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Abstract. We present a general variance reduction technique for the estimation of the expectation of a scalar-4
valued quantity of interest associated with a family of model evaluations. The key idea is to refor-5
mulate the estimation as a linear regression problem. We then show that the associated estimators6
are variance minimal within the class of linear unbiased estimators. By solving a sample alloca-7
tion problem we further construct a variance minimal, linear, and unbiased estimator for a given8
computational budget. We compare our proposed estimator to other multilevel estimators such as9
multilevel Monte Carlo, multifidelity Monte Carlo, and approximate control variates. In addition, we10
provide a sharp lower bound for the variance of any linear unbiased multilevel estimator, and show11
that our estimator approaches this bound in the infinite data limit. The results are illustrated by12
numerical experiments where the underlying output quantity of interest is generated by an elliptic13
partial differential equation.14
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1. Introduction. The estimation of the expectation of a scalar-valued output quantity of18

interest (QoI) is a building block in computational statistics and uncertainty quantification19

(UQ). The Monte Carlo (MC) estimator is a linear, unbiased and robust estimator for this20

task. Robustness means that the rate of convergence of MC is independent of the smoothness21

of the QoI and its underlying dimension. Unfortunately, many QoIs in modern applications are22

associated with models that involve partial differential equations (PDEs) and are expensive23

to handle. Typically, MC estimators require tens of thousands of model evaluations and are24

thus computationally infeasible in PDE-based applications.25

In the last decade, multilevel estimators have been developed to address this problem and26

design estimators with significantly smaller computational complexity. Multilevel estimators27

rely on the idea of variance reduction by linearly combining model evaluations of different28

resolutions or fidelities. They work with the target high fidelity model and families of low29

fidelity models that are correlated with the high fidelity model. Arguably the most prominent30

example to date is the multilevel Monte Carlo (MLMC) estimator [7, 8]. MLMC for PDE-31

based models has been initiated by Cliffe et al. [6], and has since been very popular with32

many recent works showing that MLMC has a smaller computational complexity compared33

to Monte Carlo. See e.g. [4, 13, 14] for forward UQ calculations, [2, 3, 11] for inverse UQ34

problems, and [1, 20] for optimization under uncertainty.35

By construction, MLMC is a linear, unbiased estimator; it relies on a well-known telescop-36
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ing sum. This is, in fact, a simple approach to guarantee unbiasedness, but it is by no means37

the only option. Indeed, many other linear unbiased multilevel estimators have been devised38

in recent years. One example are multifidelity Monte Carlo (MFMC) estimators [15, 16, 17]39

which rely on the idea of multiple control variates (CVs). Recently, Gorodetsky et al. [10]40

introduced approximate control variate estimators (ACVs). However, the authors of [10] cor-41

rectly point out, that neither the telescoping sum approach in MLMC nor the CV approach in42

MFMC guarantee a small or even minimal estimator variance. The work in [10] addresses this43

defect by designing various ACV estimators. However, this again does not necessarily give44

the largest variance reduction possible. We address this problem and introduce a linear, unbi-45

ased, multilevel estimator with guaranteed smallest variance independently of the number of46

model evaluations. In addition, we provide a sharp lower bound on the variance of any linear47

unbiased multilevel estimator in the limit of infinitely many low fidelity model evaluations.48

Our estimator is well known in statistics under the name of best linear unbiased estimator49

(BLUE). We remark that Monte Carlo is in fact a BLUE. Unfortunately, being a BLUE alone50

does not guarantee a feasible computational complexity. To address this, MLMC combines51

high and low fidelity model evaluations; in fact, MLMC linearly combines Monte Carlo es-52

timators. However, such a linear combination of BLUEs is not necessarily a BLUE as well.53

In our work we construct a BLUE and show how to achieve a target variance with minimal54

computational complexity.55

The idea of our proposed multilevel estimator is simple. We assume that we are given56

a certain number of model evaluations (samples) of models with different fidelities. The57

model evaluations are treated as observations of an underlying unknown true parameter. We58

then construct the BLUE for the true parameter using the observations. In other words:59

the estimator fits the observations “best”, i.e., with minimal variance given the linearity60

constraint. This problem is a generalized least-squares problem. It can also be considered as61

generalized linear model where the model error has mean zero and a covariance matrix which62

depends on the correlations of the high and low fidelity models.63

The ACV-type estimators in [10] are constructed and analyzed by partitioning the input64

samples into two ordered subsets where each ordered subset is associated with a control variate65

or level. It can be shown that MLMC and MFMC also fit into the ACV framework. However,66

this point of view does not emphasize a property that is essential for variance reduction,67

namely, the correlation between models in a family. Instead of grouping the input samples68

we form model groups with respect to the outputs. We present a framework based on model69

groups which share the exact same samples as input and thus produce a correlated output.70

This differs from the ACV framework yet it is sufficient to study a variety of linear unbiased71

estimators such as MLMC, MFMC, and ACVs.72

The main contributions of this work are as follows: (i) a general framework for multilevel73

estimators, including multilevel Monte Carlo, multifidelity Monte Carlo, and approximate74

control variates, (ii) a novel multilevel best linear unbiased estimator (MBLUE) which achieves75

the minimal variance possible for any given configuration of model evaluations (samples),76

(iii) a specific MBLUE estimator termed SAOB with optimal sample allocation given a fixed77

computational budget, and (iv) a sharp lower bound on the variance of any linear, unbiased78

multilevel estimator in the infinite low fidelity data limit.79

The remainder of this work is structured as follows. In Section 2 we introduce our novel80
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multilevel estimator and prove some essential properties of it. In Section 3 we discuss sample81

allocations, and construct a variance minimal estimator given a fixed computational budget.82

In Section 4 we study the maximal possible variance reduction for the MBLUE. In Section 5 we83

discuss connections of the MBLUE to classical estimators in the literature, such as multilevel84

and multifidelity Monte Carlo [8, 15], control variates [9] and approximate control variates85

[10]. It turns out that our MBLUE satisfies the exact same lower bound for the variance86

reduction as the ACV estimators in [10]. We reproduce the result on the variance reduction87

for the optimal control variate given in [10]. Moreover, we prove that the ACV-IS estimator88

introduced in [10] is a BLUE. In Section 6 we conduct numerical experiments to support the89

theoretical results. Section 7 offers concluding remarks.90

2. Multilevel best linear unbiased estimator. Let Z1, . . . , ZL denote scalar-valued ran-91

dom variables. In our context these are typically output quantities of interest associated with92

a family of models. The models are indexed by a certain level or fidelity, ordered from the93

coarsest level ` = 1 to the finest level ` = L. We wish to construct an estimator for E[ZL]94

using samples of Z1, . . . , ZL. The expectation µ`, variance σ2` , covariance c`,j and Pearson95

correlation coefficient ρ`,j associated with Z1, . . . , ZL are defined as96

µ` := E[Z`], σ2` := E[|Z` − E[Z`]|2], ` ∈ {1, . . . , L},97

c`,j := E[(Z` − E[Z`])(Zj − E[Zj ])], ρ`,j :=
c`,j
σ`σj

, `, j ∈ {1, . . . , L},98
99

respectively. The model covariance matrix C := (c`,j)
L
`,j=1 and the vector of mean values is100

µ := (µ1, . . . , µL)T . We assume that all those quantities exist and are finite. Our goal is to101

construct an unbiased estimator µ̂L for E[ZL] such that the variance of µ̂L is minimal.102

2.1. Definition of the estimator. Let (Sk)Kk=1 be a collection of the K := 2L−1 different103

non-empty subsets of {1, . . . , L}, that is,104

(2.1) Sk ∈ 2{1,...,L} \ {∅}, Si 6= Sj for all i 6= j.105

In the context of multilevel estimators each model group Sk tells us which outputs Z1, . . . , ZL106

are statistically coupled by using the exact same sample as model input. For every index107

k ∈ {1, . . . ,K} we define the vectors Zk, µk, ηk and matrix Ck as follows,108

(2.2) Zk := (Z`)`∈Sk , µk := (µ`)`∈Sk , ηk := Zk − µk, Ck := (c`,j)`,j∈Sk = Cov(ηk, ηk).109

Furthermore, we define the restriction matrix Rk ∈ R|Sk|×L such that it holds110

(2.3) Rkv = (v`)`∈Sk for all v ∈ RL.111

The prolongation matrix is then defined as P k := (Rk)T . Combining (2.2) and (2.3) gives112

(2.4) Zk = Rkµ+ ηk, k = 1, . . . ,K.113

Note that in statistics, a relation such as (2.4) is known as linear model (see e.g. [18]), where114

Zk is a vector of observations, and Rkµ contains the parameters to be estimated (here the115
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expected values of a subset of outputs Z1, . . . , ZL with indices in Sk). Finally, ηk in (2.4) is a116

mean-zero, additive noise vector with covariance matrix Ck that is used to model observation117

errors. The parameter estimation problem associated with the linear model in (2.4) is also118

known as linear regression problem.119

We now assume that for every index k we have mk ∈ N0 independent samples of the120

random vector Zk. Furthermore, we assume that samples of Z` and Zj are statistically121

independent for ` 6= j. The key idea of our multilevel sampler is to assemble the linear models122

in (2.4) for every k and every sample into a large, block-stuctured linear model of the following123

form124

Y = Hµ+ ε,(2.5)125126

where127

Y := (Y k)Kk=1, H := (Hk)Kk=1, ε := (εk)Kk=1,128

Y k := (Zk(ωki ))m
k

i=1, Hk := (Rk)m
k

i=1, εk := (ηk(ωki ))mk
i=1,129130

and the samples ωki are i.i.d. Note that each vector Y k contains samples of the output vector131

Zk and is thus associated with a linear model in (2.4). Before we continue we illustrate (2.4)132

and (2.5) by an example.133

Example 2.1 (Linear model). Let L = 3 and enumerate the model groups of {1, 2, 3}134

S1 = {1}, S2 = {2} S3 = {3} S4 = {1, 2},135

S5 = {1, 3}, S6 = {2, 3}, S7 = {1, 2, 3}.136137

We are interested in the model groups given by S1, S4 and S6, where (2.4) reads138

Z1 =
(
1 0 0

)µ1µ2
µ3

+ (Z1 − µ1) = R1µ+ η1, for S1,139

(
Z1

Z2

)
=

(
1 0 0
0 1 0

)µ1µ2
µ3

+

(
Z1 − µ1
Z2 − µ2

)
= R4µ+ η4, for S4,140

(
Z2

Z3

)
=

(
0 1 0
0 0 1

)µ1µ2
µ3

+

(
Z2 − µ2
Z3 − µ3

)
= R6µ+ η6, for S6.141

142

Now let m1 = m4 = 1,m6 = 2 and mk = 0 if k 6∈ {1, 4, 6}. Then, the block linear model in143

(2.5) reads144 

Z1(ω
1
1)

Z1(ω
4
1)

Z2(ω
4
1)

Z2(ω
6
1)

Z3(ω
6
1)

Z2(ω
6
2)

Z3(ω
6
2)


=



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 1 0
0 0 1


µ1µ2
µ3

+



Z1(ω
1
1)− µ1

Z1(ω
4
1)− µ1

Z2(ω
4
1)− µ2

Z2(ω
6
1)− µ2

Z3(ω
6
1)− µ3

Z2(ω
6
2)− µ2

Z3(ω
6
2)− µ3


=


R1

R4

R6

R6

µ+


η1(ω1

1)
η4(ω4

1)
η6(ω6

1)
η6(ω6

2)

 ,145
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where ω1
1, ω

4
1, ω

6
1, ω

6
2 are i.i.d. samples of some random source. Let us put this example into146

perspective with the MLMC estimator [7], which is defined as follows:147

µ̂MLMC
3 :=

1

m6

m6∑
i=1

(Z3(ω
6
i )− Z2(ω

6
i )) +

1

m4

m4∑
i=1

(Z2(ω
4
i )− Z1(ω

4
i )) +

1

m1

m1∑
i=1

Z1(ω
1
i ).148

This estimator linearly combines m6 samples of the group S6, m4 samples of S4 and m1149

samples of S1, respectively. However, MLMC is not derived from the perspective of a linear150

model of the form (2.5).151

It is easy to verify that the linear model in (2.5) satisfies the following properties.152

Proposition 2.2. Let Gk := diag((Ck)m
k

i=1). Then, there holds153

E[ε] = 0, Cov(ε, ε) = diag((Gk)Kk=1), E[Y ] = Hµ.154155

We now define the key components of our multilevel estimator, the matrix Ψ ∈ RL×L and the156

vector y ∈ RL, as follows,157

(2.6) Ψ :=

K∑
k=1

mkP k(Ck)−1Rk, y :=

K∑
k=1

P k(Ck)−1
mk∑
i=1

Zk(ωki ).158

Finally, our (linear) estimator µ̂B is defined such that it satisfies the equation159

(2.7) Ψµ̂B = y.160

It turns out that µ̂B is well defined if we evaluate every model at least once. Formally, we161

define the set U of evaluated models as162

(2.8) U :=
{
` ∈ {1, . . . , L}

∣∣∣ there exists a k with mk > 0 and ` ∈ Sk
}
.163

We then have the following result.164

Lemma 2.3. Let the matrices Ck be positive definite for every k and let U = {1, . . . , L}.165

Then the matrix Ψ in (2.6) is positive definite and thus µ̂B in (2.7) is well defined.166

Proof. Since (P k)T = Rk and each matrix Ck is positive definite by assumption, the167

matrix P k(Ck)−1Rk is positive semi-definite and hence Ψ is also positive semi-definite. It168

remains to show that if vTΨv = 0 for some v ∈ RL then v = 0. Observe that169

0 = vTΨv =
K∑
k=1

mkvTP k(Ck)−1Rkv.170

171

Hence for all k this implies mkvT (Rk)T (Ck)−1Rkv = 0. Now, if mk > 0 and since Ck is172

positive definite by assumption, and since Rk is the restriction operator, it follows v` = 0 for173

all ` ∈ Sk. Because U = {1, . . . , L} we finally conclude v = 0.174
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The estimator µ̂B delivers estimates of every component µ`, ` = 1, . . . , L. However, we are175

typically only interested in an estimate of the expectation of the finest model, µL. To construct176

such a partial estimator, let177

(2.9) µ̂B` := eT` µ̂
B,178

where e` denotes the `th unit vector in RL, ` = 1, . . . , L. More generally, for an arbitrary179

vector α ∈ RL\{0} we want to state conditions such that the estimator180

(2.10) µ̂Bα := αT µ̂B181

is well defined. Intuitively, if α` = 0 for some `, then the estimator µ̂Bα should be well defined182

even if we do not evaluate the `th model. We make this intuition precise.183

Lemma 2.4 (Partial model estimation). Let the matrices Ck be positive definite for every184

k and assume that we do not want to estimate expectations of models we do not evaluate, that185

is, α` = 0 for all ` 6∈ U. Then µ̂Bα is well defined as the limit186

µ̂Bα = lim
δ→0+

[
αT (Ψ + δI)−1

]
y = αTUΨ−1U,UyU .187

Proof. The claims follows by using the block diagonal form of188

Ψ + δI =

(
δIUc,Uc 0

0 ΨU,U + δIU,U

)
.189

2.2. Properties of the estimator. In this section we show that – by construction – the190

estimators µ̂B and µ̂Bα are best linear unbiased estimators (BLUEs) for µ and αTµ, respectively.191

Recall that a linear estimator µ̂ = AY is an unbiased estimator for µ, if it holds192

µ = E[µ̂] = AE[Y ] = AHµ193

for every possible value of µ. We use the Gauss–Markov–Aitken Theorem (see e.g. [18,194

Theorem 4.4]) to show that µ̂B is the linear unbiased estimator for µ with the smallest variance,195

or simply that µ̂B is the BLUE.196

Theorem 2.5. Let the assumptions of Lemma 2.3 be true. Then, µ̂B is the BLUE for µ197

and the covariance matrix of µ̂B is Cov(µ̂B, µ̂B) = Ψ−1.198

Proof. The Gauss–Markov–Aitken Theorem states that the BLUE µ̂ for the parameter199

vector µ in (2.5) satisfies200

(HT Cov(ε, ε)−1H)µ̂ = HT Cov(ε, ε)−1Y,201

and that the covariance of µ̂ is202

Cov(µ̂, µ̂) = (HT Cov(ε, ε)−1H)−1.203

A straightforward computation using Proposition 2.2 shows that HT Cov(ε, ε)−1H = Ψ, and204

HT Cov(ε, ε)−1Y = y, and thus µ̂ = µ̂B.205
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Theorem 2.5 tells us that µ̂B is the BLUE for the entire vector µ. The next goal is to show206

that µ̂Bα is a BLUE for the vector αTµ. We call an estimator µ̂α = βY a linear unbiased207

estimator for αTµ if it holds208

αTµ = E[µ̂α] = βE[Y ] = βHµ209

for every µ. We now show that µ̂Bα is the BLUE for αTµ.210

Theorem 2.6. Let the assumptions of Lemma 2.3 be true and let α ∈ RL. Then µ̂Bα is the211

BLUE for αTµ with variance212

(2.11) Var(αT µ̂B) = αTΨ−1α.213

Proof. The proof follows [12, Appendix A] where the result is referred to as Gauss–Markov214

Theorem. Clearly the estimator µ̂Bα is unbiased and linear. Let µ̂α be another linear unbiased215

estimator such that for a suitable vector β it holds216

µ̂α = µ̂Bα + βTY, (Linearity),(2.12)217

0 = αTµ− E[µ̂α] = βTHµ, (Unbiasedness).218219

Since the unbiasedness is assumed for every µ, we conclude βTH = 0. Now the variance of220

µ̂α satisfies221

E[(µ̂α − αTµ)2] = E[(αT (µ̂B − µ))2] + E[(βTY )2] + 2E[αT (µ̂B − µ)βTY ].(2.13)222223

The last term on the right-hand side in (2.13) satisfies224

αTE[(HT Cov(ε, ε)−1H)−1HT Cov(ε, ε)−1Y − µ)βTY ]225

= αTE[(HT Cov(ε, ε)−1H)−1HT Cov(ε, ε)−1(Hµ+ ε)− µ)βT (Hµ+ ε)]226

= αTE[(HT Cov(ε, ε)−1H)−1HT Cov(ε, ε)−1εεTβ]227

= αT (HT Cov(ε, ε)−1H)−1HT Cov(ε, ε)−1 Cov(ε, ε)β228

= 0,229230

where we used the fact that βTH = HTβ = 0 and E[εεT ] = Cov(ε, ε). We arrive at231

(2.14) E[(µ̂α − αTµ)2] = Var(µ̂Bα) + E[(βTY )2].232

Thus the choice β = 0 minimizes the variance of µ̂Bα .233

We now show the uniqueness of the BLUE. We rearrange the vector Y in (2.12) such that234

Y = (Zki(ωi))
N
i=1 where the random variables ωi are i.i.d. Moreover, let β = (βi)Ni=1. To235

minimize the variance in (2.14), necessarily E[(βTY )2] = 0. Since E[βTY ] = 0 it follows236

0 = E[(βTY )2] = Var(βTY ) =

N∑
i=1

Var((βi)TZki(ωi)) =

N∑
i=1

(βi)TCkiβi.237

Since all matrices Ck are positive definite by assumption, we obtain β = 0. That the variance238

Var(αT µ̂B) = αTΨ−1α follows straightforwardly.239
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The special case that some models are not evaluated can be analyzed analogously.240

Theorem 2.7 (Partial model estimation). Let the assumptions of Lemma 2.4 be true. Then241

µ̂Bα is the BLUE for αTµ with variance242

Var(µ̂Bα) = αTUΨ−1U,UαU .243

Proof. Lemma 2.4 shows αT µ̂B = αTU µ̂
B
U . We rename models in U such that U =244

{1, . . . , L′}. Theorem 2.6 now shows the result.245

Remark 2.8. We expect that the assumption of positive definite Ck, which we make246

throughout this section and the rest of this paper, can be dropped at the cost of techni-247

cally more involved proofs. We then have to work with a generalized inverse similar to [18,248

Section 3.2], where this was done in the context of ordinary least squares. We refrain from249

doing so to clearly convey the main ideas of our method.250

3. Sample allocation. The estimators µ̂B and µ̂Bα in Section 2 have the smallest variance251

possible regardless of the sample allocation among the model outputs Z1, . . . , ZL. Of course,252

using more samples will in general further decrease the variance of µ̂B and µ̂Bα . However, in253

practice each model output comes with a certain computational cost. Moreover, the cost for254

a model evaluation can vary substantially among the levels. In this section we construct an255

optimal sample allocation. We determine the model groups and the number of samples for256

each group such that the resulting BLUE has the smallest variance and the total cost of the257

estimator does not exceed a given budget.258

3.1. Integer sample allocation problem. We assume throughout this section that each259

evaluation of Z` has a fixed cost w` ∈ R+, ` = 1, . . . , L. The cost for a single evaluation of260

the vector Zk in (2.2) is denoted by261

W k :=
∑
`∈Sk

w`.262

Recall that the estimator µ̂Bα in (2.10) (and also µ̂B in (2.7)) is constructed by formingK = 2L−263

1 groups of models that share mk samples each, k = 1, . . . ,K. Hence our optimization problem264

involves the variables m1, . . . ,mK , which we collect in a vector m := (m1, . . . ,mK)T ∈ NK0 .265

We define the cost functional J as variance of the BLUE using the sample allocation m,266

J(m) := Var(µ̂Bα(m)),267

where the dependence of µ̂Bα on m is made explicit. If µ̂Bα(m) is not well defined according to268

Lemma 2.4, that is, we do not evaluate a model ` but α` 6= 0, we set J(m) := +∞. The goal269

is now to minimize J given a maximal cost p > 0 for the estimator. In addition, we select a270

coupling number κ ∈ N which limits the number of models within a group Sk. The integer271

sample allocation problem is then given as follows:272

(3.1)


minm∈NK

0
J(m)∑K

k=1m
kW k ≤ p,

mk = 0, if |Sk| > κ.

273
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We now summarize the basic properties of this optimization problem.274

Lemma 3.1. Let the matrices Ck be positive definite for every k and assume that we can275

evaluate required models at least once. That is,276 ∑
{`∈{1,...,L} |α` 6=0}

w` ≤ p.277

Then there is at least one sample allocation m satisfying (3.1) with J(m) 6= +∞. Furthermore,278

the set of feasible sample allocations is bounded and J(m) > 0 for all m.279

Proof. Consider the sample allocation m, where mk = 1 if Sk = {` ∈ {1, . . . , L} |α` 6= 0}280

and mk = 0 otherwise. According to Theorem 2.7 this is a well defined BLUE and thus281

J(m) 6= +∞. The cost constraint ensures that the set of feasible sample allocations is bounded.282

Let U denote the set of used models in (2.8). Since ΨU,U is positive definite and αU 6= 0,283

Theorem 2.7 tells us that284

J(m) = Var(µ̂Bα(m)) = αTUΨ−1U,UαU > 0.285

Now let m∗ be a minimizer of (3.1). We define a sample allocation optimal BLUE with286

coupling number κ, denoted by the superscript (SAOB, κ), as follows,287

(3.2) µ̂SAOB,κ
α := µ̂Bα(m∗).288

If no coupling restriction applies, i.e., κ = +∞, we drop the superscript κ and simply denote289

the estimator by SAOB. We now show that SAOB is variance minimal under all linear290

unbiased estimators with costs not exceeding the budget p.291

Theorem 3.2. Let the matrices Ck be positive definite for every k and let µ̂α be a linear292

unbiased estimator for αTµ using only samples from models 1, . . . , L with total cost bounded293

by p. Then, it holds294

Var(µ̂α) ≥ Var(µ̂SAOB
α ).295

Proof. Let us denote the sample allocation of µ̂α with m(µ̂α). W.l.o.g. we assume that296

Var(µ̂α) 6= +∞, otherwise there is nothing to show. This together with the unbiasedness and297

Theorem 2.7 gives Var(µ̂α) ≥ Var(µ̂Bα(m(µ̂α))) = J(m(µ̂α)). Finally, observe that J(m(µ̂α)) ≥298

J(m∗) = Var(µ̂SAOB
α ), since both m(µ̂α) and m∗ are feasible sample allocations in (3.1). This299

concludes the proof.300

3.2. Optimality conditions for the relaxed problem. Throughout the rest of this section301

we relax the integer constraint m ∈ NK0 and work with m ∈ RK≥0. Since we wish to minimize302

the variance of µ̂Bα , combining (2.6) and (2.11) gives the cost functional303

(3.3) Jδ(m) := αT

(
K∑
k=1

mkP k(Ck)−1Rk + δI

)−1
α,304

This manuscript is for review purposes only.



10 DANIEL SCHADEN AND ELISABETH ULLMANN

where δ > 0 is fixed. For δ = 0, if the BLUE is well defined, we have305

(3.4) J0(m) = Var(µ̂Bα(m)).306

307

Remark 3.3 (Choice of δ). Adding the matrix δI in (3.3) ensures that the matrix inversion308

is well defined. Note that the matrix Ψ in (2.6) is positive-definite, if all models Z1, . . . , ZL309

are used in the multilevel estimator, i.e., U = {1, . . . , L} in (2.8) (see Lemma 2.3). In this310

case, we can work with δ = 0. Otherwise, if U 6= {1, . . . , L}, we work with δ > 0.311

In summary, the relaxed sample allocation problem reads312

(3.5)


minm∈RK

≥0
Jδ(m)∑K

k=1m
kW k = p,

mk = 0, if |Sk| > κ.

313

Here the cost constraint is now an equality constraint, and any optimizer of this problem will314

satisfy this constraint with equality.315

Next we derive some basic properties of the cost functional Jδ in (3.4). To this end we316

introduce the following notation. Let CQ,Q ∈ R|Q|×|Q| denote the principal submatrix of the317

model covariance matrix C with row and column indices in the set Q. Moreover, let βQ ∈ R|Q|318

denote the subvector of β ∈ RL with row indices in the set Q.319

Lemma 3.4 (Properties of Jδ).320

(i) For any δ, λ > 0 we have Jδ(λm) = Jδ/λ(m)/λ. This property also holds for δ = 0 if321

J0 is well defined.322

(ii) Using more samples does not increase the variance, that is, Jδ is monotonically de-323

creasing in each component of m for any δ ≥ 0.324

(iii) More coupling among the model outputs does not increase the variance, that is, if325

Sk ⊆ Sj then326

Jδ(m+ λek) ≥ Jδ(m+ λej), for all λ ≥ 0, δ ≥ 0.327

Proof. Property (i) follows from the definition of Jδ in (3.3). Property (ii) and (iii)328

for integer values follows from the fact that using more observations in the linear regression329

problem (2.5) does not increase the variance of the BLUE. Formally, we have for independent330

events ωi and suitable indices ki ∈ {1, . . . ,K},331

Jδ(m) =

N∑
i=1

Var((βi)TZki(ωi)) =

N∑
i=1

(βi)TCkiβi,332

where the vectors βi are always chosen to minimize Jδ(m), and to satisfy a bias constraint.333

Adding another sample ωi increases the number of degrees of freedom in this minimization334

problem by one. This in turn cannot increase Jδ, and thus (ii) is shown. We extend this result335

to non-integer samples by observing that we can replace one sample of Zk by four independent336
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samples of the modified model 2Zk, since this does not change the variance. Thus, every337

fractional increase ξ of mk can be viewed as one independent additional observation of the338

model ξ−1/2Zk, which does not increase Jδ. Similarly, for (iii) with Q := Sj \ Sk we have339

(βi)TCjβi = (βiSk)TCkβiSk + 2(βiSk)TCSk,Qβ
i
Q + (βiQ)TCQ,Qβ

i
Q.340

That is, the components of βiQ are additional degrees of freedom.341

In addition, it is straightforward to verify the following: If there exists a model Z` that is342

not used, i.e., ` 6∈ U , and if α` 6= 0, it holds343

lim
δ→0+

Jδ(m) = +∞.344

This tells us that α` 6= 0 implies ` ∈ U for sufficiently small δ for the optimal solution. Unless345

noted otherwise, all results in this section are stated for δ > 0. We now show that (3.5) is a346

well posed convex minimization problem.347

Theorem 3.5. Let the matrices Ck be positive definite for every k. Then the cost functional348

Jδ in (3.3) is convex on the feasible set defined by the constraints in (3.5). Furthermore, the349

MC estimator with350

mk =

{
p/W k, for k with Sk = {` ∈ {1, . . . , L} : α` 6= 0},
0, otherwise.

351

is feasible and (3.5) has at least one minimizer m∗.352

Proof. The MC estimator satisfies the constraints in (3.5) and thus the feasible set is non-353

empty. To show the convexity, let m1 and m2 be two feasible allocations, and let λ ∈ [0, 1].354

Then the convex combination mλ := (1− λ)m1 + λm2 is again a feasible allocation.355

Next we investigate the convexity of Jδ. Recall that for positive definite matrices X,Y356

the matrix Z(λ) = (1 − λ)X + λY is positive definite. In addition, it is easy to see that the357

function358

ϕ(λ) = αTZ(λ)−1α359

is a convex function in λ for any vector α of suitable length. Now, using the definition of Ψ360

in (2.6), it is easy to verify that it holds Ψ(mλ) = (1− λ)Ψ(m1) + λΨ(m2). Hence361

Jδ(mλ) = αT (Ψ(mλ) + δI)−1α = αT ((1− λ)(Ψ(m1) + δI) + λ(Ψ(m2) + δI))−1α

= αTZ(λ)−1α = ϕ(λ)
362

where X = Ψ(m1)+δI and Y = Ψ(m2)+δI are positive definite matrices. Hence Jδ is convex.363

Finally, the constraint364

K∑
k=1

mkW k = p365

ensures that mk ≤ c for all k = 1, . . . ,K for some constant c. This shows the existence of a366

minimizer m∗.367
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Note that the function Jδ is in general not strictly convex, since the mapping Ψ = Ψ(m) is not368

necessarily injective. Importantly, Theorem 3.5 allows us to write down the KKT conditions369

for the optimization problem (3.5), since the constraints are linear (see [5, Section 5.5.3]). To370

this end, we introduce the Lagrange multipliers ξk, k = 1, . . . ,K, and ξcost. The optimality371

conditions read372

(3.6)

αT (Ψ(m) + δI)−1P k(Ck)−1Rk(Ψ(m) + δI)−1α = ξcostW k − ξk, k = 1, . . . ,K,

K∑
k=1

mkW k = p,

mk ≥ 0, ξk ≥ 0, ξkmk = 0, k = 1, . . . ,K,

mk = 0, if |Sk| > κ.

373

3.3. Number of model groups. Observe that the number of unknowns in the optimization374

problem (3.5) is equal to 2L−1 if κ = +∞. Otherwise, it is of the orderO(Lκ), i.e., exponential375

in the number of models L in any case. We now show that we can restrict the evaluation to376

at most L different groups. Formally, we define the set of active model groups377

(3.7) A>0(m) := {k ∈ {1, . . . ,K} |mk > 0}.378

We can always find a suitable allocation m with |A>0(m)| ≤ L.379

Theorem 3.6. Let the matrices Ck be positive definite for every k and let m be a feasible380

allocation of (3.5). Then there exists a feasible allocation m′ with |A>0(m
′)| ≤ L satisfying381

Jδ(m
′) ≤ Jδ(m).382

In particular, there exists a minimizer m∗ of (3.5) with |A>0(m∗)| ≤ L.383

Proof. Let m be a feasible allocation such that w.l.o.g. m1, . . . ,mL+1 > 0. The basic idea384

of the proof is to find a direction t along which Jδ remains constant and the cost does not385

increase. We then show that the allocation m+ st evaluates at least one less model group if386

s is chosen suitably.387

Since m1, . . . ,mL+1 > 0, by a dimension counting argument, there exists a direction t 6= 0,388

such that with x = (Ψ(m) + δI)−1α it holds389

(3.8)

L+1∑
`=1

t`P `(C`)−1R`x =

L+1∑
`=1

t`x` = 0,390

where we defined x` := P `(C`)−1R`x. This is possible since x` ∈ RL and we define tk := 0 if391

k > L+ 1. W.l.o.g. we assume that the cost along t does not increase392

(3.9)

L+1∑
`=1

t`W ` ≤ 0.393

Otherwise we change the direction of t by working with −t. Since W ` > 0 we conclude that394

there exists an index ` ∈ {1, . . . , L+ 1} with t` < 0. Thus smax is well defined, that is,395

(3.10) smax := max{s ≥ 0 |mk + stk ≥ 0, for all k ∈ {1, . . . ,K}} < +∞.396
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Sincem1, . . . ,mL+1 > 0 by assumption, we obtain smax > 0. Furthermore, the vectorm+smaxt397

has at least one index ` ∈ {1, . . . , L+ 1} with m`+ smaxt
` = 0, since s is maximized by (3.10).398

Together with tk = 0 for k > L+ 1 we obtain399

(3.11) |A>0(m+ smaxt)| ≤ |A>0(m)| − 1.400

We use (3.8) and tk = 0 for k > L+ 1 to conclude that401

α = (Ψ(m) + δI)x =
K∑
k=1

mkP k(Ck)−1Rkx+ δx402

=

K∑
k=1

(mk + smaxt
k)P k(Ck)−1Rkx+ δx = (Ψ(m+ smaxt) + δI)x.403

404

Hence the functional Jδ is constant along the direction t, meaning that405

(3.12) Jδ(m) = αT (Ψ(m) + δI)−1α = αTx = αT (Ψ(m+ smaxt) + δI)−1α = Jδ(m+ smaxt).406

Here it is crucial to remark that m+ smaxt ≥ 0 and thus Ψ(m+ smaxt) + δI is invertible. We407

collect our findings in (3.12), (3.11) and (3.9):408

Jδ(m+ smaxt) = Jδ(m),409

|A>0(m+ smaxt)| ≤ |A>0(m)| − 1,410

K∑
k=1

(mk + smaxt
k)W k ≤

K∑
k=1

mkW k = p.411

412

Note that the cost constraint in the last line above can be achieved with equality if we rescale413

m+ smaxt to a larger value potentially decreasing the variance by Lemma 3.4 (ii).414

In summary, starting from a feasible sample allocation m, we found a new feasible alloca-415

tion m+ smaxt that uses one model group less and does not increase Jδ. We can now repeat416

the process outlined in this proof with the sample allocation m + smaxt until we obtain a417

feasible sample allocation m̃ where the initial assumptions fails, that is m̃k > 0 for at most L418

different values of k.419

4. Lower bound for the variance. In this section we derive a lower bound on the variance420

of µ̂Bα in (2.10). To avoid the trivial lower bound equal to zero, we consider a specific sample421

allocation for all estimators in this section. We define the sets of models Q,Q∞ ⊆ {1, . . . , L}422

such that Q ∪ Q∞ = {1, . . . , L} and Q 6⊆ Q∞. Moreover, let N,M ∈ N. We consider the423

sample allocation424

(4.1) mk(Q,Q∞, N) :=


N, if Sk ⊆ Q∞,
M, if Sk = Q,

0, otherwise,

for all k = 1, . . . ,K.425
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In (4.1) we distinguish models with indices in Q which are evaluated M -times, and models426

with indices in Q∞ which are evaluated N -times. Our goal is to study the variance of µ̂Bα in427

the limit N → +∞, denoted by428

(4.2) γ(α,Q,Q∞) := lim
N→+∞

Var(µ̂Bα(m(Q,Q∞, N))).429

Note that this models a situation which is often encountered in practice. Models with indices430

in Q \Q∞ are high fidelity, yet expensive, allowing only a fixed number M of evaluations. On431

the other hand, models with indices in Q∞ are cheap to evaluate, and in the limit N → +∞432

we assume that infinitely many evaluations are possible. If Q ⊆ Q∞ then Q∪Q∞ = {1, . . . , L}433

shows the trivial bound of zero variance, hence the restriction Q 6⊆ Q∞ is assumed. This setup434

follows the analysis of Gorodetsky et al. [10]. Note that since U = Q ∪ Q∞ = {1, . . . , L} by435

assumption we can work with δ = 0 in the estimator variance (3.3). The key observation in436

our analysis is the fact that the limit in (4.2) can be formulated in terms of a minimization437

problem.438

Lemma 4.1 (Limit of Var(µ̂Bα)). Let the matrices Ck be positive definite for every k. Then439

there holds440

(4.3) γ(α,Q,Q∞) =
1

M
min

α ∈ RL,
α` = α`, ` 6∈ Q∞.

αTQCQ,QαQ.441

Proof. We write down the estimator µ̂Bα = αTΨ−1y using the events (ωi)
M
i=1 as follows,442

(4.4) µ̂Bα(m(Q,Q∞, N)) =
∑
`∈Q

β`
1

M

M∑
i=1

Z`(ωi) + r(N),443

where r is a remainder term depending only on models in Q∞ and β ∈ RL is a suitably chosen444

vector. Because µ̂Bα is unbiased and since r contains only models in Q∞ we conclude that445

β` = α` for all ` 6∈ Q∞. Note that the remainder r in (4.4) is statistically independent of the446

first term. Hence447

(4.5)

Var(µ̂Bα(m(Q,Q∞, N))) = Var

∑
`∈Q

β`
1

M

M∑
i=1

Z`(ωi)

+ Var(r(N))

≥ min
α ∈ RL,

α` = α`, ` 6∈ Q∞.

Var

∑
`∈Q

α`
1

M

M∑
i=1

Z`(ωi)

 ,

448

where we dropped the positive variance and minimize over some β`. This shows the lower449

bound for γ(α,Q,Q∞). To show the upper bound, let ω1
i , ω

2
i , i = 1, . . . , N/2, denote events450

occurring in the remainder r that are statistically independent of (ωi)
M
i=1, and that are also451

mutually statistically independent. Consider the following estimator:452

µ̂α :=
∑
`∈Q

α`
1

M

M∑
i=1

Z`(ωi) +
∑

`∈Q∩Q∞

(α` − α`)
2

N

N/2∑
i=1

Z`(ω
1
i ) +

∑
`∈Qc

α`
2

N

N/2∑
i=1

Z`(ω
2
i ),453

454

This manuscript is for review purposes only.



ON MULTILEVEL BEST LINEAR UNBIASED ESTIMATORS 15

where α` = α` for ` 6∈ Q∞. Note that µ̂α is a linear and unbiased estimator for αTµ. Indeed,455

by construction it holds456

E[µ̂α] =
∑
`∈Q

α`µ` +
∑

`∈Q∩Q∞

(α` − α`)µ` +
∑
`∈Qc

α`µ`,457

and by considering the cases Q∩Q∞ = ∅ and Q∩Q∞ 6= ∅ it follows E[µ̂α] = αTµ in any case.458

Now, since µ̂Bα is the BLUE using more samples, from Lemma 3.4 (ii) it follows459

Var(µ̂Bα(m(Q,Q∞, N))) ≤ Var(µ̂α) =
1

M
αTQCQ,QαQ

+
2

N
(α− α)TQ∩Q∞CQ∩Q∞,Q∩Q∞(α− α)Q∩Q∞ +

2

N
αTQcCQc,QcαQc .

460

W.l.o.g. we may assume ‖α‖ < c for sufficiently large c. Thus Var(µ̂α) converges uniformly461

for N → +∞ w.r.t. α. This allows us to exchange the minimum and limit operator, arriving462

at463

lim
N→+∞

min
α ∈ RL,

α` = α`, ` 6∈ Q∞.

Var(µ̂α) = min
α ∈ RL,

α` = α`, ` 6∈ Q∞.

lim
N→+∞

Var(µ̂α).464

This shows the upper bound for γ(α,Q,Q∞) and concludes the proof.465

Remark 4.2 (Schur complement). γ(α,Q,Q∞) solves the quadratic minimization problem466

in (4.3) under equality constraints. Hence it can equivalently be written in terms of a Schur467

complement of C. Indeed, with V := Q \Q∞, and W := Q ∩Q∞ it holds468

(4.6) γ(α,Q,Q∞) = αTV (CV,V − CV,WC−1W,WCW,V )αTV /M.469

This is in fact the same expression obtained by Gorodetsky et al. [10, Proposition 2.2] for470

α = eL, Q∞ = {1, . . . , L− 1}, Q = {1, . . . , L}, M = 1 and Var(ZL) = 1.471

We now derive a lower bound on the variance of a general linear unbiased estimator µ̂α for472

αTµ under some conditions on the sample allocation m(µ̂α). In particular, the bound holds473

for the BLUE µ̂Bα with a suitable sample allocation.474

Theorem 4.3 (Bound for Var(µ̂α)). Let the matrices Ck be positive definite for every k475

and let µ̂α be a linear unbiased estimator for αTµ with the sample allocation m(µ̂α) such that476

(4.7) mk(µ̂α) > 0 implies Sk ⊆ Q or Sk ⊆ Q∞.477

Then, letting M :=
∑

Sk⊆Qm
k(µ̂α), the estimator µ̂α satisfies478

Var(µ̂α) ≥ γ(α,Q,Q∞).479

Proof. It is sufficient to argue that for N large enough it holds480

(4.8) Var(µ̂α) ≥ Var(µ̂Bα(m(µ̂α))) ≥ Var(µ̂Bα(m(Q,Q∞, N))).481
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The first inequality in (4.8) follows independently of N since µ̂Bα(m(µ̂α)) is a BLUE with482

minimal variance and identical sample allocation. Now, we use Assumption (4.7) which tells483

us that all indices of non-trivial model groups in the estimator µ̂α are completely contained in484

either Q or Q∞. First, we replace all samples in m(µ̂α) of the form Sk ⊆ Q with M samples485

of the form SkQ = Q. By Lemma 3.4 (iii) this does not increase the variance of the BLUE.486

Finally, we replace the remaining samples with Sk ⊆ Q∞ by N samples, where487

N :=
∑

Sk⊆Q∞

mk(µ̂α).488

This yields the sample allocation m(Q,Q∞, N). Again, Lemma 3.4 (ii) tells us that the489

variance of the BLUE does not increase. Hence, Var(µ̂α) ≥ Var(µ̂Bα(m(Q,Q∞, N))) →490

γ(α,Q,Q∞) in the limit N → +∞.491

Now we formulate a corollary of Theorem 4.3 for the case α = eL and L ∈ Q, that is, ZL is a492

high fidelity model. In addition, we assume Q∞ = {1, . . . , L− 1}.493

Corollary 4.4 (Bound for Var(µ̂L)). Let the matrices Ck be positive definite for every k,494

let α = eL, Q∞ = {1, . . . , L− 1}, and Q ⊆ {1, . . . , L}. Let µ̂L be a linear unbiased such that495

the assumptions of Theorem 4.3 are satisfied. Then it holds496

(4.9) Var(µ̂L) ≥ γ(eL, Q,Q∞) ≥ γ(eL, {1, . . . , L}, Q∞) =: γmin.497

Proof. The first inequality in (4.9) was proved in Theorem 4.3. The second inequality in498

(4.9) follows from Lemma 3.4 (iii) before proceeding to the limit N → +∞, since499

J(m(Q,Q∞, N)) ≥ J(m({1, . . . , L}, Q∞, N)).500

Remark 4.5. The restriction Q ∪ Q∞ = {1, . . . , L} can be removed if α` = 0 for all501

` 6∈ Q ∪Q∞. In this case however, to derive lower bounds for the variance, the estimator µ̂α502

cannot use models ` 6∈ Q ∪ Q∞. If this condition is satisfied, we exclude unused models and503

follow the same steps as in the proofs of Lemma 4.1, Theorem 4.3 and Corollary 4.4.504

5. Comparison to other linear unbiased estimators. In this section we discuss other505

estimators in the literature, focusing on linear and unbiased estimators. We will see that506

alternative multilevel estimators are in general not BLUEs. However, they can be cast into507

our framework in Subsection 2.1, where we form groups of model outputs Z1, . . . , ZL sharing508

the exact same random inputs.509

First, we observe that the Monte Carlo (MC) estimator for the expectation µL of the510

model output ZL is a BLUE. The MC estimator only evaluates the model group S1 = {L}511

using m1 input samples. Thus, using (2.6), we obtain512

ΨL,L = m1(σ2L)−1, yL = (σ2L)−1
m1∑
i=1

ZL(ω1
i ),513

where we exclude the trivial case of ZL having zero variance. Now we apply Lemma 2.4 to514
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arrive at the familiar form515

µ̂MC
L := µ̂BL = Ψ−1L,LyL =

1

m1

m1∑
i=1

ZL(ω1
i ).516

Since this estimator is a BLUE not using coarse models, the variance bound γ(eL, Q,Q∞) in517

is achieved with equality and Lemma 4.1 shows that518

Var(µ̂MC
L ) = γ(eL, {L}, {1, . . . , L− 1}) = Var(ZL)/M.519

5.1. Multilevel Monte Carlo. Next, we consider the Multilevel Monte Carlo (MLMC)520

estimator in the works of Giles [7, 8]. For µL, the MLMC estimator is defined as521

(5.1) µ̂MLMC
L :=

L∑
`=1

ÊMC(Z` − Z`−1) =
L∑
`=1

1

n`

n`∑
i=1

(Z`(ω
`
i )− Z`−1(ω`i )),522

where Z0 := 0. Here the differences are estimated with independent MC estimators each using523

n` samples. This is clearly a linear and unbiased estimator for µL for arbitrary values of µ.524

Remark 5.1 (Sample allocation of MLMC). The MLMC estimator µ̂MLMC
L in (5.1) fits into525

our framework by defining the model groups S1 = {1}, S2 = {1, 2}, . . . , SL = {L− 1, L} with526

m1 = n1 evaluations of Z1, m
2 = n2 evaluations of Z1 and Z2 sharing n2 input samples, etc.,527

up to mL = nL evaluations of ZL−1 and ZL sharing nL input samples.528

Now we derive two lower bounds on the variance of the MLMC estimator in (5.1). The529

smaller bound can be obtained by combining [10, Lemma 2.3] and [10, Theorem 2.4], however,530

we will see in our numerical experiments that this lower bound is not sharp in general.531

Corollary 5.2. The variance of µ̂MLMC
L is bounded from below by532

(5.2) Var(µ̂MLMC
L ) ≥

(
σ2L + σ2L−1 − 2cL,L−1

)
/nL ≥ σ2L

(
1− ρ2L,L−1

)
/nL.533

Proof. To obtain the expression after the first inequality sign in (5.2) we simply drop the534

variance terms associated with some low fidelity models,535

Var(µ̂MLMC
L ) =

L∑
`=1

Var(Z` − Z`−1)/n` ≥ Var(ZL − ZL−1)/nL = (σ2L + σ2L−1 − 2cL,L−1)/n
L.536

To obtain the second bound in (5.2) we consider the estimator

µ̂ :=
1

nL

nL∑
i=1

(ZL(ωi)− ZL−1(ωi))

for µ := E[ZL −ZL−1]. Now, using Theorem 4.3 and (4.6) with α = (−1, 1)T , Q = {L− 1, L}537

and Q∞ = {L− 1} we arrive at538

Var(ZL − ZL−1)/nL = Var(µ̂) ≥ γ(α,Q,Q∞) = (σ2L − cL,L−1σ−2L−1cL,L−1)/n
L

= σ2L(1− ρ2L,L−1)/nL.
539

The MLMC estimator is in general not a BLUE, since it does not depend on the entries of540

the model covariance matrix C.541
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5.2. Control Variates. Multiple control variate (CV) estimators (see e.g. [9]) for µL which542

use the coarse models Z1, . . . , ZL−1 have the form543

(5.3) µ̂CV
L :=

1

M

M∑
i=1

ZL(ωi) +
L−1∑
`=1

β`

(
1

M

M∑
i=1

Z`(ωi)− µ`

)
,544

where we assume that the expected values µ1, . . . , µL−1 are known. The estimator µ̂CV
L is545

clearly unbiased for every choice of the coefficients (β`)
L−1
`=1 . In addition, the coefficients are546

chosen to minimize the variance of µ̂CV
L . Note that this does not necessarily imply that the547

CV estimator is a BLUE since we already prescribe a specific linear combination of models548

by the form in (5.3). However, we have the following result.549

Corollary 5.3. The multiple control variate estimator µ̂CV
L is a BLUE. Moreover,550

(5.4) Var(µ̂CV
L ) = γmin.551

Proof. Introduce α ∈ RL. Then, the optimization problem for the coefficients reads552

min
β∈RL−1

Var
(
µ̂CV
L

)
= min
α ∈ RL,
αL = 1

Var

(
αL

1

M

M∑
i=1

ZL(ωi) +
L−1∑
`=1

α`

(
1

M

M∑
i=1

Z`(ωi)− µ`

))
.553

The minimium is equal to γmin = γ(eL, {1, . . . , L}, Q∞) in (4.3) with Q∞ = {1, . . . , L − 1}.554

We now show that the CV estimator is a BLUE. Observe that any linear unbiased estimator555

µ̂L, that is allowed to use the values µ1, . . . , µL−1 similiarly to the CV estimator, satisfies556

(5.5) µ̂L =
M∑
i=1

(βi)TZkQ(ωi) +
L−1∑
`=1

b`µ`,557

where the βi and b` satisfy a bias constraint such that for ` ∈ {1, . . . , L} it holds558

(5.6)
N∑
i=1

βij(`) + b` = α`, βij(`) := eT` (P kiβi).559

Here the subscript j(`) selects the component of βi that is multiplied by Z`(ωi) in the scalar560

product (βi)TZkQ(ωi), and βij(`) = 0 if ` 6∈ Q. Notice that the variance of the second summand561

in (5.5) is equal to zero. This allows us to choose the b` such that the bias constraints (5.6)562

for ` ∈ {1, . . . , L− 1} are always satisfied. Hence563

Var(µ̂L) ≥ min
αi ∈ R|Q|,∑M
i=1 α

i
j(L) = 1

Var

(
M∑
i=1

(αi)TZkQ(ωi)

)
= min

αi ∈ RL,∑M
i=1 α

i
L = 1

M∑
i=1

(αiQ)TCQ,Qα
i
Q.564
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This is the same bound as in (4.3) for Q∞ = {1, . . . , L − 1} except that we have potentially565

individual weights in front of every sample. This does not decrease the variance allowing us566

to use equal weights αi = α/M which is exactly the expression in (4.3). Therefore it holds567

Var(µ̂L) ≥ 1

M
min

α ∈ RL,
αL = 1

αTQCQ,QαQ = γ(eL, Q,Q∞) = γmin = Var(µ̂CV
L ).568

We conclude that every linear unbiased estimator µ̂L satisfies Var(µ̂L) ≥ Var(µ̂CV
L ) showing569

that the CV estimator is a BLUE.570

Remark 5.4 (Sample allocation of CV estimator). The CV estimator in (5.3) has a sample571

allocation with a single model group S1 = {1, . . . , L} and m1 = M correlated evaluations of572

Z1, . . . , ZL, respectively.573

5.3. Multifidelity Monte Carlo. Peherstorfer et al. [15, 16] introduce the Multifidelity574

Monte Carlo (MFMC) estimator based on multiple control variates as follows,575

(5.7) µ̂MFMC
L :=

1

nL

nL∑
i=1

ZL(ωi) +

L−1∑
`=1

β`

 1

n`

n`∑
i=1

Z`(ωi)−
1

n`+1

n`+1∑
i=1

Z`(ωi)

 .576

The coefficients β` in (5.7) are chosen such that the variance of µ̂MFMC
L is minimized. Moreover,577

we assume that the number of samples satisfies n1 > · · · > nL. The MFMC estimator is linear578

and unbiased for µL.579

Remark 5.5 (Sample allocation of MFMC). The MFMC estimator µ̂MFMC
L in (5.7) fits580

into our framework by the model groups S1 = {1}, S2 = {1, 2}, . . . , SL = {1, 2, . . . , L} with581

m1 = n1 − n2 evaluations of Z1, m
2 = n2 − n3 evaluations of Z1 and Z2 sharing m2 input582

samples, etc., up to mL = nL evaluations of Z1, . . . , ZL sharing nL input samples.583

Theorem 5.6. The MFMC estimator µ̂MFMC
L is a BLUE for L = 2.584

Proof. Observe that the BLUE is a linear combination of the vector y in (2.6). For L = 2585

this reads586

µ̂BL = α1
1

n2

n2∑
i=1

Z2(ωi) + α2
1

n2

n2∑
i=1

Z1(ωi) + α3
1

n2

n1∑
i=n2+1

Z1(ωi)587

= α1
1

n2

n2∑
i=1

Z2(ωi) + (α2 − α3)
1

n2

n2∑
i=1

Z1(ωi) + α3
n1

n2
1

n1

n1∑
i=1

Z1(ωi)588

589

for suitable coefficients α1, α2, α3. Since µ̂BL is unbiased, we obtain590

α1 = 1, α2 − α3 = −α3n
1/n2 =: −β1,591

which is exactly the expression in (5.7) for L = 2. Now since β1 is chosen to minimize the592

variance of the estimator, µ̂MFMC
L is the BLUE.593
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For L > 2 the MFMC estimator is in general not the BLUE. The reason is that

β` = ρL,`σL/σ`

is the optimal choice [15, Theorem 3.4]. However, this does not depend on ρ`,`′ for ` 6= L and594

`′ 6= L. In contrast, the BLUE depends on ρ`,`′ ; allowing us to also use these correlations for595

an increased variance reduction. This is also reflected in the next statement.596

Corollary 5.7 ([10, Theorem 2.7]). The variance of µ̂MFMC
L is bounded from below by597

(5.8) Var(µ̂MFMC
L ) ≥ γ(eL, {L− 1, L}, {1, . . . , L− 1}) = σ2L(1− ρ2L,L−1)/nL.598

An intuitive explanation for this result can be obtained by the definition in (5.7). Let us take599

a look at the event ωi with i ≤ n`, where we have evaluated the expression for every model600

1

nL
ZL(ωi) +

L−1∑
`=1

β`

(
1

n`
Z`(ωi)−

1

n`+1
Z`(ωi)

)
.601

Consider ` 6= L. If n` is large and since β` does not depend on n`, the magnitude of the asso-602

ciated model evaluations is reduced and vanishes in the limit n` → +∞. Thus, in the infinite603

data limit the MFMC estimator couples only model evaluations ZL and ZL−1. Corollary 4.4604

with Q = {L− 1, L} then gives the lower bound γ(eL, {L− 1, L}, {1, . . . , L− 1}) in (5.8).605

Alternatively, we can use the result in Corollary 4.4 with Q = {1, . . . , L} as suggested by606

the sample allocation of MFMC (see Remark 5.5). This gives the lower bound607

Var(µ̂MFMC
L ) ≥ γ(eL, {1, . . . , L}, {1, . . . , L− 1}) = γmin.608

Note that by the definition of γ in (4.3) it is possible that609

γ(eL, {L− 1, L}, {1, . . . , L− 1})� γ(eL, {1, . . . , L}, {1, . . . , L− 1}).610

This “gap” is closed by the estimators in the next section.611

5.4. Approximate Control Variates. Gorodetsky et al. [10] introduce a general frame-612

work for the estimation with Approximate Control Variates (ACVs), and consider several613

ACV-type estimators in their work. The Approximate Control Variate Independent Samples614

(ACV-IS) estimator [10, Def. 3.1] is given as follows,615

(5.9) µ̂ACV-IS
L :=

1

nL

nL∑
i=1

ZL(ωLi ) +
L−1∑
`=1

β`

 1

nL

nL∑
i=1

Z`(ω
L
i )− 1

n`

n`∑
i=1

Z`(ω
`
i )

616

with i.i.d. samples ω`i . Again, the weights (β`)
L−1
`=1 are chosen such that the variance of µ̂ACV-IS

L617

is minimal. A closed-form expression for the optimal weights can be found in [10, Theorem618

3.2].619

Remark 5.8 (Sample allocation of ACV-IS). The model groups of the ACV-IS estimator620

are given by S1 = {1}, S2 = {2}, . . . , SL−1 = {L − 1}, and SL = {1, . . . , L} with mk = nk,621

k = 1, . . . , L. Thus, we use independent samples except for SL, which couples every model622

Z1, . . . , ZL−1 with the high fidelity model ZL.623
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Theorem 5.9. The ACV-IS estimator µ̂ACV-IS
L is a BLUE for every L.624

Proof. The proof is similar to the proof of Theorem 5.6. The BLUE with the ACV-IS625

sample allocation satisfies626

µ̂BL =
L∑
`=1

αL`
1

nL

nL∑
i=1

Z`(ω
L
i ) +

L−1∑
`=1

α``
1

n`

n`∑
i=1

Z`(ω
`
i )627

628

for suitable coefficients α1
1, . . . , α

L−1
L−1, α

L
1 , . . . , α

L
L. The unbiasedness requires us to satisfy629

αLL = 1, αL` = −α`` =: β`, for all ` = 1, . . . , L− 1.630

Since the coefficients β` are chosen to minimize the variance of µ̂BL, µ̂ACV-IS
L = µ̂BL follows.631

Gorodetsky et al. also introduce the ACV-MF estimator [10, Def. 3.3], defined by632

(5.10) µ̂ACV-MF
L :=

1

nL

nL∑
i=1

ZL(ωi) +
L−1∑
`=1

β`

 1

nL

nL∑
i=1

Z`(ωi)−
1

n`

n`∑
i=1

Z`(ωi)

 ,633

where the samples ωi for different i are independent, and the coefficients (β`)
L−1
`=1 are chosen634

to minimize the variance of µ̂ACV-MF
L . Following the same idea as in the proof of Theorem 5.6,635

it is easy to see that the estimator µ̂ACV-MF
L is a BLUE for L = 2.636

Proposition 5.10. The ACV-MF estimator µ̂ACV-MF
L is a BLUE for L = 2.637

Gorodetsky et al. further introduce the ACV-KL estimator in [10, Def. 3.7],638

(5.11)

µ̂ACV-KL
L :=

1

nL

nL∑
i=1

ZL(ωi) +
L−1∑
`=LMF

β`

 1

nL

nL∑
i=1

Z`(ωi)−
1

n`

n`∑
i=1

Z`(ωi)


+
LMF−1∑
`=1

β`

 1

nLred

nLred∑
i=1

Z`(ωi)−
1

n`

n`∑
i=1

Z`(ωi)

 ,

639

where again ωi are independent samples. The idea behind the estimator µ̂ACV-KL
L is to use the640

ACV-MF estimator for the levels {LMF , . . . , L} and then reduce the variance of the estimation641

of µ̂Lred using the third summand in (5.11). The sensible choice is thus Lred ∈ {LMF , . . . , L}642

and LMF ∈ {1, . . . , L}. In particular, for Lred = L the ACV-KL estimator is equal to the643

ACV-MF estimator.644

The parameters (β`)
L−1
`=1 ∈ RL−1 and the integer values Lred and LMF in (5.11) are chosen645

such that the variance of µ̂ACV-KL
L is minimal. Observe that by Proposition 5.10 the ACV-MF646

estimator is a BLUE for L = 2. Moreover, for L = 2 the ACV-KL and ACV-MF estimator647

coincide. Hence we have the following result.648

Proposition 5.11. The ACV-KL estimator µ̂ACV-KL
L is a BLUE for L = 2.649

Remark 5.12 (Sample allocation of ACV-MF and ACV-KL). Let us assume n1 > · · · > nL.650

Then it can be shown that the model groups of ACV-MF and ACV-KL are identical to MFMC651
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(see Remark 5.5). Moreover, the numbers of samples mk for each model group Sk coincide652

with those of MFMC as well. The three estimators only differ in the way by which they653

linearly combine the samples to obtain an unbiased estimator.654

Corollary 5.13. The variance of the ACV-IS, ACV-MF and ACV-KL estimator reaches the655

bound γ(eL, Q,Q∞) = γmin for the sample allocation in (4.1) in the limit N → +∞.656

Proof. For ACV-IS and ACV-MF this is proven in [10, Theorem 3.6]. The claim for657

ACV-KL follows from the discussion in [10, Sec. 3.2].658

Finally, we remark that there are multiple choices to define the ACV-KL estimators by659

modifying the dependency structures of the samples (see [10, Sec. 3.2]). We, however, simply660

use [10, Def. 3.7].661

5.5. Fully coupled BLUE. Remark 5.12 motivates us to define a fully coupled (FC) esti-662

mator with the same model groups as MFMC, ACV-MF and ACV-KL. We thus have663

(5.12) S`FC = {1, . . . , `}, ` = 1, . . . , L,664

with m`
FC > 0 if ` ≤ L, and mk

FC = 0 otherwise. Note that the numbers m`
FC are uniquely665

defined once the number of model evaluations n1 > · · · > nL has been fixed. We then define666

the estimator µ̂FCL as BLUE using the matrix Ψ and vector y in (2.6),667

(5.13) µ̂FCL := µ̂BL(mFC) = eTLΨ(mFC)−1y(mFC).668

According to Theorem 2.6, µ̂FCL has an equally large or strictly smaller variance compared to669

the estimators MFMC, ACV-MF and ACV-KL. In particular, neither MFMC, ACV-MF or670

ACV-KL is in general a BLUE for L > 2. We refer to Subsection 6.1 for a numerical illustration671

of this point. For further illustration purposes we also define the FC, k estimator that simply672

starts at level L− k + 1 and thus only uses the model groups S1
FC = {L− k + 1}, . . . , SkFC =673

{L− k+ 1, . . . , L}. The estimator FC, k only couples the k models with the largest index. In674

particular, µ̂FCL = µ̂FC,LL .675

5.6. Summary. We summarize the properties of all estimators discussed in this paper in676

Table 1. For each estimator we minimize the variance given some computational budget p.677

This requires us to solve an optimization problem of the form (3.5) to compute the optimal678

number of samples. The entries in the column “Optimization” state whether solving this679

problem is done analytically or numerically, and the column “DoF” gives the number of degrees680

of freedom in the optimization problem. The column “Solve with C” indicates whether solving681

a linear system with the model covariance matrix (or a matrix derived from it) is required.682

Here SAOB, k and FC, k only require solving a system with a k× k principal submatrix of C.683

Finally, the column “Variance bound” gives the (largest) lower bound on the variance for the684

estimator in the infinite data limit, that is, as the number of samples in Q∞ = {1, . . . , L− 1}685

goes to infinity.686

6. Numerical experiments. In this section we want to numerically verify the main re-687

sults of this paper. To this end we study two simple academic examples in Subsection 6.1–688

Subsection 6.2. A practically more relevant example is presented in Subsection 6.3 where we689

estimate the expectation of a QoI associated with an elliptic PDE with a random diffusion690

coefficient.691
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Estimator BLUE Solve with C Optimization DoF Variance bound

MC yes no analytic 1 γ(eL, {L}, Q∞)
MLMC (5.1) L = 1 no analytic L Var(ZL − ZL−1)/nL
MFMC (5.7) L ≤ 2 no analytic L γ(eL, {L− 1, L}, Q∞)
ACV-IS (5.9) yes yes numeric L γmin

ACV-MF (5.10) L ≤ 2 yes numeric L γmin

ACV-KL (5.11) L ≤ 2 yes numeric L+ 2 γmin

FC, k (5.13) yes yes, k × k numeric k γ(eL, {L− k + 1, . . . , L}, Q∞)
SAOB, k (3.2) yes yes, k × k numeric O(Lk) γ(eL, {L− k + 1, . . . , L}, Q∞)
SAOB (3.2) yes yes numeric 2L − 1 γmin

Table 1: Overview of linear unbiased estimators and their properties.

6.1. Monomial example. This example is taken from [10, Sec. 2.5]. The model outputs692

are defined as693

Z`(ω) = ω`, ` = 1, . . . , L,694

for L = 5, where ω ∼ U(0, 1). We fix the total number of evaluations for Z1, . . . , ZL as695

n` = 2N2L−` for ` = 1, . . . , L − 1 and nL = 1. Hence the total cost for each estimator is the696

same. We vary N to simulate the limit process limN→+∞Var(µ̂L). Note that we estimated697

the required covariance matrix using 105 independent pilot samples. Let us now introduce698

some abbreviations for the variance bounds,699

γ` := γ(eL, {L− `+ 1, . . . , L}, {1, . . . , L− 1}), ` = 1, . . . , L,700

where γmin = γL. The estimator variances together with the bounds are shown in Figure 1.701

We see that MLMC does not reach γ2, whereas MFMC does reach γ2, however, no further702

improvements are made as recorded in Table 1. Hence the bound γ2 for the variance of MLMC703

is in general not sharp. This has been already observed in [10, Sec. 2.5]. Our experiments704

reveal that the variance of MLMC satisfies the sharper bound705

Var(µ̂MLMC
L ) ≥

(
σ2L + σ2L−1 − 2cL,L−1

)
/nL706

as proved in Corollary 5.2. We further observe that the novel BLUE estimators FC, k reach707

the respective bound γk and do not improve any further. Finally, the ACV estimators all708

reach the bound γmin = γ5, albeit at a smaller pace than the BLUE FC, 5. The variance of709

all estimators is bounded by γmin as predicted by Theorem 4.3. Since MFMC, ACV-MF and710

ACV-KL use the exact same sample allocation as FC, 5, we conclude that in general none of711

them are BLUEs.712

6.2. Noisy monomial example. The following example is a modification of the example713

in Subsection 6.1. We define the quantity of interest as before as ZL(ω) := ω5, L = 6, together714

with the models715

Z`(ω, ξ) := ω`−1 + ξ, ` = 1, . . . , 5,716
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Figure 1: Monomial example: Estimator variances for different numbers of samples N . The
minimally achievable variances γ1 > · · · > γ5 = γmin are drawn horizontally, dashed and
black. The variance of the MC and FC, 1 estimator coincides with γ1, the dashed line at the
top of the image on the right-hand side. The image on the left-hand side is a zoom in for
N = 0, . . . , 10.

Model Z1 Z2 Z3 Z4 Z5 Z6

Z1 1.0000 0.9898 0.9891 0.9902 0.9913 0.0012
Z2 sym 1.0000 0.9993 0.9983 0.9974 0.1182
Z3 sym sym 1.0000 0.9997 0.9991 0.1374
Z4 sym sym sym 1.0000 0.9998 0.1374
Z5 sym sym sym sym 1.0000 0.1319
Z6 sym sym sym sym sym 1.0000

Table 2: Sample correlation coefficients for the models in the noisy monomial example esti-
mated with 105 samples.

where ω ∼ U(0, 1) and ξ ∼ N(0, 2) are independent random variables. Here, the additional717

term ξ acts as noise and results in a small correlation of ZL with Z1, . . . , ZL−1 as recorded718

in Table 2. In fact, Z1 = ξ and ZL are nearly uncorrelated. (The correlation coefficients in719

Table 2 have been estimated using 105 samples.)720

The estimator variances are shown in Figure 2. We observe that the variance of MLMC is721

the largest among all estimators, in fact, it is nearly two orders of magnitude larger than the722

variance of Monte Carlo. The variance of MFMC is of the same order of magnitude as the723

variance of Monte Carlo. The ACV-type estimators have a much smaller variance for larger724

values of N , and approach the minimal variance possible, γmin, as predicted by the theory.725

The FC, 6 estimator approaches γmin as well. However, in the preasymptotic regime for N726

small, the variance of the FC, 6 estimator is up to three orders of magnitude smaller compared727

to the ACV-type estimators.728
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Figure 2: Noisy monomial example: Estimator variances for different numbers of samples N
are shown in the left image. The minimally achievable variances γ1 > · · · > γ6 are drawn
horizontally, dashed and black. The right image shows the estimator variances for N = 10.

In this example, adding the model Z1 to the components of the BLUE reduces the variance729

significantly despite the fact that Z1 and ZL are actually independent. Adding Z1 decreases730

the variance the most, whereas adding Z2, . . . , ZL−1 – which have a larger correlation with731

the high fidelity model ZL – only yields a small decrease of the variance. We further conclude732

that even if every correlation of Z1, . . . , ZL−1 with ZL is small, we still obtain a significant733

variance reduction by using these models in the BLUE.734

We conclude that BLUEs can yield a significant variance reduction if the quantity of735

interest is sufficiently well approximated by a linear combination of models where each model736

may capture a different type of randomness. This may be satisfied even if each model has737

only a small correlation with the high fidelity model.738

6.3. Elliptic PDE with random diffusion coefficient. In this section we apply the SAOB739

to estimate the expected value of740

Z(ω) =
1

|Dobs|

∫
Dobs

y(x, ω)dx,741

where Dobs :=
(
3
4 ,

7
8

)
×
(
7
8 , 1
)
⊆ D := (0, 1)2. Here, y solves an elliptic PDE742

(6.1)
−div(a(x, ω)∇y(x, ω)) = 1, for x ∈ D,

y(x, ω) = 0, for x ∈ ∂D.
743

The random diffusion coefficient a(x, ω) = exp(κ(x, ω)), where κ is a mean zero Gaussian744

random field with Whittle–Matérn covariance function [19] with smoothness parameter ν =745

3/2, variance σ2 = 2 and correlation length ρ = 0.1. We discretize Z by using a uniform746

mesh refinement with standard linear finite elements (FEs) to obtain the models Z1, . . . , ZL747

with L = 6. The data for the discretization is shown in Table 3. Table 4 shows the Pearson748
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Model #Nodes Mesh size w` Var(Z`) Bias(Z`)

Z1 81 0.1768 0.0016s 8.4 · 10−4 7.7 · 10−3

Z2 289 0.0884 0.0021s 2.1 · 10−4 3.5 · 10−3

Z3 1089 0.0442 0.0044s 4.6 · 10−3 8.2 · 10−4

Z4 4225 0.0221 0.0148s 6.0 · 10−3 2.0 · 10−4

Z5 16641 0.0110 0.0564s 6.5 · 10−3 5.6 · 10−5

Z6 66049 0.0055 0.2443s 6.7 · 10−3 1.7 · 10−5

Table 3: PDE example: The column ”#Nodes” lists the number of FE basis function and
”Mesh size” gives the maximum diameter of the triangles in the mesh. w` denotes the expected
time (in seconds) to compute a realization of Z`. The last two columns list the variance and
bias.

Model Z1 Z2 Z3 Z4 Z5 Z6

Z1 1.0000 0.8781 0.7722 0.7229 0.7035 0.6957
Z2 sym 1.0000 0.9719 0.9460 0.9343 0.9294
Z3 sym sym 1.0000 0.9952 0.9907 0.9885
Z4 sym sym sym 1.0000 0.9992 0.9985
Z5 sym sym sym sym 1.0000 0.9999
Z6 sym sym sym sym sym 1.0000

Table 4: PDE example: The Pearson correlation coefficient matrix (ρ`j)
L
`,j=1 estimated with

104 samples.

correlation coefficients between the models. The covariance matrix, correlation coefficients749

and the work per level w` were estimated with 104 samples. Note that we do not include750

this cost in our complexity analysis. We estimated the bias using Monte Carlo with the same751

samples as follows,752

Bias(Z`) := |E[Z`]− E[Z]| ≈ |µ̂MC
` − µ̂MC

L |, for ` = 1, 2, 3, 5.753

We set Bias(Z4) := Bias(Z3)/4, since Z4 seemed to have a smaller bias than Z5. We extrap-754

olated the resulting values to obtain Bias(ZL). We remark that this bias estimation is crude755

and can be improved, however, it is sufficient for our purposes, since we only compare esti-756

mators with the same bias. We want to obtain a Mean Square Error (MSE) of the estimator757

µ̂L of at most ε2, that is,758

E[(µ̂` − E[Z])2] = Bias(Z`)
2 + Var(µ̂`) ≤ ε2,759

such that the cost of µ̂` is minimized. We choose the level ` such that Bias(Z`)
2 ≤ ε2/2 and760

afterwards ensure that761

(6.2) Var(µ̂`) ≤ ε2/2.762
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We achieve this variance constraint with minimal cost by solving a sample allocation problem763

for every estimator, where we allow fractional samples. Formally, for a parameter vector x764

and an estimator µ̂`(x) we solve a problem of the form765

(6.3) min
x

Var(µ̂`(x)) such that Cost(µ̂`(x)) ≤ p.766

Then, we rescale the number of samples to achieve (6.2). For SAOB, k we solve the problem767

(3.5) with δ = 0. For MC x is the number of evaluations of Z`. For MLMC we optimize the768

variance over n1, . . . , n`, and for ACV-KL we optimize over the parameters n1, . . . , n`, LMF769

and Lred. For ACV-KL we follow a brute force approach and optimize over all feasible integer770

values of LMF and Lred. We carry out the corresponding optimization also for ACV-IS and771

ACV-MF. We further remark that we optimize over the first used level, that is, if one of the772

estimators has a smaller variance starting at level 2 instead of level 1, then the first model is773

never evaluated. For MC, MLMC and MFMC there are analytic expressions for the number774

of samples available. For the remaining estimators we employ Matlab’s fmincon function775

which uses an interior point algorithm, where we supply the gradient of the variance of the776

estimator. For SAOB, k we additionally supply the Hessian.777

The computed cost allowing fractional samples is shown in Figure 3. We see that the778

SAOB achieves the target root mean square error (RMSE) with the smallest cost. For the779

smallest RMSE, where we have estimators with Bias(ZL), MLMC is ≈ 52% more expensive780

than SAOB. For MFMC this value is ≈ 71%, for SAOB, 2 it is ≈ 35% and for SAOB, 3781

it is ≈ 3%. The estimator SAOB, 4, which is not plotted, is only ≈ 0.7% more expensive782

than SAOB. We clearly see that increasing the coupling number reduces the variance but the783

overall cost savings decrease.784

We remark that we were not able to solve (6.3) for ACV-MF and ACV-KL for the two785

leftmost datapoints. After 104 iterations in fmincon, the method had not converged yet and786

we used the final (suboptimal) sample allocation. Hence, these two values in Figure 3 for787

ACV-MF and ACV-KL are only upper bounds for the variance. We think that the reason for788

the non-convergence of fmincon is the ill-conditioning of the model covariance matrix C.789

We now focus on the data point with the smallest RMSE in Figure 3. The total number790

of evaluations of Z1, . . . , ZL is shown in Figure 4. We see that the MC estimator uses only791

the high fidelity model, MLMC uses all models, and MFMC starts with model Z3. Similarly,792

SAOB, 2 and SAOB, 3 do not use the coarsest model. A possible explanation for this is the793

fact that the mesh size associated with Z1 is larger compared to the correlation length of the794

diffusion coefficient a. The SAOB uses all models. We conclude that estimators that use fewer795

evaluations of the expensive high fidelity model have smaller costs. Here SAOB has ≈ 270796

high fidelity evaluations whereas SAOB, 3 has ≈ 1150, that is more than four times as many,797

however SAOB, 3 is only ≈ 3% more expensive.798

We now also comment on the model groups and coefficients βk for the SAOB, k estimators799

which are shown in Figure 5. The terms βk denote the coefficients in the linear combination800

of the models in the final estimator. For example, for SAOB with independent events ωki it801
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Figure 3: PDE example: Computed cost to achieve a certain RMSE for different estimators
with fractional samples. The left image shows the absolute cost in seconds and the right image
the relative cost w.r.t. the SAOB estimator.

Figure 4: PDE example: Computed total number of evaluations for every model in logarithmic
scale.

holds802

µ̂SAOB
L =

6∑
k=1

∑
`∈Sk

βk`
1

mk

mk∑
i=1

Z`(ω
k
i ).803

We can see in Figure 5 that for each estimator the row sum along Z`, ` = 1, . . . , L−1, is equal804

to zero, and the row sum along ZL is equal to one. This is consistent with the unbiasedness805

requirement. The optimal sample allocation obtained by solving (3.5) is actually unique for806
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Figure 5: PDE example: Model groups for the SAOB, k estimators in the optimal sample
allocation. Each column represents a model group. A non-empty square in the box means
that the model is an element of the model group. For example, for SAOB we have S4 = {2, 3, 4}
with β42 = 0.95, β43 = −2.66 and β44 = 1.81.

all SAOB, k and results in six or less model groups Sk. In fact, SAOB, 2 uses the same model807

groups as MLMC but starts with model Z2.808

Let us comment on fractional samples, which we used up until now. For the SAOB, k809

estimators we round the number of samples to the next biggest integer. This way, the variance810

target (6.2) is still satisfied, however, with an increased cost. This additional cost was at most811

≈ 0.6 seconds accounting for a relative increase of at most ≈ 0.004%. For this example, the812

small increase in cost is negligible and thus working with fractional instead of integer samples813

for the optimization problem (6.3) is justified. Ceiling the number of samples for the other814

estimators also increases their cost by a negligible margin.815

In other examples, rounding up the number of samples may significantly increase the cost816

of the estimator. Then one has to explicitly deal with the integer constraints. To this end817

one could apply Integer Programming techniques like branch-and-bound, where we branch on818

the number of model evaluations. However, the efficiency of such methods is highly problem819

dependent, and further investigations are out of the scope of this paper.820

We verify our implementation by re-computing all estimators for µ4 where we apply the821

ceiling of the number of samples. We average those estimates over 100 independent runs.822

The sample mean for each estimator is ≈ 0.0157. We further compute the sample variance823

and compare it with the target τ := Bias(Z4)
2/2. The variance for MC was ≈ 0.70τ , MLMC824

≈ 0.99τ , MFMC ≈ 1.12τ , ACV-IS ≈ 0.89τ , ACV-MF ≈ 0.98τ , ACV-KL ≈ 0.80τ , SAOB, 2825

≈ 0.99τ , SAOB, 3 ≈ 0.99τ and finally SAOB ≈ 0.92τ . Here the ACV-MF and ACV-KL826

estimators are actually identical, since for the target RMSE we obtain LMF = Lred = 4. We827

thus conclude that our implementation yields consistent results.828

Finally, we remark that for the smallest RMSE for SAOB we spent ≈ 6 seconds to compute829

the optimal sample allocation, which is a relative cost increase of ≈ 0.04%. In practice, we830

cannot neglect the cost to estimate the covariance matrix C and cost per level w`, which we831
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did not include in our analysis and which has to be done in an offline step. We however expect832

that adaptive methods can be used to address this point.833

7. Conclusions. We introduce and analyze a multilevel best linear unbiased estimator to834

approximate the expected value of a scalar-valued output quantity of interest. We show that835

this estimator is variance minimal independently of the number of model evaluations. We836

prove a sharp lower bound on the variance of any linear unbiased multilevel estimator and837

show that our proposed estimator approaches the exact same lower bound as the ACV-type838

estimators in the infinite low fidelity data limit. Moreover, we suggest an optimal sample839

allocation scheme that constructs the model groups such that a target estimator variance is840

achieved with a given computational budget. We demonstrate in numerical experiments that841

the multilevel BLUE can achieve a significant variance reduction for models that are nearly842

uncorrelated with the high fidelity model and that are polluted by noise. The BLUE handles843

such situations by linearly combining the model evaluations in an optimal way. This is in844

contrast to the multilevel estimators in the literature, such as MLMC and MFMC, where the845

linear combinations are (partially) fixed and cannot fully be adapted to the problem at hand.846

We point out that our analysis is completely independent of the type of models in the847

multifidelity hierarchy. It can be expected that by making specific assumptions on the models,848

in particular, PDE-based outputs, we are able to show convergence rates of the multilevel849

BLUE with respect to e.g. mesh size parameters and analyze its complexity. This is the850

subject of ongoing work. Moreover, it would be desirable to eliminate the need to know the851

model covariance matrix, or at the very least, analyze the errors introduced to the BLUE852

by using an inexact, sample-based covariance matrix. We envision that adaptive approaches,853

possibly by using data assimilation techniques, such as the Kalman filter and ensemble Kalman854

filter, could be useful for this task. The ill-conditioning of the model covariance matrix for855

highly correlated models is also a problem that requires further attention.856
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