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On Multilevel Best Linear Unbiased Estimators*

Daniel Schaden® and Elisabeth Ullmannt

Abstract. We present a general variance reduction technique for the estimation of the expectation of a scalar-
valued quantity of interest associated with a family of model evaluations. The key idea is to refor-
mulate the estimation as a linear regression problem. We then show that the associated estimators
are variance minimal within the class of linear unbiased estimators. By solving a sample alloca-
tion problem we further construct a variance minimal, linear, and unbiased estimator for a given
computational budget. We compare our proposed estimator to other multilevel estimators such as
multilevel Monte Carlo, multifidelity Monte Carlo, and approximate control variates. In addition, we
provide a sharp lower bound for the variance of any linear unbiased multilevel estimator, and show
that our estimator approaches this bound in the infinite data limit. The results are illustrated by
numerical experiments where the underlying output quantity of interest is generated by an elliptic
partial differential equation.

Key words. Uncertainty quantification, partial differential equation, variance reduction, control variates, mul-
tilevel Monte Carlo, multifidelity Monte Carlo

AMS subject classifications. 35R60, 62J05 65N30, 65C05

1. Introduction. The estimation of the expectation of a scalar-valued output quantity of
interest (Qol) is a building block in computational statistics and uncertainty quantification
(UQ). The Monte Carlo (MC) estimator is a linear, unbiased and robust estimator for this
task. Robustness means that the rate of convergence of MC is independent of the smoothness
of the Qol and its underlying dimension. Unfortunately, many Qols in modern applications are
associated with models that involve partial differential equations (PDEs) and are expensive
to handle. Typically, MC estimators require tens of thousands of model evaluations and are
thus computationally infeasible in PDE-based applications.

In the last decade, multilevel estimators have been developed to address this problem and
design estimators with significantly smaller computational complexity. Multilevel estimators
rely on the idea of wariance reduction by linearly combining model evaluations of different
resolutions or fidelities. They work with the target high fidelity model and families of low
fidelity models that are correlated with the high fidelity model. Arguably the most prominent
example to date is the multilevel Monte Carlo (MLMC) estimator [7, 8]. MLMC for PDE-
based models has been initiated by Cliffe et al. [6], and has since been very popular with
many recent works showing that MLMC has a smaller computational complexity compared
to Monte Carlo. See e.g. [4, 13, 14] for forward UQ calculations, [2, 3, 11] for inverse UQ
problems, and [1, 20] for optimization under uncertainty.

By construction, MLMC is a linear, unbiased estimator; it relies on a well-known telescop-
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2 DANIEL SCHADEN AND ELISABETH ULLMANN

ing sum. This is, in fact, a simple approach to guarantee unbiasedness, but it is by no means
the only option. Indeed, many other linear unbiased multilevel estimators have been devised
in recent years. One example are multifidelity Monte Carlo (MFMC) estimators [15, 16, 17]
which rely on the idea of multiple control variates (CVs). Recently, Gorodetsky et al. [10]
introduced approximate control variate estimators (ACVs). However, the authors of [10] cor-
rectly point out, that neither the telescoping sum approach in MLMC nor the CV approach in
MFMC guarantee a small or even minimal estimator variance. The work in [10] addresses this
defect by designing various ACV estimators. However, this again does not necessarily give
the largest variance reduction possible. We address this problem and introduce a linear, unbi-
ased, multilevel estimator with guaranteed smallest variance independently of the number of
model evaluations. In addition, we provide a sharp lower bound on the variance of any linear
unbiased multilevel estimator in the limit of infinitely many low fidelity model evaluations.

Our estimator is well known in statistics under the name of best linear unbiased estimator
(BLUE). We remark that Monte Carlo is in fact a BLUE. Unfortunately, being a BLUE alone
does not guarantee a feasible computational complexity. To address this, MLMC combines
high and low fidelity model evaluations; in fact, MLMC linearly combines Monte Carlo es-
timators. However, such a linear combination of BLUESs is not necessarily a BLUE as well.
In our work we construct a BLUE and show how to achieve a target variance with minimal
computational complexity.

The idea of our proposed multilevel estimator is simple. We assume that we are given
a certain number of model evaluations (samples) of models with different fidelities. The
model evaluations are treated as observations of an underlying unknown true parameter. We
then construct the BLUE for the true parameter using the observations. In other words:
the estimator fits the observations “best”, i.e., with minimal variance given the linearity
constraint. This problem is a generalized least-squares problem. It can also be considered as
generalized linear model where the model error has mean zero and a covariance matrix which
depends on the correlations of the high and low fidelity models.

The ACV-type estimators in [10] are constructed and analyzed by partitioning the input
samples into two ordered subsets where each ordered subset is associated with a control variate
or level. It can be shown that MLMC and MFMC also fit into the ACV framework. However,
this point of view does not emphasize a property that is essential for variance reduction,
namely, the correlation between models in a family. Instead of grouping the input samples
we form model groups with respect to the outputs. We present a framework based on model
groups which share the exact same samples as input and thus produce a correlated output.
This differs from the ACV framework yet it is sufficient to study a variety of linear unbiased
estimators such as MLMC, MFMC, and ACVs.

The main contributions of this work are as follows: (i) a general framework for multilevel
estimators, including multilevel Monte Carlo, multifidelity Monte Carlo, and approximate
control variates, (i) a novel multilevel best linear unbiased estimator (MBLUE) which achieves
the minimal variance possible for any given configuration of model evaluations (samples),
(7i7) a specific MBLUE estimator termed SAOB with optimal sample allocation given a fixed
computational budget, and (iv) a sharp lower bound on the variance of any linear, unbiased
multilevel estimator in the infinite low fidelity data limit.

The remainder of this work is structured as follows. In Section 2 we introduce our novel
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ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 3

multilevel estimator and prove some essential properties of it. In Section 3 we discuss sample
allocations, and construct a variance minimal estimator given a fixed computational budget.
In Section 4 we study the maximal possible variance reduction for the MBLUE. In Section 5 we
discuss connections of the MBLUE to classical estimators in the literature, such as multilevel
and multifidelity Monte Carlo [8, 15], control variates [9] and approximate control variates
[10]. It turns out that our MBLUE satisfies the exact same lower bound for the variance
reduction as the ACV estimators in [10]. We reproduce the result on the variance reduction
for the optimal control variate given in [10]. Moreover, we prove that the ACV-IS estimator
introduced in [10] is a BLUE. In Section 6 we conduct numerical experiments to support the
theoretical results. Section 7 offers concluding remarks.

2. Multilevel best linear unbiased estimator. Let Z1,..., 7 denote scalar-valued ran-
dom variables. In our context these are typically output quantities of interest associated with
a family of models. The models are indexed by a certain level or fidelity, ordered from the
coarsest level £ = 1 to the finest level £ = L. We wish to construct an estimator for E[Zf)]

using samples of Zy,...,Z;. The expectation uy, variance a?, covariance cy; and Pearson
correlation coefficient py ; associated with Z1, ..., Zy, are defined as
e = E[Z], o :=E[|Z —E[Z])*], te€{1,...,L},
Czhj

cej = B{(Ze = E[Zd)(Z; = E[Z])], pej = tjedl,..., L},

ogoj’

respectively. The model covariance matrix C' := (c&j)é ;=1 and the vector of mean values is
p= (p1,...,ur)’. We assume that all those quantities exist and are finite. Our goal is to
construct an unbiased estimator fi7, for E[Z] such that the variance of fiz, is minimal.

2.1. Definition of the estimator. Let (S*)X | be a collection of the K := 2L — 1 different
non-empty subsets of {1,..., L}, that is,

(2.1) Sk e ol LI\ {0}, ST # 57 for all i # j.

In the context of multilevel estimators each model group S* tells us which outputs Z1,. .., Zr,
are statistically coupled by using the exact same sample as model input. For every index
ke {1,...,K} we define the vectors Z¥, ¥ n*¥ and matrix C* as follows,

(22) 2% = (Zo)gesss 1= (s, 0 =28 —pF, CF = (eg)gjese = Cov(n®, ).
Furthermore, we define the restriction matrix R* € RIS*IXL guch that it holds

(2.3) Rfv = (vg)pegr for all v € RE.

The prolongation matrix is then defined as P* := (R¥)T. Combining (2.2) and (2.3) gives
(2.4) ZF=REu+nk,  k=1,... K.

Note that in statistics, a relation such as (2.4) is known as linear model (see e.g. [18]), where
ZF% is a vector of observations, and R*u contains the parameters to be estimated (here the
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4 DANIEL SCHADEN AND ELISABETH ULLMANN

expected values of a subset of outputs Zi, ..., Zy with indices in S*). Finally, 7* in (2.4) is a
mean-zero, additive noise vector with covariance matrix C* that is used to model observation
errors. The parameter estimation problem associated with the linear model in (2.4) is also
known as linear regression problem.

We now assume that for every index k we have m” € Ny independent samples of the
random vector Z¥. Furthermore, we assume that samples of Z¢ and ZJ are statistically
independent for £ # j. The key idea of our multilevel sampler is to assemble the linear models
in (2.4) for every k and every sample into a large, block-stuctured linear model of the following
form

k

(2.5) Y =Hp+e,

where
Y= (Yk)kK:h H:= (Hk)lea €= (5k)§:17
Yh= (Z8wh)my,  HE = (RN, = (b)),

and the samples wf are i.i.d. Note that each vector Y* contains samples of the output vector
Z* and is thus associated with a linear model in (2.4). Before we continue we illustrate (2.4)
and (2.5) by an example.

Ezample 2.1 (Linear model). Let L = 3 and enumerate the model groups of {1, 2,3}

st={1}, 52 = {2} 5% = {3} st={1,2},
S° ={1,3}, S6 = {2,3}, ST =1{1,2,3}.
We are interested in the model groups given by S', S% and S¢, where (2.4) reads
K1
Zy=1 0 0)|p|+(Z —m)=Ru+n', for S*,
M3
H1
Zi\ _ (1 00 Zy =1\ _ 4 4 4
©-6ED() Gmer ws
K3
K1
Za\ _ (0 10 Zy—p2\ _ 56 6 6
<Z3>_ 0 0 1) //jg +<Z3_M3>—Ru+77, for S°.
3

Now let m! = m* = 1,m% = 2 and m* = 0 if k ¢ {1,4,6}. Then, the block linear model in
(2.5) reads

Zl(w}ll) 1 00 Zl(wi)—ul

Zy(wi) L 0o Zy(wi) — 1 1¢,,1
Zh | o1 ol i\ | Zwh-m| (@) (R
Zo@i) | = [0 1 0| (e |+ | Zoed) =z | = | po | 1t | ooy |
Z3(w?) 00 1| \us Z3(wh) — 3 R Tl
Z(w) 010 Zo(w8) — o n°(w3)
Z3(w3) 001 Z3(w8) — p3

This manuscript is for review purposes only.
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ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 5

where wi, w}, w?, w§ are i.i.d. samples of some random source. Let us put this example into
perspective with the MLMC estimator [7], which is defined as follows:

6 4

1
_ 1 ! LS
i=1

1 1

3
3

.
Il
<.
Il

6 4

This estimator linearly combines m% samples of the group S, m* samples of S* and m!
samples of S!, respectively. However, MLMC is not derived from the perspective of a linear
model of the form (2.5).

It is easy to verify that the linear model in (2.5) satisfies the following properties.
Proposition 2.2. Let G* := diag((C’k)g’;kl). Then, there holds
Ele] =0,  Cov(e,e) = diag((G*)iy),  E[Y]=Hp.

We now define the key components of our multilevel estimator, the matrix ¥ € RE*Z and the
vector y € RL, as follows,

K K mF
(2.6) U= mFPHCH)TIRE,  y= PRCH)TY 2R,
k=1 k=1 =1

Finally, our (linear) estimator " is defined such that it satisfies the equation
(2.7) Uit =y,

It turns out that P is well defined if we evaluate every model at least once. Formally, we
define the set U of evaluated models as

(2.8) U:= {E € {1,...,L} | there exists a k with m* >0 and ¢ € Sk} .

We then have the following result.

Lemma 2.3. Let the matrices C* be positive definite for every k and let U = {1,...,L}.
Then the matriz U in (2.6) is positive definite and thus i in (2.7) is well defined.

Proof. Since (P¥)T = R* and each matrix C* is positive definite by assumption, the
matrix P*(C*)~!R* is positive semi-definite and hence W is also positive semi-definite. It
remains to show that if v7 v = 0 for some v € RF then v = 0. Observe that

K
0=0v"0v= kavTPk(Ck)_lev.
k=1

Hence for all k this implies m*vT (R¥)T(C*)~1RFv = 0. Now, if m* > 0 and since C* is
positive definite by assumption, and since RF is the restriction operator, it follows vy = 0 for
all £ € S*. Because U = {1,..., L} we finally conclude v = 0. [ ]

This manuscript is for review purposes only.
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6 DANIEL SCHADEN AND ELISABETH ULLMANN

The estimator fi® delivers estimates of every component jup, £ = 1,..., L. However, we are
typically only interested in an estimate of the expectation of the finest model, ;. To construct
such a partial estimator, let

(2.9) g = eg i,

where e, denotes the fth unit vector in RY, ¢ = 1,..., L. More generally, for an arbitrary
vector a € R\{0} we want to state conditions such that the estimator

(2.10) s = alph

is well defined. Intuitively, if o = 0 for some £, then the estimator i should be well defined
even if we do not evaluate the £th model. We make this intuition precise.

Lemma 2.4 (Partial model estimation). Let the matrices C* be positive definite for every
k and assume that we do not want to estimate expectations of models we do not evaluate, that
is, ag = 0 for all £ ¢ U. Then 5 is well defined as the limit

5 = lim [ozT (U + 5[)71] y = ag\llalUyU.

li
§—0+
Proof. The claims follows by using the block diagonal form of

5IUC’UC O )

U+ 61 =
* ( 0 gpth’*'éliﬂU

2.2. Properties of the estimator. In this section we show that — by construction — the
estimators i and Ji2 are best linear unbiased estimators (BLUESs) for  and oy, respectively.
Recall that a linear estimator ;1 = AY is an unbiased estimator for p, if it holds

p=E[u] = AE[Y] = AHp

for every possible value of p. We use the Gauss—Markov—Aitken Theorem (see e.g. [18,
Theorem 4.4]) to show that fiP is the linear unbiased estimator for y with the smallest variance,
or simply that iP is the BLUE.

Theorem 2.5. Let the assumptions of Lemma 2.3 be true. Then, i is the BLUE for p
and the covariance matriz of i® is Cov(u®, uB) = =1,

Proof. The Gauss-Markov—Aitken Theorem states that the BLUE g for the parameter
vector p in (2.5) satisfies

(HT Cov(e,e) *H)ji = HT Cov(e,e)71Y,
and that the covariance of [ is
Cov(fi, i) = (HT Cov(e,e) 1H) ™t

A straightforward computation using Proposition 2.2 shows that H” Cov(e,e) ' H = ¥, and
HT Cov(e,e)~'Y =y, and thus 1 = uP. [ |

This manuscript is for review purposes only.
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ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 7

Theorem 2.5 tells us that 2P is the BLUE for the entire vector p. The next goal is to show
that 12 is a BLUE for the vector o’ pu. We call an estimator fi, = BY a linear unbiased
estimator for oy if it holds

o’y =E[fi,] = BE[Y] = BHp

for every pu. We now show that b is the BLUE for o .

Theorem 2.6. Let the assumptions of Lemma 2.3 be true and let « € RY. Then [S is the
BLUE for o' i with variance
(2.11) Var(aTi®) = oT ¥ 1a.

Proof. The proof follows [12, Appendix A] where the result is referred to as Gauss—Markov
Theorem. Clearly the estimator i’ is unbiased and linear. Let fi, be another linear unbiased
estimator such that for a suitable vector £ it holds
(2.12) fio = 02 + 7Y, (Linearity),

0=a’y—Eli,) =BT Hy, (Unbiasedness).

Since the unbiasedness is assumed for every ju, we conclude 37 H = 0. Now the variance of
o satisfies

(2.13) E[(fia — a"1)*) = E[(a” (7" — n)*) + E[(87Y)?] + 2E[a” (1° — u)87Y].
The last term on the right-hand side in (2.13) satisfies

oTE[(HT Cov(e,e) P H) P HT Cov(e, &)Y — p)pTY]

= oTE[(HT Cov(e,e) ' H) ' HT Cov(e,e) Y (Hp +¢) — n)BT (Hu + €]

= oTE[(HT Cov(e,e) ' H) L HT Cov(e,e)tee? 5]

= aT(HT Cov(e,e)tH)'HT Cov(e,e) ™! Cov(e,€)p

=0,
where we used the fact that 37 H = H” 3 = 0 and E[ec”] = Cov(e, ). We arrive at
(2.14) E[(a — o7 p)?] = Var(aB) + E[(57Y)?.

Thus the choice 8 = 0 minimizes the variance of jib.

We now show the uniqueness of the BLUE. We rearrange the vector Y in (2.12) such that
Y = (Z% (w;))Y, where the random variables w; are i.i.d. Moreover, let 8 = (8)¥,. To
minimize the variance in (2.14), necessarily E[(87Y)?] = 0. Since E[3TY] = 0 it follows

N N
0=E[(BTY)?] = Var(8TY) = Y Var((8")" 2" (wi)) = Y (8 Chp.
=1

=1

Since all matrices C* are positive definite by assumption, we obtain 8 = 0. That the variance
Var(a?iP) = oTW~la follows straightforwardly. [ |

This manuscript is for review purposes only.
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8 DANIEL SCHADEN AND ELISABETH ULLMANN

The special case that some models are not evaluated can be analyzed analogously.

Theorem 2.7 (Partial model estimation). Let the assumptions of Lemma 2.4 be true. Then
12 is the BLUE for o'y with variance

Var(ii3) = ag\llaonzU.

Proof. Lemma 2.4 shows ofi® = ofiB. We rename models in U such that U =
{1,...,L'}. Theorem 2.6 now shows the result. [ ]

Remark 2.8. We expect that the assumption of positive definite C*, which we make
throughout this section and the rest of this paper, can be dropped at the cost of techni-
cally more involved proofs. We then have to work with a generalized inverse similar to [18,
Section 3.2], where this was done in the context of ordinary least squares. We refrain from
doing so to clearly convey the main ideas of our method.

3. Sample allocation. The estimators i and 215 in Section 2 have the smallest variance
possible regardless of the sample allocation among the model outputs Z1,..., Zr. Of course,
using more samples will in general further decrease the variance of i® and 2. However, in
practice each model output comes with a certain computational cost. Moreover, the cost for
a model evaluation can vary substantially among the levels. In this section we construct an
optimal sample allocation. We determine the model groups and the number of samples for
each group such that the resulting BLUE has the smallest variance and the total cost of the
estimator does not exceed a given budget.

3.1. Integer sample allocation problem. We assume throughout this section that each
evaluation of Z; has a fixed cost wy € Ry, £ = 1,..., L. The cost for a single evaluation of
the vector Z* in (2.2) is denoted by

Wk .= Z wy.
Lesk
Recall that the estimator 25 in (2.10) (and also 7i® in (2.7)) is constructed by forming K = 2F—
1 groups of models that share m* samples each, k = 1,..., K. Hence our optimization problem
involves the variables m!, ..., m® which we collect in a vector m := (m!,..., m&)T ¢ Né(.

We define the cost functional J as variance of the BLUE using the sample allocation m,

J(m) := Var(jig (m)),

where the dependence of i on m is made explicit. If 5 (m) is not well defined according to
Lemma 2.4, that is, we do not evaluate a model ¢ but ay # 0, we set J(m) := +oo. The goal
is now to minimize J given a maximal cost p > 0 for the estimator. In addition, we select a
coupling number x € N which limits the number of models within a group S*. The integer
sample allocation problem is then given as follows:

minmENé{ J(m)
(3.1) Zszl mrEWk < p,
mF =0, if |S*| > k.

This manuscript is for review purposes only.
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ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 9

We now summarize the basic properties of this optimization problem.

Lemma 3.1. Let the matrices C* be positive definite for every k and assume that we can
evaluate required models at least once. That is,

Z wy < p.

{¢e{1,....L} | ag#0}

Then there is at least one sample allocation m satisfying (3.1) with J(m) # +oo. Furthermore,
the set of feasible sample allocations is bounded and J(m) > 0 for all m.

Proof. Consider the sample allocation m, where m* = 1 if S¥ = {¢ € {1,...,L}|ay # 0}
and mF = 0 otherwise. According to Theorem 2.7 this is a well defined BLUE and thus
J(m) # 400. The cost constraint ensures that the set of feasible sample allocations is bounded.
Let U denote the set of used models in (2.8). Since Wy is positive definite and ay # 0,
Theorem 2.7 tells us that

|
J(m) = Var(aE(m)) = aE\I'(}}UaU > 0.

Now let m, be a minimizer of (3.1). We define a sample allocation optimal BLUE with
coupling number &, denoted by the superscript (SAOB, k), as follows,

(3.2) ASAOBA . B ().

If no coupling restriction applies, i.e., kK = 400, we drop the superscript £ and simply denote
the estimator by SAOB. We now show that SAOB is variance minimal under all linear
unbiased estimators with costs not exceeding the budget p.

Theorem 3.2. Let the matrices C* be positive definite for every k and let [io be a linear
unbiased estimator for o using only samples from models 1,. .., L with total cost bounded
by p. Then, it holds

Var(jia) > Var(i$'°P).

Proof. Let us denote the sample allocation of ji, with m(f,). W.l.o.g. we assume that
Var(fiq) # +00, otherwise there is nothing to show. This together with the unbiasedness and
Theorem 2.7 gives Var(fio) > Var(ii5 (m(fia))) = J(m(fia)). Finally, observe that J(m(fia)) >
J(my) = Var(aSA9B), since both m(fis) and m, are feasible sample allocations in (3.1). This
concludes the proof. [ |

3.2. Optimality conditions for the relaxed problem. Throughout the rest of this section
we relax the integer constraint m € N and work with m € RIZ(O. Since we wish to minimize
the variance of 12, combining (2.6) and (2.11) gives the cost functional

K -1
(3.3) Js(m) = o (Z mFPF(CF)IRF 4 51> a,
k=1

This manuscript is for review purposes only.
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10 DANIEL SCHADEN AND ELISABETH ULLMANN

where § > 0 is fixed. For § = 0, if the BLUE is well defined, we have

(34) Jo(m) = Var(jig (m)).

Remark 3.3 (Choice of §). Adding the matrix 6/ in (3.3) ensures that the matrix inversion
is well defined. Note that the matrix ¥ in (2.6) is positive-definite, if all models Z1, ..., Z
are used in the multilevel estimator, i.e., U = {1,...,L} in (2.8) (see Lemma 2.3). In this
case, we can work with 6 = 0. Otherwise, if U # {1,..., L}, we work with § > 0.

In summary, the relaxed sample allocation problem reads

minmERé(O J5(m)
(35) Zszl mka =p,
mk =0, if |S*| > k.

Here the cost constraint is now an equality constraint, and any optimizer of this problem will
satisfy this constraint with equality.

Next we derive some basic properties of the cost functional Js in (3.4). To this end we
introduce the following notation. Let Cg g € RIQIXIQl denote the principal submatrix of the
model covariance matrix C' with row and column indices in the set (). Moreover, let 8g € RI@
denote the subvector of f € RY with row indices in the set Q.

Lemma 3.4 (Properties of Js).
(i) For any 6, > 0 we have Js(Am) = Js;x(m)/A. This property also holds for § =0 if
Jo is well defined.
(ii) Using more samples does not increase the variance, that is, Js is monotonically de-
creasing in each component of m for any 6 > 0.
(iii) More coupling among the model outputs does not increase the variance, that is, if
Sk C S9 then

Js(m+ Xe) > Js(m + Xej),  forall x>0, ¢6>0.

Proof. Property (i) follows from the definition of Js in (3.3). Property (ii) and (i)
for integer values follows from the fact that using more observations in the linear regression
problem (2.5) does not increase the variance of the BLUE. Formally, we have for independent
events w; and suitable indices k; € {1,..., K},

N N
Js(m) =Y Var((8)" 2% (wi)) = Y (8" Chp",
=1

= i=1

where the vectors 3' are always chosen to minimize Js(m), and to satisfy a bias constraint.
Adding another sample w; increases the number of degrees of freedom in this minimization
problem by one. This in turn cannot increase Js, and thus (i7) is shown. We extend this result
to non-integer samples by observing that we can replace one sample of Z* by four independent

This manuscript is for review purposes only.
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ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 11

samples of the modified model 2Z%, since this does not change the variance. Thus, every
fractional increase & of m* can be viewed as one independent additional observation of the
model £~Y/2ZF which does not increase Js. Similarly, for (iii) with Q := 57\ S* we have

(B C78" = () C* By + 2(8)" Cor G + (B0)" CoaBh-
That is, the components of BiQ are additional degrees of freedom. |

In addition, it is straightforward to verify the following: If there exists a model Z; that is
not used, i.e., £ € U, and if ay # 0, it holds

lim Js(m) = 4o0.

§—0t 6( )

This tells us that ay # 0 implies £ € U for sufficiently small § for the optimal solution. Unless
noted otherwise, all results in this section are stated for 6 > 0. We now show that (3.5) is a
well posed convexr minimization problem.

Theorem 3.5. Let the matrices C* be positive definite for every k. Then the cost functional
Js in (3.3) is convex on the feasible set defined by the constraints in (3.5). Furthermore, the
MC' estimator with

k p/Wk for k with S¥ = {¢ € {1,...,L}: ay # 0},
m" =
0, otherwise.

is feasible and (3.5) has at least one minimizer my.

Proof. The MC estimator satisfies the constraints in (3.5) and thus the feasible set is non-
empty. To show the convexity, let m; and mo be two feasible allocations, and let A € [0, 1].
Then the convex combination my := (1 — X\)m; + Ama is again a feasible allocation.

Next we investigate the convexity of Js. Recall that for positive definite matrices X,Y
the matrix Z(\) = (1 — A\)X + A\Y is positive definite. In addition, it is easy to see that the
function

o\) =o' Z(N)a

is a convex function in A for any vector « of suitable length. Now, using the definition of ¥
in (2.6), it is easy to verify that it holds ¥(my) = (1 — A\)¥(mq) + A\¥(ms). Hence

Js(my) = ol (U(my) + 00t = o (1 = \)(W(my) + 6I) + X\(¥(my) + 61)) Lo
=alZ(\)ta = p(\)

where X = ¥(m1)+0I and Y = W(mg)+0I are positive definite matrices. Hence Js is convex.
Finally, the constraint

K

S miwt =

k=1
ensures that m* < ¢ for all k = 1,..., K for some constant ¢. This shows the existence of a
minimizer m.. [ |

This manuscript is for review purposes only.
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12 DANIEL SCHADEN AND ELISABETH ULLMANN

Note that the function Jy is in general not strictly convex, since the mapping ¥ = ¥(m) is not
necessarily injective. Importantly, Theorem 3.5 allows us to write down the KKT conditions
for the optimization problem (3.5), since the constraints are linear (see [5, Section 5.5.3]). To
this end, we introduce the Lagrange multipliers ¢¥, k = 1,..., K, and £%%. The optimality
conditions read

oI(W(m) 4+ 61) L PH(CH) IR (W (m) + 01) o = ¢tk — ¢k k=1,... K,

K
[
m W% = p,
(3.6 2
mhf >0, >0, ¢mF=o, k=1,... K,
mF =0, if |S* > k.

3.3. Number of model groups. Observe that the number of unknowns in the optimization
problem (3.5) is equal to 2 —1 if Kk = +00. Otherwise, it is of the order O(L"), i.e., exponential
in the number of models L in any case. We now show that we can restrict the evaluation to
at most L different groups. Formally, we define the set of active model groups

(3.7) Aso(m) == {k € {1,...,K}|mF > 0}.
We can always find a suitable allocation m with |[As(m)| < L.

Theorem 3.6. Let the matrices C* be positive definite for every k and let m be a feasible
allocation of (3.5). Then there exists a feasible allocation m' with |Aso(m’)| < L satisfying

Js(m') < Js(m).
In particular, there exists a minimizer m, of (3.5) with |Aso(m.)| < L.

Proof. Let m be a feasible allocation such that w.l.o.g. m',...,mi*t > 0. The basic idea
of the proof is to find a direction ¢t along which Js remains constant and the cost does not
increase. We then show that the allocation m + st evaluates at least one less model group if
s is chosen suitably.

Since m!,...,m "1 > 0, by a dimension counting argument, there exists a direction t # 0,
such that with # = (¥(m) + §1)"1a it holds

L+1 L+1
(3.8) d ' PYCH) TR =)t =0,
(=1 £=1

where we defined 2 := PY(C*)"'Rx. This is possible since 2¢ € R and we define t* := 0 if
k> L+ 1. W.lo.g. we assume that the cost along ¢ does not increase

L+1
(3.9) > twh<o.
/=1

Otherwise we change the direction of ¢ by working with —¢. Since W' > 0 we conclude that
there exists an index £ € {1,..., L + 1} with ¢/ < 0. Thus spyay is well defined, that is,

(3.10) Smax := max{s > 0|mF + st* >0, for all k € {1,..., K}} < +o0.
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ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 13

Since m!, ..., m " > 0 by assumption, we obtain syax > 0. Furthermore, the vector m-+smaxt

has at least one index ¢ € {1,..., L+ 1} with m’ + spaxt’ = 0, since s is maximized by (3.10).
Together with t* = 0 for k > L 4+ 1 we obtain

(3.11) | Aso(m + smaxt)| < |Aso(m)] — 1.

We use (3.8) and t¥ = 0 for £ > L 4 1 to conclude that
K
a=(¥(m)+dl)z = kaPk(Ck)_le:U + oz

k=1
K
= (M + Smaxt®) PP(CF) ' RFx 4 02 = (U (m + smaxt) + 61z
k=1

Hence the functional Jj is constant along the direction ¢, meaning that
(3.12) Js(m) = oL (¥(m) 4+ 6I)ta = oz = o (W(m + smaxt) + 6I) Lo = Js(m + Smaxt).

Here it is crucial to remark that m + spaxt > 0 and thus ¥(m + spmaxt) + 61 is invertible. We
collect our findings in (3.12), (3.11) and (3.9):

J(S(m + Smaxt) = J§(m)7
|A>0(m + Smaxt)| < |A>O(m)‘ -1,
K K
Z(mk + Smaxt™)WF < kaWk =p.
k=1 k=1

Note that the cost constraint in the last line above can be achieved with equality if we rescale
m + Smaxt to a larger value potentially decreasing the variance by Lemma 3.4 (7).

In summary, starting from a feasible sample allocation m, we found a new feasible alloca-
tion m + smaxt that uses one model group less and does not increase J;5. We can now repeat
the process outlined in this proof with the sample allocation m + Smaxt until we obtain a
feasible sample allocation m where the initial assumptions fails, that is mF > 0 for at most L
different values of k. [ |

4. Lower bound for the variance. In this section we derive a lower bound on the variance
of ﬁg in (2.10). To avoid the trivial lower bound equal to zero, we consider a specific sample
allocation for all estimators in this section. We define the sets of models @, Qo C {1,...,L}

such that QU Qs = {1,...,L} and Q € Q. Moreover, let N,M € N. We consider the
sample allocation

N, if $% C Qu,
(4.1) m*(Q, Qoo, N) == M, if S* = Q, forall k=1,..., K.

0, otherwise,
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In (4.1) we distinguish models with indices in ) which are evaluated M-times, and models
with indices in Qo which are evaluated N-times. Our goal is to study the variance of 5 in
the limit N — +o0o, denoted by

(4.2) (@, Q,Quo) i= lim Var(jig(m(Q, Qec, N)))-

Note that this models a situation which is often encountered in practice. Models with indices
in @\ Q@ are high fidelity, yet expensive, allowing only a fixed number M of evaluations. On
the other hand, models with indices in Qo are cheap to evaluate, and in the limit N — +oo
we assume that infinitely many evaluations are possible. If Q C Qs then QUQ~ = {1,..., L}
shows the trivial bound of zero variance, hence the restriction ) € Qo is assumed. This setup
follows the analysis of Gorodetsky et al. [10]. Note that since U = QU Qs = {1,...,L} by
assumption we can work with § = 0 in the estimator variance (3.3). The key observation in
our analysis is the fact that the limit in (4.2) can be formulated in terms of a minimization
problem.

Lemma 4.1 (Limit of Var(1i})). Let the matrices C* be positive definite for every k. Then
there holds

1 . _ _
(4.3) (0, Q, Qo) = Vi arénIEL a5HCo.00q-
oy = oy, { € Quo.

Proof. We write down the estimator 15 = aT\Ilfly using the events (w;)M, as follows,

(4.4) A8 (m(Q, Qoo, N Zﬁe ZZe (wi) + (N,

leq@ i=1

where 7 is a remainder term depending only on models in Qo and 3 € R’ is a suitably chosen
vector. Because [iZ is unbiased and since r contains only models in Qs we conclude that
Be = ay for all £ € Q. Note that the remainder r in (4.4) is statistically independent of the
first term. Hence

M
V(@ (m(Q, Qo N))) = Var | 3 1= Zuler) | + Var(r(N)

eQ i=1
(1.5 Ry
> min Var Z@g— ZZE(%‘) ,
aeRl, eQ M=
ap = ay, £ ¢ Qoo.
where we dropped the positive variance and minimize over some Bp. This shows the lower
bound for (o, Q, Qo). To show the upper bound, let w} i=1,...,N/2, denote events

occurring in the remainder r that are statistically mdependent of (w,)f‘il, and that are also
mutually statistically independent. Consider the following estimator:

o N2 N/2

M
foi=Y 00 S 2w+ Y (00— ) zzg +zaﬁzze

e i=1 LeQNQ o leQe
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where @y = ay for £ ¢ Q.. Note that /i, is a linear and unbiased estimator for o ji. Indeed,
by construction it holds

Effia] =Y amu+ Y, (ar—a@u+ ) anu,

e LEQNQ o LeQe

and by considering the cases QN Qu = 0 and QN Qs # 0 it follows E[fiy] = o’ 1 in any case.
Now, since fib is the BLUE using more samples, from Lemma 3.4 (i) it follows

IR ~ 1 _ _
Var(jig (m(Q, Qoo, N))) < Var(fia) = --34C0.00

9 - 2
+ (@ = D). Canu 0nas (@ = Wanow + 3700-Car geage:

W.lo.g. we may assume |[a@| < ¢ for sufficiently large c¢. Thus Var(fi,) converges uniformly
for N — 400 w.r.t. @. This allows us to exchange the minimum and limit operator, arriving
at

NETOO a IéliIEL Var(fia) = a Ieni]EL Nl—i>r-rf—loo Var(fia)-
ay = ay, L € Qoo. ap = ay, { ¢ Qoo.
This shows the upper bound for v(«, @, Q) and concludes the proof. |

Remark 4.2 (Schur complement). ~(«, @, Q) solves the quadratic minimization problem
in (4.3) under equality constraints. Hence it can equivalently be written in terms of a Schur
complement of C. Indeed, with V := Q \ Qx, and W := Q N Q it holds

(4.6) Y@, Q, Quo) = iy (Cyy — Cyvw Ciply Cwiv )y /M.

This is in fact the same expression obtained by Gorodetsky et al. [10, Proposition 2.2] for
a=en, Qo={1,....,.L -1}, Q={1,...,L}, M =1 and Var(Z) = 1.

We now derive a lower bound on the variance of a general linear unbiased estimator fi,, for
aT' 1 under some conditions on the sample allocation m(fq). In particular, the bound holds
for the BLUE 12 with a suitable sample allocation.

Theorem 4.3 (Bound for Var(fi,)). Let the matrices CF be positive definite for every k
and let Jiy, be a linear unbiased estimator for o y with the sample allocation m(fis) such that

(4.7) m*(fia) >0  implies S* C Q or S* C Que.
Then, letting M := Zsng m*(fin), the estimator [i, satisfies

Var(jia) > (o, Q, Qoo)-

Proof. Tt is sufficient to argue that for N large enough it holds

(4.8) Var(fia) > Var(fig (m(fia))) > Var(fig (m(Q, Qoo, N)))-
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16 DANIEL SCHADEN AND ELISABETH ULLMANN

The first inequality in (4.8) follows independently of N since 1% (m(fis)) is a BLUE with
minimal variance and identical sample allocation. Now, we use Assumption (4.7) which tells
us that all indices of non-trivial model groups in the estimator i, are completely contained in
either Q or Qu. First, we replace all samples in m(fiy) of the form S¥ C Q with M samples
of the form S¥¢ = Q. By Lemma 3.4 (iii) this does not increase the variance of the BLUE.
Finally, we replace the remaining samples with S¥ C Q. by N samples, where

Ni= )" mF(fa).

SFCQoo

This yields the sample allocation m(Q, Qso, N). Again, Lemma 3.4 (i) tells us that the
variance of the BLUE does not increase. Hence, Var(fi,) > Var(aP(m(Q,Qs, N))) —
Y(a, @, Qo) in the limit N — +oo. [ ]

Now we formulate a corollary of Theorem 4.3 for the case a = ey, and L € @), that is, Zy is a
high fidelity model. In addition, we assume Qoo = {1,...,L — 1}.

Corollary 4.4 (Bound for Var(jir)). Let the matrices CF be positive definite for every k,
leta=er, Qoo ={1,...,L—1}, and Q@ C {1,...,L}. Let g, be a linear unbiased such that
the assumptions of Theorem 4.3 are satisfied. Then it holds

(49) Var(ﬁL) > ’7(€La Qa Qoo) > ’Y(eLv {17 R L}v Qoo) = Ymin-

Proof. The first inequality in (4.9) was proved in Theorem 4.3. The second inequality in
(4.9) follows from Lemma 3.4 (iii) before proceeding to the limit N — +o00, since
|

J(m(Q,Qoo, N)) = J(m({1,..., L}, Qoo, N)).

Remark 4.5. The restriction Q U Qo = {1,...,L} can be removed if oy = 0 for all
L€ QUQ. In this case however, to derive lower bounds for the variance, the estimator ji,
cannot use models £ € Q U Q. If this condition is satisfied, we exclude unused models and
follow the same steps as in the proofs of Lemma 4.1, Theorem 4.3 and Corollary 4.4.

5. Comparison to other linear unbiased estimators. In this section we discuss other
estimators in the literature, focusing on linear and unbiased estimators. We will see that
alternative multilevel estimators are in general not BLUEs. However, they can be cast into
our framework in Subsection 2.1, where we form groups of model outputs Z1, ..., Z;, sharing
the exact same random inputs.

First, we observe that the Monte Carlo (MC) estimator for the expectation pz of the
model output Z;, is a BLUE. The MC estimator only evaluates the model group S = {L}
using m! input samples. Thus, using (2.6), we obtain

ml

Upr=m'(o})"", yo=(o})"" ZZL(%I),
i—1

where we exclude the trivial case of Z; having zero variance. Now we apply Lemma 2.4 to
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ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 17

arrive at the familiar form

1
1 m
~MC ._ ~B -1 1
K = HL = ‘I'L,LZUL =1 ZZL(%)
i=1
Since this estimator is a BLUE not using coarse models, the variance bound v(er, @, Q) in
is achieved with equality and Lemma 4.1 shows that

Var(a¥) = y(er, {L},{1,...,L — 1}) = Var(Z) /M.
5.1. Multilevel Monte Carlo. Next, we consider the Multilevel Monte Carlo (MLMC)
estimator in the works of Giles [7, 8]. For ur, the MLMC estimator is defined as

L L nt
~ ~ 1
(5.1) aptMe =D BN 2= Zia) = D0 = D (Zelw)) = Zeea(w)),
(=1 /=1 i=1

where Zj := 0. Here the differences are estimated with independent MC estimators each using

n’ samples. This is clearly a linear and unbiased estimator for yj, for arbitrary values of .

Remark 5.1 (Sample allocation of MLMC). The MLMC estimator MMLMC (5.1) fits into

our framework by defining the model groups S* = {1}, S%? = {1,2},..., 5" = {L — 1, L} with
m! = n! evaluations of Z;, m? = n? evaluations of Z; and Z sharing n? input samples, etc.,
up to m” = n’ evaluations of Z;_; and Z;, sharing n’” input samples.

Now we derive two lower bounds on the variance of the MLMC estimator in (5.1). The
smaller bound can be obtained by combining [10, Lemma 2.3] and [10, Theorem 2.4], however,
we will see in our numerical experiments that this lower bound is not sharp in general.

Corollary 5.2. The variance of ,uMLMC

(5.2) Var(AMLMC) > (O’L + aL,l — 2cL7L_1) /nL > 0'% (1 — p%,L,I) /nL.

Proof. To obtain the expression after the first inequality sign in (5.2) we simply drop the
variance terms associated with some low fidelity models,

is bounded from below by

L
Var (M) — ZVar(Zg — Zy_1)/n* > Var(Zy — Zp_1)/n* = (62 + 02 | — 2r.1-1)/n”
=1
To obtain the second bound in (5.2) we consider the estimator

1 n
TZ (Zp(wi) — Zr—1(w;))

for u:=E[Z1, — Z1_1]. Now, using Theorem 4.3 and (4.6) with a = (—1,1)T, Q = {L — 1, L}
and Qs = {L — 1} we arrive at
Var(Zg, — Z-1)/n" = Var(il) > v(c, @, Quo) = (07 — cL107°1c0,0-1)/n"
=07 (1—pip1)/n".
The MLMC estimator is in general not a BLUE, since it does not depend on the entries of
the model covariance matrix C.

This manuscript is for review purposes only.
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18 DANIEL SCHADEN AND ELISABETH ULLMANN

5.2. Control Variates. Multiple control variate (CV) estimators (see e.g. [9]) for 7, which
use the coarse models Z1, ..., Z;_1 have the form

L-1

M
(5.3) A Z Zr(wi) + Z Be (M Z Zy(w;) — M) ;
=1

where we assume that the expected values puq, ..., ur— 1 are known. The estimator ZZ
clearly unbiased for every choice of the coefficients (3;)L" - 1 In addition, the coefficients are
chosen to minimize the variance of LV Note that this does not necessarily imply that the
CV estimator is a BLUE since we already prescribe a specific linear combination of models
by the form in (5.3). However, we have the following result.

Corollary 5.3. The multiple control variate estimator ﬁgv is a BLUE. Moreover,
(5.4) Var(7$Y) = Y-
Proof. Introduce @ € RY. Then, the optimization problem for the coefficients reads
' v L—1 M
Bgélg{1 Var (,uL ) = _ réuﬁ Var <aL ;ZL w;i) + Zae (M ;Zg(a)i) — p,g)) .

ap =1

The minimium is equal to ymin = Y(er,{1,..., L}, Qo) in (4.3) with Qo = {1,...,L — 1}.
We now show that the CV estimator is a BLUE. Observe that any linear unbiased estimator

i1, that is allowed to use the values p1,. .., ur_1 similiarly to the CV estimator, satisfies
M

(5.5) i =Y _(B)"Z"(w) + Z betue,
i=1

where the 3¢ and b, satisfy a bias constraint such that for £ € {1,..., L} it holds

N

(5.6) Zﬁ;‘(f) + by = ay, 5§(@) = eg(Pkiﬁi)-

i=1

Here the subscript j(¢) selects the component of 3¢ that is multiplied by Z,(w;) in the scalar
product (89T Z%e (w;), and 5 o = 0if ¢ Q. Notice that the variance of the second summand
in (5.5) is equal to zero. This allows us to choose the b, such that the bias constraints (5.6)
for ¢ € {1,...,L — 1} are always satisfied. Hence

M M
Var(jir) > ~min Var Z(ai)TZkQ (wi) | = 74minL Z(a’é)TCQQEZQ.
a € RI<I i=1 aeRY, o
— M
Zi]\il apy =1 D= ap =1
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This is the same bound as in (4.3) for Qs = {1,...,L — 1} except that we have potentially
individual weights in front of every sample. This does not decrease the variance allowing us
to use equal weights @’ = @/M which is exactly the expression in (4.3). Therefore it holds

1
Var(pig,) > i ml]]% aQCQQaQ v(er, @, Qoo) = Ymin = Var(asV).
S

a
ag = 1

We conclude that every linear unbiased estimator fiz, satisfies Var(fiy) > Var(afV) showing

that the CV estimator is a BLUE. |
Remark 5.4 (Sample allocation of CV estimator). The CV estimator in (5.3) has a sample
allocation with a single model group S' = {1,...,L} and m! = M correlated evaluations of

Z1,..., 2, respectively.

5.3. Multifidelity Monte Carlo. Peherstorfer et al. [15, 16] introduce the Multifidelity
Monte Carlo (MFMC) estimator based on multiple control variates as follows,

€+1

nz
I ZZL (@) +m o) s 3 A
i=1

The coefficients 3, in (5.7) are chosen such that the variance of i} is minimized. Moreover,

we assume that the number of samples satisfies n! > --- > n’. The MFMC estimator is linear
and unbiased for pp.

Remark 5.5 (Sample allocation of MFMC). The MFMC estimator zY*™C in (5.7) fits
into our framework by the model groups S' = {1}, §% = {1,2},..., 5% = {1,2,...,L} with
m! = n' — n? evaluations of Z;, m?> = n? — n3 evaluations of Z; and Z, sharing m? input
samples, etc., up to m” = n! evaluations of Zi, ..., Zy, sharing n” input samples.

Theorem 5.6. The MFMC estimator iy*™C is ¢ BLUE for L = 2.

Proof. Observe that the BLUE is a linear combination of the vector y in (2.6). For L = 2
this reads

n2 7L2 1

~ 1 1 1 <
i =on— Y Za(wi) +oa—5 Y Zi(wi) +as— > Zi(w)
{r, [ i

n2

2
1 n
:a1$222(wi)+(a2—a3 ZZl wl +043 R ZZl wz
=1

=1

for suitable coefficients a1, a9, 3. Since ﬁ]g is unbiased, we obtain

a1=1, ars—a3= —agnl/n2 =: —f3,

which is exactly the expression in (5.7) for L = 2. Now since f; is chosen to minimize the
variance of the estimator, MMF MC s the BLUE. |
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For L > 2 the MFMC estimator is in general not the BLUE. The reason is that

Be = prLeor/oe

is the optimal choice [15, Theorem 3.4]. However, this does not depend on py ¢ for ¢ # L and
¢ # L. In contrast, the BLUE depends on py; allowing us to also use these correlations for
an increased variance reduction. This is also reflected in the next statement.

Corollary 5.7 ([10, Theorem 2.7]). The variance of i}¥™C is bounded from below by
(58) Var(ﬁlz/IFMC) > 7(€L7 {L - ]-7 L}v {17 cee 7L - 1}) = O-%(]' - IO%,L—I)/”L'

An intuitive explanation for this result can be obtained by the definition in (5.7). Let us take
a look at the event w; with i < nf, where we have evaluated the expression for every model

L(wi) + Zﬁe ( Zy(wi) — nelHZe(wz')> -

Consider ¢ # L. If n® is large and since f; does not depend on n’, the magnitude of the asso-
ciated model evaluations is reduced and vanishes in the limit n¢ — 4+o00. Thus, in the infinite
data limit the MFMC estimator couples only model evaluations Z;, and Zy_1. Corollary 4.4
with @ = {L — 1, L} then gives the lower bound ~v(er,{L —1,L},{1,...,L —1}) in (5.8).

Alternatively, we can use the result in Corollary 4.4 with @ = {1,..., L} as suggested by
the sample allocation of MFMC (see Remark 5.5). This gives the lower bound

Var(y"™C) > y(e, {1,..., L}, {1,..., L — 1}) = Ymin-
Note that by the definition of 7 in (4.3) it is possible that

v(ep, {L —1,L},{1,..., L —1}) > y(es,{1,..., L}, {1,...,L — 1}).

This “gap” is closed by the estimators in the next section.

5.4. Approximate Control Variates. Gorodetsky et al. [10] introduce a general frame-
work for the estimation with Approximate Control Variates (ACVs), and consider several
ACV-type estimators in their work. The Approximate Control Variate Independent Samples
(ACV-IS) estimator [10, Def. 3.1] is given as follows,

L 4
1 w 1 ©
~ACV-IS . E : Ly _ § : ¢
(5.9) Ur, : E ZL —|— E I57) " - Zg(wi ) " 2 Zp(w

with i.i.d. samples wé Again, the weights ( Bg) 1 are chosen such that the variance of i}
is minimal. A closed-form expression for the optimal weights can be found in [10, Theorem
3.2].

Remark 5.8 (Sample allocation of ACV-IS). The model groups of the ACV-IS estimator
are given by St = {1}, S = {2}, ..., S¥71 = {L — 1}, and S* = {1,..., L} with m* = nk,
k=1,...,L. Thus, we use independent samples except for S, which couples every model
Z1, ..., 211 with the high fidelity model Z,.

~ACV-IS
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Theorem 5.9. The ACV-IS estimator ,uACV IS is @ BLUE for every L.

Proof. The proof is similar to the proof of Theorem 5.6. The BLUE with the ACV-IS
sample allocation satisfies

CEDWTRS WARIES WA WK

for suitable coefficients i, .. af i, af, . ,a%. The unbiasedness requires us to satisfy
L _ L _ _
ar =1, ae——ag : By, foralld=1,...,L—1.
. . o . . . ~B ACV IS _ ~B
Since the coefficients 3, are chosen to minimize the variance of fi%, i = puy follows. M

Gorodetsky et al. also introduce the ACV-MF estimator [10, Def. 3.3], defined by

L 4
(5.10) [pCVME " ZZL w;) + Zﬁe v ZZZ(%‘) o ZZIZ(%‘) ,
i=1 i=1

where the samples w; for different ¢ are independent, and the coefficients (Bg)é::_ll are chosen
to minimize the variance of ,ZIACV‘MF Following the same idea as in the proof of Theorem 5.6,
it is easy to see that the estimator uACV MF is a BLUE for L = 2.

Proposition 5.10. The ACV-MF estimator ZZ?CV‘MF is a BLUFE for L = 2.
Gorodetsky et al. further introduce the ACV-KL estimator in [10, Def. 3.7],

Lo L-1 Lo 1o
~ACV-KL ,_ . - AN .
TRCIRES SARTS SR £5 PINEES S
i=1 (=LMF i=1 =1
(5.11)

red
LMF—l L

+ > B Lred Z Zy(wi) ZZé wi) |
=1

where again w; are independent samples. The idea behind the estimator MACV KL is to use the
ACV-MF estimator for the levels { L™ ... L} and then reduce the variance of the estimation
of iy rea using the third summand in (5.11). The sensible choice is thus L' € {LMF . L}
and LM¥ ¢ {1,... L}. In particular, for L* = L the ACV-KL estimator is equal to the
ACV-MF estimator.

The parameters (ﬁg)L ! ¢ RL-1 and the integer values L**d and LM¥ in (5.11) are chosen
such that the variance of ,uACV KL is minimal. Observe that by Proposition 5.10 the ACV-MF
estimator is a BLUE for L = 2. Moreover, for L = 2 the ACV-KL and ACV-MF estimator

coincide. Hence we have the following result.

Proposition 5.11. The ACV-KL estimator ﬁéCV‘KL is a BLUFE for L = 2.

Remark 5.12 (Sample allocation of ACV-MF and ACV-KL). Let us assume n' > --- > n’.
Then it can be shown that the model groups of ACV-MF and ACV-KL are identical to MEMC
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(see Remark 5.5). Moreover, the numbers of samples m” for each model group S* coincide
with those of MFMC as well. The three estimators only differ in the way by which they
linearly combine the samples to obtain an unbiased estimator.

Corollary 5.13. The variance of the ACV-1S, ACV-MF and ACV-KL estimator reaches the
bound y(er, @, Qoo) = Ymin for the sample allocation in (4.1) in the limit N — +o0.

Proof. For ACV-IS and ACV-MF this is proven in [10, Theorem 3.6]. The claim for
ACV-KL follows from the discussion in [10, Sec. 3.2]. [ |

Finally, we remark that there are multiple choices to define the ACV-KL estimators by
modifying the dependency structures of the samples (see [10, Sec. 3.2]). We, however, simply
use [10, Def. 3.7].

5.5. Fully coupled BLUE. Remark 5.12 motivates us to define a fully coupled (FC) esti-
mator with the same model groups as MFMC, ACV-MF and ACV-KL. We thus have

(5.12) Ste={1,....0}, £=1,...,L,

with m%c > 0if £ < L, and mﬁc = (0 otherwise. Note that the numbers m%c are uniquely

defined once the number of model evaluations n! > --- > n’ has been fixed. We then define
the estimator 7i5C as BLUE using the matrix ¥ and vector y in (2.6),

(5.13) i = fig(mrc) = ef ¥ (mrc) " y(mrc).

According to Theorem 2.6, ﬁEC has an equally large or strictly smaller variance compared to
the estimators MFMC, ACV-MF and ACV-KL. In particular, neither MFMC, ACV-MF or
ACV-KLisin general a BLUE for L > 2. We refer to Subsection 6.1 for a numerical illustration
of this point. For further illustration purposes we also define the FC, k estimator that simply
starts at level L — k + 1 and thus only uses the model groups S%C ={L—-k+1},..., Slfic =
{L—k+1,...,L}. The estimator FC, k only couples the k£ models with the largest index. In
particular, it¢ = ﬁEC’L.

5.6. Summary. We summarize the properties of all estimators discussed in this paper in
Table 1. For each estimator we minimize the variance given some computational budget p.
This requires us to solve an optimization problem of the form (3.5) to compute the optimal
number of samples. The entries in the column “Optimization” state whether solving this
problem is done analytically or numerically, and the column “DoF” gives the number of degrees
of freedom in the optimization problem. The column “Solve with C” indicates whether solving
a linear system with the model covariance matrix (or a matrix derived from it) is required.
Here SAOB, k and FC, k only require solving a system with a k x k principal submatrix of C.
Finally, the column “Variance bound” gives the (largest) lower bound on the variance for the
estimator in the infinite data limit, that is, as the number of samples in Qo = {1,...,L — 1}
goes to infinity.

6. Numerical experiments. In this section we want to numerically verify the main re-
sults of this paper. To this end we study two simple academic examples in Subsection 6.1—
Subsection 6.2. A practically more relevant example is presented in Subsection 6.3 where we
estimate the expectation of a Qol associated with an elliptic PDE with a random diffusion
coefficient.
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Estimator BLUE | Solve with C' | Optimization | DoF Variance bound

MC yes no analytic 1 ~v(er, {L}, Qo)
MLMC (5.1) | L=1 no analytic L Var(Zy, — Z,_1)/n*
MFMC  (5.7) | L<2 no analytic L y(er, {L—1,L}, Qo)
ACV-IS  (5.9) yes yes numeric L ~Vinin

ACV-MF (5.10) | L <2 yes numeric L ~Ymin

ACV-KL (5.11) | L <2 yes numeric L+2 Ymin

FC, k (5.13) yes yes, k x k numeric k vy, {L—k+1,...,L}, Qo)
SAOB,k (3.2) | yes yes, k x k numeric OL¥) | v(ep, {L—k+1,...,L},Qc)
SAOB (3.2) | yes yes numeric 2l —1 ~inin

Table 1: Overview of linear unbiased estimators and their properties.

6.1. Monomial example. This example is taken from [10, Sec. 2.5]. The model outputs
are defined as

Zg(w):we, (=1,...,L,

for L = 5, where w ~ U(0,1). We fix the total number of evaluations for Zj,...,Zy as
nt =2N2l=t for ¢ =1,...,L — 1 and n” = 1. Hence the total cost for each estimator is the
same. We vary N to simulate the limit process limy_, o Var(ziz,). Note that we estimated
the required covariance matrix using 10° independent pilot samples. Let us now introduce
some abbreviations for the variance bounds,

vo:=~(ep, {L—C+1,...,L},{1,...,L—1}), ¢=1,...,L,

where Ymin = 7r. The estimator variances together with the bounds are shown in Figure 1.
We see that MLMC does not reach 5, whereas MFMC does reach o, however, no further
improvements are made as recorded in Table 1. Hence the bound 7, for the variance of MLMC
is in general not sharp. This has been already observed in [10, Sec. 2.5]. Our experiments
reveal that the variance of MLMC satisfies the sharper bound

Var(iy ™M) > (0F + 0f 1 — 2¢1,0-1) /n"

as proved in Corollary 5.2. We further observe that the novel BLUE estimators FC, k reach
the respective bound 3 and do not improve any further. Finally, the ACV estimators all
reach the bound vymin = 75, albeit at a smaller pace than the BLUE FC,5. The variance of
all estimators is bounded by vy as predicted by Theorem 4.3. Since MFMC, ACV-MF and
ACV-KL use the exact same sample allocation as FC, 5, we conclude that in general none of
them are BLUES.

6.2. Noisy monomial example. The following example is a modification of the example
in Subsection 6.1. We define the quantity of interest as before as Z (w) := w®, L = 6, together
with the models

Zy(w,€) =w € £=1,...,5,
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——FC, 2
L« FC,3
—=FC, 4
——FC, 5
—o -MLMC
~ ¢ -MFMC
T e ACvIs
—-a-— ACV-MF
~ e ACV-KL | 1

o

Variance
Variance

Figure 1: Monomial example: Estimator variances for different numbers of samples N. The
minimally achievable variances y; > --- > 75 = ~Ymin are drawn horizontally, dashed and
black. The variance of the MC and FC, 1 estimator coincides with 1, the dashed line at the
top of the image on the right-hand side. The image on the left-hand side is a zoom in for
N=0,...,10.

Model Z1 ZQ Z3 Z4 Z5 ZG
A 1.0000 0.9898 0.9891 0.9902 0.9913 0.0012
Zy sym  1.0000 0.9993 0.9983 0.9974 0.1182
Zs sym sym  1.0000 0.9997 0.9991 0.1374
Zy sym sym sym  1.0000 0.9998 0.1374
Zs sym sym sym sym  1.0000 0.1319
Zg sym sym sym sym sym  1.0000

Table 2: Sample correlation coefficients for the models in the noisy monomial example esti-
mated with 10° samples.

where w ~ U(0,1) and £ ~ N(0,2) are independent random variables. Here, the additional
term £ acts as noise and results in a small correlation of Z; with Z1,...,Z;_1 as recorded
in Table 2. In fact, Z; = £ and Zj, are nearly uncorrelated. (The correlation coefficients in
Table 2 have been estimated using 10% samples.)

The estimator variances are shown in Figure 2. We observe that the variance of MLMC is
the largest among all estimators, in fact, it is nearly two orders of magnitude larger than the
variance of Monte Carlo. The variance of MFMC is of the same order of magnitude as the
variance of Monte Carlo. The ACV-type estimators have a much smaller variance for larger
values of N, and approach the minimal variance possible, ymin, as predicted by the theory.
The FC, 6 estimator approaches vnin as well. However, in the preasymptotic regime for N
small, the variance of the FC, 6 estimator is up to three orders of magnitude smaller compared
to the ACV-type estimators.
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T T T T
O-0 0 0-0-0-0-0-0-0-0000-0-0-0( FC, 1 j}
)

10

Variance
Variance for N

Figure 2: Noisy monomial example: Estimator variances for different numbers of samples IV
are shown in the left image. The minimally achievable variances v; > --- > g are drawn
horizontally, dashed and black. The right image shows the estimator variances for N = 10.

In this example, adding the model Z; to the components of the BLUE reduces the variance
significantly despite the fact that Z; and Zj are actually independent. Adding Z; decreases
the variance the most, whereas adding Z,..., Z;_1 — which have a larger correlation with
the high fidelity model Z;, — only yields a small decrease of the variance. We further conclude
that even if every correlation of Zi,...,Z;_1 with Z is small, we still obtain a significant
variance reduction by using these models in the BLUE.

We conclude that BLUEs can yield a significant variance reduction if the quantity of
interest is sufficiently well approximated by a linear combination of models where each model
may capture a different type of randomness. This may be satisfied even if each model has
only a small correlation with the high fidelity model.

6.3. Elliptic PDE with random diffusion coefficient. In this section we apply the SAOB
to estimate the expected value of

il
y(z,w)dz,
|Dobs| Do ( )

where Dgpg := (%, %) X (%, 1) C D := (0,1)2. Here, y solves an elliptic PDE

Z(w) =

—div(a(z,w)Vy(z,w)) =
y(z,w)

for x € D,

1,
(6.1)
0, for x € 0D.

The random diffusion coefficient a(x,w) = exp(k(z,w)), where x is a mean zero Gaussian
random field with Whittle-Matérn covariance function [19] with smoothness parameter v =
3/2, variance 02 = 2 and correlation length p = 0.1. We discretize Z by using a uniform
mesh refinement with standard linear finite elements (FEs) to obtain the models 71, ..., Z1
with L = 6. The data for the discretization is shown in Table 3. Table 4 shows the Pearson
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Model | #Nodes Mesh size wy Var(Z,)  Bias(Zy)
7 81  0.1768  0.0016s 8.4-10=%* 7.7-107°
Zy 289  0.0884  0.0021s 2.1-107* 3.5-.1073
Zs3 1089  0.0442  0.0044s 4.6-1073 8.2-107*
Z4 4225  0.0221  0.0148s 6.0-10~% 2.0-107*
Zs 16641  0.0110  0.0564s 6.5-1073 5.6-107°
Zs 66049  0.0055  0.2443s 6.7-1073 1.7-107°

Table 3: PDE example: The column ”#Nodes” lists the number of FE basis function and
”Mesh size” gives the maximum diameter of the triangles in the mesh. w, denotes the expected
time (in seconds) to compute a realization of Z,. The last two columns list the variance and
bias.

Model Z1 Z2 Z3 Z4 Z5 ZG
A 1.0000 0.8781 0.7722 0.7229 0.7035 0.6957
Zo sym  1.0000 0.9719 0.9460 0.9343 0.9294
Z3 sym sym  1.0000 0.9952 0.9907 0.9885
Zy sym sym sym  1.0000 0.9992 0.9985
Zs sym sym sym sym  1.0000 0.9999
Zg sym sym sym sym sym  1.0000

Table 4: PDE example: The Pearson correlation coefficient matrix (pg)% j—1 estimated with
10* samples.

correlation coefficients between the models. The covariance matrix, correlation coefficients
and the work per level wy were estimated with 10* samples. Note that we do not include
this cost in our complexity analysis. We estimated the bias using Monte Carlo with the same
samples as follows,

Bias(Z) := [E[Z/] — B[Z]| = |ii"" — €], for £=1,2,3,5.

We set Bias(Z,) := Bias(Z3)/4, since Z; seemed to have a smaller bias than Z5. We extrap-
olated the resulting values to obtain Bias(Zy). We remark that this bias estimation is crude
and can be improved, however, it is sufficient for our purposes, since we only compare esti-
mators with the same bias. We want to obtain a Mean Square Error (MSE) of the estimator
fir, of at most €2, that is,

E[(fic — E[2))?) = Bins(Z,)? + Var(fie) <

such that the cost of fi; is minimized. We choose the level ¢ such that Bias(Z;)? < €2/2 and
afterwards ensure that

(6.2) Var(fig) < 2/2.
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We achieve this variance constraint with minimal cost by solving a sample allocation problem
for every estimator, where we allow fractional samples. Formally, for a parameter vector x
and an estimator fiy(x) we solve a problem of the form

(6.3) min Var(fig(z)) such that Cost(fig(z)) < p.

Then, we rescale the number of samples to achieve (6.2). For SAOB, k& we solve the problem
(3.5) with § = 0. For MC z is the number of evaluations of Z,. For MLMC we optimize the
variance over n', ..., n’, and for ACV-KL we optimize over the parameters n!, ... nf, LMF
and L™¢. For ACV-KL we follow a brute force approach and optimize over all feasible integer
values of LMF and L. We carry out the corresponding optimization also for ACV-IS and
ACV-MF. We further remark that we optimize over the first used level, that is, if one of the
estimators has a smaller variance starting at level 2 instead of level 1, then the first model is
never evaluated. For MC, MLMC and MFMC there are analytic expressions for the number
of samples available. For the remaining estimators we employ Matlab’s fmincon function
which uses an interior point algorithm, where we supply the gradient of the variance of the
estimator. For SAOB, k we additionally supply the Hessian.

The computed cost allowing fractional samples is shown in Figure 3. We see that the
SAOB achieves the target root mean square error (RMSE) with the smallest cost. For the
smallest RMSE, where we have estimators with Bias(Zy), MLMC is &~ 52% more expensive
than SAOB. For MFMC this value is =~ 71%, for SAOB, 2 it is ~ 35% and for SAOB, 3
it is & 3%. The estimator SAOB, 4, which is not plotted, is only &~ 0.7% more expensive
than SAOB. We clearly see that increasing the coupling number reduces the variance but the
overall cost savings decrease.

We remark that we were not able to solve (6.3) for ACV-MF and ACV-KL for the two
leftmost datapoints. After 10% iterations in fmincon, the method had not converged yet and
we used the final (suboptimal) sample allocation. Hence, these two values in Figure 3 for
ACV-MF and ACV-KL are only upper bounds for the variance. We think that the reason for
the non-convergence of fmincon is the ill-conditioning of the model covariance matrix C.

We now focus on the data point with the smallest RMSE in Figure 3. The total number
of evaluations of Z1,...,Zy, is shown in Figure 4. We see that the MC estimator uses only
the high fidelity model, MLMC uses all models, and MFMC starts with model Z3. Similarly,
SAOB, 2 and SAOB, 3 do not use the coarsest model. A possible explanation for this is the
fact that the mesh size associated with Z; is larger compared to the correlation length of the
diffusion coefficient a. The SAOB uses all models. We conclude that estimators that use fewer
evaluations of the expensive high fidelity model have smaller costs. Here SAOB has ~ 270
high fidelity evaluations whereas SAOB, 3 has ~ 1150, that is more than four times as many,
however SAOB, 3 is only =~ 3% more expensive.

We now also comment on the model groups and coefficients 8* for the SAOB, k estimators
which are shown in Figure 5. The terms ¥ denote the coefficients in the linear combination
of the models in the final estimator. For example, for SAOB with independent events wf it
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Cost in seconds
Relative cost

104 1078 102 104 107 102
Root Mean Square Error & Root Mean Square Error ¢
Figure 3: PDE example: Computed cost to achieve a certain RMSE for different estimators

with fractional samples. The left image shows the absolute cost in seconds and the right image
the relative cost w.r.t. the SAOB estimator.

107; NIC
1 | EMLMC
| | I MFMC

100

g = [ ACV-IS
. 1 I ACV-MF
wl | |[E3AacvKL
: I |IEmSAOB, 2
. 1 |C__JsA0B, 3
0L | I SAOB
10-“? ‘ =
10%
Zy Zs Zy Zy Zg

Z

Number of evaluations

Model

Figure 4: PDE example: Computed total number of evaluations for every model in logarithmic
scale.

holds
mk
=305tk S
k=1 pesk i=1
We can see in Figure 5 that for each estimator the row sum along Z,, £ =1,...,L—1, is equal

to zero, and the row sum along Z;, is equal to one. This is consistent with the unbiasedness
requirement. The optimal sample allocation obtained by solving (3.5) is actually unique for
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Zg 1.00 Zg 1.00 Zg 1.00
Zs 1.01 [ -1.01 Zs 1.40 | -1.40 Zs 1.78 |-1.78
Zy 1.04 [ -1.04 Zy 155 [ -1.96 0.41 Zy 1.81 |-2.79 | 0.98
Zs 1.13 [ -1.13 Zs 1.70 | -2.28 0.58 Zs 1.64 |-2.66 | 1.24 |-0.22
Zof 133 | 133 Zof 119 | 200 | o.81 Zof 1.18 | 0.03 |-1.93 | 0.95 J-0.26 | 0.02
4 71 74 -0.05 0.04 f 0.00

Sl SZ S‘i S4 55 Sl SZ S% S-l S% Sl SQ SB S4 SB Sﬁ

SAOB, 2 SAOB, 3 SAOB

Figure 5: PDE example: Model groups for the SAOB, k estimators in the optimal sample
allocation. Each column represents a model group. A non-empty square in the box means
that the model is an element of the model group. For example, for SAOB we have S* = {2,3,4}
with 85 = 0.95, 3 = —2.66 and 3} = 1.81.

all SAOB, k and results in six or less model groups S*. In fact, SAOB, 2 uses the same model
groups as MLMC but starts with model Zs.

Let us comment on fractional samples, which we used up until now. For the SAOB, k
estimators we round the number of samples to the next biggest integer. This way, the variance
target (6.2) is still satisfied, however, with an increased cost. This additional cost was at most
~ 0.6 seconds accounting for a relative increase of at most =~ 0.004%. For this example, the
small increase in cost is negligible and thus working with fractional instead of integer samples
for the optimization problem (6.3) is justified. Ceiling the number of samples for the other
estimators also increases their cost by a negligible margin.

In other examples, rounding up the number of samples may significantly increase the cost
of the estimator. Then one has to explicitly deal with the integer constraints. To this end
one could apply Integer Programming techniques like branch-and-bound, where we branch on
the number of model evaluations. However, the efficiency of such methods is highly problem
dependent, and further investigations are out of the scope of this paper.

We verify our implementation by re-computing all estimators for 4 where we apply the
ceiling of the number of samples. We average those estimates over 100 independent runs.
The sample mean for each estimator is ~ 0.0157. We further compute the sample variance
and compare it with the target 7 := Bias(Z,)?/2. The variance for MC was ~ 0.707, MLMC
~ 0.997, MFMC = 1.127, ACV-IS = 0.897, ACV-MF =~ 0.987, ACV-KL =~ 0.807, SAOB, 2
~ 0.997, SAOB,3 ~ 0.997 and finally SAOB =~ 0.927. Here the ACV-MF and ACV-KL
estimators are actually identical, since for the target RMSE we obtain LMF = Lred = 4. We
thus conclude that our implementation yields consistent results.

Finally, we remark that for the smallest RMSE for SAOB we spent = 6 seconds to compute
the optimal sample allocation, which is a relative cost increase of ~ 0.04%. In practice, we
cannot neglect the cost to estimate the covariance matrix C' and cost per level wy, which we
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did not include in our analysis and which has to be done in an offline step. We however expect
that adaptive methods can be used to address this point.

7. Conclusions. We introduce and analyze a multilevel best linear unbiased estimator to
approximate the expected value of a scalar-valued output quantity of interest. We show that
this estimator is variance minimal independently of the number of model evaluations. We
prove a sharp lower bound on the variance of any linear unbiased multilevel estimator and
show that our proposed estimator approaches the exact same lower bound as the ACV-type
estimators in the infinite low fidelity data limit. Moreover, we suggest an optimal sample
allocation scheme that constructs the model groups such that a target estimator variance is
achieved with a given computational budget. We demonstrate in numerical experiments that
the multilevel BLUE can achieve a significant variance reduction for models that are nearly
uncorrelated with the high fidelity model and that are polluted by noise. The BLUE handles
such situations by linearly combining the model evaluations in an optimal way. This is in
contrast to the multilevel estimators in the literature, such as MLMC and MFMC, where the
linear combinations are (partially) fixed and cannot fully be adapted to the problem at hand.

We point out that our analysis is completely independent of the type of models in the
multifidelity hierarchy. It can be expected that by making specific assumptions on the models,
in particular, PDE-based outputs, we are able to show convergence rates of the multilevel
BLUE with respect to e.g. mesh size parameters and analyze its complexity. This is the
subject of ongoing work. Moreover, it would be desirable to eliminate the need to know the
model covariance matrix, or at the very least, analyze the errors introduced to the BLUE
by using an inexact, sample-based covariance matrix. We envision that adaptive approaches,
possibly by using data assimilation techniques, such as the Kalman filter and ensemble Kalman
filter, could be useful for this task. The ill-conditioning of the model covariance matrix for
highly correlated models is also a problem that requires further attention.
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