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Abstract. This paper is concerned with the derivation and analysis of first-order necessary
optimality conditions for a class of multiobjective optimal control problems governed by an elliptic
non-smooth semilinear partial differential equation. Using an adjoint calculus for the inverse of the
non-linear and non-differentiable directional derivative of the solution map of the considered PDE,
we extend the concept of strong stationarity to the multiobjective setting and demonstrate that the
properties of weak and proper Pareto stationarity can also be characterized by suitable multiplier
systems that involve both primal and dual quantities. The established optimality conditions imply in
particular that Pareto stationary points possess additional regularity properties and that mollification
approaches are - in a certain sense - exact for the studied problem class. We further show that the
obtained results are closely related to rather peculiar hidden regularization effects that only reveal
themselves when the control is eliminated and the problem is reduced to the state. This observation is
also new for the case of a single objective function. The paper concludes with numerical experiments
that illustrate that the derived optimality systems are amenable to numerical solution procedures.
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1. Introduction. The aim of this paper is to study first-order necessary opti-
mality conditions for multiobjective optimal control problems of the form

(P)


Minimize


J1(y, u) := j1(y) +

ν1

2
‖u‖2L2

...

JN (y, u) := jN (y) +
νN
2
‖u‖2L2


w.r.t. u ∈ L2(Ω), y ∈ H1

0 (Ω) ∩H2(Ω),

s.t. −∆y + max(0, y) = u a.e. in Ω.

Here, Ω ⊂ Rd, d ≥ 1, is a bounded domain with a sufficiently regular boundary, νn,
n = 1, ..., N , are non-negative Tikhonov parameters with νN > 0, and jn, n = 1, ..., N ,
are given objective functions with suitable mapping and smoothness properties. For
the precise assumptions on the quantities in (P), we refer to section 2. Problems of
the type (P) - i.e., multicriteria optimization problems governed by semilinear partial
differential equations involving non-smooth Nemytskii operators - arise, for instance,
in mechanics, plasma physics, and the context of certain combustion processes when
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the state of the system is supposed to meet several, potentially conflicting design
goals. See, e.g., [32, 46, 52, 54] for some examples of possible application areas.

From the mathematical point of view, problems of the type (P) are challenging for
a number of reasons. The first and probably most obvious one is the presence of the
non-smooth Nemytskii operator in the governing partial differential equation. Because
of this term, the control-to-state mapping S : u 7→ y of (P) does not possess a Gâteaux
derivative, but is only directionally differentiable, and it is not possible to apply
standard results to derive, for instance, first-order necessary optimality conditions or
to devise efficient numerical solution algorithms. The strategy that is most commonly
used in the literature to handle such a lack of smoothness is to work with elements
of appropriately defined subdifferentials (e.g., those of Clarke, Dini, Mordukhovich,
or Fréchet) instead of the non-existing gradients of the involved (reduced) objective
functions. See, for example, [16, 22, 42, 49, 51] for an overview of these concepts and
references on the use of subgradients in the single-objective context, [9, 10, 25, 26,
29, 30, 35, 38, 41, 55] for applications in the multiobjective setting, and [3, 6, 34]
for results that additionally also rely on regularization techniques. Unfortunately, for
problems of the type (P), a standard subgradient-based analysis turns out to be not
very rewarding, either. Since the non-smoothness enters (P) only indirectly via the
non-differentiable Nemytskii operator in the governing PDE, a full characterization of
quantities like the Clarke subdifferentials of the reduced objective functions Jn(S(·), ·),
n = 1, ..., N , of (P) is only very rarely available. Optimality conditions involving
these generalized differentials are thus rather academic and barely usable in practice.
Note that this is a major difference to situations, in which the non-smoothness stems
from the “outer” functions Jn and not from the governing PDE, and in which, as a
consequence, classical chain rules for subgradients can be applied, cf. [7]. A possible
way around this difficulty, that has recently been employed in [13, 47, 48] in the
single-objective setting, is to work with notions of generalized derivatives on the level
of the solution operator S : u 7→ y. Such approaches typically result in necessary
optimality conditions of intermediate strength that can indeed be solved with standard
solution algorithms. For more details on this topic and further remarks on how the
findings of [13, 47, 48] are related to the present paper, we refer to [13, section 4]
and sections 4 and 5. For results on smooth multiobjective optimization and optimal
control problems, see also [4, 8, 21, 28, 43, 44, 45].

A second factor that significantly complicates the derivation of necessary opti-
mality conditions for problems of the type (P) and that is completely absent in the
single-objective setting is that - even in the smooth case - there are several sensible,
purely primal optimality and stationarity concepts for multiobjective optimization
problems. Compare, for instance, with the notions of weak, ordinary, and proper
Pareto optimality and stationarity in Definitions 2.3 and 3.2 in this context. Even
worse, the multiobjective aspect of (P) also turns out to add an additional layer of
non-smoothness to the problem. To see this, consider, for example, the notion of weak
Pareto optimality for (P), i.e., the optimality condition given by

@u ∈ L2(Ω) : Jn(S(u), u) < Jn(S(ū), ū) ∀n = 1, ..., N.

This condition is clearly equivalent to ū being a global optimum of the scalar problem

(1.1) min
u∈L2(Ω)

max
(
J1(S(u), u)− J1(S(ū), ū), ..., JN (S(u), u)− JN (S(ū), ū)

)
,

whose objective function not only contains the non-smooth solution map S, but also
the non-differentiable maximum-value function on RN . We thus indeed have to deal
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with two sources of non-smoothness here which are even nested. Note that, in first-
order necessary optimality conditions for weak Pareto optima, the presence of the
maximum-value function in (1.1) typically manifests itself in the form of additional
multipliers. Compare, for instance, with the results for multiobjective problems with
smooth objective functions in [38, Theorems 3.1.1, 3.1.5] in this context and also with
the stationarity systems established in Theorem 4.5.

The main goal of the present paper is to demonstrate that, despite all of the
above difficulties, it is indeed possible to derive very rigorous first-order necessary
optimality conditions for multiobjective optimal control problems of the type (P). To
be more precise, we will show how to prove so-called strong stationarity conditions
for this problem class. In the single-objective setting, such conditions are well-known,
e.g., for the optimal control of elliptic variational inequalities of the first and the
second kind and the optimal control of non-smooth elliptic and parabolic partial
differential equations, see [12, 13, 17, 18, 37, 39, 40]. In the multiobjective context,
strong stationarity conditions have, at least to the best of the authors’ knowledge and
with some exceptions for finite-dimensional MPECs in [55], not been considered so
far (most likely because of the doubly non-smooth behavior in (1.1) that is generally
hard to handle). Recall that the distinguishing feature of a strong stationarity system
is its equivalence to the first-order necessary optimality condition in primal form. In
the single-objective case, this means that a point is strongly stationary if and only if it
is Bouligand stationary in the sense of [19, Definition 5.4], i.e., stationary in the sense
that the directional derivative is non-negative in all directions. When considering the
problem (P) with its multiple sensible purely primal necessary optimality conditions,
one, of course, has to differentiate at this point. We will thus establish not only
one but even two strong stationarity systems for (P) - one equivalent to weak Pareto
stationarity and one equivalent to both ordinary and proper Pareto stationarity, see
Definition 3.2 and Theorem 4.5. (Note that this implies in particular that the concepts
of ordinary and proper Pareto stationarity are the same for the problem (P)). A
main ingredient of our analysis is the - at first glance rather surprising - fact that
the non-linear and non-differentiable inverse S′(u; ·)−1 : H1

0 (Ω) ∩ H2(Ω) → L2(Ω),
z 7→ −∆z + 1{S(u)=0}max(0, z) + 1{S(u)>0}z, of the directional derivative S′(u; ·) of
the control-to-state mapping S : u 7→ y of (P) is self-adjoint in the sense that

(1.2)
(
u, S′(u; ·)−1(z)

)
L2 =

〈
S′(u; ·)−1(u), z

〉
H1

0∩H2

holds for all u ∈ L2(Ω) and all z ∈ H1
0 (Ω) ∩H2(Ω), where, on the right-hand side of

(1.2), the map S′(u; ·)−1 is interpreted as a function from L2(Ω) to (H1
0 (Ω)∩H2(Ω))∗.

This behavior makes it possible to resolve the difficulties related to the additional layer
of non-smoothness in (1.1) that normally prevent the derivation of strong stationarity
conditions in the multiobjective context, cf. Lemma 4.2 and Theorem 4.5.

Note that the self-adjointness of the operator S′(u; ·)−1 in (1.2) is also of relevance
for scalar Tikhonov regularized optimal control problems governed by non-smooth
semilinear partial differential equations as it allows to employ an adjoint calculus
similar to that available in the smooth setting in the non-smooth case. Quite in-
terestingly, the self-adjointness property in (1.2) is also directly related to certain
non-standard regularization effects that have apparently not been documented so far
in the literature - neither in the single- nor in the multiobjective context. These effects
cause the problem (P) to be Gâteaux differentiable when it is reduced to the state
y although it is not Gâteaux when reduced to the control u. For further details on
this topic, see section 6. We remark that the results of section 6 particularly imply
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that the problems considered in [17, section 5], [13, section 5], and [20, section 5,
case 1] all admit a Gâteaux differentiable reformulation. As we will see in section 5,
they further yield that regularization approaches are exact for the problem (P) in
the sense that weak L2-accumulation points of weakly Pareto stationary points of the
regularized multiobjective optimal control problems are weakly Pareto stationary for
the non-smooth limit problem. Note that this behavior is again quite surprising as
such effects can typically not even be observed in simple, one-dimensional examples.
Compare, for instance, with the situation, where the function f(x) := −|x| is approx-
imated by the sequence fε(x) := −

√
x2 + ε, ε > 0, and where the point x̄ = 0 is

Bouligand stationary for all fε but not for the limit function f , in this context.
Before we begin with our analysis, we would like to point out that we consider the

problem (P) as a model problem in this paper. It is easy to check that our arguments
can be extended straightforwardly to cases where the governing PDE contains a more
general elliptic second-order partial differential operator or a more complicated piece-
wise C1-function with properties similar to that of max(0, ·). An extension to the
parabolic setting, cf. [37], is also possible by invoking the results in the appendix of
[14]. We restrict our attention to the setting in (P) to avoid obscuring the basic ideas
of our analysis with unnecessary technicalities.

To help the reader navigate the paper, we conclude this introduction with a brief
overview of the content of the upcoming sections:

Subsection 1.1 and section 2 deal with preliminaries. Here, we comment on the
notation used, state our standing assumptions on jn, νn, and Ω (see Assumption 2.1),
and recall known results on the properties of the control-to-state mapping S : u 7→ y of
(P), notions of optimality for multiobjective optimization problems, and the existence
of Pareto optimal controls.

Section 3 is concerned with first-order necessary optimality conditions in purely
primal form (i.e., conditions based on directional derivatives). We remark that, in the
finite-dimensional setting, such stationarity concepts have already been discussed,
e.g., in [25, section 4] and [29, section 3].

In section 4, we prove the already mentioned strong stationarity conditions for
the multiobjective optimal control problem (P). This section contains the main result
of the paper, Theorem 4.5. It further addresses in detail the self-adjointness property
in (1.2) (see Lemma 4.2), the consequences that our findings have for the regularity
properties of Pareto stationary points (see Corollary 4.7), and the relationship of our
results to the notion of Bouligand subdifferential employed in [13, 47, 48] and classical
scalarization techniques (see Remark 4.6).

Section 5 demonstrates that smoothing methods are indeed exact for problems of
the type (P) in the sense that they allow to determine weakly Pareto stationary points
when the regularization parameter is driven to zero, see Theorem 5.3. Corollary 5.4
in this section moreover shows that the concepts of strong and C-stationarity are the
same for the problem (P) in the single-objective case N = 1.

In section 6, we discuss the non-standard regularization effects that are respon-
sible for the results of the previous sections and that cause the problem (P) to be
Gâteaux differentiable when reduced to the state y. Here, we further give an alter-
native interpretation of the strong stationarity conditions in Theorem 4.5 and prove
an auxiliary result on non-smooth Nemytskii operators that is also interesting for its
own sake, see Theorem 6.1.

Section 7 of the paper finally contains numerical experiments which demonstrate
that the multiplier systems in sections 4 and 5 are amenable to numerical solution
procedures and allow to compute approximations of the Pareto front of (P).
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1.1. Remarks on the notation. In what follows, we use the standard symbols
Lq(Ω), Ck,γ(Ω), Hk

0 (Ω), Hk(Ω), andW k,q(Ω), 1 ≤ q ≤ ∞, k ∈ N, 0 < γ ≤ 1, to denote
the Lebesgue-, Hölder-, and Sobolev spaces on a bounded Lipschitz domain Ω ⊂ Rd,
d ≥ 1, respectively. For details on these spaces, we refer to [1, 2, 23, 27]. Given two
Banach spaces X and Y , we further define X∗ to be the dual space of X and L(X,Y )
to be the space of linear and continuous functions from X to Y . In the special case
X = H1

0 (Ω), we also set H−1(Ω) := H1
0 (Ω)∗. As usual, we interpret H1

0 (Ω), L2(Ω),
and H−1(Ω) as a Gelfand triple, i.e., H1

0 (Ω) ↪→ L2(Ω) ∼= L2(Ω)∗ ↪→ H−1(Ω). The
same convention is used for the space H1

0 (Ω) ∩ H2(Ω), cf. [31, section 1.9]. Norms,
scalar products, and dual pairings are denoted by the symbols ‖ · ‖, (·, ·), and 〈·, ·〉 in
this paper, and the modes of weak and strong convergence by the arrows ⇀ and→. If
we want to specify the space/topology that we are referring to, then we add suitable
sub- or superscripts and write, e.g., ‖ · ‖L2 . With ∆, ∇, ∂c, and ∂i, i = 1, ..., d, we
denote the (distributional) Laplacian, the (weak) gradient, the convex subdifferential,
and the first (weak) partial derivatives of a function, respectively. For higher-order
derivatives, we also use the multi-index notation ∂α, α ∈ Nd0. Gâteaux-, Fréchet-, and
directional derivatives in the functional analytic sense are denoted by a prime in the
usual way. Given a function v : Ω→ R and a measurable set D ⊂ Ω, we finally define
{v ∗ 0}, ∗ ∈ {=, 6=, <,>,≤,≥}, to be the set {x ∈ Ω | v(x) ∗ 0} and 1D to be the
indicator function of D (with values in {0, 1}). If v is an element of an Lq-space and
D is only defined up to sets of measure zero, then we consider {v ∗ 0} to be defined
up to sets of measure zero as well and identify 1D with an element of L∞(Ω).

Note that, in the remainder of this paper, new symbols etc. are introduced when-
ever necessary. For the sake of readability, this additional notation is defined where
it first appears in the text.

2. Problem setting and preliminaries. As already mentioned in the intro-
duction, the aim of this paper is to study multiobjective optimal control problems of
the type

(P)


Minimize


J1(y, u) := j1(y) +

ν1

2
‖u‖2L2

...

JN (y, u) := jN (y) +
νN
2
‖u‖2L2


w.r.t. u ∈ L2(Ω), y ∈ H1

0 (Ω) ∩H2(Ω),

s.t. −∆y + max(0, y) = u a.e. in Ω.

Our standing assumptions on the quantities in (P) are as follows:

Assumption 2.1 (standing assumptions for the study of problem (P)).
i) Ω ⊂ Rd, d ≥ 1, is a bounded domain that is either convex or possesses a
C1,1-boundary (in the sense of [24, section 6.2]).

ii) jn : H1
0 (Ω) ∩H2(Ω)→ R, n = 1, ..., N , N ∈ N, are functions that are weakly

lower semicontinuous, continuously differentiable, and bounded from below.
iii) νn, n = 1, ..., N , are given non-negative real numbers and νN is positive.

Note that the PDE in (P) is uniquely solvable for all u ∈ L2(Ω) by the theorem
of Browder and Minty, [50, Theorem 3-1.5]. To be more precise, we have:

Proposition 2.2 (properties of the PDE in (P)). For every u ∈ L2(Ω), there
exists a unique solution y ∈ H1

0 (Ω) ∩H2(Ω) of the partial differential equation

(2.1) −∆y + max(0, y) = u a.e. in Ω.



6 C. CHRISTOF AND G. MÜLLER

Further, the solution operator S : L2(Ω) → H1
0 (Ω) ∩H2(Ω), u 7→ y, associated with

the PDE (2.1) satisfies:
i) S is globally Lipschitz, i.e., there exists an absolute constant C > 0 with

‖S(u1)− S(u2)‖H2 ≤ C‖u1 − u2‖L2 ∀u1, u2 ∈ L2(Ω).

ii) S is weakly continuous, i.e., for every u ∈ L2(Ω) it holds

(2.2) uk
L2

⇀ u =⇒ S(uk)
H2

⇀ S(u).

iii) S is strongly and weakly Hadamard directionally differentiable in every point
u ∈ L2(Ω) in every direction v ∈ L2(Ω), i.e., for all u, v ∈ L2(Ω), there exists
a unique S′(u; v) ∈ H1

0 (Ω) ∩H2(Ω) such that the implications

vk
L2

⇀ v, tk → 0+ =⇒ S(u+ tkvk)− S(u)

tk

H2

⇀ S′(u; v)

and

vk
L2

→ v, tk → 0+ =⇒ S(u+ tkvk)− S(u)

tk

H2

→ S′(u; v)

hold. Moreover, the directional derivative δv := S′(u; v) ∈ H1
0 (Ω) ∩H2(Ω) in

a point u with state y := S(u) in a direction v is uniquely characterized by
the partial differential equation

(2.3) −∆δv + 1{y=0}max(0, δv) + 1{y>0}δv = v a.e. in Ω.

iv) S is Gâteaux differentiable in a point u ∈ L2(Ω) with state y := S(u) (i.e., it
holds S′(u; ·) ∈ L(L2(Ω), H1

0 (Ω) ∩H2(Ω))) if and only if the set {y = 0} has
measure zero.

Proof. All assertions of the proposition have been proved in [13, Proposition 2.1,
Theorem 2.2, Corollaries 2.3, 3.8]. Note that, under our assumptions on the domain
Ω, the space (Y, ‖ · ‖Y ) used in [13] is isomorphic to (H1

0 (Ω) ∩H2(Ω), ‖ · ‖H2) by [24,
Theorem 9.15, Lemma 9.17] and [27, Theorem 3.2.1.2]. The results of [13] thus indeed
yield the asserted mapping properties of the solution operator S.

As usual in the context of multiobjective optimization, in the remainder of this
paper, we are interested in finding controls u ∈ L2(Ω) that yield - at least in some
sense - an optimal compromise between the different objective functions Jn(S(·), ·),
n = 1, ..., N , of (P). The notions of optimality that we are mainly concerned with in
our analysis are the following (cf. [29, Definitions 3.1, 3.2] and also [21, 38]):

Definition 2.3 (notions of Pareto optimality). A control ū ∈ L2(Ω) with asso-
ciated state ȳ := S(ū) is called:

i) a local weak Pareto optimum of (P) if there exists an r > 0 such that there
is no u ∈ L2(Ω) satisfying

‖u− ū‖L2 < r, Jn(S(u), u) < Jn(ȳ, ū) ∀n = 1, ..., N.

ii) a local Pareto optimum of (P) (in the ordinary sense) if there exists an r > 0
such that there is no u ∈ L2(Ω) satisfying

‖u− ū‖L2 < r, Jn(S(u), u) ≤ Jn(ȳ, ū) ∀n = 1, ..., N,

Jn(S(u), u) < Jn(ȳ, ū) for at least one n ∈ {1, ..., N}.
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iii) a local proper Pareto optimum of (P) (in the sense of Geoffrion) if there
exist constants r, C > 0 such that, for every control u ∈ L2(Ω) satisfying
‖u− ū‖L2 < r and Jl(S(u), u) < Jl(ȳ, ū) for some l ∈ {1, ..., N}, there exists
an index m ∈ {1, ..., N} with

Jl(ȳ, ū)− Jl(S(u), u) ≤ C
(
Jm(S(u), u)− Jm(ȳ, ū)

)
.

iv) a global weak/ordinary/proper Pareto optimum, respectively, of (P) if the
condition in i)/ii)/iii), respectively, holds with r =∞.

Note that we trivially have
(2.4)
ū properly Pareto optimal ⇒ ū Pareto optimal ⇒ ū weakly Pareto optimal,

and that the concepts of local (respectively, global) weak, ordinary, and proper Pareto
optimality coincide with each other and the classical notion of local (respectively,
global) optimality in the single-objective case N = 1. Using our standing assumptions
and the properties of the map S in Proposition 2.2, it is easy to prove:

Theorem 2.4 (existence of proper Pareto optima). There exists at least one
global proper Pareto optimum ū ∈ L2(Ω) of (P).

Proof. We use a scalarization approach, cf. [21, Theorem 3.11] and [38]: Consider
the auxiliary problem

(2.5) min
u∈L2(Ω)

N∑
n=1

jn(S(u)) +
νn
2
‖u‖2L2 .

Then, it follows from our assumptions on jn and νn, the weak continuity of the map
S in Proposition 2.2ii), and the weak lower semicontinuity of convex and continuous
functions that the objective of (2.5) is weakly lower semicontinuous, bounded from
below, and radially unbounded as a function from L2(Ω) to R. These properties imply,
in combination with the direct method of calculus of variations, that (2.5) admits at
least one global minimum ū ∈ L2(Ω), i.e., at least one ū ∈ L2(Ω) with associated
state ȳ := S(ū) such that

(2.6)

N∑
n=1

Jn(ȳ, ū) ≤
N∑
n=1

Jn(S(u), u) ∀u ∈ L2(Ω).

We claim that this ū is also a global proper Pareto optimum of the problem (P). To
see this, suppose that we are given a u ∈ L2(Ω) that satisfies Jl(S(u), u) < Jl(ȳ, ū)
for some l ∈ {1, ..., N}. Then, (2.6) yields

(2.7)

0 < Jl(ȳ, ū)− Jl(S(u), u) ≤
∑
n 6=l

Jn(S(u), u)− Jn(ȳ, ū)

≤ N max
n=1,...,N

(
Jn(S(u), u)− Jn(ȳ, ū)

)
,

and we may deduce that there exists an m ∈ {1, ..., N} with

Jl(ȳ, ū)− Jl(S(u), u) ≤ N
(
Jm(S(u), u)− Jm(ȳ, ū)

)
.

This shows that the condition in Definition 2.3iii) holds (with r = ∞ and C = N)
and completes the proof.
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3. First-order necessary optimality conditions in primal form. Having
discussed the properties of the PDE (2.1) and the solvability of the problem (P), we
now turn our attention to first-order necessary optimality conditions. We begin with
“purely primal” optimality conditions that rely only on directional derivatives and do
not involve additional multipliers. In the finite-dimensional setting, such conditions
have already been discussed, for instance, in [25, section 4] and [29, section 3].

Theorem 3.1 (first-order necessary optimality conditions in primal form).
i) If ū ∈ L2(Ω) is a local weak Pareto optimum of (P) with associated state
ȳ := S(ū), then there exists no v ∈ L2(Ω) satisfying

(3.1) 〈j′n(ȳ), S′(ū; v)〉H1
0∩H2 + νn (ū, v)L2 < 0 ∀n = 1, ..., N.

ii) If ū ∈ L2(Ω) is a local proper Pareto optimum of (P) with state ȳ := S(ū) and
constants r, C > 0 as in Definition 2.3iii), then, for every direction v ∈ L2(Ω)
satisfying 〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 +νl (ū, v)L2 < 0 for some l ∈ {1, ..., N}, there

exists an index m ∈ {1, ..., N} with

(3.2)
−
(
〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 + νl (ū, v)L2

)
≤ C

(
〈j′m(ȳ), S′(ū; v)〉H1

0∩H2 + νm (ū, v)L2

)
.

Proof. From our assumptions on the functions jn, the differentiability properties
of the solution map S in Proposition 2.2, and the chain rule, [11, Proposition 2.47],
it follows straightforwardly that

(3.3)
lim
t→0+

Jn(S(u+ tv), u+ tv)− Jn(S(u), u)

t

= 〈j′n(S(u)), S′(u; v)〉H1
0∩H2 + νn (u, v)L2

holds for all u, v ∈ L2(Ω) and all n = 1, ..., N . Suppose now that we are given a local
weak Pareto optimum ū ∈ L2(Ω) of (P) such that there exists a direction v ∈ L2(Ω)
with (3.1). Then, (3.3) yields that we can find arbitrarily small numbers t > 0 with
Jn(S(ū + tv), ū + tv) − Jn(S(ū), ū) < 0 for all n = 1, ..., N . This contradicts the
local weak Pareto optimality of ū, shows that every local weak Pareto optimum has
to satisfy the condition in i), and proves the first part of the theorem. To establish
ii), we can proceed along similar lines: If we are given a local proper Pareto optimum
ū ∈ L2(Ω) with state ȳ := S(ū) and constants r, C > 0 as in Definition 2.3iii) and a
v ∈ L2(Ω) satisfying 〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 + νl (ū, v)L2 < 0 for some l ∈ {1, ..., N},
then (3.3) yields that Jl(S(ū+ tv), ū+ tv)−Jl(ȳ, ū) < 0 holds for all sufficiently small
t > 0, and we may use the condition in Definition 2.3iii) to deduce that there exist
an index m ∈ {1, ..., N} and a sequence {tk} ⊂ R+ with tk → 0+ and

0 < Jl(ȳ, ū)− Jl(S(ū+ tkv), ū+ tkv) ≤ C
(
Jm(S(ū+ tkv), ū+ tkv)− Jm(ȳ, ū)

)
for all k ∈ N. Due to (3.3) and the properties of l, the above implies

0 < −
(
〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 + νl (ū, v)L2

)
≤ C

(
〈j′m(ȳ), S′(ū; v)〉H1

0∩H2 + νm (ū, v)L2

)
.

This establishes (3.2) and completes the proof.
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Theorem 3.1 motivates the following definition:

Definition 3.2 (notions of stationarity). A control ū ∈ L2(Ω) with associated
state ȳ := S(ū) is called:

i) a weakly Pareto stationary point of (P) if there is no v ∈ L2(Ω) satisfying

(3.4) 〈j′n(ȳ), S′(ū; v)〉H1
0∩H2 + νn (ū, v)L2 < 0 ∀n = 1, ..., N.

ii) a Pareto stationary point of (P) if there is no v ∈ L2(Ω) satisfying
(3.5)

〈j′n(ȳ), S′(ū; v)〉H1
0∩H2 + νn (ū, v)L2 ≤ 0 ∀n = 1, ..., N,

〈j′n(ȳ), S′(ū; v)〉H1
0∩H2 + νn (ū, v)L2 < 0 for at least one n ∈ {1, ..., N}.

iii) a properly Pareto stationary point of (P) if there exists a C > 0 such that, for
every v ∈ L2(Ω) satisfying 〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 + νl (ū, v)L2 < 0 for some

l ∈ {1, ..., N}, there is an index m ∈ {1, ..., N} with

(3.6)
−
(
〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 + νl (ū, v)L2

)
≤ C

(
〈j′m(ȳ), S′(ū; v)〉H1

0∩H2 + νm (ū, v)L2

)
.

Some remarks are in order regarding the concepts in Definition 3.2:

Remark 3.3.
i) Pareto optima satisfying the condition in Definition 3.2ii) are sometimes also

referred to as “efficient in Kuhn and Tucker’s sense” or “KT-proper”, see [21,
Definition 2.49] and [29, Definition 3.3].

ii) Analogously to the hierarchy in (2.4), we have

ū properly stationary ⇒ ū stationary ⇒ ū weakly stationary.

iii) The conditions i), ii), and iii) in Definition 3.2 are equivalent to the global
weak, global ordinary, and global proper Pareto optimality of the function
v̄ = 0 in the first-order approximation of (P) defined by

Minimize

 J1(ȳ, ū) + 〈j′1(ȳ), S′(ū; v)〉H1
0∩H2 + ν1 (ū, v)L2

...
JN (ȳ, ū) + 〈j′N (ȳ), S′(ū; v)〉H1

0∩H2 + νN (ū, v)L2


w.r.t. v ∈ L2(Ω),

respectively. This shows in particular that the concepts in Definition 3.2
extend the notion of Bouligand stationarity, see [19, Definition 5.4], to the
multiobjective setting. (It is easy to check that, in the single-objective case
N = 1, all of the conditions in Definition 3.2 coincide with each other and
with the notion of Bouligand stationarity.)

iv) While the conditions i) and iii) in Definition 3.2 are always necessary for weak
and proper Pareto optimality, respectively, by Theorem 3.1, the property in
Definition 3.2ii) is typically not a necessary condition for ordinary Pareto
optimality. Compare, e.g., with the simple bi-criterial optimization problem
min(f1(x), f2(x)) with f1(x) := −x and f2(x) := x3 in this context, where
the point x̄ := 0 is a Pareto optimum but does not satisfy ii). In the finite-
dimensional setting, the necessity of ii) can be recovered under a generalized
Abadie constraint qualification, see [25, Theorem 4.1].
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Due to their reliance on the non-linear directional derivative S′(ū; ·) of the solution
map S and their formulation as variational inequalities, the necessary optimality
conditions in Theorem 3.1 and the stationarity concepts in Definition 3.2 are typically
not very useful in practical applications. In the following sections 4 and 5, we will
derive multiplier systems that are easier to work with and more suitable as starting
points for the development of numerical solution algorithms.

4. Strong stationarity conditions for the problem (P). The aim of this
section is to establish so-called strong stationarity conditions for the multiobjective
optimal control problem (P), i.e., multiplier systems that are equivalent to the purely
primal necessary optimality conditions in Definition 3.2. As already pointed out in the
introduction, in the single-objective setting, such stationarity systems are well-known
for various problem classes. See, e.g., [12, 13, 17, 18, 37, 39, 40] and the references
therein for some examples. In the multiobjective context, the situation is different
since the additional layer of non-smoothness in (1.1) and the non-differentiability of
the control-to-state mapping S create a nested structure that is generally hard to
handle analytically. In the following, we will show that, for the problem (P), the
difficulties arising from the doubly non-smooth behavior in (1.1) can be resolved by
exploiting the self-adjointness property of the operator S′(u; ·)−1 in (1.2). The starting
point of our investigation is:

Lemma 4.1 (behavior of higher-order weak derivatives on level sets). Suppose
that a function w ∈ W k,1(Ω), k ∈ N, is given. Then, for every multi-index α ∈ Nd0
with 1 ≤ |α| ≤ k and every b ∈ R, it holds ∂αw = 0 a.e. in {w = b}.

Proof. We use induction w.r.t. the absolute value l := |α| of the multi-index α to
establish the claim: Suppose that an arbitrary but fixed k ∈ N and a w ∈ W k,1(Ω)
are given. Then, for every i = 1, ..., d, the classical lemma of Stampacchia, see [2,
Proposition 5.8.2], implies that (∂iw)1{w=b} = 0 holds as an identity in L2(Ω). This
proves the assertion for l = 1. It remains to perform the induction step l 7→ l+ 1. To
this end, let us assume that a multi-index α ∈ Nd0 with |α| = l+ 1 ≤ k, l ≥ 1, is given.
Then, we can find multi-indices β, γ ∈ Nd0 with |β| = l, |γ| = 1, and α = β + γ. From
the induction hypothesis, we obtain that ∂βw vanishes a.e. on {w = b}, i.e., it holds
(∂βw)1{w=b} = 0 ∈ L2(Ω) and, as a consequence, 1{w=b} = 1{∂βw=0}1{w=b} ∈ L2(Ω).
Using again the classical version of Stampacchia’s lemma, we further obtain that
(∂β+γw)1{∂βw=0} = 0 ∈ L2(Ω). Combining the last two identities yields that

(∂αw)1{w=b} = (∂β+γw)1{∂βw=0}1{w=b} = 0 ∈ L2(Ω).

Thus, ∂αw = 0 a.e. in {w = b} and the induction step is complete. This proves the
claim of the lemma.

We remark that, in a less general format, the above result has already been used
in [14, proof of Lemma A.1] and [15, proof of Theorem 2.2]. By applying Lemma 4.1
to the PDE (2.3), it is straightforward to check that the directional derivative S′(u; ·)
indeed satisfies the identity (1.2). To be more precise, we have:

Lemma 4.2 (properties of S′(u; ·) and S′(u; ·)−1). Consider an arbitrary but
fixed control u ∈ L2(Ω) with state y := S(u). Then, the following is true:

i) The map S′(u; ·) : L2(Ω)→ H1
0 (Ω) ∩H2(Ω) is bi-Lipschitz and its inverse is

given by

(4.1)
S′(u; ·)−1 : H1

0 (Ω) ∩H2(Ω)→ L2(Ω),

w 7→ −∆w + 1{y=0}max(0, w) + 1{y>0}w.
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ii) The map S′(u; ·)−1 admits a unique, globally Lipschitz continuous extension
S′(u; ·)−1 : L2(Ω)→ (H1

0 (Ω) ∩H2(Ω))∗, and this extension satisfies
(4.2)〈
S′(u; ·)−1(w), z

〉
H1

0∩H2 =

∫
Ω

w(−∆z) + 1{y=0}max(0, w)z + 1{y>0}wz dx

∀z ∈ H1
0 (Ω) ∩H2(Ω) ∀w ∈ L2(Ω).

iii) For every z ∈ H1
0 (Ω) ∩H2(Ω), it holds

(4.3)
(
u, S′(u; ·)−1(z)

)
L2 =

〈
−∆u+ 1{y>0}u, z

〉
H1

0∩H2 .

Here, ∆u ∈ (H1
0 (Ω) ∩H2(Ω))∗ denotes the very weak Dirichlet Laplacian of

the function u ∈ L2(Ω) (as defined in [31, section 1.9]).
iv) For every z ∈ H1

0 (Ω) ∩H2(Ω), it holds(
u, S′(u; ·)−1(z)

)
L2 =

〈
S′(u; ·)−1(u), z

〉
H1

0∩H2 .

Proof. Part i) of the lemma is a trivial consequence of Proposition 2.2. To prove
ii), we note that the right-hand side of (4.2) defines a globally Lipschitz continuous
map from L2(Ω) to (H1

0 (Ω)∩H2(Ω))∗ that coincides with S′(u; ·)−1 on H1
0 (Ω)∩H2(Ω)

by Green’s formula. (Recall that H1
0 (Ω) ∩H2(Ω), L2(Ω), and (H1

0 (Ω) ∩H2(Ω))∗ are
interpreted as a Gelfand triple, i.e., H1

0 (Ω)∩H2(Ω) ↪→ L2(Ω) ↪→ (H1
0 (Ω)∩H2(Ω))∗.)

The function S′(u; ·)−1 thus admits an extension with the desired properties. Since
H1

0 (Ω) ∩ H2(Ω) is dense in L2(Ω), we further know that there can only be one L2-
Lipschitz continuous extension of S′(u; ·). This establishes ii). It remains to prove iii)
and iv). To this end, we note that Lemma 4.1 and the definition of S imply∫

Ω

1{y=0}max(0, z)udx =

∫
Ω

1{y=0}max(0, z)(−∆y + max(0, y))dx = 0

and, analogously,∫
Ω

1{y=0}zmax(0, u)dx =

∫
Ω

1{y=0}zmax(0,−∆y + max(0, y))dx = 0

for all z ∈ H1
0 (Ω) ∩H2(Ω). Combining the above with (4.1) and (4.2) yields(

u, S′(u; ·)−1(z)
)
L2 =

∫
Ω

u
(
−∆z + 1{y=0}max(0, z) + 1{y>0}z

)
dx

=

∫
Ω

u
(
−∆z + 1{y>0}z

)
dx

=

∫
Ω

u(−∆z) + 1{y=0}max(0, u)z + 1{y>0}uz dx

=
〈
S′(u; ·)−1(u), z

〉
H1

0∩H2 ∀z ∈ H1
0 (Ω) ∩H2(Ω).

This establishes iii) and iv) and completes the proof.

Remark 4.3. An argument based on Stampacchia’s lemma similar to that in the
proof of Lemma 4.2 has also been used in [17, section 5] for the analysis of the solution
map of a quasilinear partial differential equation involving a term of the form g(y)∇y
with a piecewise smooth g : R → R. For this PDE, the lemma of Stampacchia for
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first weak derivatives allows to show that all terms that could possibly prevent the
expression g′(y; z)∇y from being linear in z are negligible, and to establish that the
solution map of the considered quasilinear partial differential equation is Gâteaux
differentiable in spite of the fact that it contains the non-smooth Nemytskii operator
g. Compare also with Theorem 6.1 and Remark 6.3 in this context. We point out
that, for the PDE (2.1), the situation is different since the maps S, S′(u; ·), and
S′(u; ·)−1 are not Gâteaux differentiable but contain “proper” non-differentiabilities,
cf. Proposition 2.2iv) and also the example in section 6.

As we will see below, Lemma 4.2 makes it possible to handle the non-linearity of
the directional derivative S′(u; ·) in the necessary optimality conditions (3.4), (3.5),
and (3.6). To deal with the multiobjective aspect in these conditions, we need the
following infinite-dimensional version of Tucker’s/Motzkin’s theorem of the alternative
(cf. [21, Theorems 3.22, 3.24] and also [25, Proposition 2.2]):

Lemma 4.4 (existence of multipliers in Hilbert spaces). Suppose that V is a real
Hilbert space and that w∗1,..., w∗N , N ∈ N, are given elements of V ∗. Then, it holds

(4.4)

@z ∈ V : 〈w∗n, z〉V < 0 ∀n = 1, ..., N

⇐⇒ ∃λ ∈ RN : λn ≥ 0 ∀n = 1, ..., N,

N∑
n=1

λn = 1,

N∑
n=1

λnw
∗
n = 0

and

(4.5)

@z ∈ V : 〈w∗n, z〉V ≤ 0 ∀n = 1, ..., N, 〈w∗n, z〉V < 0 for at least one n

⇐⇒ ∃λ ∈ RN : λn > 0 ∀n = 1, ..., N,

N∑
n=1

λn = 1,

N∑
n=1

λnw
∗
n = 0.

Proof. We begin with (4.4): If we assume that the right-hand side of (4.4) holds
and that there exists a z ∈ V with 〈w∗n, z〉V < 0 for all n = 1, ..., N , then we arrive at
the contradiction

0 =

〈
N∑
n=1

λnw
∗
n, z

〉
V

< 0.

This proves “⇐”. To establish “⇒”, we note that the condition on the left-hand side
of (4.4) can also be written as

max (〈w∗1 , z〉V , ..., 〈w
∗
N , z〉V ) ≥ 0 ∀z ∈ V,

or, equivalently, as

0 ∈ ∂c(g ◦ F )(0),

where ∂c denotes the convex subdifferential and where g and F are defined by

g : RN → R, g(x1, ..., xN ) := max(x1, ..., xN )

and

F : V → RN , F (z) := (〈w∗n, z〉V )
n=1,...,N

.
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Using the chain rule for the convex subdifferential, see [22, Proposition I-5.7], and the
formula for the subdifferential of the vector-maximum in [49, Example 8.26], we may
now deduce that

0 ∈ F ∗∂cg(F (0)) = F ∗∂cg(0) = F ∗

{
µ ∈ RN

∣∣∣∣∣µn ≥ 0 ∀n = 1, ..., N,

N∑
n=1

µn = 1

}
.

This proves the existence of a multiplier λ ∈ RN with the properties on the right-hand
side of (4.4) and establishes “⇒”.

It remains to show (4.5). As in the case of (4.4), the implication “⇐” in (4.5)
follows immediately by contradiction. To prove “⇒”, we note that, by the Riesz
representation theorem, we can find wn ∈ V , n = 1, ..., N , such that 〈w∗n, ·〉V =
(wn, ·)V holds for all n. Suppose that at least one of these wn is not zero (else the
proof is trivial) and denote the subspace spanned by the elements wn with W . Then,
W is obviously finite-dimensional and possesses a (·, ·)V -orthonormal basis e1, ..., eM ,
1 ≤ M ≤ N . Let αnm, n = 1, ..., N , m = 1, ...,M , be the coordinates of wn w.r.t. the
basis {em}. Then, it holds〈

w∗n,

M∑
m=1

βmem

〉
V

=

(
M∑
l=1

αnl el,

M∑
m=1

βmem

)
V

=

M∑
m=1

αnmβm

for all β ∈ RM , and we may use the left-hand side of (4.5) to conclude that

@β ∈ RM : Aβ ∈ (−∞, 0]N , Aβ 6= 0,

where A ∈ RN×M is the matrix defined by A := (αnm)n=1,...,N,m=1,...,M . From the
classical, finite-dimensional version of Tucker’s theorem of the alternative, see [36,
Theorem II-4.3], we may now deduce that there exists a λ ∈ RN satisfying ATλ = 0,∑N
n=1 λn = 1, and λn > 0 for all n = 1, ..., N , and from the definition of A that

N∑
n=1

λnwn =

M∑
m=1

N∑
n=1

λnα
n
mem = 0.

This establishes the implication “⇒” in (4.5) and completes the proof.

We are now in the position to prove the main result of this section and the paper
as a whole:

Theorem 4.5 (strong stationarity conditions).
i) A control ū ∈ L2(Ω) with state ȳ := S(ū) is weakly Pareto stationary for (P)

if and only if there exist an adjoint state p̄ and a multiplier λ̄ such that ū, ȳ,
p̄, and λ̄ satisfy the system

(4.6)

ū, p̄ ∈ L2(Ω), ȳ ∈ H1
0 (Ω) ∩H2(Ω), λ̄ ∈ RN ,

λ̄n ≥ 0 ∀n = 1, ..., N,

N∑
n=1

λ̄n = 1,

−∆ȳ + max(0, ȳ) = ū, −∆p̄+ 1{ȳ>0}p̄ =

N∑
n=1

λ̄nj
′
n(ȳ),

p̄+

N∑
n=1

λ̄nνnū = 0.
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ii) A control ū ∈ L2(Ω) with state ȳ := S(ū) is Pareto stationary for (P) (in the
ordinary sense) if and only if there exist an adjoint state p̄ and a multiplier
λ̄ such that ū, ȳ, p̄, and λ̄ satisfy the system

(4.7)

ū, p̄ ∈ L2(Ω), ȳ ∈ H1
0 (Ω) ∩H2(Ω), λ̄ ∈ RN ,

λ̄n > 0 ∀n = 1, ..., N,

N∑
n=1

λ̄n = 1,

−∆ȳ + max(0, ȳ) = ū, −∆p̄+ 1{ȳ>0}p̄ =

N∑
n=1

λ̄nj
′
n(ȳ),

p̄+

N∑
n=1

λ̄nνnū = 0.

iii) A control ū ∈ L2(Ω) is Pareto stationary for (P) (in the ordinary sense) if
and only if it is properly Pareto stationary for (P).

Proof. We begin with i): From Definition 3.2i), equation (4.3), and Lemma 4.2i),
it follows that a control ū ∈ L2(Ω) with state ȳ := S(ū) is weakly Pareto stationary
for (P) if and only if

(4.8)

@z ∈ H1
0 (Ω) ∩H2(Ω) :

〈j′n(ȳ), z〉H1
0∩H2 + νn

(
ū, S′(ū; ·)−1(z)

)
L2

=
〈
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

)
, z
〉
H1

0∩H2 < 0 ∀n = 1, ..., N.

Here, the Laplacian ∆ū is again understood in the very weak sense. Due to Lemma 4.4,
we further know that (4.8) is equivalent to the statement

(4.9)

∃λ̄ ∈ RN : λ̄n ≥ 0 ∀n = 1, ..., N,

N∑
n=1

λ̄n = 1,

N∑
n=1

λ̄n
(
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

))
= 0 ∈

(
H1

0 (Ω) ∩H2(Ω)
)∗
.

If we now define p̄ := −
∑N
n=1 λ̄nνnū, then the assertion in i) follows immediately.

To establish ii), we can use exactly the same arguments as for i) (with (4.4) replaced
by (4.5)). It remains to prove iii). To this end, let us suppose that ū is Pareto
stationary in the ordinary sense, that p̄ and λ̄ are as in (4.7), and that we are given
a v ∈ L2(Ω) with associated directional derivative z := S′(ū; v) ∈ H1

0 (Ω) ∩ H2(Ω)
such that 〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 + νl (ū, v)L2 < 0 holds for some l ∈ {1, ..., N}. Then,

Lemma 4.2iii) yields

〈j′l(ȳ), S′(ū; v)〉H1
0∩H2 + νl (ū, v)L2 =

〈
j′l(ȳ) + νl

(
−∆ū+ 1{ȳ>0}ū

)
, z
〉
H1

0∩H2 ,

and we may use the strong stationarity system (4.7) and the same arguments as in
(4.9) to deduce that

N∑
n=1

λ̄n
〈
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

)
, z
〉
H1

0∩H2 = 0.
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The above implies (completely analogously to (2.7), again by Lemma 4.2iii), and since
λ̄n > 0 for all n) that

0 < −
(
〈j′l(ȳ), S′(ū; v)〉H1

0∩H2 + νl (ū, v)L2

)
=

1

λ̄l

∑
n 6=l

λ̄n
〈
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

)
, z
〉
H1

0∩H2

≤ 1

λ̄l
max

n=1,...,N

〈
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

)
, z
〉
H1

0∩H2

≤
(

min
n=1,...,N

λ̄n

)−1

max
n=1,...,N

(
〈j′n(ȳ), S′(ū; v)〉H1

0∩H2 + νn (ū, v)L2

)
.

The proper Pareto stationarity of ū now follows immediately, see Definition 3.2iii).
Since the reverse implication is trivial, this completes the proof.

Several things are noteworthy regarding the last result:

Remark 4.6.
i) The structure of the strong stationarity systems in Theorem 4.5 is completely

analogous to that of classical first-order necessary optimality conditions for
smooth, finite-dimensional multiobjective optimization problems, see, e.g.,
[21, section 3.3], [38, section 3.1.1], and [26, section 4]. In particular, (4.6)
and (4.7) do not contain any kind of evaluation of the subdifferential of the
function max(0, ·). Section 6 will give an explanation for this behavior.

ii) From [13, Theorem 3.18], it follows straightforwardly that the lines

−∆p̄+ 1{ȳ>0}p̄ =

N∑
n=1

λ̄nj
′
n(ȳ) and p̄+

N∑
n=1

λ̄nνnū = 0

in the strong stationarity conditions (4.6) and (4.7) imply the existence of a
generalized derivative G ∈ ∂ssB S(ū) with

(4.10)

N∑
n=1

λ̄n
(
G∗j′n(ȳ) + νnū

)
= 0.

Here, ∂ssB S(ū) ⊂ L(L2(Ω), H1
0 (Ω) ∩ H2(Ω)) is the strong-strong Bouligand

subdifferential of the solution map S associated with the PDE (2.1) in the
sense of [13, Definition 3.1], and G∗ ∈ L((H1

0 (Ω) ∩H2(Ω))∗, L2(Ω)) denotes
the adjoint of G. Due to the chain rule for the Bouligand subdifferential ∂B
and the fact that the Bouligand subdifferential is smaller than the subdif-
ferential of Clarke (which we denote by ∂C in the following), (4.10) further
yields that

0 ∈
N∑
n=1

λ̄n
(
∂B(jn ◦ S)(ū) + νnū

)
⊂

N∑
n=1

λ̄n∂B
(
Jn(S(·), ·)

)
(ū)

⊂
N∑
n=1

λ̄n∂C
(
Jn(S(·), ·)

)
(ū).

The systems (4.6) and (4.7) thus imply that there exist elements of the Clarke
subdifferentials ∂CJn(S(·), ·) of the reduced objective functions Jn(S(·), ·),
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n = 1, ..., N , of (P) at ū such that a linear combination of these elements
with the coefficients λ̄n vanishes. Note that this is precisely the “standard”
first-order necessary optimality condition for non-smooth multiobjective op-
timization problems, see, e.g., [10, 29] and [38, section 3.2]. The systems (4.6)
and (4.7) are thus more rigorous than ordinary optimality conditions based
on Clarke’s generalized differential (and also stronger than conditions which
exploit the subdifferential calculus of [13]). This, along with the equivalence
to the purely primal stationarity concepts in Definition 3.2, justifies calling
(4.6) and (4.7) strong stationarity conditions.

iii) Theorem 4.5 is closely related to classical scalarization approaches (as found,
e.g., in [21, sections 3 and 4]) in the sense that the systems (4.6) and (4.7)
can be identified with strong stationarity conditions (in the ordinary, single-
objective sense) of optimal control problems governed by (2.1) with objective
functions of the form u 7→

∑N
n=1 λ̄nJn(S(u), u). Compare, e.g., with [13,

Theorem 4.12] in this context. The main insight provided by Theorem 4.5 is,
of course, that every weak, ordinary, or proper stationary point of (P) is a
strongly stationary point of a suitably scalarized auxiliary problem.

iv) We would like to point out that the properties of S in Lemma 4.2 are indeed
crucial for the proof of Theorem 4.5. If we consider, for instance, multiob-
jective optimal control problems governed by the obstacle problem, where
Lemma 4.2 is not available, then the situation is much less clear.

As a direct consequence of Theorem 4.5, we obtain:

Corollary 4.7 (increased regularity of Pareto stationary points).
i) If the maps jn, n = 1, ..., N , are continuously differentiable as functions from
H1

0 (Ω) to R, i.e., if there exist continuously differentiable ĵn : H1
0 (Ω) → R

such that jn = ĵn◦EH1
0

holds for all n, where EH1
0

: H1
0 (Ω)∩H2(Ω)→ H1

0 (Ω)

denotes the canonical embedding of H1
0 (Ω) ∩ H2(Ω) into H1

0 (Ω), then every
Pareto stationary control ū of (P) is an element of H1

0 (Ω).
ii) If the maps jn, n = 1, ..., N , are continuously differentiable as functions from

L2(Ω) to R, i.e., if there exist continuously differentiable ĵn : L2(Ω) → R
such that jn = ĵn ◦EL2 holds for all n, where EL2 : H1

0 (Ω)∩H2(Ω)→ L2(Ω)
denotes the canonical embedding of H1

0 (Ω) ∩ H2(Ω) into L2(Ω), then every
Pareto stationary control ū of (P) is an element of H1

0 (Ω) ∩H2(Ω).

Proof. From Theorem 4.5, we obtain that, for every Pareto stationary ū ∈ L2(Ω),
we can find a multiplier λ̄ ∈ RN and an adjoint state p̄ ∈ L2(Ω) with

(4.11)

λ̄n > 0 ∀n = 1, ..., N,

N∑
n=1

λ̄n = 1, p̄+

N∑
n=1

λ̄nνnū = 0,

−∆p̄+ 1{ȳ>0}p̄ =

N∑
n=1

λ̄nj
′
n(ȳ).

If we assume that there exist continuously differentiable functions ĵn : H1
0 (Ω) → R

such that jn = ĵn◦EH1
0

holds for all n, then the right-hand side of the adjoint equation

in (4.11) can be identified with an element of H−1(Ω), and it follows straightforwardly

that p̄ ∈ H1
0 (Ω). Since

∑N
n=1 λ̄nνn > 0 by our assumption νN > 0 and the properties

of λ̄, the H1
0 -regularity of p̄ immediately implies that of ū. This establishes i). The

proof of ii) is completely along the same lines.
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We conclude this section with an existence result that shows that it makes sense
to use the strong stationarity conditions in Theorem 4.5 for the calculation of Pareto
stationary points:

Lemma 4.8 (solvability of the strong stationarity system). Suppose that a vector
λ̄ ∈ RN satisfying

λ̄n ≥ 0 ∀n = 1, ..., N,

N∑
n=1

λ̄n = 1, and λ̄N > 0

is given. Then, there exists at least one solution (ū, ȳ, p̄) of the system

ū, p̄ ∈ L2(Ω), ȳ ∈ H1
0 (Ω) ∩H2(Ω),

−∆ȳ + max(0, ȳ) = ū, −∆p̄+ 1{ȳ>0}p̄ =

N∑
n=1

λ̄nj
′
n(ȳ), p̄+

N∑
n=1

λ̄nνnū = 0.

Proof. Since λ̄N is positive and since νN > 0 holds by our standing assumptions,
it follows completely analogously to the proof of Theorem 2.4 that there exists at least
one global solution ū ∈ L2(Ω) of the minimization problem

(4.12) min
u∈L2(Ω)

N∑
n=1

λ̄n

(
jn(S(u)) +

νn
2
‖u‖2L2

)
,

and from the first-order necessary optimality condition of (4.12) and the properties
of S in Proposition 2.2, we obtain that this ū and its state ȳ := S(ū) have to satisfy

(4.13)

N∑
n=1

λ̄n

(
〈j′n(ȳ), S′(ū; v)〉H1

0∩H2 + νn (ū, v)L2

)
≥ 0 ∀v ∈ L2(Ω).

Using the results of Lemma 4.2 and exactly the same arguments as in the proof of
Theorem 4.5, (4.13) can be rewritten as

N∑
n=1

λ̄n

(〈
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

)
, z
〉
H1

0∩H2

)
≥ 0 ∀z ∈ H1

0 (Ω) ∩H2(Ω),

and this, in turn, entails

N∑
n=1

λ̄n
(
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

))
= 0 ∈

(
H1

0 (Ω) ∩H2(Ω)
)∗
.

If we now define p̄ := −
∑N
n=1 λ̄nνnū, then the claim follows immediately.

Note that Theorem 4.5 and Lemma 4.8 show that, to calculate Pareto stationary
points of the problem (P), it is a good strategy to fix vectors λ̄ ∈ RN with λ̄n ≥ 0

for all n = 1, ..., N and
∑N
n=1 λ̄n = 1, and to subsequently try to solve the remaining

equations in the strong stationarity condition (4.6) for (ū, ȳ, p̄). Due to Lemma 4.8,
we know that the system that is obtained along these lines has at least one solution for
all λ̄ with λ̄N > 0, and from Theorem 4.5 it follows that every point that we calculate
in this way is weakly or, in the case λ̄n > 0 for all n, properly Pareto stationary.
Moreover, Theorem 4.5 yields that we can determine all weak (respectively, proper,
respectively, ordinary) Pareto stationary points of (P) by solving systems of the form
(4.6) (respectively, (4.7)). We will get back to this topic in section 7, where we will
use a similar approach in the discrete setting for our numerical experiments.
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5. Relation to regularization approaches and C-stationarity. The aim of
this section is to demonstrate that the strong stationarity conditions in Theorem 4.5
are not only interesting for their own sake but also have quite surprising consequences
for the analysis of regularization techniques for problems of the type (P). To be more
precise, in what follows, we will show that, when a problem of the form (P) satisfying
the conditions of Corollary 4.7i) is regularized and the regularization parameter is
driven to zero, then all weak L2-accumulation points of the weakly Pareto stationary
points of the regularized multiobjective optimal control problems are weakly Pareto
stationary for the unregularized limit problem (P). Note that this observation is
indeed remarkable since similar effects cannot be observed even in very simple one-
dimensional examples. Compare, e.g., with the situation already mentioned in the
introduction where the function f(x) := −|x| is approximated by the family fε(x) :=
−
√
x2 + ε, ε > 0, in this context.
To regularize the problem (P), we follow the lines of [13] and replace the max-

function in (2.1) with a suitably chosen differentiable approximation maxε : R → R.
This gives rise to a family of regularized multiobjective optimal control problems of
the form

(Pε)


Minimize


J1(yε, u) := j1(yε) +

ν1

2
‖u‖2L2

...

JN (yε, u) := jN (yε) +
νN
2
‖u‖2L2


w.r.t. u ∈ L2(Ω), yε ∈ H1

0 (Ω) ∩H2(Ω),

s.t. −∆yε + maxε(yε) = u a.e. in Ω.

Our standing assumptions on the approximations maxε are the same as in [13]:

Assumption 5.1 (standing assumptions on the functions maxε). The functions
maxε : R→ R, ε > 0, satisfy the following:

i) It holds maxε ∈ C1(R) for all ε > 0.
ii) There is a constant C > 0 with |maxε(x)−max(0, x)| ≤ C ε for all x ∈ R.

iii) For all x ∈ R and all ε > 0, we have 0 ≤ max′ε(x) ≤ 1.
iv) For every arbitrary but fixed δ > 0, the derivatives {max′ε}ε>0 converge uni-

formly to one in [δ,∞) and uniformly to zero in (−∞,−δ] for ε→ 0+.

Note that, e.g., the family maxε(x) := 1
2

(√
x2 + ε2 + x

)
, ε > 0, has all of the

above properties. Under Assumption 5.1, the following can be established for the
PDE in (Pε), cf. [13, section 4.1]:

Proposition 5.2 (properties of the regularized PDE). For every u ∈ L2(Ω) and
every ε > 0, there exists a unique solution yε ∈ H1

0 (Ω) ∩H2(Ω) of the PDE

(5.1) −∆yε + maxε(yε) = u a.e. in Ω.

Further, the solution operator Sε : L2(Ω)→ H1
0 (Ω) ∩H2(Ω), u 7→ yε, associated with

the partial differential equation (5.1) satisfies:
i) Sε is weakly continuous (in the sense of (2.2)).

ii) Sε is Fréchet, and the Fréchet derivative S′ε(u) ∈ L(L2(Ω), H1
0 (Ω) ∩H2(Ω))

of Sε in a point u ∈ L2(Ω) is precisely the solution map v 7→ δv of the PDE

−∆δv + max′ε(yε)δv = v.
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iii) There exists a constant C > 0 such that, for all u ∈ L2(Ω), it holds

‖S(u)− Sε(u)‖H1
0∩H2 ≤ C ε ∀ ε > 0.

iv) For all {uk} ⊂ L2(Ω) and {εk} ⊂ (0,∞) satisfying uk ⇀ u in L2(Ω) for some
u ∈ L2(Ω) with state y := S(u) and εk → 0+, there exist a subsequence {kl}
and a function χ ∈ L∞(Ω) such that

χ = 0 a.e. in {y < 0}, χ = 1 a.e. in {y > 0}, χ ∈ [0, 1] a.e. in {y = 0}

holds and such that the directional derivatives S′εkl
(ukl)v converge weakly in

H1
0 (Ω) ∩H2(Ω) to the unique solution ηv of the partial differential equation

−∆ηv + χηv = v

for all v ∈ L2(Ω).

Proof. The assertions of i), ii), and iii) have been proved in [13, Lemmas 4.2, 4.3].
The proof of iv) is completely analogous to that of the second part of [13, Lemma 4.3]
with the only difference that, in iv), we have to work with weak L2-convergence
instead of strong L2-convergence. This, however, is not a problem: From the weak
convergence uk ⇀ u in L2(Ω), iii), and the weak continuity of S, we obtain that

(5.2) Sεk(uk) = S(uk) + (Sεk − S)(uk) ⇀ S(u) in H1
0 (Ω) ∩H2(Ω).

The above implies in particular that Sεk(uk) converges to S(u) in L2(Ω) and, at
least after the transition to a subsequence (still denoted by the same symbol), that
Sεk(uk) → S(u) = y pointwise a.e. in Ω. Using this pointwise-a.e. convergence, we
can argue exactly as in the second part of the proof of [13, Lemma 4.3] to establish
the assertion of iv). This completes the proof.

We are now in the position to prove that weak L2-accumulation points of weakly
Pareto stationary points of (Pε) are indeed weakly Pareto stationary for the original
problem (P) in the situation of Corollary 4.7i).

Theorem 5.3 (preservation of weak Pareto stationarity in the limit ε → 0+).
Suppose that the maps jn are continuously differentiable as functions from H1

0 (Ω) to R
(in the sense of Corollary 4.7i)), and that sequences {εk} ⊂ (0,∞) and {ūk} ⊂ L2(Ω)
are given such that εk → 0+ holds and such that ūk is weakly Pareto stationary for
(Pεk) for all k, i.e., such that there is no v ∈ L2(Ω) satisfying

(5.3)
〈
j′n(Sεk(ūk)), S′εk(ūk)v

〉
H1

0∩H2 + νn (ūk, v)L2 < 0 ∀n = 1, ..., N.

Then, every weak L2-accumulation point of {ūk} is weakly Pareto stationary for (P).

Proof. Suppose that ū ∈ L2(Ω) is a weak L2-accumulation point of the sequence
{ūk} for k → ∞ with state ȳ := S(ū). Then, Proposition 5.2iv) yields that we can
pass over to subsequences of {ūk} and {εk} (still denoted by the same symbols) such
that ūk ⇀ ū holds in L2(Ω) and such that there exists a χ ∈ L∞(Ω) with

χ = 0 a.e. in {ȳ < 0}, χ = 1 a.e. in {ȳ > 0}, χ ∈ [0, 1] a.e. in {ȳ = 0},

and S′εk(ūk)v ⇀ ηv in H1
0 (Ω)∩H2(Ω) for all v ∈ L2(Ω), where ηv is again defined by

−∆ηv + χηv = v.
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Since the left-hand side of (5.3) is linear in v, we may further invoke Lemma 4.4 to
deduce that, for all k ∈ N, we can find a λ̄k ∈ RN with

(5.4)

λ̄kn ≥ 0 ∀n = 1, ..., N,

N∑
n=1

λ̄kn = 1,

N∑
n=1

λ̄kn

(〈
j′n(Sεk(ūk)), S′εk(ūk)v

〉
H1

0∩H2 + νn (ūk, v)L2

)
= 0 ∀v ∈ L2(Ω).

Note that the first line of (5.4) particularly implies that {λ̄k} is bounded, and that our
assumptions on the functions jn and (5.2) yield that j′n(Sεk(ūk)) converges strongly
to j′n(ȳ) in (H1

0 (Ω)∩H2(Ω))∗ for k →∞. This allows us to find a further subsequence
(again not relabeled) such that λ̄k → λ̄ holds for some λ̄ ∈ RN , and to pass to the
limit k →∞ in (5.4) to obtain that there exists a λ̄ ∈ RN with

(5.5)

λ̄n ≥ 0 ∀n = 1, ..., N,

N∑
n=1

λ̄n = 1,

N∑
n=1

λ̄n

(
〈j′n(ȳ), ηv〉H1

0∩H2 + νn (ū, v)L2

)
= 0 ∀v ∈ L2(Ω).

Due to the bijectivity of the map L2(Ω) 3 v 7→ ηv ∈ H1
0 (Ω)∩H2(Ω) and the a.e. iden-

tity χū = χ(−∆ȳ+max(0, ȳ)) = 1{ȳ>0}(−∆ȳ+max(0, ȳ)) = 1{ȳ>0}ū, see Lemma 4.1,
the second line in (5.5) can be recast as

N∑
n=1

λ̄n

(
〈j′n(ȳ), z〉H1

0∩H2 + νn (ū,−∆z + χz)L2

)
=

N∑
n=1

λ̄n
〈
j′n(ȳ) + νn

(
−∆ū+ 1{ȳ>0}ū

)
, z
〉
H1

0∩H2 = 0 ∀z ∈ H1
0 (Ω) ∩H2(Ω).

If we now define p̄ := −
∑N
n=1 λ̄nνnū, then it follows immediately that ū satisfies the

strong stationarity system (4.6) and, as a consequence, the weak Pareto stationarity
condition in Definition 3.2i). This completes the proof.

We would like to point out that, in the single-objective case N = 1, we can
use exactly the same arguments as in the proof of Theorem 5.3 to establish that the
notion of C-stationarity that is obtained by passing to the limit with the regularization
parameter in the first-order necessary optimality conditions of a regularized version
of (P) is equivalent to the concept of strong stationarity. Indeed, we have:

Corollary 5.4 (equivalence of C- and strong stationarity in the case N = 1).
Consider the single-objective case N = 1, i.e., the case where (P) has the form

(5.6)

Minimize J(y, u) := j(y) +
ν

2
‖u‖2L2

w.r.t. u ∈ L2(Ω), y ∈ H1
0 (Ω) ∩H2(Ω),

s.t. −∆y + max(0, y) = u a.e. in Ω

with a function j : H1
0 (Ω) ∩ H2(Ω) → R as in Assumption 2.1 and ν > 0. Then,

the notions of C-stationarity in the sense of [13, Theorem 4.4], strong stationarity in
the sense of [13, Theorem 4.12], and purely primal stationarity in the sense of [13,
Proposition 4.10] are the same.
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Proof. The equivalence between strong and primal stationarity follows from [13,
Proposition 4.13] and the remaining equivalences are straightforward consequences of
the systems (26) and (32) in [13], the identity p̄ = −νū in the stationarity conditions,
and the fact that the controls u = −∆y + max(0, y) ∈ L2(Ω) in (5.6) always vanish
a.e. in the set {y = 0} by Lemma 4.1.

We remark that an effect similar to that in Corollary 5.4 has already been observed
for optimal control problems governed by a class of quasilinear PDEs with Gâteaux
differentiable solution operators in [17, section 5], cf. Remark 4.3. What is noteworthy
about Corollary 5.4 is that, in the case of the problem (P), the notions of strong and C-
stationarity are identical in spite of the fact that the solution map S : u 7→ y associated
with (2.1) typically does not possess a Gâteaux derivative, cf. Proposition 2.2iv).
As we will see in the next section, this behavior can be explained with “hidden”
smoothness properties of the problem (P) that only reveal themselves when (P) is
considered as an optimization problem in the variable y.

6. Hidden smoothness properties and an alternative view on strong
stationarity conditions. One might ask at this point how the effects observed in
the last two sections - the self-adjointness of the non-differentiable and non-linear
operator S′(u; ·)−1 in (1.2), the similarity of the strong stationarity conditions (4.6)
and (4.7) in Theorem 4.5 to classical optimality conditions for smooth multiobjective
optimal control problems, and the equivalence of the various notions of stationarity,
e.g., in Corollary 5.4 - are possible. The answer to this question is that the problem
(P) is actually not as non-smooth as it appears at first glance. To see this, let us
consider an arbitrary but fixed index n ∈ {1, ..., N} and the associated objective

(6.1) Jn(y, u) := jn(y) +
νn
2
‖u‖2L2

in (P). Using standard arguments, it is easy to check that the function Jn in (6.1)
is typically non-differentiable when we reduce it to the variable u by expressing y in
terms of the solution map S of the PDE −∆y + max(0, y) = u in (2.1). Indeed, in
the simple example

(6.2) d := 1, Ω := (−1, 1), jn(y) := (y(0) + 1)2, νn := 1,

a short calculation shows

S(α1)(x) =


(

1− 2e

1 + e2
cosh(x)

)
α if α ≥ 0

1
2 (1− x2)α if α < 0

, ∀α ∈ R,

where 1 denotes the element of L2(Ω) that is identical one a.e. in Ω, and we obtain

Jn(S(α1), α1) =


(

(1− e)2

1 + e2
α+ 1

)2

+ α2 if α ≥ 0(
1
2α+ 1

)2
+ α2 if α < 0

, ∀α ∈ R.

The reduced objective function u 7→ Jn(S(u), u) thus has a proper kink at the origin
in the situation of (6.2) and is non-differentiable as claimed. Note that this example
also demonstrates that it makes sense to refer to the problem (P) as a non-smooth
multiobjective optimal control problem. In what follows, we will see that the latter
term is, in fact, not entirely appropriate anymore when we reduce Jn not to the control
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u but to the state y. (A reduction that is rarely used in the context of optimal control
since y is, per definition, not the quantity that one has under control in the context of
the problem (P)). To begin our analysis, we observe that, by eliminating the variable
u from Jn, we arrive at a reduced objective function of the form
(6.3)

Jn(y, S−1(y)) = jn(y) +
νn
2
‖ −∆y + max(0, y)‖2L2

= jn(y) +
νn
2
‖∆y‖2L2 +

νn
2
‖max(0, y)‖2L2 − νn

∫
Ω

max(0, y)∆y dx.

Note that the first three terms on the right-hand side of (6.3) are trivially Gâteaux
differentiable as functions from H1

0 (Ω) ∩ H2(Ω) to R, so that the only remaining
potentially non-smooth term in (6.3) is the one involving the expression max(0, y)∆y.
For this type of product, however, we have the following key result:

Theorem 6.1 (compensation of non-smoothness by weak derivatives). Let k ∈ N
and r, q ∈ [1,∞) be given such that r ∈ [1, q) and W k,q(Ω) ↪→ Lqr/(q−r)(Ω) holds,
and let g : R → R be a globally Lipschitz continuous and directionally differentiable
function. Suppose further that there exists a countable set N ⊂ R such that g possesses
a classical derivative in all points x ∈ R \ N . Then, the map

G : W k,q(Ω)→ Lr(Ω), w 7→ g(w)∂αw,

is well-defined and Gâteaux differentiable for all multi-indices α ∈ Nd0 with |α| = k (in
the sense that the directional derivative exists and is a linear and continuous operator)
and the Gâteaux derivative of G in a point w in a direction z is given by

(6.4) G′(w)z =
(
1{w/∈N}g

′(w)∂αw
)
z + g(w)∂αz.

Proof. Suppose that k, q, r, and g satisfy the assumptions of the theorem, and
assume that an arbitrary but fixed α ∈ Nd0 with |α| = k is given. Then, Hölder’s
inequality, the triangle inequality, and the global Lipschitz continuity of g imply that
there exists an absolute constant C > 0 with

(6.5)

‖g(w)∂αw‖Lr ≤ ‖(g(w)− g(0))∂αw‖Lr + ‖g(0)∂αw‖Lr
≤ C ‖w∂αw‖Lr + C ‖∂αw‖Lq
≤ C‖w‖Lqr/(q−r) ‖∂αw‖Lq + C ‖∂αw‖Lq ∀w ∈W k,q(Ω).

This proves that G is well-defined as a function from W k,q(Ω) to Lr(Ω). It remains to
show that G is Gâteaux differentiable. To this end, we note that the same arguments
as in (6.5), the dominated convergence theorem, and Lemma 4.1 yield that, for all
w, z ∈W k,q(Ω), we have

0 ≤
∥∥∥∥g(w + tz)∂α(w + tz)− g(w)∂αw

t
−
(
1{w/∈N}g

′(w)∂αw
)
z − g(w)∂αz

∥∥∥∥
Lr

≤
∥∥∥∥(g(w + tz)− g(w)

t
− 1{w/∈N}g′(w)z

)
∂αw

∥∥∥∥
Lr

+
∥∥(g(w + tz)− g(w)

)
∂αz

∥∥
Lr

=

∥∥∥∥(g(w + tz)− g(w)

t
− g′(w; z)

)
∂αw

∥∥∥∥
Lr

+
∥∥(g(w + tz)− g(w)

)
∂αz

∥∥
Lr

≤
∥∥∥∥g(w + tz)− g(w)

t
− g′(w; z)

∥∥∥∥
Lqr/(q−r)

‖∂αw‖Lq + Ct ‖z‖Lqr/(q−r) ‖∂
αz‖Lq

→ 0
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for t → 0+, where C again denotes an absolute constant. The function G is thus
indeed directionally differentiable with the derivative in (6.4). Since the linearity and
the continuity of the map W k,q(Ω) 3 z 7→ G′(w; z) ∈ Lr(Ω) are trivial, the assertion
of the theorem now follows immediately.

If we consider the special case k = 2, q = 2, and r = 1, then Theorem 6.1 implies
in particular that the function

F : H1
0 (Ω) ∩H2(Ω)→ L1(Ω), y 7→ max(0, y)∆y,

is Gâteaux differentiable with derivative F ′(y)z = 1{y>0}∆y z + max(0, y)∆z for all
y, z ∈ H1

0 (Ω) ∩ H2(Ω). The map Jn(·, S−1(·)) in (6.3) thus possesses a Gâteaux
derivative, and we arrive at the - quite counterintuitive - conclusion that, although
typically non-smooth as a function of the control u, the objective Jn in (6.1) is always
Gâteaux differentiable when reduced to the state y.

Note that the rather peculiar behavior that we observe here is the main reason
why the analysis of section 4 works as well as it does. Indeed, by invoking (6.4),
we obtain that the Gâteaux derivative of the map Jn(·, S−1(·)) in (6.3) at a point
y ∈ H1

0 (Ω) ∩H2(Ω) is precisely the functional

j′n(y) + νn
(
∆∆y + max(0, y)− 1{y>0}∆y −∆ max(0, y)

)
∈ (H1

0 (Ω) ∩H2(Ω))∗,

where the Laplacian is again understood in the very weak sense. If we now assume
that we are given a state ȳ which is Pareto stationary for the reduced multiobjective
optimization problem

(6.6)
Minimize


J1(y, S−1(y)) = j1(y) +

ν1

2
‖S−1(y)‖2L2

...

JN (y, S−1(y)) = jN (y) +
νN
2
‖S−1(y)‖2L2


w.r.t. y ∈ H1

0 (Ω) ∩H2(Ω),

i.e., a ȳ ∈ H1
0 (Ω)∩H2(Ω) with the property that there is no z ∈ H1

0 (Ω)∩H2(Ω) with

(6.7)

〈
j′n(ȳ) + νn

(
∆∆ȳ + max(0, ȳ)− 1{ȳ>0}∆ȳ −∆ max(0, ȳ)

)
, z
〉
H1

0∩H2 ≤ 0

∀n = 1, ..., N,〈
j′n(ȳ) + νn

(
∆∆ȳ + max(0, ȳ)− 1{ȳ>0}∆ȳ −∆ max(0, ȳ)

)
, z
〉
H1

0∩H2 < 0

for at least one n ∈ {1, ..., N},

then Lemma 4.4 yields that there exists a vector λ̄ ∈ RN satisfying

(6.8)

λ̄n > 0 ∀n = 1, ..., N,

N∑
n=1

λ̄n = 1,

N∑
n=1

λ̄n

(
j′n(ȳ) + νn

(
∆∆ȳ + max(0, ȳ)− 1{ȳ>0}∆ȳ −∆ max(0, ȳ)

) )
= 0.

With the definitions ū := −∆ȳ + max(0, ȳ) and p̄ := −
∑N
n=1 λ̄nνnū, (6.8) takes

precisely the form of the strong stationarity system (4.7). We may thus conclude:
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Theorem 6.2 (alternative interpretation of strong stationarity conditions). The
strong stationarity conditions (4.6) and (4.7) are precisely the conditions of weak and
ordinary Pareto stationarity of the state ȳ in the reduced multiobjective optimal control
problem (6.6). In particular, a control ū is a weakly/ordinarily Pareto stationary point
(in the sense of Definition 3.2) for the problem (P) interpreted as a problem in u if
and only if the state ȳ := S(ū) is a weakly/ordinarily Pareto stationary point (in the
sense of (6.7)) for the problem (P) interpreted as a problem in y.

Proof. The equivalence between the Pareto stationarity conditions of (6.6) and
the strong stationarity conditions (4.6) and (4.7) follows straightforwardly from the
arguments outlined after the proof of Theorem 6.1. (Note that we indeed obtain an
“if and only if” here due to (4.4) and (4.5).) This proves the first part of the theorem.
The second one is an immediate consequence of Theorem 4.5.

Note that, in view of the above observations, it indeed makes sense that the strong
stationarity conditions (4.6) and (4.7) have a structure similar to that of classical
necessary optimality conditions for smooth multiobjective optimal control problems,
cf., e.g., the results in [28, Theorem 2.6] and [21, 38].

We would like to point out that the identification results in Theorem 6.2 also
suggest an alternative approach to the strong stationarity conditions in Theorem 4.5:
Instead of the strategy pursued in section 4, which consists of starting with the purely
primal concepts in Definition 3.2 and subsequently applying the adjoint calculus of
Lemma 4.2 for the derivation of (4.6) and (4.7), one can also start with the problem
(6.6) formulated in the variable y, use the arguments after the proof of Theorem 6.1
to show that the necessary conditions for weak and ordinary Pareto stationarity in
(6.6) are equivalent to (4.6) and (4.7), and subsequently prove that a state ȳ is a
weak/ordinary Pareto stationary point of (6.6) if and only if the associated control ū
is a weak/ordinary Pareto stationary point for the problem (P) when it is reduced to
the control u. We remark that the last step in this alternative argumentation requires
roughly the same effort as the analysis of section 4. The amount of work needed for
the derivation of Theorems 4.5 and 6.2 is thus essentially independent of the approach
that one chooses to take here.

We conclude this section with some further comments on how the results of the
last three sections are related to the known literature:

Remark 6.3.
i) The differentiability properties in Theorem 6.1 are also the reason for the

Gâteaux differentiability of the solution operator of the partial differential
equation studied in [17, section 5]. Note that, in contrast to the problem in
[17], where the weak formulation of the governing PDE already contains a
term of the form g(y)∇y with a piecewise smooth g : R → R, in the case of
the problem (P), the smoothness effects that we have explored in this section
only occur since the objective functions Jn in (P) have a composite structure,
i.e., can be split into an observation part and a classical L2-Tikhonov term.
Compare, for instance, with the calculation in (6.3) in this context. Without
such a structure, the Gâteaux differentiability of the function Jn(·, S−1(·))
cannot be guaranteed and the situation is much less clear. (When considering
general objective functions, one can, of course, still employ the subdifferential
calculus developed in [13].)

ii) The analysis of this section and, in particular, the Gâteaux differentiability of
the reduced objective function in (6.3) are also new and relevant in the single-
objective setting. Using Theorem 6.1 and a calculation analogous to that in
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(6.3), we obtain, for example, that the problems considered in [13, section 5]
and [20, section 5, case 1] are all Gâteaux differentiable when reduced to the
state y. To the best of the authors’ knowledge, this observation has not been
made so far in the literature.

7. Numerical experiments. The results of the last sections suggest (at least)
two different approaches for the numerical approximation of the set of weak/ordinary
Pareto stationary points of a problem of the type (P):

First, we can try to tackle the strong stationarity conditions (4.6) and (4.7) in
Theorem 4.5 directly with a generalized Newton method or a comparable algorithm.
Recall that, by Lemma 4.8, we know that the systems (4.6) and (4.7) have at least one
solution for all λ̄ with λ̄N > 0, and that Theorem 4.5 guarantees that all controls ū
that we determine by solving a system of the form (4.6) or (4.7), are Pareto stationary
in the weak or ordinary sense, depending on the choice of the vector λ̄. It is thus indeed
a reasonable strategy to try to solve the problems (4.6) or (4.7), respectively, for an
a priori fixed selection of multipliers λ̄ to get an approximation of the set of Pareto
stationary points of (P) and the associated pseudo-Pareto front
(7.1){

(Jn(ȳ, ū))n=1,...,N

∣∣ ū ∈ L2(Ω) (weakly) Pareto stationary for (P) and ȳ = S(ū)
}
.

Note that this approach has the particular advantage that we can control precisely
whether we calculate a weakly Pareto stationary or an ordinarily Pareto stationary
point by choosing a λ̄ with non-negative or positive components. This feature comes at
the cost of having to deal with the indicator function 1{ȳ>0} in the strong stationarity
conditions, which is typically not easy to handle.

Second, we can also simply mollify the problem (P) as described in section 5 and
then use the set of weakly Pareto stationary points of the regularized multiobjective
optimal control problem (Pε) as an approximation of that of (P). Note that the
convergence result in Theorem 5.3 suggests that the set that is obtained in this way
can indeed be expected to approximate the set of weakly Pareto stationary points of
(P) for small regularization parameters ε (provided the conditions in Corollary 4.7i)
are satisfied). However, in contrast to our first approach, this strategy does not allow
to guarantee that a calculated point is Pareto stationary in the ordinary sense, as
Theorem 5.3 only ensures weak stationarity in the limit ε→ 0+. Further, one has to
deal with an additional regularization error. On the other hand, computing a weakly
Pareto stationary point of (Pε) by solving the system (5.4) is, of course, much easier
than the solution of one of the strong stationarity conditions in Theorem 4.5.

In what follows, we will explore and compare both of the above approaches in
numerical experiments. Before we begin with our investigation, we would like to
emphasize that the subsequent analysis should be understood as a feasibility study. In
particular, we postpone a detailed discussion of the solvability and the approximation
properties of the discrete counterparts of the systems (4.6), (4.7), and (5.4) to future
research. For related results in the single-objective setting, see [13, 17].

As a model problem for our numerical tests, we consider a simple tri-criterial,
tracking-type optimization problem of the form

(M)


Minimize

(
1
2‖y − yD,1‖

2
L2 ,

1
2‖y − yD,2‖

2
L2 ,

ν

2
‖u‖2L2

)
w.r.t. u ∈ L2(Ω), y ∈ H1

0 (Ω) ∩H2(Ω),

s.t. −∆y + max(0, y) = u a.e. in Ω

on the unit square Ω := (0, 1)2 with two given desired states yD,1, yD,2 ∈ C(cl(Ω)) and
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a Tikhonov parameter ν > 0 (to be specified below). Note that this problem trivially
satisfies all of the conditions in Assumption 2.1 and Corollary 4.7i). Theorems 4.5
and 5.3 are thus applicable here. For the discretization of (M) (or its necessary
optimality conditions, to be more precise), we use Friedrichs-Keller triangulations Th
of Ω with widths h = 1/n, n ∈ N, and the finite element spaces

Vh :=
{
v ∈ C(cl(Ω))

∣∣ v|τ is affine for all cells τ ∈ Th and v|∂Ω = 0
}
⊂ H1

0 (Ω).

Recall that the stiffness and the mass matrix associated with Vh are given by

A :=

(∫
Ω

∇ϕi · ∇ϕkdx

)
i,k=1,...,M

and B :=

(∫
Ω

ϕi ϕkdx

)
i,k=1,...,M

,

where {ϕi}Mi=1 denotes the nodal basis of Vh and M := dim(Vh). (Here and in what
follows, we often suppress the dependency on the mesh width h in the notation for
the sake of readability.) For later reference, we further define the lumped mass matrix

L := diag

(
1

3
|supp(ϕi)| , i = 1, ...,M

)
.

Note that this matrix arises from an approximation of the L2-scalar product on Ω by
means of a three point subdivided quadrature rule subordinate to Th. Indeed, for all
v1, v2 ∈ C(cl(Ω)), we have∫

Ω

v1v2dx =
∑
τ∈Th

∫
τ

v1v2dx ≈
∑
τ∈Th

1

3
|τ |

∑
x∈Ω node of τ

v1(x)v2(x) = vT1 Lv2,

where v1, v2 ∈ RM are the coordinate vectors w.r.t. the basis {ϕi}Mi=1 of the Lagrange
interpolants Ih(v1), Ih(v2) ∈ Vh of the functions v1, v2, respectively, i.e., the vectors
containing the function values of v1 and v2 at the interior nodes of the mesh Th.

Let us now first consider the strong stationarity conditions (4.6) and (4.7) of (M),
i.e., the system

(7.2)

ū, p̄ ∈ L2(Ω), ȳ ∈ H1
0 (Ω) ∩H2(Ω),

−∆ȳ + max(0, ȳ) = ū, −∆p̄+ 1{ȳ>0}p̄ =

2∑
n=1

λ̄n(ȳ − yD,n), p̄+ λ̄3νū = 0

with a multiplier λ̄ ∈ R3 that satisfies
∑3
n=1 λ̄n = 1 and either λ̄n ≥ 0 for n = 1, 2, 3

in the case of (4.6) or λ̄n > 0 for n = 1, 2, 3 in the case of (4.7). Then, by formulating
the PDEs in (7.2) weakly, by passing over to the finite element space Vh, and by
expressing the L2- and H1-scalar products in the resulting variational identities with
A, B, and, in the case of the max(0, ·)- and 1{ȳ>0}-terms, with L, we arrive at the
discrete system of equations

(7.3)
Aȳ + Lmax(0, ȳ) = Bū, Ap̄ + Ldiag(H(ȳ))p̄ =

2∑
n=1

λ̄nB(ȳ− yD,n),

p̄ + λ̄3νū = 0.

Here, ȳ, p̄, ū ∈ RM and yD,1, yD,2 ∈ RM are the coordinate vectors w.r.t. {ϕi}Mi=1 of
the Vh-counterparts of the quantities ȳ, p̄, ū in (7.2) and the Lagrange interpolants of
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yD,1 and yD,2, respectively, H denotes the Heaviside function (with the convention
H(0) = 0), and the notation max(0, ȳ) and H(ȳ) is understood componentwise. Note
that, by eliminating ū and by splitting ȳ into a positive and a negative part, for all
multipliers λ̄ with λ̄3 > 0, (7.3) can also be recast as
(7.4)

Aȳ+ −Aȳ− + Lȳ+ + (νλ̄3)−1Bp̄ = 0,

Ap̄ + Ldiag(H(ȳ+ − ȳ−))p̄−
2∑

n=1

λ̄nB(ȳ+ − ȳ− − yD,n) = 0, min(ȳ+, ȳ−) = 0.

This reformulation has the advantage that the non-smoothness is completely removed
from the state equation and transferred into a separate, standard complementarity
constraint. Since the system (7.4) can - at least heuristically - be tackled with a
standard Newton-type method with the pseudo-Jacobian

(7.5)

 A+ L −A (νλ̄3)−1B
−(λ̄1 + λ̄2)B (λ̄1 + λ̄2)B A+ Ldiag(H(ȳ+ − ȳ−))

I − diag(H(ȳ+ − ȳ−)) diag(H(ȳ+ − ȳ−)) 0

 ,

we may now follow the first approach outlined at the beginning of this section and try
to solve (7.4) for various choices of the multiplier λ̄ ∈ R3 to compute an approximation
of the Pareto front of (P). Before we demonstrate how this solution method performs
in practice, we would like to remark the following:

Remark 7.1.
i) A strategy similar to the one above has also been used in [17, section 6]

for the calculation of first-order stationary points of single-objective optimal
control problems governed by quasilinear elliptic PDEs. The finite element
discretization and the mass-lumping scheme that we have employed for the
derivation of (7.3) are further the same as those in [13, section 5].

ii) It is important to realize that the transition from (7.2) to (7.3) follows a
pure “first optimize then discretize”-philosophy. Since the effects studied in
sections 4 and 6 rely on Stampacchia’s lemma, which is inherently infinite-
dimensional, it is a priori completely unclear if (7.3) can be identified with the
necessary optimality condition of an appropriately defined discrete problem
or if this system has a solution at all. As (7.3) arises from the continuous
optimality condition (7.2) (which is known to possess a solution) by passing
over to the finite element spaces Vh and by applying quadrature rules, one
can only guarantee that there exist vectors ȳ, p̄, ū ∈ RM which satisfy (7.3)
up to a certain error level r(h) that vanishes in the limit h → 0+. As we
will see below, in practical applications, this deficit of the discretization (7.3)
is rather unproblematic as r(h) turns out to be typically much smaller than
the tolerances that are normally used in numerical solution algorithms (in our
experiments this was 10−8). In fact, it can be observed that a Newton method
based on the pseudo-Jacobian (7.5) only fails in exceptionally rare cases, and
that the percentage of these cases decreases when the tolerance is fixed and
h is driven to zero, see Table 1. However, even in view of the fact that
calculating approximate solutions of the discrete system (7.3) works very well
in practice, one should keep in mind that this approach (and, in extension,
also the numerical procedure in [17, section 6]) is a heuristic. (Working with
the matrix (7.5) is, of course, heuristically motivated as well.)
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Table 1 and Figures 1 and 2 show the results that we have obtained by solving
the system (7.4) in the case

(7.6)

yD,1(x1, x2) := 1( 1
4 ,1)

2(x1, x2) sin

(
4

3
π

(
x1 −

1

4

))
sin

(
4

3
π

(
x2 −

1

4

))
,

yD,2(x1, x2) := −1(0, 34 )
2(x1, x2) sin

(
4

3
πx1

)
sin

(
4

3
πx2

)
, ν := 10−4,

with a Newton-type method based on the pseudo-Jacobian (7.5) up to the tolerance
tol = 10−8 for various multipliers λ̄. Here, the parameter space for λ̄, i.e., the simplex
Λ :=

{
λ ∈ R3 |

∑3
n=1 λn = 1, λn ≥ 0

}
was discretized with an equidistant mesh of

the form

(7.7) ΛK :=

{
1

K
(m,n,K −m− n) ∈ R3

∣∣∣m,n = 0, ...,K, m+ n < K

}
, K ∈ N.

Note that the vectors with λ3 = 0 are excluded in (7.7) as for these multipliers the
solvability of (7.2) cannot be guaranteed, cf. Lemma 4.8. We would like to emphasize
that the choice of the equidistant mesh ΛK in (7.7) does not imply that the computed
points in the front (7.1) are distributed equidistantly as well since it is a priori unclear
how the set (7.1) is parametrized by Λ (see Figure 1). To achieve a more homogeneous
resolution of (7.1), one can employ adaptive discretization techniques or reference
point methods analogous to those used for classical scalarization approaches, cf. [5,
33, 53] and also Remark 4.6iii). We omit a detailed discussion of this topic to avoid
overloading the paper.

Table 1
Performance of our Newton-type algorithm in the situation of (7.6). The first line shows the

width h of the considered Friedrichs-Keller triangulation, the second one the average number of
Newton iterations needed for a successful step over the course of the calculation of the front (7.1)
for the given h, and the third one the number/percentage of steps in which the Newton method failed
to converge for the given h in less than ten iterations. The width of the discretization of Λ in (7.7)
was chosen as 1/K = 1/100 so that, for each h, (7.4) was solved 5050 times.

h 1/16 1/32 1/64 1/128 1/256 1/512

Average number of
Newton iterations

2.0684 2.2321 2.5135 2.8294 2.9899 3.1407

Number/percentage of 19 9 10 10 5 5
unsuccessful steps 0.376% 0.178% 0.198% 0.198% 0.099% 0.099%

As the results in Table 1 show, our Newton-type algorithm requires on average
between two and three iterations to reduce the residue of (7.4) below the given thresh-
old tol = 10−8. (The starting point was always chosen as zero here.) We further see
that the average number of iterations remains nearly constant as h is decreased. This
mesh-independence of the solution procedure makes sense as our algorithm is based
on the necessary optimality condition of the continuous problem (M) in (7.2). In the
last line of Table 1, we can further see that our method only fails to solve the system
(7.4) in exceptionally rare situations. Moreover, the number of unsuccessful solution
steps (here defined as steps in which the Newton-type algorithm failed to converge
for a given λ in less than ten iterations) decreases as the mesh width h tends to zero.
This confirms the theoretical considerations made in Remark 7.1.
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Fig. 1. Approximation of the set (7.1) for the problem (M) in the situation (7.6) obtained by
solving the system (7.4) for 5050 values of the multiplier λ̄. The spatial mesh width h was chosen
as 1/512 and the width of the equidistant discretization of the simplex Λ in (7.7) as 1/K = 1/100.
The points in the scatter plot associated with multipliers λ̄ that have a vanishing component and
thus correspond to weakly but not ordinarily Pareto stationary points are depicted in red.

Fig. 2. State (left) and control (right) associated with the solution of (7.4) in the situation of
(7.6) for the particular multiplier λ̄ = (0.49, 0.5, 0.01). The width h was chosen as 1/64 here.

For comparison, let us now consider the regularization approach that we have
outlined at the beginning of this section: By starting from the necessary optimality
condition (5.4) for the regularized multiobjective optimal control problem (Pε) and
by proceeding along exactly the same lines as for (7.3), we arrive at the equations

(7.8)
Aȳ + Lmaxε(ȳ) = Bū, Ap̄ + Ldiag(max′ε(ȳ))p̄ =

2∑
n=1

λ̄nB(ȳ− yD,n),

p̄ + λ̄3νū = 0,

where λ̄ is again an arbitrary but fixed element of Λ, and where we again suppress
the dependence on h and ε in the notation for ȳ, A, B, etc. for the sake of readability.
Note that, in contrast to (7.3), the system (7.8) is smooth so that a standard Newton
algorithm can be used for its solution. Further, it is straightforward to check that
(7.8) corresponds to the necessary optimality condition for weak Pareto optimality of
a discrete version of (Pε), and that (7.8) admits at least one solution for all arbitrary
but fixed λ̄ ∈ Λ with λ̄3 > 0 (cf. the proof of Lemma 4.8 and also the results in
[21, section 3.3]). The processes of discretization and optimization (or calculating the
first-order necessary optimality conditions, to be more precise) thus commute in the
case of (Pε) and the solvability of (7.8) is not an issue at all. This is an advantage
over approaches based on the system (7.3) that, of course, again comes at the price
of the additional regularization error.
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Table 2 and Figure 3 depict the results that are obtained when the function
x 7→ 1

2 (x +
√
x2 + ε2) is chosen as maxε(·) in (Pε), the system (7.8) is solved with a

classical Newton method, and the set Λ is discretized as in (7.7). As Table 2 shows,
the solution of (7.8) again requires between two and three Newton iterations on aver-
age over the course of a single approximation of the front (7.1), and, similarly to the
behavior in Table 1, this number is largely independent of the mesh width h and the
regularization parameter ε. Iterations, in which the Newton algorithm fails to con-
verge, are encountered here as well (though less frequently than in the unregularized
case if ε is moderate), and it can be seen that the behavior of our solution method
for the regularized system (7.8) emulates that observed for the unregularized problem
in Table 1 when ε tends to zero (with a notable exception for h = 1/256 most likely
due to a favorable relationship between h and ε). Figure 3 further shows that the
front calculated by solving (7.8) approximates that obtained from the system (7.4) as
ε decreases. This underlines that the solutions obtained from (7.4) are sensible, that
the system (7.4) allows to calculate an approximation of the front (7.1) that does not
suffer from a regularization error, and that the strong stationarity conditions derived
in section 4 are indeed not only interesting for their own sake and theoretical purposes
but also for numerical solution algorithms.

Table 2
Average number of Newton iterations needed for the approximation of the set (7.1) by successive

solution of the regularized system (7.8) for various h and ε and ΛK as in (7.7). The width of the
mesh ΛK was again chosen as 1/K := 1/100 here so that (7.8) was solved 5050 times in each
configuration. The number of unsuccessfully solved systems is denoted in parentheses.

ε
h

1/16 1/32 1/64 1/128 1/256

10−3 2.2771 (0) 2.2283 (0) 2.1671 (0) 2.0736 (0) 2.0392 (0)

10−6 2.0849 (9) 2.2063 (7) 2.3895 (3) 2.5165 (0) 2.4755 (0)

10−9 2.0588 (19) 2.1789 (9) 2.3645 (10) 2.4907 (8) 2.4085 (0)

Fig. 3. Approximations of the pseudo-Pareto front (7.1) obtained from the unregularized system
(7.4) (blue) and the regularized system (7.8) with ε = 10 (red) and ε = 20 (green) for h = 1/256
and K = 100. The regularization parameter is chosen very large here because for smaller ε the
sets are visually indistinguishable. Points on the front that correspond to weakly but not ordinarily
Pareto stationary points are colored solidly. It can be seen that the sets calculated by solving (7.8)
approximate that obtained from (7.4) as ε tends to zero.
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