can apply state of the art NLPs
solvers to solve them. Throughout, let X = Rn hold, however, X may consist of

finitely many inequality or equality constraints. Here, a point (x̄, ϑ̄) ∈ Rn × R|J|−1
+

is referred to as KKT-tuple of (3.1) if ϑ̄jFj(x̄) = 0, Fj(x̄) ≤ 0, j ∈ J \ {0}, and
0 ∈ ∂F0(x̄) +

∑
j∈J\{0} ϑ̄j∂Fj(x̄). These are necessary optimality conditions for (3.1)

if a constraint qualification (CQ) holds; see, e.g., [38, Cor. 5.1.8].
We construct a smoothing function of ϕj and of ψj satisfying the conditions of

the next definition, which is based on [15, Def. 1].

Definition 3.1. Let φ : Rn → R be a continuous function. The function φ̃ :
Rn × Rm++ → R is referred to as smoothing function of φ if φ̃(·; t) is continuously
differentiable for every t > 0, and for all x ∈ Rn, it holds that

lim
Rn3xk→x, tk→0+

φ̃(xk; tk) = φ(x).

We allow for multiple smoothing parameters in Definition 3.1 as opposed to [15,
Def. 1] because the smoothing function of ψj constructed in Subsection 5.3 depends
on two. Algorithm 3.1 does not require to compute exact KKT-tuples of (3.2), which
is important for an efficient numerical scheme for the DROP (3.1). Different notions
of approximate KKT-points have been proposed in the literature; see, e.g., [1, 22]. We
refer to (x, ϑ) as ε-KKT-tuple of (3.2) if χ(x, ϑ; t) ≤ ε, where the criticality measure
χ : Rn × R|J|−1 × R3

++ → R+ is defined by

χ(x, ϑ; t) = max
j∈J\{0}

{∥∥∥∇xF̃0(x; t) +
∑

j∈J\{0}

ϑj∇xF̃j(x; t)
∥∥∥
∞
, |min{−F̃j(x; t), ϑj}|

}
.

(3.3)

An important notion to establish convergence of Algorithm 3.1 to stationary points
of (3.1) is gradient consistency. Let φ̃ : Rn × Rm>0 → R be a smoothing function of
the locally Lipschitz continuous function φ : Rn → R. We define

Sφ̃(x) = conv { z ∈ Rn : ∃Rn × Rm++ 3 (xk, tk)→ (x, 0), ∇xφ̃(xk; tk)→ z }.(3.4)
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Gradient consistency of φ̃ and φ requires the following relation to hold; cf. [12, 13, 15]:

Sφ̃(x) = ∂φ(x) for all x ∈ Rn.(3.5)

For the above setting, Clarke’s subdifferential is a subset of (3.4) generalizing a remark
in [15, sect. 1] to multiple smoothing parameters.

Lemma 3.2. Let φ̃ : Rn×Rm++ → R be a smoothing function of the locally Lipschitz
continuous function φ : Rn → R. Then, we have that ∂φ(x) ⊂ Sφ̃(x) for all x ∈ Rn.

Proof. Let x ∈ Rn be arbitrary and define ˜̀ : Rn×R++ → R by ˜̀(x; t) = φ̃(x; te),
which is a smoothing function of φ, where e = (1, . . . , 1) ∈ Rm. Hence, [14, Lem. 3.1]
implies ∂φ(x) ⊂ S˜̀(x). Using (3.4), we obtain S˜̀(x) ⊂ Sφ̃(x) concluding the proof.

In the next two sections, we construct smoothing functions of (1.5) and (1.6) that
can efficiently be evaluated as well as its gradients. Moreover, they satisfy gradient
consistency.

4. Smoothing approach for the SDPs. We construct a smoothing function of
ϕj (see (1.5)) satisfying the conditions stated in Section 3 for the algorithmic solution
of the DROP (3.1). We use that the SDPs (1.5) can be solved analytically after
computing the eigenvalues of a transformation of Cj(x); cf. [57, Thm. 2.2].

Proposition 4.1. Let C ∈ Sp and X0, X1 ∈ Sp fulfill X0 ≺ X1, and define

G = (X1 −X0)
1/2
C(X1 −X0)

1/2
. Then, it holds that

C •X0 +

p∑
i=1

min{0, λi(G)} = min {C •X : X0 4 X 4 X1 } .(4.1)

Proof. The statement follows from an application of [57, Thm. 2.2].

Numerical simulations for dimensions p ∈ {1, . . . , 2000} have indicated that this so-
lution method is significantly faster than state of the art SDP solvers. If Σ̄0 ≺ Σ̄1,
(1.5), Proposition 4.1 and (4.1) show that

ϕj(x) = (1/2)Cj(x) • Σ̄0 + (1/2)

p∑
i=1

(λi(Gj(x)))+ for all x ∈ Rn,(4.2)

where Gj : Rn → Sp, Gj(x) = (Σ̄1 − Σ̄0)
1/2
Cj(x)(Σ̄1 − Σ̄0)

1/2
. In particular, ϕj is

generally nonsmooth. Next, we show that the function ϕ̃j : Rn × R++ → R defined
by

ϕ̃j(x; τ) = (1/2)Cj(x) • Σ̄0 + (1/2)w̃(λ(Gj(x)); τ),(4.3)

is a smoothing function of ϕj , where w̃ : Rn × R++ → R is given by

w̃(z; τ) = τ

p∑
i=1

ln (1 + exp (zi/τ)) .(4.4)

Theorem 4.2. Let Σ̄0 ≺ Σ̄1 hold and let Cj : Rn → Sp be q-times continuously
differentiable, where q ≥ 1 and j ∈ J . Then, the following conditions hold true.
1. For all (x, τ) ∈ Rn × R++, we have that

ϕj(x) ≤ ϕ̃j(x; τ) ≤ ϕj(x) + (1/2)τp ln 2,(4.5)

where ϕj and ϕ̃j is defined in (4.2) and (4.3), respectively.
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2. The function ϕ̃j is a smoothing function of ϕj, ϕ̃j(·; τ) is q-times continuously
differentiable for every τ > 0, and gradient consistency holds for ϕ̃j and ϕj.

3. If (xk) ⊂ Rn and (τk) ⊂ R++ are sequences such that xk → x and τk → 0 as
k →∞, there exists a convergent subsequence (∇xϕ̃j(xk; τk))K of (∇xϕ̃j(xk; τk)).

Proof. 1. The estimate (4.5) follows from the inequalities (see, e.g., [44, sect. 2])

(z)+ ≤ τ ln(1 + exp(z/τ)) ≤ (z)+ + τ ln 2 for all z ∈ R.

2. Next, we establish that ϕ̃j is a smoothing function of ϕj . Let τ > 0 be
arbitrary. The function ϕj is locally Lipschitz continuous as a composition of locally
Lipschitz functions and w̃(·; τ) is symmetric and analytic as a composition of analytic
functions. Hence, [53, Thm. 2.1] implies that w̃λ(·; τ) = w̃(·; τ)◦λ is analytic, and the
classical chain rule implies that ϕ̃j(·; τ) = (1/2)w̃λ(·; τ) ◦ Gj is q-times continuously
differentiable. Together with (4.5), we obtain that ϕ̃j is a smoothing function of ϕj .

Now, we prove that gradient consistency holds, i.e., (3.5) is fulfilled. Since ϕ̃j is
locally Lipschitz continuous, it suffices to show that Sϕ̃j (x) ⊂ ∂ϕj(x) for all x ∈ Rn;
cf. Lemma 3.2, where Sϕ̃j (x) is defined in (3.4). Let x ∈ Rn be arbitrary and let
z ∈ Rn be a vector such that there exists sequences (xk) ⊂ Rn and (τk) ⊂ R++

converging to x and 0 as k →∞, respectively, and, moreover, such that

∇xϕ̃j(xk; τk)→ z as k →∞.

If we conclude that z ∈ ∂ϕj(x), we have Sϕ̃j (x) ⊂ ∂ϕj(x); see (3.4).
Now, let k ≥ 0 be arbitrary. We compute ∇xϕ̃j(xk; τk). The function w̃(·; τk)

is continuously differentiable and symmetric and, hence, the classical chain rule and
[36, Thm. 1.1] imply that the directional derivative Dxϕ̃j(·; τk)h of ϕ̃j(·; τk) w.r.t. x
evaluated at xk in direction h ∈ Rp is

Dxϕ̃j(x
k; τk)h = (1/2)Σ̄0 •DCj(xk)h+ (1/2)(Qj,kMj,kQ

T
j,k) •DGj(xk)h,

where Qj,k ∈ Rp×p fulfills Qj,kQ
T
j,k = I and Gj(x

k) = Qj,kDiag(λ(Gj(x
k)))QTj,k, and

where Mj,k = Diag(∇xw̃(λ(Gj(x
k)); τk)). Using the adjoint operators DCj(x

k)∗ and
DGj(x

k)∗ of DCj(x
k) and DGj(x

k), we obtain that

∇xϕ̃j(xk; τk) = (1/2)DCj(x
k)∗Σ̄0 + (1/2)DGj(x

k)∗(Qj,kMj,kQ
T
j,k).(4.6)

We have that

DCj(x)∗P = ∇x(Cj(x) • P ), and DGj(x
k)∗P = ∇x(Gj(x

k) • P )(4.7)

for all P ∈ Sp. Indeed, for any s ∈ Rn and P ∈ Sp, we infer that

sTDCj(x)∗P = P •DCj(x)s = D(Cj(x) • P )s = sT∇x(Cj(x) • P ).

The second equation in (4.7) can be shown similarly.
Using (4.4), we obtain

(∇xw̃(z; τ))i =
1

1 + exp (−zi/τ)
(4.8)

for all (z, τ) ∈ R × R++ and i = 1, . . . , p. We deduce that (∇xw̃(λ(Gj(x
k)); τk)) is

bounded. Moreover, (Qj,k) is bounded. Hence, we can assume w.l.o.g. that there
exist ūj ∈ Rp and Q̄j ∈ Rp×p such that

∇xw̃(λ(Gj(x
k)); τk)→ ūj , and Qj,k → Q̄j as k →∞,
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with Q̄jQ̄
T
j = I and Gj(x) = Q̄jDiag(λ(Gj(x)))Q̄Tj , where we have used that λ is

continuous; cf. [31, Cor. 6.3.8]. In addition, (4.8) implies for i = 1, . . . , p, that

(∇xw̃(λ(Gj(x
k)); τk))i → (ūj)i ∈


{0} if λi(Gj(x)) < 0,

[0, 1] if λi(Gj(x)) = 0,

{1} if λi(Gj(x)) > 0,

as k →∞.

Hence, (4.6) and the continuity of both DCj and DGj show that

∇xϕ̃j(xk; τk)→ (1/2)DCj(x)∗Σ̄0 + (1/2)DGj(x)∗Q̄jDiag(ūj)Q̄Tj = z as k →∞.

To verify that z ∈ ∂ϕj(x), we compute ∂ϕj(x) using (4.2). The function Sp 3 G 7→∑p
i=1 (λi(G))+ is regular (cf. [37, Cor. 4]), sums of regular functions are regular, and

continuously differentiable functions are regular; cf. [19, Prop. 2.3.6]. Hence, through
applications of the chain rule [18, Thm. 2.3.10], and [37, Thm. 8], we obtain that

∂ϕj(x) =
{

1
2DCj(x)∗Σ̄0 + 1

2DGj(x)∗QDiag(u)QT : Q ∈ Oj(x), u ∈ ∂w(λ(Gj(x)))
}
,

where Oj(x) = {Q ∈ Rp×p : QQT = I,Gj(x) = QDiag(λ(Gj(x)))QT } and w : Rp →
R is defined by w(z) =

∑p
i=1(z)+. For each z ∈ Rp, and for all i ∈ {1, . . . , p} and

g ∈ ∂w(z), it holds that gi = 0 if zi < 0, gi ∈ [0, 1] if zi = 0, and gi = 1 if zi > 0.
Hence, we infer ūj ∈ ∂w(λ(Gj(x))) and, finally, that z ∈ ∂ϕj(x).

3. We can adapt the above reasoning to deduce that (∇xϕ̃j(xk; τk)) has a con-
vergent subsequence if (xk) ⊂ Rn and (τk) ⊂ R++ fulfill xk → x, τk → 0 as k →∞.

Based on an eigendecomposition of Gj(x), the computation of ∇xϕ̃j(x; τ) is cheap;
cf. (4.6). The next step in order to solve the DROP (3.1) efficiently is to construct a
computationally tractable smoothing function of (1.6).

5. Smoothing approach for the TRPs. We derive a smoothing function of
the optimal value function defined in (1.6) based on constructing one of the function
v : Rn → R defined by

v(x) = min
s∈Rp

{
(1/2)sTH(x)s+ g(x)T s : (1/2)‖s‖22 ≤ (1/2)∆2

}
,(5.1)

where g : Rn → Rp and H : Rn → Sp. Throughout, let ∆ > 0 be satisfied. We
obtain a smoothing function of (5.1) as a value function of a “lifted” TRP. The lifted
TRP results from a barrier formulation of a Lagrangian dual of (5.1). Since TRPs are
theoretically and practically tractable (see [6, sect. 2] and [40, sect. 5]), our construc-
tion implies that the smoothing function of v can be evaluated efficiently. Moreover,
based on Danskin’s theorem, we can deduce that the evaluations of derivatives of the
smoothing function are computationally tractable as well. In addition, we establish
gradient consistency and, thus, the smoothing function meets the conditions stated in
Section 3. In particular, we infer that the DROP (3.1) can be solved by Algorithm 3.1.
Our approximation and smoothing scheme can be applied to nonlinear ROPs as an
alternative to methods used in, e.g., [21, 35].

5.1. Lagrangian dual of TRPs. Before we review properties of the Lagrangian
dual of the nominal TRP

min
s∈Rp

(1/2)sTHs+ gT s s.t. (1/2)‖s‖22 ≤ (1/2)∆2,(5.2)

where g = g(x0) ∈ Rp, H = H(x0) ∈ Sp, and x0 ∈ Rn, we state necessary and
sufficient optimality conditions of (5.2); see, e.g., [49, Lem. 2.4, Lem. 2.8].
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Theorem 5.1. The TRP (5.2) has an optimal solution s∗ ∈ Rp. Moreover, the
vector s∗ ∈ Rp is an optimal solution of (5.2) iff there exists λ∗ ∈ R such that

(H + λ∗I)s∗ = −g, ‖s∗‖2 ≤ ∆, λ∗(‖s∗‖2 −∆) = 0, λ∗ ≥ 0, H + λ∗I < 0.(5.3)

In addition, if (s∗, λ∗) fulfills (5.3) and λ∗ > −λmin(H), then s∗ is the unique optimal
solution of (5.2). Moreover, if (s∗1, λ

∗
1) and (s∗2, λ

∗
2) fulfill (5.3), it holds that λ∗1 = λ∗2.

If (s∗, λ∗) satisfies (5.3), we refer to it as optimal primal-dual solution of (5.2). Next,
we provide a definition of the hard case of the TRP (5.2).

Definition 5.2. Let (s∗, λ∗) be an optimal primal-dual solution of (5.2). If λ∗ =
−λmin(H) holds, the hard case occurs for (5.2), and otherwise the easy case.

The term “hard case” is due to [40] and the terminology of the “easy case” has been
used in, e.g., [51]. If the hard case occurs for (5.2), i.e., if (s∗,−λmin(H)) is an
optimal primal-dual solution of (5.2), we have that g ⊥ N(H − λmin(H)I). Indeed,
(5.3) implies for all v ∈ N(H − λmin(H)I) that vT g = −vT (H − λmin(H)I)s∗ = 0.
Now, we state a result on Lagrangian duality of (5.2); cf. [6, 25, 27, 51, 52].

Theorem 5.3 ([52, Prop. 3.1, Thm. 3.3, Cor. 3.4]). A Lagrangian dual problem
of (5.2)—phrased as a minimization problem—is given by

min
λ∈R

d(λ) s.t. H + λI < 0, λ ≥ 0,(5.4)

where d : R→ R ∪ {∞} is defined by

d(λ) =

{
1
2g
T (H + λI)+g + 1

2∆2λ if λ ≥ (−λmin(H))+, g ⊥ N(H + λI),

∞ else.
(5.5)

Moreover, (5.4) has a unique optimal solution λ∗, which is the unique Lagrange mul-
tiplier associated to (5.2). In addition, strong duality holds, i.e., the optimal value of
(5.2) equals −d∗, where d∗ denotes the optimal value of (5.4).

We define the solution mapping s : R→ Rp by

s(λ) = −(H + λI)+g(5.6)

and summarize properties of the dual function d.

Lemma 5.4. The following conditions hold true.
1. The function d defined in (5.5) is convex and d(λ)→∞ as λ→∞.
2. If λ > (−λmin(H))+, then d is twice continuously differentiable at λ, and

d′(λ) = −(1/2)‖s(λ)‖22 + (1/2)∆2.(5.7)

3. If g 6= 0, then d′′(λ) > 0 for all λ > (−λmin(H))+.

Proof. The statements follow from [52, Prop. 3.2] and the proof of [52, Thm. 3.3].

5.2. Barrier formulation for the dual of TRPs. We state a barrier problem
of (5.4) using a reciprocal barrier and show that an optimal solution of it is an
approximate solution to (5.4). In Subsection 5.3, it is shown that the barrier problem
corresponds to a “lifted” TRP justifying the use of a reciprocal barrier instead of a
self-concordant one. Hence, it can be solved with any TRP solver enabling us to define
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and evaluate a smoothing function of ψj (see (1.6)) and its derivatives efficiently and,
subsequently, to solve the DROP (3.1). The barrier problem associated to (5.4) is

min
λ∈R

d(λ) + νBη(λ) s.t. λ > E(−H; η), λ > 0,(5.8)

where ν, η > 0 and the reciprocal barrier Bη : ((E(−H; η))+,∞)→ R is defined by

Bη(λ) =
1

λ
+

1

λ− E(−H; η)
,(5.9)

see, e.g., [26, sect. 3.1]. Here, E : Sp × R++ → R is an entropy function defined by

E(A; η) = η ln

p∑
i=1

exp(λi(A)/η).(5.10)

It has successfully been used in the context of nonsmooth optimization, see, e.g.,
[16, 41], E is a smoothing function of λmax and fulfills

λmax(A) ≤ E(A; η) ≤ λmax(A) + η ln p,(5.11)

for all A ∈ Sp and every η > 0; cf. [41, eq. (17) and eq. (18)], and [31, Cor. 6.3.8]. In
particular, for all A ∈ Sp and any η > 0, we have that

λmin(A) = −λmax(−A) ≥ −E(−A; η).(5.12)

We could use the barrier function ((−λmin(H))+,∞) 3 λ 7→ − lnλ− ln det(H+λI) in
(5.8), which does not require to compute λmin(H) and to smooth λmin. However, the
resulting primal problem would not be a TRP and requires, e.g., an adapted version
of [40, Alg. 3.2] for its numerical solution. Next, we show that (5.8) has a unique
optimal solution for any ν, η > 0.

Lemma 5.5. For every ν, η > 0, the barrier problem (5.8) has a unique optimal
solution λ∗(ν, η) and it holds λ∗(ν, η) > (E(−H; η))+, where E is defined in (5.10).

Proof. Let ν, η > 0 be arbitrary. Define the objective function of (5.8) by

Bν,η : ((E(−H; η))+,∞)→ R, Bν,η = d+ νBη,(5.13)

where d and Bη is defined in (5.5) and (5.9), respectively. Let λ > (E(−H; η))+ be
arbitrary. Since (E(−H; η))+ ≥ (−λmin(H))+ holds (cf. (5.12)), we have that

Bν,η(λ) =
1

2
gT (H + λI)−1g +

1

2
∆2λ+

ν

λ
+

ν

λ− E(−H; η)
≥ 1

2
∆2λ

showing that Bν,η(λ)→∞ as λ→∞. From (5.5), (5.9), and (5.13), we infer that

Bν,η(λ) ≥ ν

λ
+

ν

λ− E(−H; η)
→∞ as λ→ (E(−H; η))+.

Thus, (5.8) has an optimal solution λ∗(ν, η) and there holds λ∗(ν, η) > (E(−H; η))+.
Now, we show that Bν,η is strictly convex. Lemma 5.4 implies that Bν,η (cf.

(5.13)) is twice continuously differentiable at λ with

B′ν,η(λ) = −1

2
gT (H + λI)−2g − ν

λ2
− ν

(λ− E(−H; η))2
+

1

2
∆2,(5.14)

and

B′′ν,η(λ) = gT (H + λI)−3g +
2ν

λ3
+

2ν

(λ− E(−H; η))3
> 0,

implying that Bν,η is strictly convex. Hence, λ∗(ν, η) is the unique solution of (5.8).
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For ν, η > 0, we denote by λ∗(ν, η) the optimal solution of (5.8); cf. Lemma 5.5.

Theorem 5.6. Let ν, η > 0 be arbitrary. Then, the following conditions hold.
1. We have that

λ∗(ν, η) ≥
√

2ν/∆, and λ∗(ν, η)− E(−H; η) ≥
√

2ν/∆,(5.15)

where λ∗(ν, η) is the optimal solution of (5.8) and E is defined in (5.10).
2. The point λ∗(ν, η) is an (

√
2ν∆ + (1/2)∆2η ln p)-optimal solution of (5.4), i.e.,

d∗ ≤ d(λ∗(ν, η)) ≤ d∗ +
√

2ν∆ + (1/2)∆2η ln p,(5.16)

where d∗ denotes the optimal value of (5.4) and d is defined in (5.5).
3. It holds that

d∗ ≤ d(λ∗(ν, η)) + νBη(λ∗(ν, η)) ≤ d∗ + 2
√

2ν∆ + (1/2)∆2η ln p,(5.17)

where the barrier function Bη is defined in (5.9).

We apply the following result to prove Theorem 5.6.

Lemma 5.7. Let η, ε > 0 be arbitrary, and consider

min
λ∈R

d(λ) s.t. λ ≥ ε, λ ≥ E(−H; η) + ε.(5.18)

Then, problem (5.18) has a unique optimal solution λ̄η,ε. Moreover, it holds that

d∗ ≤ d(λ̄η,ε) = d∗η,ε ≤ d∗ + (1/2)∆2(η ln p+ ε),(5.19)

where d∗ denotes the optimal value of (5.4) and d∗η,ε the one of (5.18).

Proof. We establish existence and uniqueness of solutions of (5.18). If g = 0,
we obtain d(λ) = (1/2)∆2λ. Hence, the optimal solution λ̄η,ε of (5.18) is given by
λ̄η,ε = (E(−H; η))+ + ε. If g 6= 0, Lemma 5.4 and (5.12) imply that the objective
of (5.18) is coercive, twice continuously differentiable in an open neighborhood of the
feasible set of (5.18), and d′′(λ) > 0 for all λ > (E(−H; η))+. Hence, there exists a
unique optimal solution λ̄η,ε of (5.18).

Now, we establish (5.19). Since λ̄η,ε ≥ (E(−H; η))++ε, we have that d∗ ≤ d(λ̄η,ε).
Moreover, if λ∗ > (E(−H; η))+ + ε holds, we infer d∗ = d∗η,ε, where λ∗ denotes the
optimal solution of (5.4). Hence, it remains to consider the case where

(−λmin(H))+ ≤ λ∗ ≤ (E(−H; η))+ + ε.

We define λ̄ = λ∗ + η ln p+ ε, and observe that λ̄ ≥ ε. From (5.11), we infer that

E(−H; η) ≤ −λmin(H) + η ln p ≤ λ∗ + η ln p

showing that λ̄ ≥ E(−H; η) + ε. Hence, λ̄ is feasible for (5.18). Lemma 5.4 implies
that d is convex and differentiable at λ̄. Therefore, we have that

d(λ∗)− d(λ̄) ≥ d′(λ̄)(λ∗ − λ̄) = −d′(λ̄)(η ln p+ ε)

resulting in
d(λ∗) + d′(λ̄)(η ln p+ ε) ≥ d(λ̄) ≥ d(λ̄η,ε).

Now, (5.6), Lemma 5.4 and (5.7) imply d′(λ̄) ≤ (1/2)∆2 and, hence, (5.19) holds.
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To prove the estimates in (5.16), we use that the functions G1 : (0,∞) → R and
G2 : (E(−H; η),∞)→ R defined by

G1(λ) = − lnλ, and G2(λ) = − ln(λ− E(−H; η))

are 1-self-concordant barrier functions of their domains; cf. [42, sect. 2.3.1, Ex. 2].

Proof of Theorem 5.6. 1. We establish (5.15). Recall that the objective of (5.8)
is Bν,η; cf. (5.13). Lemma 5.5 implies that B′ν,η(λ∗(ν, η)) = 0 and (5.14) results in

gT (H + λ∗(ν, η)I)−2g +
2ν

λ∗(ν, η)2
+

2ν

(λ∗(ν, η)− E(−H; η))2
= ∆2.

Lemma 5.5 and (5.12) further yield H + λ∗(ν, η)I ∈ Sp++ and, hence, we infer that

2ν

λ∗(ν, η)2
≤ ∆2, and

2ν

(λ∗(ν, η)− E(−H; η))2
≤ ∆2

showing the estimates in (5.15).
2. Next, we verify (5.16). The point λ∗(ν, η) is feasible for (5.4) by (5.15) and,

therefore, we have d∗ ≤ d(λ∗(ν, η)). Now, let λ > (E(−H; η))+ be arbitrary. Both
functions G1 and G2 defined prior the proof are 1-self-concordant for their domains.
Hence, we obtain from [42, Prop. 2.3.2] that

− 1

λ∗(ν, η)
(λ− λ∗(ν, η)) = G′1(λ∗(ν, η))(λ− λ∗(ν, η)) ≤ 1,

− 1

λ∗(ν, η)− E(−H; η)
(λ− λ∗(ν, η)) = G′2(λ∗(ν, η))(λ− λ∗(ν, η)) ≤ 1.

(5.20)

Further, B′ν,η(λ∗(ν, η)) = 0 results in

d′(λ∗(ν, η)) = −νB′η(λ∗(ν, η))

showing with (5.15), (5.20), and λ∗(ν, η) > (E(−H; η))+ that

d′(λ∗(ν, η))(λ− λ∗(ν, η)) = −νB′η(λ∗(ν, η))(λ− λ∗(ν, η))

=
ν

λ∗(ν, η)2
(λ− λ∗(ν, η)) +

ν

(λ∗(ν, η)− E(−H; η))2
(λ− λ∗(ν, η))

≥ − ν

λ∗(ν, η)
− ν

λ∗(ν, η)− E(−H; η)
.

Next, the convexity of d (cf. Lemma 5.4), the above formula, and (5.15) yield that

d(λ∗(ν, η))− d(λ) ≤ d′(λ∗(ν, η))(λ∗(ν, η)− λ)

≤ ν

λ∗(ν, η)
+

ν

λ∗(ν, η)− E(−H; η)
≤ 2ν√

2ν
∆ =

√
2ν∆.

(5.21)

Now, we denote by λ̄η,ε the optimal solution of (5.18) for an arbitrary ε > 0, which
fulfills λ̄η,ε ≥ (E(−H; η))+ + ε; cf. Lemma 5.7. Furthermore, Lemma 5.7, (5.19) and
(5.21) with λ = λ̄η,ε show that

d(λ∗(ν, η)) ≤ d(λ̄η,ε) +
√

2ν∆ ≤ d∗ +
√

2ν∆ + (1/2)∆2(η ln p+ ε).

The latter inequalities hold for all ε > 0 and, hence, we obtain (5.16).
3. We show (5.17). Using (5.9) and (5.15), we infer that νBη(λ∗(ν, η)) > 0

νBη(λ∗(ν, η)) ≤
√

2ν∆, and λ∗(ν, η) is feasible for (5.4). Hence, (5.16) implies (5.17).

The error estimates presented in Theorem 5.6 depend on ln p and on the prescribed
trust-region radius ∆. Therefore, the data dependence is weak.
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5.3. Smoothing function for TRPs. We show that the function ṽ : Rn ×
R2

++ → R defined by

ṽ(x; ν, η) = min
s̃∈Rp+2

{
(1/2)s̃T H̃η(x)s̃+ g̃ν(x)T s̃ : (1/2)‖s̃‖22 ≤ (1/2)∆2

}
.(5.22)

is a smoothing function of v (see (5.1)) and establish gradient consistency, where

H̃η(x) =

H(x)
0
−E(−H(x); η)

 ∈ Sp+2, and g̃ν(x) =

g(x)√
2ν√
2ν

 ∈ Rp+2,(5.23)

and E(·; η) is defined in (5.10). Subsequently, we apply these results to define a
smoothing function of ψj (see (1.6)), to infer its gradient consistency, and to de-
duce computationally tractability—crucial properties for an efficient solution of ap-
proximated DROPs using Algorithm 3.1. To prove these properties, we use that a
Lagrangian dual of (5.22) is

min
λ∈R

d(λ;x) +
ν

λ
+

ν

λ− E(−H(x); η)
s.t. λ > E(−H(x); η), λ > 0,(5.24)

where x ∈ Rn and d : ((−E(H(x); η))+,∞)× Rn → R is defined by

d(λ;x) = (1/2)g(x)T (H(x) + λI)−1g(x) + (1/2)∆2λ.(5.25)

Lemma 5.8. Let x ∈ Rn and ν, η > 0 be arbitrary. Then, the problem (5.24)
has a unique optimal solution λ̃(x; ν, η) and it holds that λ̃(x; ν, η) > (E(−H(x); η))+.
Moreover, the optimal value of (5.22) equals the negative of the one of (5.24), the
hard case does not occur for (5.22), and

ṽ(x; ν, η) = −(1/2)g̃ν(x)T (H̃η(x) + λ̃(x; ν, η)I)−1g̃ν(x)− (1/2)∆2λ̃(x; ν, η).(5.26)

Proof. Lemma 5.5 implies that (5.24) has a unique optimal solution λ̃(x; ν, η) and
it holds that λ̃(x; ν, η) > (E(−H(x); η))+. Using (5.12), we infer that λmin(H(x)) ≥
−E(−H(x); η) and (5.23) shows λmin(H̃η(x)) = −(E(−H(x); η))+.

If E(−H(x); η) > 0, we have that y = (0, . . . , 0, 1) ∈ N(H̃η(x) − λmin(H̃η(x))I)

and yT g̃ν(x) 6= 0. If E(−H(x); η) ≤ 0, we get that w = (0, . . . , 0, 1, 0) ∈ N(H̃η(x) −
λmin(H̃η(x))I) and wT g̃ν(x) 6= 0. Hence, we obtain g̃ν(x) 6⊥ N(H̃η(x)−λmin(H̃η(x))I).

Next, for all λ > (E(−H(x); η))+, we infer from (5.23) and (5.25) that

d(λ;x)+
ν

λ(x; ν, η)
+

ν

λ(x; ν, η)− E(−H(x); η)
=

1

2
g̃ν(x)T (H̃η(x)+λI)−1g̃ν(x)+

1

2
∆2λ.

Hence, Theorem 5.3 shows that strong duality holds and (5.26) is satisfied. The hard

case does not occur for (5.22) since λ̃(x; ν, η) > (E(−H(x); η))+ = −λmin(H̃η(x)).

We establish an error estimate on ṽ (see (5.22)) and show that it is a smoothing
function of v (see (5.1)). We define, similar to (5.6), the mapping s : R×Rn → R by

s(λ;x) = −(H(x) + λI)+g(x).(5.27)

For ν, η > 0, we denote by (s̃(x; ν, η), λ̃(x; ν, η)) an optimal primal-dual solution of
(5.22), where

λ̃(·; ν, η) : Rn → R and s̃(·; ν, η) : Rn → Rp.(5.28)
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From (5.3), Lemma 5.8, the block structure of H̃η(x) (see (5.23)) and (5.27), we infer
that for all x ∈ Rn it holds that

s̃(x; ν, η) = (s(λ̃(x; ν, η);x), s̃p+1(x; ν, η), s̃p+2(x; ν, η)).(5.29)

In particular, the first p components of s̃(x; ν, η) are given by s(λ̃(x; ν, η);x). By
applying (5.3) and (5.23), we obtain that

s̃p+1(x; ν, η) =

√
2ν

λ̃(x; ν, η)
, and s̃p+2(x; ν, η) =

√
2ν

λ̃(x; ν, η)− E(−H(x); η)
.(5.30)

Theorem 5.9. Let ν, η > 0 be arbitrary, and let the mappings g : Rn → Rp and
H : Rn → Sp be q-times continuously differentiable, where q ≥ 1. Then, the following
conditions hold true.
1. For every x ∈ Rn, we have that

v(x) ≥ ṽ(x; ν, η) ≥ v(x)− 2
√

2ν∆− (1/2)∆2η ln p,(5.31)

where v is defined in (5.1) and ṽ in (5.22).
2. The mappings s̃(·; ν, η) and λ̃(·; ν, η) defined in (5.28) are q− 1-times continuously

differentiable, and ṽ(·; ν, η) is q-times continuously differentiable. We have that

∇xṽ(x; ν, η) = ∇x℘(x, s)|s=s(λ̃;x) + (1/2)(s̃p+2)2∇x(−E(−H(x); η)),(5.32)

where ℘ : Rn × Rp → R is defined by

℘(x, s) = g(x)T s+ (1/2)sTH(x)s(5.33)

and (s̃, λ̃) = (s̃(x; ν, η), λ̃(x; ν, η)) is the optimal primal-dual solution of (5.22).
3. The function ṽ is a smoothing function of v.

Proof. 1. Let x ∈ Rn be arbitrary. Theorem 5.6 and Lemma 5.8 yield with (5.17)
and (5.26) that (5.31) holds.

2. Lemma 5.8 further shows that λ̃(x; ν, η) > (E(−H(x); η))+ implying that strict
complementarity slackness holds for (5.22). Moreover, the function E(·; η) (see (5.10))
is analytic as z 7→ η ln

∑p
i=1 exp(zi/η) is analytic (see [53, Thm. 3.1]) and, therefore,

the mapping H̃η (see (5.23)) is q-times continuously differentiable. Hence, the implicit
function theorem applies to the first-order optimality conditions (5.3) of (5.22) and
implies that λ̃(·; ν, η) and s̃(·; ν, η) are q − 1-times continuously differentiable.

Now, the equations (5.22), (5.23), (5.29), (5.33) together with Danskin’s theorem
[10, Thm. 4.13, Rem. 4.14] yield that ṽ(·; ν, η) is differentiable and show that its
gradient is given by (5.32). Next, [30, Cor. 8.2] implies that s̃(·; ν, η) is continuous
showing that ∇xṽ(·; ν, η) is continuous. Moreover, the chain rule and (5.22) imply
that ṽ(·; ν, η) is q-times continuously differentiable.

3. The function v is continuous by [30, Thm. 7], ṽ(·; ν, η) is continuously differ-
entiable and, hence, (5.31) shows that ṽ is a smoothing function of v.

The next result asserts gradient consistency of the function ṽ defined in (5.22).

Theorem 5.10. Let the conditions of Theorem 5.9 be fulfilled. Then, the follow-
ing conditions are satisfied.
1. Gradient consistency holds for ṽ and v, where v is defined in (5.1) and ṽ in (5.22).
2. Let x ∈ Rn be given, (xk) ⊂ Rn and (νk), (ηk) ⊂ R++ be sequences converging

to x and 0 as k → ∞, respectively. Then, there exists a convergent subsequence
(∇xṽ(xk; νk, ηk))K of (∇xṽ(xk; νk, ηk)).
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We need the following result to prove Theorem 5.10.

Lemma 5.11. Let (ηk) ⊂ R++ be a sequence such that ηk → 0 as k → ∞. Fur-
thermore, let A : Rn → Sp be continuously differentiable and let (xk) ⊂ Rn be a
sequence such that xk → x ∈ Rn as k → ∞. Then, there exists a subsequence
(∇x(E(·; ηk) ◦A)(xk))K of (∇x(E(·; ηk) ◦A)(xk)) such that

∇x(E(·; ηk) ◦A)(xk)→
r∑
i=1

θiDA(x)∗[uiu
T
i ] ∈ DA(x)∗∂λmax(A(x)) as K 3 k →∞,

where E is defined in (5.10), 1 ≤ r ≤ r(A(x)), r(A(x)) denotes the multiplicity of
λmax(A(x)), θi ∈ [0, 1],

∑r
i=1 θi = 1, and ui ∈ Rp, ‖ui‖2 = 1, are pairwise orthogonal

eigenvectors of A(x) corresponding to λmax(A(x)).

Proof. The mapping A is continuously differentiable and λmax is convex and,
hence, regular in the sense of [19, Def. 2.3.4]; see [19, Prop. 2.3.6]. Moreover, A and
λmax are locally Lipschitz continuous. The chain rule [19, Thm. 2.3.9] implies that

∂(λmax ◦A)(x) = DA(x)∗∂λmax(A(x)).(5.34)

The function E(·; ηk) is analytic (see [53, Thm. 3.1]) and, hence, the chain rule implies

∇x(E(·; ηk) ◦A)(xk) = DA(xk)∗∇AE(A(xk); ηk).(5.35)

We define Ak = A(xk) and A = A(x). Next, we show that there exists a subsequence
(∇AE(Ak; ηk))K of (∇AE(Ak; ηk)) such that

∇AE(Ak; ηk)→
r∑
i=1

θiuiu
T
i ∈ ∂λmax(A) as K 3 k →∞.(5.36)

For all k ≥ 0, we have that

∇AE(Ak; ηk) =

p∑
i=1

θi,kui(Ak)ui(Ak)T , and θi,k =
exp λi(Ak)−λmax(Ak)

ηk∑p
i=1 exp λi(Ak)−λmax(Ak)

ηk

,

where Akui(Ak) = λmax(Ak)ui(Ak), ‖ui(Ak)‖2 = 1, and the vectors ui(Ak) are pair-
wise orthogonal for i = 1, . . . p; cf. [41, sect. 4]. We have that

∑p
i=1 θi,k = 1 and

θi,k ∈ [0, 1]. Hence, we can assume w.l.o.g. that for all i ∈ {1, . . . , p}, it holds that
ui(Ak) → ui ∈ Rp, θi,k → θi ∈ [0, 1] as k → ∞, ‖ui‖2 = 1, and

∑p
i=1 θi = 1. We

have Akui(Ak) = λi(Ak)ui(Ak) for all k ≥ 0, Ak → A as k →∞ and λ is continuous
(cf. [31, Cor. 6.3.8]) showing that ui is an eigenvector of A corresponding to λi(A).
Moreover, 0 = ui(Ak)Tuj(Ak) → uTi uj as k → ∞ for all i 6= j implies that ui are
pairwise orthogonal.

Now, let i ∈ {1, . . . , p} be an index such that λi(A) < λmax(A), i.e., i > r(A). We
obtain that λi(Ak) − λmax(Ak) ≤ (λi(A) − λmax(A))/2 < 0 for all k ≥ 0 sufficiently
large. Hence, we infer θi,k → 0 as k →∞ resulting in θi = 0. Moreover, it holds that

conv
{
uuT : Au = λmax(A)u, ‖u‖2 = 1, u ∈ Rp

}
= ∂λmax(A)

(cf. [41, sect. 4]) and, hence, we conclude that (5.36) holds. We have that DA(xk)→
DA(x) as k →∞ and, therefore, (5.34) and (5.35) imply the assertion.
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We use the notation (νk, ηk)N0
to indicate a sequence distinguishing it from its el-

ements (νk, ηk) and to avoid using ((νk, ηk)), and (νk, ηk)K to denote a subsequence of
(νk, ηk)N0

. In addition to Lemma 5.11, we apply the next result to prove Theorem 5.9.

Lemma 5.12. Let the conditions of Theorem 5.9 be fulfilled. Moreover, let x̄ ∈
Rn be given, (xk) ⊂ Rn and (νk), (ηk) ⊂ R++ be sequences converging to x̄ and
0 as k → ∞, respectively. We denote (s̃k, λ̃k) = (s̃(xk; νk, ηk), λ̃(xk; νk, ηk)), where
(s̃(x; ν, η), λ̃(x; ν, η)) is defined in (5.28). Then, the following conditions hold true.
1. The sequence (s̃k, λ̃k)N0

has a convergent subsequence (s̃k, λ̃k)K . In particular,
there exist (s̄, λ̄) ∈ Rp × R+ and ᾱ, β̄ ∈ R such that

s̃k = (s(λ̃k;xk), s̃kp+1, s̃
k
p+2)→ (s̄, β̄, ᾱ) and λ̃k → λ̄ as K 3 k →∞.(5.37)

2. If λ̄ > −λmin(H(x̄)) holds, the easy case occurs for (5.1) with x = x̄, (s̄, λ̄) is an
optimal primal-dual solution of (5.1) for x = x̄, and ᾱ = 0.

3. If λ̄ = −λmin(H(x̄)) holds, the hard case occurs for (5.1) with x = x̄. Moreover,
let wi ∈ Rp, ‖wi‖2 = 1, i = 1, . . . , r, be pairwise orthogonal eigenvectors of H(x̄)
corresponding to λmin(H(x̄)), where r ∈ N. Then, the vectors (s̄ + γ+

i wi, λ̄) and
(s̄+ γ−i wi, λ̄) are optimal primal-dual solutions of (5.1) for x = x̄, where

γ+
i = −wTi s̄+

√
(wTi s̄)

2 + ᾱ2, and γ−i = −wTi s̄−
√

(wTi s̄)
2 + ᾱ2.(5.38)

Proof. 1. Let k ≥ 0 be arbitrary. We show that (s̃k, λ̃k)N0
is bounded. Since

‖s̃k‖2 ≤ ∆ holds, (s̃k) is bounded. Lemma 5.8 shows that λ̃k = λ̃(xk; νk, ηk) >
(E(−H(xk); η))+ and, hence, (5.12) implies

λ̃k > −(λmin(H(xk)))+.(5.39)

Now, (5.26), Lemma 5.8 and (5.39) yield that

ṽ(xk; νk, ηk) = −1

2
g̃Tνk(xk)(H̃ηk(xk) + λ̃kI)−1g̃νk(xk)− 1

2
∆2λ̃k ≤ −

1

2
∆2λ̃k ≤ 0,

The left-hand side of the above inequality converges to v(x̄) as k →∞ by Theorem 5.9
and ∆ > 0 holds implying that (λ̃k) is bounded. In particular, (s̃k, λ̃k)N0 is bounded
and it has a convergent subsequence (s̃k, λ̃k)K . Hence, (5.29) implies that (5.37) holds
for some (s̄, λ̄) ∈ Rp × R+ and ᾱ, β̄ ∈ R.

Next, (5.14) shows that a necessary optimality condition of (5.22) is

∆2 = ‖s(λ̃k;xk)‖22 +
2νk

λ̃2
k

+
2νk

(λ̃k − E(−H(xk); ηk))2
= ‖s̃k‖22,

where we have used (5.30) and (5.30) to establish the second equality. Hence, by
applying (5.37) we obtain that

∆2 = ‖s̃k‖22 → ‖s̄‖22 + β̄2 + ᾱ2 as K 3 k →∞.(5.40)

Moreover, from (5.39), we infer that

H(x̄) + λ̄I < 0, and λ̄ ≥ 0.(5.41)

Using (5.27) and (5.39), we have that

0 = (H(xk) + λ̃kI)s(λ̃k;xk) + g(xk)→ (H(x̄) + λ̄I)s̄+ g(x̄) as K 3 k →∞.(5.42)
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2. Now, we verify that (s̄, λ̄) is an optimal primal-dual solution of (5.1) for x = x̄
and ᾱ = 0 if λ̄ > −λmin(H(x̄)). By assumption H(x̄) + λ̄I is invertible and, hence,
(5.42) implies that s̄ is the unique solution to (H(x̄) + λ̄I)s̄ = −g(x̄). Therefore,
(5.27) and (5.42) result in s(λ̄; x̄) = s̄. Moreover, (5.40) implies that ‖s̄‖2 ≤ ∆.

If λ̄ > 0, then continuity of λmin, λ̄ > −λmin(H(x̄)), λ̃k → λ̄ as K 3 k →∞ and
(5.11) imply that λ̃k ≥ λ̄/2 > 0 and λ̃k − E(−H(xk); ηk) ≥ (λ̄ + λmin(H(x̄)))/2 > 0
for all k ∈ K sufficiently large. Therefore, we obtain from (5.30) that

s̃kp+1 =

√
2νk

λ̃k
→ 0, and s̃kp+2 =

√
2νk

λ̃k − E(−H(xk); ηk)
→ 0 as K 3 k →∞,(5.43)

and, therefore, ᾱ, β̄ = 0. Now, (5.40) implies that ∆2 = ‖s̄‖22.
Hence, (s(λ̄; x̄), λ̄) satisfies λ̄(‖s̄‖22 − ∆2) = 0 and, therefore, it fulfills (5.3) im-

plying that it is an optimal primal-dual solution of (5.1) for x = x̄ by Theorem 5.1.
Theorem 5.1 further implies that the easy case occurs.

3. Next, we establish that the vectors (s̄+γ+
i wi, λ̄) and (s̄+γ−i wi, λ̄) are optimal

primal-dual solutions of (5.1) for x = x̄ if λ̄ = −λmin(H(x̄)). Let i ∈ {1, . . . , r} be
arbitrary. The numbers γ+

i and γ−i solve

γ2
i + 2γiw

T
i s̄− ᾱ2 = 0.

Using ‖wi‖2 = 1 and (5.40), we obtain for γi ∈ {γ−i , γ
+
i } that

‖s̄+ γiwi‖22 = ‖s̄‖22 + 2γiw
T
i s̄+ γ2

i = ∆2 − ᾱ2 − β̄2 + 2γiw
T
i s̄+ γ2

i ≤ ∆2(5.44)

with equality if β̄ = 0 and, moreover, (5.42) and (H(x̄) + λ̄I)wi = 0 results in

(H(x̄) + λ̄I)(s̄+ γiwi) = (H(x̄) + λ̄I)s̄ = −g(x̄).(5.45)

If λ̄ > 0, (5.43) shows that β̄ = 0. Hence, (5.44) implies that λ̄(‖s̄+γiwi‖22−∆2) = 0.
Moreover, (5.41), (5.42), (5.44) and (5.45), and the above complementarity con-

dition yield that (s̄ + γiwi, λ̄), γi ∈ {γ−i , γ
+
i }, fulfill (5.3) and, hence, are optimal

primal-dual solutions of (5.1) for x = x̄ by Theorem 5.1. Theorem 5.1 further implies
that the hard case occurs.

The proof of Theorem 5.9 requires the gradient of ℘ (see (5.33)), which is given by

∇x℘(x, s) = ∇xg(x)T s+ (1/2)∇xsTH(x)s = ∇xg(x)T s+ (1/2)DH(x)∗[ssT ](5.46)

Indeed, the first equality in (5.46) follows from the chain rule and the second using a
similar derivation as in (4.7).

Proof of Theorem 5.10. 1. Let x̄ ∈ Rn be arbitrary. The function v is locally
Lipschitz continuous (cf. [24, Thm. 4.1]), and, hence, ∂v(x̄) is well-defined. From
(5.1), (5.33) and [18, Thm. 2.1], we have that

∂v(x̄) = conv {∇x℘(x̄, s∗) : s∗ ∈ S∗TR(x̄) } ,(5.47)

where S∗TR(x̄) denotes the set of optimal solutions of (5.1) for x = x̄.
Next, we establish that gradient consistency holds, i.e., that (3.5) holds distin-

guishing if the easy or the hard case occurs for (5.1) with x = x̄. The inclusion
∂v(x̄) ⊂ Sṽ(x̄) follows from v being locally Lipschitz continuous, where Sṽ(x) is de-
fined in (3.4); cf. Lemma 3.2. Let z ∈ Rp be such that there exist sequences (xk) ⊂ Rn
and (νk), (ηk) ⊂ R++ fulfilling xk → x̄ and νk, ηk → 0, and

∇xṽ(xk; νk, ηk)→ z as k →∞.(5.48)
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Lemma 5.12 implies that the sequence (s̃k, λ̃k)N0
of optimal primal-dual solutions

(s̃k, λ̃k) of (5.22) for (x, ν, η) = (xk, νk, ηk) has a convergent subsequence (s̃k, λ̃k)K .
Moreover, the sequence (s(λ̃k;xk), λ̃k)K converges to (s̄, λ̄) and s̃p+2 → ᾱ as K 3
k →∞, where s̄ ∈ Rp, λ̄ ≥ 0 and ᾱ ∈ R, and s(λ;x) is defined in (5.27).

In addition, Lemma 5.11 applies with A = −H and shows that there exists a
subsequence (∇x(E(−H(xk); ηk)))K′ of (∇x(E(−H(xk); ηk)))K such that

∇x(E(−H(xk); ηk))→ −
r∑
i=1

θiDH(x̄)∗[wiw
T
i ] as K ′ 3 k →∞,(5.49)

where 1 ≤ r ≤ r(A(x̄)), r(A(x̄)) denotes the multiplicity of λmax(A(x̄)), θi ∈ [0, 1],
and

∑r
i=1 θi = 1. Moreover, ‖wi‖2 = 1 and wi are pairwise orthogonal eigenvectors of

A(x̄) = −H(x̄) corresponding to λmax(A(x̄)) = −λmin(H(x̄)). We define r = r(A(x̄)).
Hence, (5.32), (5.49), and g and H being continuously differentiable show that

∇xṽ(xk; νk, ηk)→ ∇x℘(x̄, s̄) + (ᾱ2/2)

r∑
i=1

θiDH(x̄)∗[wiw
T
i ] as K ′ 3 k →∞.(5.50)

If the easy case occurs for (5.1) with x = x̄, Lemma 5.12 further implies that
s̄ ∈ S∗TR(x̄) and ᾱ = 0. By applying (5.47), (5.48) and (5.50), we infer that z ∈ ∂v(x̄).

If the hard case occurs for (5.1), Lemma 5.12 further implies that s̄ + γ+
i wi and

s̄ + γ−i wi are optimal solutions of (5.1) for x = x̄, where γ+
i and γ−i are defined in

(5.38). If ᾱ = 0, (5.38) implies that either γ+
i or γ−i is zero and, hence, s̄ is an optimal

solution of (5.1) for x = x̄, and, hence, (5.47), (5.48) and (5.50) imply that z ∈ ∂v(x̄).

If ᾱ > 0, (5.38) results in γ+
i − γ

−
i = 2

√
(wTi s̄)

2 + ᾱ2 > 0. We define

τ+
i =

−γ−i
γ+
i − γ

−
i

, and τ−i =
γ+
i

γ+
i − γ

−
i

.(5.51)

Furthermore, (5.38) implies that γ+
i > 0 and γ−i < 0 and, hence, (5.51) shows that

τ+
i > 0, τ−i > 0, τ+

i + τ−i = 1,

τ+
i γ

+
i + τ−i γ

−
i =

−γ−i γ
+
i + γ+

i γ
−
i

γ+
i − γ

−
i

= 0, and τ+
i (γ+

i )2 + τ−i (γ−i )2 = ᾱ2.
(5.52)

Using (5.33) and (5.46), we obtain for γi ∈ {γ−i , γ
+
i } that

∇x℘(x̄, s̄+ γiwi) = ∇xg(x̄)T s̄+ (1/2)DH(x̄)∗[s̄s̄T ] + γi∇xg(x̄)Twi

+ (1/2)γiDH(x̄)∗[wis̄
T + s̄wTi ] + (1/2)(γi)

2DH(x̄)∗[wiw
T
i ]

resulting in

τ+
i ∇x℘(x̄, s̄+ γ+

i wi) + τ−i ∇x℘(x̄, s̄+ γ−i wi)

= (τ−i + τ+
i )∇xg(x̄)T s̄+ (1/2)(τ−i + τ+

i )DH(x̄)∗[s̄s̄T ]

+ (τ+
i γ

+
i + τ−i γ

−
i )∇g(x̄)Twi + (1/2)(τ+

i γ
+
i + τ−i γ

−
i )DH(x̄)∗[wis̄

T + s̄wTi ]

+ (1/2)(τ+
i (γ+

i )2 + τ−i (γ−i )2)DH(x̄)∗[wiw
T
i ].

Hence, (5.52) implies that

τ+
i ∇x℘(x̄, s̄+ γ+

i wi) + τ−i ∇x℘(x̄, s̄+ γ−i wi)

= ∇xg(x̄)T s̄+ (1/2)DH(x̄)∗[s̄s̄T ] + (ᾱ2/2)DH(x̄)∗[wiw
T
i ],
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implying with
∑r
i=1 θi = 1 and (5.46) that

r∑
i=1

θiτ
+
i ∇x℘(x̄, s̄+ γ+

i wi) +

r∑
i=1

θiτ
−
i ∇x℘(x̄, s̄+ γ−i wi)

= ∇x℘(x̄, s̄) + (ᾱ2/2)

r∑
i=1

θiDH(x̄)∗[wiw
T
i ].

(5.53)

Moreover, using (5.52), we have that
∑r
i=1 θiτ

+
i +

∑r
i=1 θiτ

−
i =

∑r
i=1 θi(τ

+
i +τ−i ) = 1

the limit in (5.50) equals (5.53). Now, we use that ∇x℘(x̄, s̄+ γ+
i wi) and ∇x℘(x̄, s̄+

γ−i wi) are contained in ∂v(x̄) (cf. Lemma 5.12) implying that (5.53) is a convex
combination of elements of ∂v(x̄). Hence, (5.47), (5.48) and (5.50) yield z ∈ ∂v(x̄).

2. Adapting the above reasoning and using (5.32) we obtain that (∇xṽ(xk; νk, ηk))
has a converging subsequence if xk → x and νk, ηk → 0+ as k →∞.

Theorem 5.9 and Theorem 5.10 imply that the function ψ̃j : Rn ×R2
>0 → R given by

ψ̃j(x; ν, η) = hj(x)− min
s̃∈Rp+2

{
(1/2)s̃T H̃η,j(x)s̃+ g̃ν,j(x)T s̃ : ‖s̃‖2 ≤ ∆

}
,(5.54)

is a smoothing function of ψj (see (1.6)), where hj(x) = aj(x), gj(x) = −Σ̄1/2bj(x),

and Hj(x) = −Σ̄1/2Cj(x)Σ̄1/2. Moreover, H̃η,j and g̃ν,j are defined as in (5.23) with

H and g replaced by Hj and gj , respectively. The representation of ψ̃j results from
(1.6) being transformed to the TRP (5.1) using d 7→ s = Σ̄−1/2d.

Theorem 5.13. Let Σ̄ ∈ Sp++, and aj : Rn → R, bj : Rn → Rp and Cj : Rn → Rp
be q-times continuously differentiable, where q ≥ 1 and j ∈ J . Then, the following
conditions hold true.
1. The function ψ̃j defined in (5.54) is a smoothing function of ψj, ψ̃j(·; ν, η) is q-

times continuously differentiable for every ν, η > 0, and gradient consistency holds.
2. Let x ∈ Rn be given and (xk) ⊂ Rn and (νk), (ηk) ⊂ R++ be sequences converging

to x and 0 as k → ∞, respectively. Then, there exists a convergent subsequence
(∇xψ̃j(xk; νk, ηk))K of (∇xψ̃(xk; νk, ηk)).

The computational cost of evaluating (5.54) are essentially the same as the evaluation

of (1.6) since H̃η,j(x) (see (5.23)) is a block-diagonal matrix for x ∈ Rn implying that
our smoothing approach is tractable both theoretically and practically.

6. Convergence of the homotopy method. We show that a sequence of
KKT-tuples of (3.2) generated by Algorithm 3.1 converges to a stationary point of

the DROP (3.1) under mild assumptions. We define F̃j : Rn × R3
++ → R by

F̃j(x; t) = ϕ̃j(x; τ) + ψ̃j(x; ν, η)(6.1)

and recall that Fj : Rn → R, Fj(x) = ϕj(x) + ψj(x) for all j ∈ J , where we set

t = (τ, ν, η), and ϕ̃j and ψ̃j is defined in (4.3) and (5.54), respectively. Suitable
assumptions on (1.4) imply that the DROP (3.2) has feasible points.

Proposition 6.1. Let z ∈ Rn be a strictly feasible point for (3.1) and let the
conditions of Theorem 4.2 and Theorem 5.13 be fulfilled for any j ∈ J \ {0}. Then, z
is a strictly feasible point to (3.2) for all sufficiently small t > 0.

Proof. Theorem 4.2, Theorem 5.13, and (6.1) imply that

F̃j(z; t) = ϕ̃j(z; τ) + ψ̃j(z; ν, η)→ Fj(z) as t = (τ, ν, η)→ 0+

for all j ∈ J \ {0} establishing the assertion.
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Next, we provide a global convergence result of Algorithm 3.1.

Theorem 6.2. Let the conditions of Theorem 4.2 and Theorem 5.13 hold for
all j ∈ J . Choose εmin, tmin = 0 and let the sequence (xk, ϑk)N0 be generated by
Algorithm 3.1. Then, every accumulation point of (xk, ϑk)N0

is a KKT-point of (3.1).

Proof. Let (x̄, ϑ̄) be an accumulation point of (xk, ϑk)N0 . Then, there exists a
subsequence (xk, ϑk)K of (xk, ϑk)N0 converging to (x̄, ϑ̄) as K 3 k → ∞. Further,
it holds that 0 ≤ χ(xk, ϑk; tk) ≤ εk for all k ≥ 0, where χ is defined in (3.3). Since
εk → 0 as k →∞, we obtain from (6.1), Theorem 4.2 and Theorem 5.13 that

εk ≥ |min{−F̃j(xk; tk), ϑkj }| → |min{−Fj(x̄), ϑ̄j}| = 0 as K 3 k →∞, ∀j ∈ J\{0}.

Because (a, b) 7→ min{a, b} is a complementarity function, we have that ϑ̄jFj(x̄) =
0, Fj(x̄) ≤ 0 and ϑ̄j ≥ 0 for all j ∈ J \ {0}. We can assume w.l.o.g. that the

sequences (∇xϕ̃j(xk; τk))K , j ∈ J , and (∇xψ̃j(xk; νk, ηk))K , j ∈ J , are convergent;
cf. Theorem 4.2 and Theorem 5.13. Hence, there exist vj , wj ∈ Rn such that

∇xϕ̃j(xk; τk)→ vj , ∇xψ̃j(xk; νk, ηk)→ wj as K 3 k →∞, for all j ∈ J.

Now, let j ∈ J be arbitrary. We verify that vj + wj ∈ ∂Fj(x̄). Theorem 4.2 and
Theorem 5.13 apply and yield that vj ∈ ∂ϕj(x̄) and wj ∈ ∂ψj(x̄) due to gradient
consistency. Next, [18, Thm. 2.1] and [19, Prop. 2.3.6] show that ϕj and ψj are
regular according to [19, Def. 2.3.4] and, therefore, [19, Cor. 3 on p. 40] results in
∂Fj(x̄) = ∂ϕj(x̄) + ∂ψj(x̄) showing vj + wj ∈ ∂Fj(x̄). Hence, we have that

v0 + w0 +
∑

j∈J\{0}

ϑ̄j(vj + wj) ∈ ∂F0(x̄) +
∑

j∈J\{0}

ϑ̄j∂Fj(x̄).

Moreover, χ(xk, ϑk; tk)→ 0 as k →∞, where χ is defined in (3.3), implies that

∇xF̃0(xk; tk) +
∑

j∈J\{0}

(ϑk)j∇xF̃j(xk; tk)→ 0 as K 3 k →∞,

and, therefore, we infer that 0 ∈ ∂F0(x̄) +
∑
j∈J\{0} ϑ̄j∂Fj(x̄).

If we only assume (xk) to have a convergent subsequence, we need to impose a suitable
CQ for (3.1) to infer convergence of a subsequence of (ϑk); cf. [56, Thm. 3.2]. More-
over, the existence of KKT-tuples of the DROP (3.2) may be verified under suitable
CQs for (3.1); cf. [56].

7. Numerical examples. We construct DROPs from the Moré-Garbow-Hill-
strom test set [39] consisting of standard NLPs modeling design variables as uncertain,
which has been considered in, e.g., [8, 35], for RO:

min
x∈Rn

sup
P∈Pε

EP [f0(x+ ξ)],(7.1)

where Pε is defined by

Pε = {P ∈M : ‖EP [ξ]‖2 ≤ ε, 0 4 CovP [ξ] 4 εI }.(7.2)

We choose ε = {10−3, 10−2} and refer to Appendix A for a description of how we
selected test problems. The goals of our numerical results are to show that our
algorithmic scheme is effective in that Algorithm 3.1 is an efficient method to solve

min
x∈Rn

F0(x),(7.3)
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where F0 is defined in (6.1) and a0(x) = f0(x), b0(x) = ∇f0(x), C0(x) = ∇2f0(x) is
chosen in (1.5) and (1.6), and it allows to compute stationary points of (7.3), which
are more robust than stationary points of the deterministic

min
x∈Rn

f0(x),(7.4)

and the stochastic program

min
x∈Rn

EP̄ε [f0(x+ ξ)],(7.5)

for P̄ε = N(0, (ε/10)I). We choose P̄ε = N(0, (ε/10)I) to mimic the set up of the
application considered in [20, sect. 4.3].

All problems are solved using IPOPT [54] and its Julia interface Ipopt.jl with-
out modifying options except of the overall termination, which was set to 10−4 for all
iterations of Algorithm 3.1, and it was chosen as 10−5 for the solution of the nominal
problems (7.4) and the sample average approximation of (7.5). We use exact Hes-
sian information for nominal and stochastic programs and L-BFGS in Algorithm 3.1.
Derivatives are computed with automatic differentiation using the Julia package
ForwardDiff [45] including the gradients of the smoothing functions ϕ̃0 (see (4.3))
and ψ̃0 (see (5.54)). Theorem 4.2, Theorem 5.6 and the termination tolerance used in
Algorithm 3.1 motivate the choices νmin = 10−8 and ηmin, τmin =

√
νmin, and, more-

over, ν0 = 10−2, and η0, τ0 =
√
ν0. We define νk+1 = ρ2νk, and ηk+1, τk+1 = ρηk,

where ρ = 0.1.
To solve (7.3), we choose x∗N as initial value in Algorithm 3.1, where x∗N is the

stationary point computed by IPOPT for the nominal problem (7.4), which results
in less iterations than using the initial values of the test problems. To initialize the
solution of (7.3) in the (k + 1)st iteration of Algorithm 3.1, we use the one obtained
in the kst iteration. Numerical values are displayed with four significant figures and
we approximated expected values using Monte Carlo with 1000 independent samples.

Our choices for the smoothing parameters imply that Algorithm 3.1 performs
five outer iterations. Table 1 lists the median number of corresponding objective
function, gradient and Hessian evaluations used by IPOPT to compute a stationary
point of (7.3) using Algorithm 3.1, of (7.4) and of the sample average approximation

of (7.5). Evaluating the smoothing function F̃0 (see (6.1)) of the cost function F0 of

(7.3) at (x, t) requires f0(x) (see (7.4)), ∇f0(x) and ∇2f0(x). To obtain ∇xF̃0(x; t),
we reuse the gradient ∇f0(x), the Hessian ∇2f0(x), and compute the gradients of
x 7→ s̃T∇2f0(x)s̃, x 7→ ∇f0(x)T s̃, where s̃ is optimal solution of the TRP (5.54), and
of two mapping of the form x 7→ ∇2f0(x) •R, where R ∈ Sp; cf. (4.6) and (5.32). For
efficiency, we exploit that the gradient of x 7→ ∇f0(x)T s̃ equals ∇2f0(x)s̃. We believe
that Table 1 indicates that Algorithm 3.1 is an efficient method for (7.3).

The solution of the TRPs (5.54) using [40, Alg. 3.14] for all iterations of Algo-
rithm 3.1 required less than six iterations making it an effective method. In particular,
they are insensitive w.r.t. the choice of smoothing parameters ηk, νk. The evaluation
of (1.5) using (4.2) instead of applying SDP solvers is about three orders of magni-
tudes faster, e.g., for p = 20, the quotient of the median run time over 100 randomly
generated SDPs of the form (1.5) using (4.2) and SCS [43] is 4.340 · 10−4.

Table 2 lists for mgh01 and mgh03 the number of iterations. Moreover, it dis-
plays the KKT-error of IPOPT, the distance of the stationary point of the current
iteration to the one of the previous iteration and the smoothing parameter νk for
each outer iteration k of Algorithm 3.1. We deduce that empirically the distance

https://github.com/JuliaOpt/Ipopt.jl


22 J. MILZ AND M. ULBRICH

Table 1
Median number of objective function, gradient, and Hessian evaluations required by IPOPT for

nominal (N), distributionally robust (DR) and stochastic optimization problem (S) of all selected
test problems. The number of evaluations for the approximate DROPs (7.3) are the sum of all
evaluations used within Algorithm 3.1.

N DR S N DR S N S

ε #-f0 #-F̃0 #-f0 #-∇f0 #-∇xF̃0 #-∇f0 #-∇2f0 #-∇2f0
10−3 14 120 1.25 · 104 14 37.5 1.2 · 104 13 1.1 · 104

10−2 14 190.5 1.0 · 104 14 56 1.0 · 104 13 0.9 · 103

Table 2
For each outer iteration of Algorithm 3.1 applied to (7.1) and ε = 10−3, the number of iterations

to a compute stationary point of (3.2), the final KKT-error, relative distance of the initial point
and the stationary point, and value of the smoothing parameter νk.

Problem k #-iter KKT-error
‖xk−xk−1‖2

max{1,‖xk−1‖2}
νk

mgh01 1 17 2.272 · 10−7 0.3329 0.1
2 10 2.756 · 10−6 9.633 · 10−2 1.0 · 10−3

3 2 4.34 · 10−5 5.013 · 10−5 1.0 · 10−5

4 2 6.355 · 10−5 3.975 · 10−5 1.0 · 10−7

5 2 9.689 · 10−5 3.345 · 10−5 1.0 · 10−8

mgh03 1 25 7.654 · 10−5 0.9994 0.1
2 7 6.938 · 10−7 5.542 · 10−5 1.0 · 10−3

3 7 2.303 · 10−7 5.495 · 10−6 1.0 · 10−5

4 5 4.997 · 10−7 5.494 · 10−7 1.0 · 10−7

5 5 1.015 · 10−6 4.07 · 10−8 1.0 · 10−8

of subsequent stationary points (3.2) computed by Algorithm 3.1 converges to zero
and that the number of inner iterations decreases monotonically indicating that the
homotopy method is computationally efficient.

For each selected problem, we compare the stationary points x∗DR of (7.3), x∗N of
(7.4) and x∗S of (7.5) using the following two quantities:

VE(x) = max
1≤i≤10

EPi [f0(x+ ξi)], and VStD(x) = max
1≤i≤10

StDPi [f0(x+ ξi)],(7.6)

where Pi = N(µi, σ
2
i I) ∈ Pε, and µi and σi are independent and uniformly distributed

on {µ ∈ Rp : ‖µ‖2 ≤ ∆ } and {σ ∈ R : 0 ≤ σ2 ≤ ε }, respectively. Here, StD
denotes the standard deviation. The quantities in (7.6) mimic maximum mean and
standard deviations of repeated implementations of x and VE(x) is a lower bound
on the objective function value of (7.1) evaluated at x. Table 3 and Table 4 display
VE(x) and VStD(x), for x ∈ {x∗DR, x∗N , x∗S}, and ε ∈ {10−3, 10−2}. We conclude that in
most cases the distributionally robust stationary point has lower mean and standard
deviation than nominal and stochastic stationary points.

The problems mgh33 and mgh34 are quadratic w.r.t. ξ (cf. [39, sect. 3]) and,
hence, the approximation scheme is exact, i.e., (7.1) is equivalent to (7.3). For the
problems mgh10, mgh11 and mgh17, we obtain very different orders of magnitude of
VE(x) and of VStD(x) for x ∈ {x∗N , x∗DR, x∗S}, resulting from exponential terms in the
corresponding objective functions; cf. [39, sect. 3].

8. Conclusion and outlook. We have provided a new algorithmic scheme for
both DRO and RO. The main advantages of our approach are, that the number of
constraints of the DROP is the same as for the nominal problem, MPCCs and NSDPs
are avoided, and any NLP solver can be used to compute stationary points of the
DROPs in Algorithm 3.1. Moreover, it is applicable to a large class of problems
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Table 3
Quantities VE and VStD (see (7.6)) evaluated at x∗N , x∗DR, x∗S for ε = 10−3.

Problem VE(x∗N ) VE(x∗DR) VE(x∗S) VStD(x∗N ) VStD(x∗DR) VStD(x∗S)
mgh01 0.1867 0.1536 0.1761 0.2559 0.1528 0.2399
mgh03 3.175 · 106 3.135 · 101 2.899 · 101 4.507 · 106 8.083 · 101 7.328 · 101

mgh04 3.756 · 108 3.754 · 108 3.754 · 108 5.256 · 108 5.246 · 108 5.252 · 108

mgh06 1.884 · 102 1.798 · 102 1.863 · 102 1.076 · 102 8.388 · 101 1.028 · 102

mgh07 0.1778 0.1778 0.1779 0.2089 0.2086 0.209
mgh10 9.626 · 1010 1.356 · 106 2.134 · 106 1.303 · 1011 3.482 · 105 1.993 · 106

mgh11 6.237 · 10278 3.283 · 101 2.258 · 10133 ∞ 0.8311 7.134 · 10134

mgh13 4.387 · 10−2 4.387 · 10−2 4.385 · 10−2 5.662 · 10−2 5.662 · 10−2 5.66 · 10−2

mgh14 0.7525 0.7492 0.752 0.7223 0.7144 0.7229
mgh17 7.9421 · 1017 1.133 1.735 · 1011 2.19 · 1019 3.551 · 10−2 4.959 · 1012

mgh20 0.1318 0.1291 0.1309 0.1461 0.1425 0.1453
mgh21 3.92 3.19 3.702 1.723 1.045 1.621
mgh22 0.2164 0.2163 0.2163 0.1219 0.1219 0.1219
mgh25 0.3078 0.3078 0.3073 0.6784 0.6784 0.6768
mgh27 4.855 · 10−2 4.853 · 10−2 4.85 · 10−2 6.864 · 10−2 6.854 · 10−2 6.859 · 10−2

mgh30 0.1408 0.1406 0.1408 7.52 · 10−2 7.485 · 10−2 7.519 · 10−2

mgh31 0.194 0.1924 0.1936 9.437 · 10−2 8.959 · 10−2 9.399 · 10−2

mgh33 4.514 · 102 4.514 · 102 4.508 · 102 6.369 · 102 6.369 · 102 6.365 · 102

mgh34 2.394 · 102 2.394 · 102 2.391 · 102 3.203 · 102 3.203 · 102 3.204 · 102

mgh35 6.772 · 10−2 5.266 · 10−2 0.1244 0.3531 2.726 · 10−2 1.383

Table 4
Quantities VE and VStD (see (7.6)) evaluated at x∗N , x∗DR, x∗S for ε = 10−2.

Problem VE(x∗N ) VE(x∗DR) VE(x∗S) VStD(x∗N ) VStD(x∗DR) VStD(x∗S)
mgh01 1.866 0.7566 1.174 2.581 0.5774 1.548
mgh03 3.178 · 107 2.829 · 103 2.81 · 103 4.511 · 107 7.443 · 103 7.414 · 103

mgh04 3.752 · 109 3.728 · 109 3.744 · 109 5.246 · 109 5.142 · 109 5.233 · 109

mgh06 1.903 · 103 8.186 · 102 1.528 · 103 5.762 · 103 2.055 · 103 4.626 · 103

mgh07 1.793 1.781 1.792 2.129 2.09 2.125
mgh10 9.616 · 1011 9.616 · 1011 3.502 · 106 1.294 · 1012 1.294 · 1012 3.261 · 106

mgh11 8.08 · 10256 3.283 · 101 7.044 · 10129 ∞ 0.7971 2.228 · 10131

mgh13 0.4413 0.4413 0.4412 0.5675 0.5675 0.5674
mgh14 7.537 7.262 7.466 7.318 6.657 7.245
mgh17 3.857 · 1068 1.374 8.32 · 1046 1.135 · 1070 0.3561 2.527 · 1048

mgh20 1.321 1.262 1.279 1.487 1.427 1.445
mgh21 3.941 · 101 1.556 · 101 2.496 · 101 1.758 · 101 3.972 1.083 · 101

mgh22 2.184 2.183 2.183 1.219 1.219 1.219
mgh25 1.647 · 101 1.647 · 101 1.643 · 101 5.02 · 101 5.021 · 101 5.0 · 101

mgh27 0.4891 0.4876 0.488 0.7019 0.6896 0.6995
mgh30 1.408 1.382 1.402 0.7588 0.7236 0.755
mgh31 2.063 1.846 2.01 1.217 0.8228 1.166
mgh33 4.516 · 103 4.516 · 103 4.506 · 103 6.392 · 103 6.392 · 103 6.381 · 103

mgh34 2.378 · 103 2.378 · 103 2.372 · 103 3.207 · 103 3.207 · 103 3.204 · 103

mgh35 1.221 · 103 3.846 · 103 3.717 · 102 2.563 · 104 4.247 · 104 7.365 · 103

without the need of implementing further algorithms.
Through second order expansions mj (see (1.3)) of fj , we obtain tractable approx-

imations to the worst-case functions of (1.1), as TRPs and SDPs are computationally
tractable; cf. [5, 6]. The use of second order expansions may bee viewed as a trade off
between accuracy and tractability, and may provide more accurate approximations
than linearizations.

Appendix A. We selected problems from the Moré-Garbow-Hillstrom test set
[39], which is available in Julia through the package NLSProblems.jl (version as of

https://julialang.org/
https://github.com/JuliaSmoothOptimizers/NLSProblems.jl
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Table 5
Zε(x∗N ) and number of parameters p of problems from the Moré-Garbow-Hillstrom test set with

Zε(x∗N ) exceeding 10−1, where ε = 10−3.

Problem p Zε(x∗N )
mgh01 2 0.5778
mgh03 2 1.006 · 107

mgh04 2 1.234 · 109

mgh06 2 1.903
mgh07 3 0.4727
mgh10 3 3.524 · 109

mgh11 3 2.567 · 10127

Problem p Zε(x∗N )
mgh13 4 0.1262
mgh14 4 1.911
mgh17 5 8.83 · 1024

mgh20 6 0.3353
mgh21 20 7.056
mgh22 20 0.4509
mgh25 10 1.282

Problem p Zε(x∗N )
mgh27 10 0.1403
mgh30 10 0.2737
mgh31 10 0.3551
mgh33 10 5.505 · 102

mgh34 10 2.243 · 102

mgh35 10 0.8223

Nov 16, 2018) using its default set up as follows: We compute for each test problem
a stationary point x∗N of the nominal problem (7.4) and Zε(x

∗
N ) defined by

Zε(x
∗
N ) = EN(0,εI)[X(x∗N )]+StDN(0,εI)[X(x∗N )], X(x∗N )(ξ) =

f0(x∗N + ξ)− f0(x∗N )

max{1, |f0(x∗N )|}
,

and select problems fulfilling Zε(x
∗
N ) ≥ 10−1 for ε = 10−3; cf. Table 5.

A related approach has been used in [4] to investigate uncertain linear programs.
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