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1. Introduction. The aim of this paper is to study state-constrained, parabolic,
distributed optimal control problems of the form

(P)



Minimize J(y, u) :=

∫ T

0

j(·, y) + g(u)dt+ φ(y(T ))

w.r.t. u ∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

s.t. ∂ty +Ay = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω,

and y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ).

Here, Ω ⊂ Rd, d ≥ 1, is a bounded domain with a sufficiently regular boundary,
T > 0 is a given final time, j : [0, T ] × L2(Ω) → [0,∞), g : L2(Ω) → (−∞,∞] and
φ : L2(Ω)→ [0,∞) are (not necessarily differentiable) maps with suitable properties,
A : H1

0 (Ω) → H−1(Ω) is an elliptic second-order partial differential operator, and
ψ ∈ H2(Ω) and y0 ∈ H1

0 (Ω) are given functions satisfying tr(ψ) ≤ 0 and y0 ≥ ψ a.e.
in Ω. For the precise assumptions on the quantities in (P), see section 2 below. We
establish that, if the bound ψ and the operator A satisfy the compatibility condition
Aψ ≤ 0 a.e. in Ω, then local minimizers ū ∈ L2(0, T ;L2(Ω)) of (P) are also solutions
of a stationarity system (roughly of weak type, cf. [33] and [55, Section 4.1]) which
involves an adjoint state p̄ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩BV ([0, T ];Y ∗γ ) and
a multiplier µ̄ ∈ M([0, T ] × cl(Ω)) ∩W0(0, T )∗. Here, W0(0, T ) and Yγ are defined
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by W0(0, T ) := {z ∈ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;H−1(Ω)) | z(0) = 0 a.e. in Ω} and

Yγ := H1
0 (Ω)∩Hγ(Ω), γ > d/2, respectively, andM([0, T ]×cl(Ω)) denotes the space of

regular Borel measures on [0, T ]×cl(Ω). We further demonstrate that the adjoint state
p̄ is an element of L∞((0, T )× Ω) when the spatial dimension d is smaller than four
and φ is sufficiently smooth, that optimal controls ū of (P) inherit all of the regularity
properties of p̄ when g is equal to ‖ · ‖2L2(Ω), and that a full KKT-system (involving all
of the aforementioned regularities) can be recovered for (P) when the functions j, g and
φ are differentiable. Note that these findings significantly improve what was previously
known about the Lr(0, T ;W 1,q(Ω))-regularity properties of adjoint states and optimal
controls of problems of the type (P). See below for a more detailed discussion of this
topic. For the main results of this paper on the properties of local solutions ū of (P)
and first-order necessary optimality conditions, we refer the reader to Theorems 3.3
and 3.4 and Corollaries 3.5 and 3.6. As an application of our regularity results for
ū, p̄ etc., we derive new finite element error estimates for a standard dG(0)-cG(1)-
discretization of a purely state-constrained linear-quadratic optimal control problem
governed by the heat equation. The order of convergence that we establish in this
context - ‖ū− ūkh‖L2(0,T ;L2(Ω)) = O(k1/2 +h) up to logarithmic factors - is the same
as that proved for optimal control problems with integral constraints on the states y
or L∞-constraints on the controls u in [31, 40, 41]. For further details on this topic
and our precise assumptions on the discretization etc., see section 4.

Before we begin with our analysis, let us give some background: Recall that, in
the classical theory, the derivation of a KKT-system for an optimal control problem
with an affine linear control-to-state operator and a convex state constraint of the
form y ∈ Yad typically requires the existence of a Slater point, i.e., of an admissible
control u whose state y is contained in the interior of the set Yad of all admissible
states (defined w.r.t. a suitable topology). Compare, for instance, with the results in
[2, 5, 8, 12, 13, 20, 22, 28, 29, 31, 40, 41, 43, 47, 48] in this context. For the problem
(P) with its parabolic PDE and its pointwise-a.e. constraint y ≥ ψ, this causes a lot
of difficulties. The most severe are the following:

• For the set of all functions y with y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ) to have a
non-empty interior, one typically has to work at least with the topology of the
space L∞((0, T )× Ω), and this, in turn, is usually only possible if the solution
operator S : u 7→ y of the governing partial differential equation maps the set
of admissible controls into the essentially bounded functions. In the case of the
problem (P), the latter requirement can, in general, only be guaranteed in the
one-dimensional setting or in the presence of suitable control constraints so that
the applicability of Slater-type conditions is often severely limited.

• Since one usually has to work with the space L∞((0, T )× Ω) (or C([0, T ]×cl(Ω)),
respectively) to be able to satisfy a Slater condition for an inequality of the form
y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ), the Lagrange multiplier, that is obtained for
such a pointwise state constraint by means of the classical theory, is typically
only a measure on [0, T ]× cl(Ω). This implies in particular that the adjoint state
p̄ in a KKT-system, that is derived for a problem of the type (P) by exploiting
a Slater condition, can, in general, only be shown to possess the comparatively
poor regularity p̄ ∈ Lr(0, T ;W 1,q(Ω)) for all r, q ∈ [1, 2) with 2/r+d/q > d+1, cf.
[11, Section 6] and the results in [8, 20, 22, 31]. Since optimal controls commonly
inherit the regularity properties of the associated adjoint states, the suboptimal
regularity results for p̄ are often problematic, e.g., in the context of a priori finite
element error estimates.
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For additional comments on this topic, see also the introductions of the papers
[36, 48, 49]. The strategy that is most commonly used in the literature to circumvent
the above difficulties surrounding the Slater condition in the analysis of parabolic
distributed optimal control problems of the type (P) is to employ regularization
or penalization techniques that either incorporate the constraint y ≥ ψ into the
objective function or introduce artificial bounds on the controls u which ensure a
higher regularity of the attainable states y. Compare, for instance, with the results in
[5, 6, 36, 43, 45, 47, 48, 49] in this context where Lavrentiev- and Moreau-Yosida-type
regularizations are studied, and with [20, 22, 40] where the control space is restricted
a priori. For an approach alternative to regularization/restriction techniques, see also
[51], where it is proposed to work simultaneously with two different functional analytic
settings - one which allows to establish the existence of an optimal control and one
which allows to satisfy a Slater condition - to derive KKT-type stationarity systems
for problems with states of low regularity.

What (at least to the best of the authors’ knowledge) all strategies currently found
in the literature have in common is that they do not yield any regularity properties
for the optimal controls ū or the adjoint states p̄ of a problem of the type (P) that
go beyond ū, p̄ ∈ L2(0, T ;L2(Ω)) or the already mentioned p̄ ∈ Lr(0, T ;W 1,q(Ω)) for
all r, q ∈ [1, 2) with 2/r + d/q > d + 1, cf., e.g., the results in [36, 48, 51]. This is
very unsatisfactory not only because additional information about the regularity of ū
and p̄ is crucial for a proper analysis of numerical solution procedures for problems
of the type (P), but also because, for optimal control problems governed by elliptic
partial differential equations with pointwise state constraints, the adjoint state p̄ can
often be shown to possess far more regularity than one would expect for a function
that is characterized by a PDE with a measure on the right-hand side (i.e., the ad-
joint equation). Compare, for instance, with [12, Theorem 3.1] in this regard, which
establishes that the adjoint state is an element of H1(Ω) ∩L∞(Ω) in the elliptic case
and thus drastically improves the W 1,q(Ω)-regularity for all 1 ≤ q < d/(d− 1) that is
obtained from the adjoint equation, and also with the W 1,∞(Ω)-regularity result for
optimal controls ū in [13, Theorem 4.2]. (Note that the proofs in [12, 13] rely heavily
on the existence of a Slater point, the classical KKT-theory and the ellipticity of the
governing partial differential equation. It thus does not seem to be possible to extend
the arguments used in [12, 13] to the parabolic setting.)

In the present paper, we demonstrate that it is indeed possible to derive improved
regularity results similar to those in [12, 13] for parabolic optimal control problems
of the type (P) when the bound ψ in the state constraint and the elliptic part A
of the governing PDE satisfy Aψ ≤ 0 a.e. in Ω (see Theorem 3.3, Theorem 3.4 and
Corollary 3.5). We further show that these results can be established without ever
working with a Slater condition so that our approach also automatically resolves
all of the aforementioned difficulties concerning the existence of Slater points in the
parabolic setting. In the situation where the functions j, g and φ are differentiable,
we are moreover able to recover a full KKT-system for the problem (P) involving all
of the classical complementarity and slackness conditions (see Corollary 3.6). This
shows that our assumption Aψ ≤ 0 a.e. in Ω can be interpreted as a non-standard
constraint qualification that offers an alternative to the classical Slater condition.
(Note that, analogously to the existence of a Slater point, the condition Aψ ≤ 0 a.e.
in Ω can be verified a priori and without any knowledge about the optimal controls
of (P), and that the assumption Aψ ≤ 0 a.e. in Ω is trivially satisfied for all constant
bounds ψ.) The main idea of our analysis is to incorporate the state constraint y ≥ ψ
in (P) into the control-to-state mapping S : u 7→ y. This results in an optimal control
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problem governed by an evolution variational inequality which can be analyzed very
effectively with regularization techniques. We remark that, in the elliptic setting, a
similar argumentation has already been used in [18, Corollary 5.5]. For more details
on this topic, see also the discussion after the proof of Proposition 3.2. At least to
the best of the authors’ knowledge, the regularity results and first-order necessary
optimality conditions established in this paper are new and have not been explored
so far in the literature. The same seems to be the case for the finite element error
estimate (4.14) that we derive as an application of our regularity results in section 4
for a purely state-constrained linear-quadratic optimal control problem governed by
the heat equation. We remark that, for problems involving L∞-constraints on the
control, estimates analogous to (4.14) have already been obtained in [31].

We conclude this introduction with a short overview of the structure and the
content of the paper.

After briefly clarifying the notation that we use in our analysis in subsection 1.1,
we discuss preliminary results on the existence of solutions to (P) and the properties
of parabolic partial differential equations in section 2. Here, we also summarize our
standing assumptions on the quantities in (P), see Assumption 2.1.

In section 3, we then show that, under the assumption Aψ ≤ 0 a.e. in Ω, problems
of the type (P) can indeed be reformulated as optimal control problems governed
by evolution variational inequalities, and that this reformulation indeed allows to
derive first-order necessary optimality conditions and improved regularity results for
optimal controls and adjoint states (see Theorem 3.3 and the subsequent corollaries).
Section 3 also contains three tangible, self-contained examples (Examples 3.9 to 3.11)
that illustrate what our results mean in practice.

In section 4, we demonstrate that the regularity results established in section 3
allow to derive new a priori finite element error estimates for purely state-constrained
parabolic optimal control problems. The approach that we employ in this section
roughly follows the lines of [12, Section 5] - see Theorem 4.8 for the main result.
Section 4 concludes with numerical experiments that confirm our theoretical findings,
a corollary on the Hs(0, T ;L2(Ω))-regularity of optimal controls, and some remarks
on possible generalizations of our analysis.

The appendix of this paper collects some auxiliary results on stability properties of
parabolic partial differential equations and truncation operations in Sobolev-Bochner
spaces that are needed for the analysis of sections 2 to 4. The theorems found here
may also be of independent interest.

1.1. Remarks on the notation. In what follows, we use the standard symbols
Lq(Ω), Ck,γ(Ω), Hs

0(Ω), Hs(Ω) and W k,q(Ω), 1 ≤ q ≤ ∞, k ∈ N, 0 < γ ≤ 1, s > 0, for
the Lebesgue-, Hölder- and (fractional) Sobolev spaces on a bounded Lipschitz domain
Ω ⊂ Rd, d ≥ 1, respectively. Given a Banach space Z and a T > 0, we further denote
with Z∗ the topological dual of Z and with Lq(0, T ;Z), W k,q(0, T ;Z), Hs(0, T ;Z),
BV ([0, T ];Z) and C([0, T ];Z), 1 ≤ q ≤ ∞, k ∈ N, s > 0, the Lebesgue-Bochner
spaces, the Sobolev-Bochner spaces, the space of functions of bounded variation, and
the space of continuous functions with values in Z, respectively. Recall that, in the
special case Z = L2(Ω), we have L2(0, T ;L2(Ω)) ∼= L2((0, T ) × Ω). This will be
exploited frequently in our analysis. For later use, we also introduce the notation

(1.1) W0(0, T ) :=
{
z ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)) | z(0) = 0 a.e. in Ω
}

and Yγ := H1
0 (Ω) ∩ Hγ(Ω) for all γ > 0. As usual, when working with the spaces

H1
0 (Ω) and C(K) on an open set Ω ⊂ Rd and a compact set K ⊂ Rd, we define
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H−1(Ω) to be the dual of H1
0 (Ω) with pivot space L2(Ω) and identify C(K)∗ with

the spaceM(K) of signed, regular Borel measures on K via the Riesz representation
theorem. For details on this topic and the precise definitions of all of the above spaces,
see [1, 3, 4, 27, 34, 46]. Norms, scalar products and dual pairings are denoted by ‖ · ‖,
(·, ·) and 〈·, ·〉 in this paper, equipped with suitable indices that specify the space we
are referring to. For the Euclidean norm, we also use the notation | · |. The boundary
and the topological closure of a set are denoted by ∂(·) and cl(·), respectively. If we
want to emphasize that the closure is taken w.r.t. a certain topology, then we again
add a suitable subscript. The arrows ⇀ and→ indicate weak and strong convergence,
and the symbols ∂ and ∂c are used for the convex and the Clarke subdifferential in
the sense of [24, Definition I-5.1] and [19, Section 2.1]. With ∂t, ∂n, n = 1, ..., d, ∇, ∆,
tr(·), Ld, o(·) and O(·), we denote the weak time derivative in the Sobolev-Bochner
sense, the weak spatial partial derivatives, the weak spatial gradient, the weak spatial
Laplace operator, the spatial trace operator (with varying domains of definition), the
d-dimensional Lebesgue measure, and the classical Landau symbols, respectively. A
prime is used for Gâteaux and Fréchet derivatives in the functional analytic sense.
Given a function v : (0, T )×Ω→ R and a measurable set D ⊂ (0, T )×Ω, we further
define {v ∗ 0}, ∗ ∈ {=, 6=, <,>,≤,≥}, to be the set {(t, x) ∈ (0, T ) × Ω | v(t, x) ∗ 0}
and 1D : (0, T ) × Ω → {0, 1} to be the indicator function of D. Where appropriate,
we consider {v ∗ 0} to be defined up to sets of measure zero and identify 1D with an
element of L∞((0, T ) × Ω). Finally, we set a+ := max(0, a) and a− := min(0, a) for
all a ∈ R. Note that, in addition to the above definitions and conventions, further
symbols etc. are introduced in this paper wherever necessary. This supplementary
notation is defined where it first appears in the text.

2. Problem statement and preliminary results. As already mentioned in
the introduction, the main goal of this paper is to study state-constrained, parabolic,
distributed optimal control problems of the type

(P)



Minimize J(y, u) :=

∫ T

0

j(·, y) + g(u)dt+ φ(y(T ))

w.r.t. u ∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

s.t. ∂ty +Ay = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω,

and y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ).

Our standing assumptions on the quantities in (P) are as follows:

Assumption 2.1 (standing assumptions for the study of problem (P)).
• Ω ⊂ Rd, d ≥ 1, is a bounded domain, which is either convex or possesses a
C1,1-boundary, and T > 0 is a given final time.

• j : [0, T ]× L2(Ω)→ [0,∞) is a function with the following properties:
i) j(·, z) is Lebesgue measurable for all z ∈ L2(Ω),

ii) j(·, 0) is essentially bounded,
iii) for every r > 0 there exists a constant Cr > 0 independent of t with

|j(t, z1)− j(t, z2)| ≤ Cr‖z1 − z2‖L2(Ω)

for all t ∈ [0, T ] and all z1, z2 ∈ L2(Ω) with ‖z1‖L2(Ω), ‖z2‖L2(Ω) ≤ r.
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• g : L2(Ω)→ (−∞,∞] is a function with the following properties:
i) g is convex, proper and lower semicontinuous,

ii) there exist constants C1 > 0, C2 ∈ R with

g(z) ≥ C1‖z‖2L2(Ω) + C2 ∀z ∈ L2(Ω),

iii) for all z1, z2 ∈ L2(Ω) which satisfy z+
1 = z+

2 and z−2 ≤ z−1 a.e. in Ω, it
holds g(z1) ≤ g(z2). (Recall that z− := min(0, z) ≤ 0 for all z ∈ L2(Ω).)

• φ : L2(Ω)→ [0,∞) is a function which is Lipschitz on bounded sets.
• A : H1

0 (Ω)→ H−1(Ω) is a second-order differential operator of the form

(2.1) Av = −
d∑

m,n=1

∂m (amn∂nv) + a0v

with coefficients amn ∈ C0,1(Ω), a0 ∈ L∞(Ω) such that

(2.2) a0 ≥ 0, amn = anm and

d∑
m,n=1

amnξmξn ≥ α|ξ|2

holds a.e. in Ω for all m,n = 1, ..., d and all ξ ∈ Rd with some α > 0.
• ψ ∈ H2(Ω) is a given function with tr(ψ) ≤ 0 a.e. on ∂Ω.
• y0 ∈ H1

0 (Ω) is a given function with y0 ≥ ψ a.e. in Ω.

We remark that we could also consider other boundary conditions here. We
restrict the analysis to homogeneous Dirichlet conditions for the sake of simplicity.
The assumptions, that we have made above, are quite natural for the study of optimal
control problems of the type (P). Only the third condition on g may appear a bit
unusual at first glance. It will become clear in the proof of Proposition 3.2 why we
restrict our analysis to functions g with this property. To demonstrate that the setting
introduced in Assumption 2.1 is quite general, we note the following:

Example 2.2 (possible choices for j and g). All of the following functions fit into
the framework of Assumption 2.1 (as one may easily check):

• The L2-tracking term

j : [0, T ]× L2(Ω)→ [0,∞), j(t, z) :=
1

2
‖z − yD(t)‖2L2(Ω),

with some arbitrary but fixed measurable and bounded yD : [0, T ]→ L2(Ω).
• The L1-tracking term

j : [0, T ]× L2(Ω)→ [0,∞), j(t, z) := ‖z − yD(t)‖L1(Ω),

with some arbitrary but fixed measurable and bounded yD : [0, T ]→ L1(Ω).
• The L2-Tikhonov regularization term with pointwise-a.e. control constraints

g : L2(Ω)→ [0,∞], g(z) :=

{ν
2
‖z‖2L2(Ω) if ua ≤ z ≤ ub a.e. in Ω

∞ else
,

with some arbitrary but fixed measurable functions ua, ub : Ω→ [−∞,∞] with
ua ≤ 0 ≤ ub a.e. in Ω and some ν > 0. (The choice ua ≡ −∞, ub ≡ ∞,
which corresponds to the case without control constraints, is allowed here.)
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• The L1-Tikhonov regularization term with pointwise-a.e. control constraints

g : L2(Ω)→ [0,∞], g(z) :=

{
ν‖z‖L1(Ω) if ua ≤ z ≤ ub a.e. in Ω

∞ else
,

with some arbitrary but fixed ua, ub ∈ L2(Ω) satisfying ua ≤ 0 ≤ ub a.e. in Ω
and some ν ≥ 0. (The “bang-bang” case ν = 0 is allowed here.)

For some examples of problems satisfying the conditions in Assumption 2.1, see
also section 3. To prove that (P) is well-posed, we recall:

Proposition 2.3 (properties of the PDE in (P)). For every u ∈ L2(0, T ;L2(Ω)),
there exists a unique solution y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) of the PDE

(2.3)

∂ty +Ay = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω.

This solution also possesses C([0, T ];H1
0 (Ω))-regularity, and there exists an absolute

constant C > 0 such that the solution map S : u 7→ y associated with (2.3) satisfies

(2.4)
‖S(u1)− S(u2)‖L2(0,T ;H1

0 (Ω)) + ‖S(u1)− S(u2)‖C([0,T ];L2(Ω))

≤ C‖u1 − u2‖L1(0,T ;L2(Ω)) ∀u1, u2 ∈ L2(0, T ;L2(Ω)).

Further, the operator S is completely continuous as a function from L2(0, T ;L2(Ω))
to C([0, T ];L2(Ω))∩L2(0, T ;H1

0 (Ω)), i.e., the convergence un ⇀ u in L2(0, T ;L2(Ω))
implies S(un)→ S(u) in L2(0, T ;H1

0 (Ω)) and C([0, T ];L2(Ω)).

Proof. The unique solvability of the PDE (2.3), the C([0, T ];H1
0 (Ω))-regularity

of the solution y and the Lipschitz estimate (2.4) follow from [4, Theorem 4.3], [15,
Theorem 2.3] and the regularity results for the operator A in [32, Theorem 3.2.1.2], [30,
Theorem 9.15]. To establish the complete continuity of S, one can use (for example)
the Lipschitz estimate (2.4), the theorem of Aubin-Lions (see [52, Theorem 10.12]),
and a simple bootstrapping argument. We leave the details to the reader as the
arguments are fairly standard.

As a direct consequence of the last result, we obtain:

Proposition 2.4 (solvability of (P)). Suppose that there exists a function u ∈
L2(0, T ;L2(Ω)) satisfying

(2.5) S(u) ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ) and

∫ T

0

g(u)dt <∞.

Then the problem (P) admits at least one global solution ū ∈ L2(0, T ;L2(Ω)).

Proof. From the properties of the function g and [14, Lemma 2.5.2], we obtain

that the map G : L2(0, T ;L2(Ω))→ (−∞,∞], z 7→
∫ T

0
g(z)dt, is well-defined, convex,

lower semicontinuous, proper and coercive in the sense that there exist constants
C1 > 0 and C2 ∈ R with G(z) ≥ C1‖z‖2L2(0,T ;L2(Ω)) + C2 for all z ∈ L2(0, T ;L2(Ω)).
Proposition 2.3 and our standing assumptions on j and φ further imply that the

map L2(0, T ;L2(Ω)) 3 z 7→
∫ T

0
j(·, S(z))dt + φ (S(z)(T )) ∈ [0,∞) is well-defined

and completely continuous. The claim now follows straightforwardly from the direct
method of calculus of variations.
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Note that, here and in what follows, we only refer to those points as local/global
solutions of (P) that satisfy a local/global optimality condition and yield a finite value
of the objective function J , i.e., we work with the following definition:

Definition 2.5 (optima of (P)). A point ū ∈ L2(0, T ;L2(Ω)) is called a local
solution of (P) if it is feasible in the sense of (2.5) and if there exists an r > 0 such
that J(S(ū), ū) ≤ J(S(u), u) holds for all u ∈ L2(0, T ;L2(Ω)) which satisfy (2.5) and
‖u−ū‖L2(0,T ;L2(Ω)) < r. If r can be chosen as infinity, then we call ū a global solution.

3. First-order optimality conditions and regularity results. Having dis-
cussed the solvability of the problem (P), we now turn our attention to first-order
necessary optimality conditions and questions of regularity. As already explained in
the introduction, the approach, that we use in the following to study the proper-
ties of optimal controls ū of (P), is based on the idea to completely avoid working
with a Slater condition and to exploit an alternative constraint qualification instead
that does not suffer from the problems discussed in section 1. (The term “constraint
qualification” is actually a bit of a stretch here since the proofs of Proposition 3.2
and Theorem 3.3 below also rely on the assumptions on the structure of the objective
J of (P) made in section 1. We use this expression for lack of better terminology.)
The condition, that is at the heart of our analysis, reads as follows:

Definition 3.1 (condition (X)). The problem (P) is said to satisfy (X) if

Aψ ≤ 0 a.e. in Ω.

Note that condition (X) can be checked a priori and that (X) is trivially satisfied
for all constant bounds ψ ≡ c with c ∈ (−∞, 0]. In particular, (X) also covers the
case ψ ≡ 0 in which a Slater point cannot exist for (P) in the continuous functions
due to the zero boundary conditions in the governing PDE. The main reason for the
usefulness of condition (X) is the following observation:

Proposition 3.2 (reformulation of (P) under condition (X)). Suppose that (X)
is satisfied and that ū ∈ L2(0, T ;L2(Ω)) is a local (respectively, global) solution of the
problem (P) with state ȳ := S(ū) ∈ L2(0, T ;H1

0 (Ω)∩H2(Ω))∩H1(0, T ;L2(Ω)). Then
it holds

(3.1) ū =

{
∂tȳ +Aȳ Ld+1-a.e. in {ȳ > ψ}
Aψ Ld+1-a.e. in {ȳ = ψ}

,

and ū is also a local (respectively, global) solution of the optimal control problem

(Q)



Minimize J(y, u) :=

∫ T

0

j(·, y) + g(u)dt+ φ(y(T ))

w.r.t. u ∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

s.t. y(t) ∈ K for a.a. t ∈ (0, T ), y(0) = y0 a.e. in Ω,∫ T

0

〈∂ty +Ay − u, v − y〉H1
0 (Ω) dt ≥ 0

∀v ∈ L2(0, T ;H1
0 (Ω)), v(t) ∈ K for a.a. t ∈ (0, T ),

where K is the set defined by K := {z ∈ H1
0 (Ω) | z ≥ ψ a.e. in Ω}.

Proof. We proceed in several steps: First, we note that (2.3), Lemma A.1, and
the regularity results for the state ȳ := S(ū) in Proposition 2.3 yield that ū = ∂tȳ+Aȳ
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holds Ld+1-a.e. in (0, T ) × Ω and that ∂t(ȳ − ψ) + A(ȳ − ψ) = 0 holds Ld+1-a.e. in
{ȳ = ψ}. (Here and in what follows, we identify elements of L2(Ω) with elements of
L2(0, T ;L2(Ω)) that are constant in time everywhere where it is appropriate.) If we
combine the last two identities, then we immediately arrive at (3.1). This proves the
first claim of the proposition.

Next, let us consider the inner variational inequality in (Q), i.e., the problem

(3.2)

y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

y(t) ∈ K for a.a. t ∈ (0, T ), y(0) = y0 a.e. in Ω,∫ T

0

〈∂ty +Ay − u, v − y〉H1
0 (Ω) dt ≥ 0

∀v ∈ L2(0, T ;H1
0 (Ω)), v(t) ∈ K for a.a. t ∈ (0, T ).

From [4, Theorem 4.3, Corollary 4.4] and [15, Theorem 2.3], we obtain that this
evolution variational inequality has a well-defined solution operator R : u 7→ y which
maps L2(0, T ;L2(Ω)) into the space L2(0, T ;H1

0 (Ω) ∩H2(Ω)) ∩H1(0, T ;L2(Ω)) and
which is globally Lipschitz as a function from L2(0, T ;L2(Ω)) to L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0 (Ω)). Suppose now that we are given some u ∈ L2(0, T ;L2(Ω)) with
associated y := R(u), and let ũ ∈ L2(0, T ;L2(Ω)) ∼= L2((0, T )× Ω) be defined by

(3.3) ũ :=

{
u Ld+1-a.e. in {y > ψ}
Aψ Ld+1-a.e. in {y = ψ}

.

We claim that this modified control satisfies

(3.4) R(u) = R(ũ) = S(ũ) = y and

∫ T

0

g(ũ)dt ≤
∫ T

0

g(u)dt.

Indeed, it follows straightforwardly from (3.2), the regularity of y, Lemma A.1 and the
same arguments as in the first part of the proof that ũ = ∂ty+Ay holds Ld+1-a.e. in
(0, T )×Ω. This yields R(ũ) = S(ũ) = R(u) = y (as one may easily check by plugging
this formula into (3.2)). Further, we obtain from (3.2) and again the same arguments
as in the first part of the proof that ũ−u = Aψ−u = ∂ty+Ay−u ≥ 0 holds Ld+1-a.e.
in {y = ψ} and, as a consequence, that 0 ≥ Aψ = ũ ≥ u holds Ld+1-a.e. in {y = ψ}.
Here, the inequality Aψ ≤ 0 follows from condition (X). The above implies that the
positive and negative parts of u and ũ satisfy u+ = ũ+ and u− ≤ ũ− Ld+1-a.e. in

(0, T ) × Ω, and, by our assumptions on g, that
∫ T

0
g(ũ)dt ≤

∫ T
0
g(u)dt holds. This

establishes (3.4) as desired.
Let us assume now that ū ∈ L2(0, T ;L2(Ω)) is a global solution of (P), that

u ∈ L2(0, T ;L2(Ω)) is arbitrary but fixed and that ũ and R are defined as in (3.3)
and (3.4). Then the optimality of ū in (P) and our previous results yield∫ T

0

j(·, R(u)) + g(u)dt+ φ (R(u)(T ))

≥
∫ T

0

j(·, R(u)) + g(ũ)dt+ φ (R(u)(T )) =

∫ T

0

j(·, S(ũ)) + g(ũ)dt+ φ (S(ũ)(T ))

≥
∫ T

0

j(·, S(ū)) + g(ū)dt+ φ (S(ū)(T )) =

∫ T

0

j(·, R(ū)) + g(ū)dt+ φ (R(ū)(T )) ,

where, in the last line, we have used the trivial identity S(ū) = R(ū), cf. (2.3) and
(3.2). This proves that every global solution ū of (P) is also a global solution of (Q).
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It remains to prove the claim for local solutions. To this end, we argue by con-
tradiction: Suppose that ū ∈ L2(0, T ;L2(Ω)) is locally optimal for (P) with state
ȳ = S(ū) = R(ū) but not a local solution of (Q). Then there exists a sequence
{un} ⊂ L2(0, T ;L2(Ω)) with un → ū in L2(0, T ;L2(Ω)) such that

(3.5)

∫ T

0

j(·, R(un))+g(un)dt+φ (R(un)(T )) <

∫ T

0

j(·, R(ū))+g(ū)dt+φ (R(ū)(T ))

holds for all n where R again denotes the solution map of (3.2). Define yn := R(un)
and (as in (3.3))

ũn :=

{
un Ld+1-a.e. in {yn > ψ}
Aψ Ld+1-a.e. in {yn = ψ}

.

Then we obtain from (3.4) that these modified controls satisfy S(ũn) = R(ũn) =
R(un) = yn and
(3.6)∫ T

0

j(·, R(ũn))+g(ũn)dt+φ (R(ũn)(T )) ≤
∫ T

0

j(·, R(un))+g(un)dt+φ (R(un)(T )) .

We claim that the sequence {ũn} converges to ū in L2(0, T ;L2(Ω)). To see this, we
note that (3.1) implies

ū =

{
ū Ld+1-a.e. in {ȳ > ψ}
Aψ Ld+1-a.e. in {ȳ = ψ}

.

In combination with the definition of ũn and the identification L2(0, T ;L2(Ω)) ∼=
L2((0, T )× Ω), the above yields

(3.7)

‖ũn − ū‖L2(0,T ;L2(Ω))

≤
∥∥1{yn>ψ}(un − ū)

∥∥
L2((0,T )×Ω)

+
∥∥1{yn=ψ}(Aψ − ū)

∥∥
L2((0,T )×Ω)

≤ ‖un − ū‖L2((0,T )×Ω) +
∥∥1{yn=ψ<ȳ}(Aψ − ū)

∥∥
L2((0,T )×Ω)

.

Since un → ū in L2(0, T ;L2(Ω)) and since R is continuous from L2(0, T ;L2(Ω)) to
L2(0, T ;L2(Ω)), we know that yn → ȳ holds in L2(0, T ;L2(Ω)) and thus (at least
after passing over to a subsequence) that yn → ȳ pointwise a.e. in (0, T ) × Ω. This
convergence implies in particular that 1{yn=ψ<ȳ} → 0 pointwise a.e. and, by the
dominated convergence theorem, that∥∥1{yn=ψ<ȳ}(Aψ − ū)

∥∥
L2((0,T )×Ω)

→ 0.

From (3.7), it now follows that ũn indeed converges to ū in L2(0, T ;L2(Ω)) for n→∞.
This convergence, in combination with (3.5), (3.6) and the assumed local optimality
of ū for (P), yields a contradiction. A local solution ū of (P) is thus always locally
optimal for (Q) and the proof is complete.

We remark that, under additional assumptions on the function g, it is also possible
to show that local/global solutions of (Q) are local/global solutions of (P). For details
on this topic, see [18, Section 5] where an analogous equivalence is established in the
elliptic case and subsequently exploited for the derivation of necessary and sufficient
second-order optimality conditions.
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The reader might ask at this point why it is useful to make the observation in
Proposition 3.2. The control-to-state map of (Q) is, after all, not affine linear (or
even differentiable) anymore so that (Q) seems to be significantly more complicated
than the problem (P) that we started with. However, the problem (Q) has one funda-
mental advantage: Since the constraint y ≥ ψ is incorporated into its control-to-state
operator, (Q) can be treated far more effectively with regularization techniques than
the original problem (P). To see this, note that the governing variational inequality
in (Q) can also be written as

(3.8)

∂ty +Ay + β(y − ψ) 3 u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω,

where β denotes the maximal monotone graph in R× R defined by

β(r) :=


∅ if r < 0

(−∞, 0] if r = 0

0 if r > 0

.

Suppose now that we replace β by a suitable, monotonously increasing regularization
βε : R→ R satisfying βε(0) = 0 and (in an appropriate sense) βε → β for ε↘ 0, and
consider the approximate problem

(3.9)

∂ty +Ay + βε(y − ψ) = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω.

Then it is straightforward to derive first-order necessary optimality conditions for (Q)
by replacing the variational inequality (3.8) in (Q) with (3.9) and by subsequently
passing to the limit with the regularization parameter ε. What is beneficial in the
above regularization approach is that, in (3.9), the βε-term constitutes a monotone
part of the governing PDE. Because of this, it is possible to exploit the properties
of the differential operators ∂t and A to obtain comparatively strong, ε-independent
bounds for the primal and dual quantities in the necessary optimality conditions
associated with the regularized version of (Q). (We will see below that we obtain
precisely L2(0, T ;H1

0 (Ω))- and L∞(0, T ;L2(Ω))-regularity here.) A similar effect is
not present, when we directly mollify the problem (P), where the inequality y ≥ ψ
is a constraint on the upper level and thus, in a sense, separated from the governing
partial differential equation. Compare, e.g., with the regularization approaches in
[5, 36, 47, 48, 49] in this context, where at most L2(0, T ;L2(Ω))-bounds are obtained.

By making the above informal argumentation rigorous, we arrive at:

Theorem 3.3 (first-order necessary optimality condition for (P)). Suppose that
(X) holds, let γ be an arbitrary but fixed real number with γ > d/2, and let Yγ
and W0(0, T ) be defined as in subsection 1.1. Then, for every local solution ū ∈
L2(0, T ;L2(Ω)) of the optimal control problem (P) with associated state ȳ := S(ū),
there exist an adjoint state

(3.10) p̄ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ )

and multipliers

µ̄ ∈M([0, T ]× cl(Ω)) ∩W0(0, T )∗, η̄j , η̄g ∈ L∞(0, T ;L2(Ω)), η̄φ ∈ L2(Ω),
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such that

(3.11)

η̄j(t) ∈ ∂cj(t, ȳ(t)) for a.a. t ∈ (0, T ),

η̄g(t) ∈ ∂g(ū(t)) for a.a. t ∈ (0, T ),

p̄(t) + η̄g(t) = 0 for a.a. t ∈ (0, T ),

η̄φ ∈ ∂cφ(ȳ(T )),

and

(3.12)

− ∂tp̄+Ap̄ = η̄j − µ̄ in (0, T )× Ω,

tr(p̄) = 0 on (0, T )× ∂Ω,

p̄(T ) = η̄φ in Ω

holds. Here, ∂cj(t, z), ∂cφ(z), and ∂g(z) denote Clarke’s generalized differential and
the convex subdifferential of the maps L2(Ω) 3 z 7→ j(t, z) ∈ R, L2(Ω) 3 z 7→ φ(z) ∈ R
and L2(Ω) 3 z 7→ g(z) ∈ (−∞,∞], respectively, and the PDE for p̄ is understood as
a formal identity in W0(0, T )∗, i.e., in the sense that, for all z ∈W0(0, T ), we have∫ T

0

〈∂tz +Az, p̄〉H1
0 (Ω) − (η̄j , z)L2(Ω) dt+ 〈µ̄, z〉W0(0,T ) − (z(T ), η̄φ)L2(Ω) = 0.

Proof. All assertions of the theorem follow straightforwardly from Proposition 3.2
and the necessary optimality conditions for problems of the type (Q) derived by
regularization in [4, Chapter 5]. Compare in particular with [4, Proposition 5.2,
Lemma 5.3, Lemma 5.4, Equation (5.28)] in this context.

In certain situations, we can obtain even more information about the adjoint state
p̄ in (3.10) as the following result shows:

Theorem 3.4 (additional information about the adjoint state). Suppose that
condition (X) is satisfied and consider the situation in Theorem 3.3.

i) If d ∈ {1, 2, 3} holds and if φ is a C1-function such that φ′ : L2(Ω)→ L2(Ω)
maps bounded subsets of L2(Ω) into bounded subsets of L∞(Ω), then the sta-
tionarity system in Theorem 3.3 holds true with the additional regularity

(3.13) p̄ ∈ L∞((0, T )× Ω).

ii) If (in addition to the conditions in Assumption 2.1), we know that g is real-
valued and Gâteaux differentiable with derivative g′ : L2(Ω)→ L2(Ω) and that
the objective J of (P) is Gâteaux differentiable and locally Lipschitz as a map
from Lq(0, T ;L2(Ω))×L2(0, T ;L2(Ω)) to R for some 1 ≤ q <∞ with partial
derivative ∂uJ(y, u) = g′(u) ∈ L2(0, T ;L2(Ω)) for all u ∈ L2(0, T ;L2(Ω)),
then the adjoint state p̄ in (3.10) is unique and also satisfies

p̄ ∈ clL2(0,T ;H1
0 (Ω))

(
R+ (K − ȳ)

)
,

where ȳ := S(ū) denotes the state associated with ū and where

K :=
{
z ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)) | z ≥ ψ a.e. in (0, T )× Ω
}
.

In particular, in this situation, we have

p̄(t) ≥ 0 H1
0 -q.e. in {ȳ(t) = ψ} for a.a. t ∈ (0, T ),

where “q.e.” is short for quasi-everywhere in the sense of [9, Section 6.4.3].
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Proof. To obtain the L∞((0, T )×Ω)-regularity of p̄ in (3.13), we note that, in the
situation of i), the proof of the stationarity system in Theorem 3.3 in [4, Chapter 5]
implies that there exist functions 0 ≤ χn ∈ L∞((0, T ) × Ω) and bounded sequences
{ηn} ⊂ L∞(0, T ;L2(Ω)), {ϑn} ⊂ L2(Ω) such that the (necessarily unique) weak
solutions pn ∈ L2(0, T ;H1

0 (Ω))∩H1(0, T ;H−1(Ω)) of the partial differential equations

(3.14)

− ∂tpn +Apn + χnpn = ηn in (0, T )× Ω,

tr(pn) = 0 on (0, T )× ∂Ω,

pn(T ) = φ′(ϑn) in Ω,

converge weakly in L2(0, T ;H1
0 (Ω)) and weakly-? in L∞(0, T ;L2(Ω)) to p̄ for n→∞.

Compare in particular with [4, Equations (5.28), (5.34), Lemma 5.3, Proposition 5.2]
in this context and note that, due to our assumptions on φ, the analysis of [4] holds
without an additional regularization of this function. Applying Lemma A.3 to the
PDE (3.14) (or the PDE for p̃n(t) := pn(T − t), to be more precise) yields that there
exists a constant C = C(Ω, T, d, α) > 0 with

‖pn‖L∞((0,T )×Ω) ≤ ‖φ′(ϑn)‖L∞(Ω) + C‖ηn‖L∞(0,T ;L2(Ω))

for all n. The claim in i) now follows immediately from the properties of φ, {ηn},
{ϑn} and {pn}. To establish ii), it suffices to note that the assumptions on g in ii) and
Theorem 3.3 imply p̄ = −η̄g = −g′(ū) = −∂uJ(ȳ, ū) and to invoke Proposition 3.2,
[15, Theorem 5.5i)] and classical results on tangent cones of sets with unilateral bounds
in H1

0 (Ω), see [44, Lemma 3.2]. This completes the proof.

We remark that the assumptions on φ in Theorem 3.4i) can be relaxed if it is
possible to ensure along different lines (e.g., by exploiting suitable control constraints)
that the quantities ∇φε0(yε(T )) in [4, Equation (5.28)] remain bounded in L∞(Ω) as ε
tends to zero. We omit a detailed discussion of this topic to avoid redoing the analysis
of [4] completely. As usual, the optimal control ū in Theorem 3.3 directly inherits
the regularity properties of the adjoint state p̄ when the function g is sufficiently
well-behaved. In particular, for an L2-Tikhonov regularization term, we have:

Corollary 3.5 (regularity properties of optimal controls). Suppose that (X)
holds and that there exist a ν > 0 and measurable functions ua, ub : Ω → [−∞,∞]
with ua ≤ 0 ≤ ub a.e. in Ω such that the function g in (P) has the form

(3.15) g : L2(Ω)→ [0,∞], g(z) :=

{ν
2
‖z‖2L2(Ω) if ua ≤ z ≤ ub a.e. in Ω

∞ else
.

Then the following is true:
i) If ua ≡ −∞ and ub ≡ ∞ holds, then every local solution ū of (P) satisfies

ū ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ )

with Yγ , γ > d/2, defined as in subsection 1.1 and Theorem 3.3.
ii) If ua, ub ∈ H1(Ω) ∪ {±∞} holds, then every local solution ū of (P) satisfies

ū ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)).

iii) If, in the above cases i) and ii), the function φ and the spatial dimension d
satisfy the assumptions of Theorem 3.4i), then every local solution ū of (P)
additionally satisfies ū ∈ L∞((0, T )× Ω).
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Proof. The assertions of Corollary 3.5 follow straightforwardly from Theorem 3.3,
Theorem 3.4, Stampacchia’s lemma, see [3, Theorem 5.8.2], and the fact that the
inclusion −p̄(t) ∈ ∂g(ū(t)) for a.a. t ∈ (0, T ) can be rewritten as

ū(t) = max

(
ua,min

(
ub,−

1

ν
p̄(t)

))
a.e. in Ω for a.a. t ∈ (0, T )

for functions g of the form (3.15).

Note that the last three results indeed provide significantly more regularity for the
adjoint state p̄, the multiplier µ̄ and the optimal control ū than approaches that are
based on a “direct” regularization of the problem (P) or a classical Slater condition,
cf. [8, 11, 20, 22, 31, 36, 48, 51]. Theorems 3.3 and 3.4 and Corollary 3.5 are thus
similar in nature to the results derived for elliptic problems in [12, Theorem 3.1] and
[13, Theorems 4.2, 4.3]. We remark that in particular the L∞((0, T )×Ω)-regularity of
p̄ and ū in Theorem 3.4i) and Corollary 3.5iii) turns out to be an important property
in practical applications. Compare, e.g., with [48, Remark 2.9] in this context, where
it is explained that the condition ū ∈ L∞((0, T ) × Ω) allows to establish the strong
convergence of a certain regularization scheme, and with the FE-error analysis in
section 4, where the pointwise-a.e. boundedness of p̄ is a crucial ingredient.

Regarding the regularity of the multiplier µ̄ in (3.12), we would like to clarify at
this point that the inclusion µ̄ ∈M([0, T ]× cl(Ω))∩W0(0, T )∗ in Theorem 3.3 should
be understood in the following sense: µ̄ is an element of the dual space W0(0, T )∗

such that there exists a measure λ̄ ∈M([0, T ]× cl(Ω)) with

(3.16) 〈µ̄, z〉W0(0,T ) =
〈
λ̄, z
〉
C([0,T ]×cl(Ω))

∀z ∈W0(0, T ) ∩ C([0, T ]× cl(Ω)).

It is important to realize here that, for a given µ̄, there are always multiple measures
λ̄ which satisfy the condition (3.16) (due to the homogeneous Dirichlet boundary
conditions in W0(0, T )). To overcome this issue, one can impose, e.g., additional
conditions on λ̄, see Corollary 3.6 below.

A major drawback of the stationarity system established in Theorem 3.3 is that it
does not contain any complementarity conditions for the multiplier µ̄ and the function
ȳ−ψ. If the regularization term g has the form (3.15), then the easiest way to recover
such conditions is to use the information about the regularity of the optimal controls
ū of (P) in Corollary 3.5 to restrict the control space of (P) and to subsequently
apply the classical Slater-based KKT-theory. (Note that the solution map S : u 7→ y
of the PDE (2.3) maps the space L∞(0, T ;Lq(Ω)) into the continuous functions for all
q > d/2 and all sufficiently regular y0 so that it is indeed possible to satisfy a classical
Slater condition in the restricted setting if the spatial dimension is small enough, see
[23, Theorem 3.1].) If the functions j, g and φ are sufficiently smooth, then it is also
possible to establish the complementarity 0 ≤ µ̄ ⊥ ȳ−ψ ≥ 0 by a direct computation
as the following result shows. This approach has the advantage that it also works in
those cases where, e.g., y0 and ψ are identically zero and where the Dirichlet boundary
conditions in (2.3) make the existence of a Slater point in C([0, T ]× cl(Ω)) impossible
regardless of the continuity properties of the states y.

Corollary 3.6 (uniqueness of dual quantities and complementarity conditions).
Suppose that (X) holds, let ū ∈ L2(0, T ;L2(Ω)) be a local solution of problem (P), and
define ȳ := S(ū). Assume (in addition to the conditions in Assumption 2.1) that g is
real-valued and bounded on bounded sets, that the functions j(t, ·), g(·) and φ(·) are
Gâteaux differentiable for all t ∈ [0, T ] with derivatives j′(t, ·), g′(·) and φ′(·), that the
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derivative g′ is coercive (in the sense of (3.20) below), and that ∂cj(t, z) = {j′(t, z)}
and ∂cφ(z) = {φ′(z)} holds for all t ∈ [0, T ] and all z ∈ L2(Ω). Then ū is an
element of L∞(0, T ;L2(Ω)), the functions p̄, η̄j, η̄g and η̄φ in the necessary optimality
condition of Theorem 3.3 are unique, η̄j, η̄g and η̄φ satisfy

(3.17) η̄j(t) = j′(t, ȳ(t)), η̄g(t) = g′(ū(t)) for a.a. t ∈ (0, T ) and η̄φ = φ′(ȳ(T )),

the multiplier µ̄ in Theorem 3.3 is unique and non-negative as an element of the dual
space W0(0, T )∗, and there exists a unique, non-negative λ̄ ∈M([0, T ]× cl(Ω)) with

(3.18)
λ̄|[0,T ]×∂Ω∪{0}×Ω = 0,

〈µ̄, z〉W0(0,T ) =
〈
λ̄, z
〉
C([0,T ]×cl(Ω))

∀z ∈W0(0, T ) ∩ C([0, T ]× cl(Ω)).

Moreover, in this situation, we have the following:
i) If d ∈ {1, 2, 3} and y0 ∈ H1

0 (Ω) ∩H2(Ω) holds, then ȳ − ψ is an element of
C([0, T ]× cl(Ω)) and the function ȳ− ψ and the measure λ̄ defined by (3.18)
are complementary to each other in the sense that

ȳ − ψ ≥ 0 in [0, T ]× cl(Ω), λ̄ ≥ 0 in M([0, T ]× cl(Ω)),〈
λ̄, ȳ − ψ

〉
C([0,T ]×cl(Ω))

= 0.

ii) If the dimension d is arbitrary and y0 = ψ ∈ H1
0 (Ω)∩H2(Ω) holds, then ȳ−ψ

is an element of the space W0(0, T ) defined in (1.1) and the function ȳ − ψ
and the multiplier µ̄ are complementary to each other in the sense that

(3.19)
ȳ − ψ ≥ 0 a.e. in (0, T )× Ω, µ̄ ≥ 0 in W0(0, T )∗,

〈µ̄, ȳ − ψ〉W0(0,T ) = 0.

Proof. The identities in (3.17) follow straightforwardly from the assumptions on
j, g and φ and the results of Theorem 3.3. In particular, η̄j , η̄g and η̄φ are uniquely
determined, and we obtain from (3.11) and (3.12) that the adjoint state p̄ is unique
and that the multiplier µ̄ is unique as an element of W0(0, T )∗. To prove that ū is an
element of L∞(0, T ;L2(Ω)), we note that (3.10) and (3.11) imply that there exists an
absolute constant C > 0 with

(g′(ū(t)), ū(t))L2(Ω)

‖ū(t)‖L2(Ω)
=

(−p̄(t), ū(t))L2(Ω)

‖ū(t)‖L2(Ω)
≤ C for a.a. t ∈ (0, T ).

The L∞(0, T ;L2(Ω))-regularity of ū now follows easily by contradiction from the
coercivity of g′, i.e., the convergence

(3.20) lim
‖z‖L2(Ω)→∞

(g′(z), z)L2(Ω)

‖z‖L2(Ω)
=∞.

Suppose now that an arbitrary but fixed z ∈ C∞c ((0, T ] × Ω) is given such that
ȳ + sz ≥ ψ holds a.e. in Ω for a.a. t ∈ (0, T ) for all sufficiently small s > 0. Then it
follows from the L∞(0, T ;L2(Ω))-regularity of ū, the boundedness of g on bounded
subsets of L2(Ω), the properties of j and p̄, Proposition 2.3, the regularity of z, and
the local optimality of ū that g′(ū) ∈ L∞(0, T ;L2(Ω)) and

g(ū), g(ū+ s(∂tz +Az)), j(·, ȳ + sz), j(·, ȳ) ∈ L∞(0, T )
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holds for all s > 0 and that
(3.21)∫ T

0

j(·, ȳ + sz)− j(·, ȳ)

s
+
g(ū+ s(∂tz +Az))− g(ū)

s
dt+

φ((ȳ + sz)(T ))− φ(ȳ(T ))

s

≥ 0

holds for all sufficiently small s > 0. Note that the convexity of g and the Lipschitz
continuity property of j in Assumption 2.1 imply

0 ≤ g(ū+ s(∂tz +Az))− g(ū)

s
− (g′(ū), ∂tz +Az)L2(Ω)

≤ g(ū+ ∂tz +Az)− g(ū)− (g′(ū), ∂tz +Az)L2(Ω) ∈ L∞(0, T )

and ∣∣∣∣j(·, ȳ + sz)− j(·, ȳ)

s

∣∣∣∣ ≤ C‖z‖L∞(0,T ;L2(Ω)) a.e. in (0, T )

for all s ∈ (0, 1] with some constant C > 0 independent of s. This allows us to use the
dominated convergence theorem to pass to the limit s↘ 0 in (3.21) and to obtain∫ T

0

(j′(·, ȳ), z)L2(Ω) + (g′(ū), ∂tz +Az)L2(Ω) dt+ (φ′(ȳ(T )), z(T ))L2(Ω) ≥ 0.

Due to (3.12) and the properties of p̄ and z, the last inequality can also be written as

(3.22) 〈µ̄, z〉W0(0,T ) ≥ 0.

Since z ∈ C∞c ((0, T ]× Ω) was an arbitrary function with ȳ + sz ≥ ψ for some s > 0,
we may now deduce that

〈µ̄, z〉W0(0,T ) ≥ 0 ∀ 0 ≤ z ∈ C∞c ((0, T ]× Ω)

holds and, by mollification, that µ̄ is a non-negative element of W0(0, T )∗. Consider
now two arbitrary but fixed λ1, λ2 ∈M([0, T ]× cl(Ω)) that satisfy

〈µ̄, z〉W0(0,T ) = 〈λ1, z〉C([0,T ]×cl(Ω)) = 〈λ2, z〉C([0,T ]×cl(Ω))

for all z ∈ W0(0, T ) ∩ C([0, T ] × cl(Ω)), cf. (3.16). Then it follows straightforwardly
from the non-negativity of µ̄ as an element of W0(0, T )∗ and mollification that the
restrictions of λ1 and λ2 to the set (0, T ]×Ω are identical, non-negative Borel measures.
By defining λ̄ := λ1|(0,T ]×Ω ∈ M([0, T ] × cl(Ω)), we now obtain a representation of
µ̄ as a measure which has all of the desired properties and is trivially unique. This
proves the first part of the corollary. It remains to establish i) and ii). To this end,
let us first assume that d ∈ {1, 2, 3} and y0 ∈ H1

0 (Ω) ∩H2(Ω) holds. Then, it follows
from [23, Theorem 3.1] and the regularity ū ∈ L∞(0, T ;L2(Ω)) that the function ȳ−ψ
is continuous and that the contact set C := {(t, x) ∈ [0, T ]× cl(Ω) | (ȳ − ψ)(t, x) = 0}
is well-defined in the classical sense. The latter allows us to use test functions z ∈
C∞c ((0, T ]×Ω) with support away from C in (3.22) to deduce that the support of the
measure λ̄ defined by (3.18) is contained in C. The complementarity in i) now follows
immediately. If, on the other hand, we know that y0 = ψ ∈ H1

0 (Ω) ∩ H2(Ω) holds,



NEW REGULARITY RESULTS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS 17

then ȳ − ψ is clearly an element of W0(0, T ) and we obtain from the properties of ȳ,
ū, and ψ that ∂t(ȳ−ψ)+A(ȳ−ψ) = ū−Aψ ∈ L∞(0, T ;L2(Ω)). Using this regularity
and exactly the same arguments as for the functions z ∈ C∞c ((0, T ] × Ω) in the first
part of the proof as well as the trivial estimates ȳ+ (ψ− ȳ) ≥ ψ and ȳ+ (ȳ−ψ) ≥ ψ,
it follows that ±〈µ̄, ȳ − ψ〉W0(0,T ) ≥ 0. This proves the third line in (3.19). Since the

inequalities in (3.19) are trivial due to the feasibility of ū and the non-negativity of µ̄
in W0(0, T )∗, this yields the assertion in ii) and completes the proof.

Note that it makes sense that we need additional regularity assumptions on ȳ−ψ
in Corollary 3.6 to obtain complementarity conditions. Without these assumptions,
it is not even clear if a dual pairing between ȳ − ψ and µ̄ can be defined.

As usual, in the presence of convexity, the necessary optimality conditions in
Corollary 3.6 are also sufficient. To be more precise, we have the following:

Corollary 3.7 (necessary and sufficient condition in low dimensions). Suppose
that d ∈ {1, 2, 3} and y0 ∈ H1

0 (Ω) ∩H2(Ω) holds, and that (X) is satisfied. Assume
(in addition to the conditions in Assumption 2.1) that g is real-valued and bounded
on bounded sets, that the functions j(t, ·), g(·) and φ(·) are Gâteaux differentiable for
all t ∈ [0, T ] with derivatives j′(t, ·), g′(·) and φ′(·), that the maps j(t, ·) and φ(·) are
convex for all t ∈ [0, T ], and that the derivative g′ is coercive. Then a control ū with
associated state ȳ := S(ū) is a local/global solution of (P) if and only if there exist
an adjoint state p̄ and a measure λ̄ such that the following holds true:
(3.23)

ū ∈ L∞(0, T ;L2(Ω)), λ̄ ∈M([0, T ]× cl(Ω)),

ȳ ∈ C([0, T ]× cl(Ω)) ∩ Lq(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩W 1,q(0, T ;L2(Ω)) ∀1 < q <∞,

p̄ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ ),

p̄(t) + g′(ū(t)) = 0 for a.a. t ∈ (0, T ),

−∂tp̄+Ap̄ = j′(·, ȳ)− λ̄ in (0, T )× Ω,

tr(p̄) = 0 on (0, T )× ∂Ω, p̄(T ) = φ′(ȳ(T )) in Ω,

ȳ − ψ ≥ 0 in [0, T ]× cl(Ω), λ̄ ≥ 0 in M([0, T ]× cl(Ω)),〈
λ̄, ȳ − ψ

〉
C([0,T ]×cl(Ω))

= 0.

Here, Yγ , γ > d/2, is again defined as in subsection 1.1 and Theorem 3.3.

Proof. Recall that, for locally Lipschitz continuous, Gâteaux differentiable and
convex functions, the Clarke and the convex subdifferential are always identical and
only contain the Gâteaux derivative, see [19, Proposition 2.2.7], [24, Proposition I-5.3].
This shows that the conditions on j, g and φ in Corollary 3.6 are satisfied in the
situation of Corollary 3.7. From [25, Theorem 5.3] and again [32, Theorem 3.2.1.2],
[30, Theorem 9.15] and [23, Theorem 3.1], we obtain further that our assumptions
d ∈ {1, 2, 3} and y0, ψ ∈ H2(Ω) imply S(u) ∈ Lq(0, T ;H2(Ω))∩W 1,q(0, T ;L2(Ω)) and
S(u), S(u) − ψ ∈ C([0, T ] × cl(Ω)) for all u ∈ L∞(0, T ;L2(Ω)) and all 1 < q < ∞.
By invoking Theorem 3.3 and Corollary 3.6, it now follows immediately that every
local solution ū of (P) satisfies (3.23). It remains to prove that every ū which satisfies
(3.23) is a global optimum of (P). To this end, let us assume that we are given a
control ū with state ȳ such that (3.23) holds with some p̄ and λ̄. Then we know that
ū is admissible for (P) and it follows from Proposition 2.4 that (P) possesses a global
solution ũ. According to the first part of the proof, this solution ũ has to satisfy ũ ∈
L∞(0, T ;L2(Ω)) and ỹ := S(ũ) ∈ C([0, T ]×cl(Ω))∩L2(0, T ;H2(Ω))∩H1(0, T ;L2(Ω)).
By exploiting the convexity of the functions j(t, ·), g(·) and φ(·) and the properties of



18 CONSTANTIN CHRISTOF AND BORIS VEXLER

ỹ, ȳ, p̄ and λ̄, we may now deduce that

0 ≤
〈
λ̄, ỹ − ψ

〉
C([0,T ]×cl(Ω))

=
〈
λ̄, ỹ − ȳ

〉
C([0,T ]×cl(Ω))

=

∫ T

0

〈−∂t(ỹ − ȳ)−A(ỹ − ȳ), p̄〉H1
0 (Ω) + (j′(·, ȳ), ỹ − ȳ)L2(Ω) dt

+ ((ỹ − ȳ)(T ), φ′(ȳ(T )))L2(Ω)

=

∫ T

0

(g′(ū), ũ− ū)L2(Ω) + (j′(·, ȳ), ỹ − ȳ)L2(Ω) dt+ (φ′(ȳ(T )), (ỹ − ȳ)(T ))L2(Ω)

≤ J(ỹ, ũ)− J(ȳ, ū).

Thus, J(ȳ, ū) ≤ J(ỹ, ũ) and ū is indeed a global solution of (P). This establishes the
reverse implication and completes the proof.

Corollary 3.8 (necessary and sufficient condition in all dimensions). Suppose
that ψ ≡ y0 and y0 ∈ H1

0 (Ω) ∩ H2(Ω) holds, and that (X) is satisfied. Assume that
j, g and φ satisfy the conditions in Corollary 3.7. Then a control ū with associated
state ȳ := S(ū) is a local/global solution of (P) if and only if there exist an adjoint
state p̄ and a multiplier µ̄ such that the following holds true:

(3.24)

ū ∈ L∞(0, T ;L2(Ω)), µ̄ ∈M([0, T ]× cl(Ω)) ∩W0(0, T )∗,

ȳ ∈ Lq(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩W 1,q(0, T ;L2(Ω)) ∀1 < q <∞,

p̄ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ ),

p̄(t) + g′(ū(t)) = 0 for a.a. t ∈ (0, T ),

−∂tp̄+Ap̄ = j′(·, ȳ)− µ̄ in (0, T )× Ω,

tr(p̄) = 0 on (0, T )× ∂Ω, p̄(T ) = φ′(ȳ(T )) in Ω,

ȳ − ψ ≥ 0 a.e. in (0, T )× Ω, µ̄ ≥ 0 in W0(0, T )∗,

〈µ̄, ȳ − ψ〉W0(0,T ) = 0.

Here, Yγ , γ > d/2, and W0(0, T ) are defined as in subsection 1.1 and Theorem 3.3.

Proof. From the assumption ψ ≡ y0 ∈ H1
0 (Ω) ∩ H2(Ω) and Proposition 2.3, it

follows that S(u) − ψ ∈ W0(0, T ) holds for all u ∈ L2(0, T ;L2(Ω)). By invoking
Theorem 3.3, Corollary 3.6 and again [25, Theorem 5.3], we now obtain that every
local solution ū of (P) satisfies (3.24). To prove the reverse implication, we can use
exactly the same arguments as in the proof of Corollary 3.7. Indeed, due to the
convexity of the involved functions, we may compute that, for every ū which satisfies
(3.24) with ȳ := S(ū) and some p̄, µ̄, we have

0 ≤ 〈µ̄, y − ψ〉W0(0,T ) = 〈µ̄, y − ȳ〉W0(0,T )

=

∫ T

0

(g′(ū), u− ū)L2(Ω) + (j′(·, ȳ), y − ȳ)L2(Ω) dt+ (φ′(ȳ(T )), (y − ȳ)(T ))L2(Ω)

≤ J(y, u)− J(ȳ, ū)

for all admissible u ∈ L2(0, T ;L2(Ω)) with state y := S(u). This proves the claim.

We conclude this section with three tangible, self-contained examples that illus-
trate what the previous results mean in practice. We begin with a simple optimal
control problem governed by the heat equation in dimension d ∈ {1, 2, 3}:
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Example 3.9 (heat equation without control constraints in low dimensions).
Suppose that a bounded, convex (or C1,1-) domain Ω ⊂ Rd, d ∈ {1, 2, 3}, a ν > 0, a
T > 0, a subharmonic ψ ∈ H2(Ω) with tr(ψ) ≤ 0 on ∂Ω, a y0 ∈ H1

0 (Ω) ∩H2(Ω) with
y0 ≥ ψ a.e. in Ω and a yD ∈ L∞(0, T ;L2(Ω)) are given, and consider the problem

(3.25)

Minimize
1

2

∫ T

0

‖y − yD‖2L2(Ω)dt+
ν

2

∫ T

0

‖u‖2L2(Ω)dt

w.r.t. u ∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

s.t. ∂ty −∆y = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω,

and y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ).

Then the stationary control u = −∆y0 is admissible for (3.25), and it follows from the
strict convexity of (3.25), Proposition 2.4, Theorem 3.4 and Corollaries 3.5 and 3.7
that (3.25) admits one and only one solution ū with state ȳ := S(ū) which is uniquely
characterized by the KKT-system
(3.26)

ū, p̄ ∈ L∞((0, T )× Ω) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ ),

ȳ ∈ C([0, T ]× cl(Ω)) ∩ Lq(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩W 1,q(0, T ;L2(Ω)) ∀1 < q <∞,

λ̄ ∈M([0, T ]× cl(Ω)),

p̄(t) + νū(t) = 0 for a.a. t ∈ (0, T ),

−∂tp̄−∆p̄ = ȳ − yD − λ̄ in (0, T )× Ω,

tr(p̄) = 0 on (0, T )× ∂Ω, p̄(T ) = 0 in Ω,

p̄(t) ≥ 0 H1
0 -q.e. in {ȳ(t) = ψ} for a.a. t ∈ (0, T ),

ȳ − ψ ≥ 0 in [0, T ]× cl(Ω), λ̄ ≥ 0 in M([0, T ]× cl(Ω)),〈
λ̄, ȳ − ψ

〉
C([0,T ]×cl(Ω))

= 0.

Here, Yγ , γ > d/2, is again defined as in subsection 1.1 and Theorem 3.3, and “q.e.”
is short for quasi-everywhere, see [9, Section 6.4.3].

Note that Example 3.9 also covers, e.g., the degenerate case y0 ≡ ψ ≡ 0, where
Slater points cannot exist in C([0, T ]×cl(Ω)) due to the Dirichlet boundary conditions
in (3.25). For arbitrary d ≥ 1, we obtain:

Example 3.10 (heat equation without control constraints in all dimensions).
Suppose that a bounded, convex (or C1,1-) domain Ω ⊂ Rd, d ≥ 1, a T > 0, a sub-
harmonic ψ ∈ H1

0 (Ω) ∩H2(Ω), a yT ∈ L2(Ω), a ν > 0, and a yD ∈ L∞(0, T ;L2(Ω))
are given, and consider the problem

(3.27)

Minimize
1

2

∫ T

0

‖y − yD‖2L2(Ω)dt+
ν

2

∫ T

0

‖u‖2L2(Ω)dt+
1

2
‖y(T )− yT ‖2L2(Ω)

w.r.t. u ∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

s.t. ∂ty −∆y = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = ψ a.e. in Ω,

and y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ).
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Then the stationary control u = −∆ψ is admissible for (3.27), and it follows from
the strict convexity of (3.27), Proposition 2.4, Corollary 3.5 and Corollary 3.8 that
(3.27) admits one and only one solution ū with state ȳ := S(ū) which is uniquely
characterized by the KKT-system

ū, p̄ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ ),

ȳ ∈ Lq(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩W 1,q(0, T ;L2(Ω)) ∀1 < q <∞,
µ̄ ∈M([0, T ]× cl(Ω)) ∩W0(0, T )∗,

p̄(t) + νū(t) = 0 for a.a. t ∈ (0, T ),

−∂tp̄−∆p̄ = ȳ − yD − µ̄ in (0, T )× Ω,

tr(p̄) = 0 on (0, T )× ∂Ω, p̄(T ) = ȳ(T )− yT in Ω,

ȳ − ψ ≥ 0 a.e. in (0, T )× Ω, µ̄ ≥ 0 in W0(0, T )∗,

〈µ̄, ȳ − ψ〉W0(0,T ) = 0.

Here, Yγ , γ > d/2, and W0(0, T ) are defined as in subsection 1.1 and Theorem 3.3.

As a final example, we consider an optimal control problem that not only contains
a pointwise state constraint but also a non-smooth term and a control constraint:

Example 3.11 (an L1-tracking-type problem with a lower control constraint).
Suppose that a bounded, convex (or C1,1-) domain Ω ⊂ Rd, d ∈ {1, 2, 3}, a T > 0, a
subharmonic ψ ∈ H2(Ω) with tr(ψ) ≤ 0 on ∂Ω, a ua ∈ H1(Ω) with ua ≤ 0 a.e. in
Ω, a ν > 0, a yT ∈ L1(Ω), and a yD ∈ L∞(0, T ;L1(Ω)) are given, and consider the
optimal control problem
(3.28)

Minimize

∫ T

0

‖y − yD‖L1(Ω)dt+
ν

2

∫ T

0

‖u‖2L2(Ω)dt+

∫
Ω

√
1 + (y(T )− yT )2 dx

w.r.t. u ∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

s.t. ∂ty −∆y = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = 0 a.e. in Ω,

and y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ),

and u ≥ ua a.e. in Ω for a.a. t ∈ (0, T ).

Then the control u = 0 is admissible for (3.28) (since the maximum principle for sub-
harmonic functions implies ψ ≤ 0 a.e. in Ω), and it follows from the strict convexity of
(3.28), Proposition 2.4, Theorems 3.3 and 3.4, Corollary 3.5, [19, Proposition 2.2.7],
[23, Theorem 3.1], [25, Theorem 5.3], [32, Theorem 3.2.1.2], and [30, Theorem 9.15]
that (3.28) is uniquely solvable, that the unique solution ū of (3.28) and its state
ȳ := S(ū) satisfy

ū ∈ L∞((0, T )× Ω) ∩ L2(0, T ;H1
0 (Ω)),

ȳ ∈ C([0, T ]× cl(Ω)) ∩ Lq(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩W 1,q(0, T ;L2(Ω)) ∀1 < q <∞,

and that there exist

p̄ ∈ L∞((0, T )× Ω) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ ),

µ̄ ∈M([0, T ]× cl(Ω)) ∩W0(0, T )∗, η̄ ∈ L∞(0, T ;L2(Ω)),
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such that ū, ȳ, p̄, µ̄ and η̄ satisfy the system

ū(t) = max

(
ua,−

1

ν
p̄(t)

)
a.e. in Ω for a.a. t ∈ (0, T ),

η̄(t) ∈ ∂‖ · ‖L1(Ω)(ȳ(t)− yD(t)) for a.a. t ∈ (0, T ),

−∂tp̄−∆p̄ = η̄ − µ̄ in (0, T )× Ω,

tr(p̄) = 0 on (0, T )× ∂Ω, p̄(T ) =
ȳ(T )− yT√

1 + (ȳ(T )− yT )2
in Ω.

Here, Yγ , γ > d/2, and W0(0, T ) are defined as in subsection 1.1 and Theorem 3.3.

4. Application to finite element error estimates. In what follows, we
demonstrate that the regularity results established in section 3 allow to derive new
a priori error estimates for the finite element approximation of parabolic, distributed
optimal control problems with pointwise state constraints. To avoid obscuring the
basic ideas of our analysis with technicalities, we do not aim for the highest possible
generality in this section but focus on the model problem in Example 3.9, i.e., the
L2-tracking-type optimal control problem for the heat equation

(4.1)

Minimize
1

2

∫ T

0

‖y − yD‖2L2(Ω)dt+
ν

2

∫ T

0

‖u‖2L2(Ω)dt

w.r.t. u ∈ L2(0, T ;L2(Ω)), y ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

s.t. ∂ty −∆y = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω,

and y ≥ ψ a.e. in Ω for a.a. t ∈ (0, T ).

For comments on possible generalizations of the subsequent results, see Remark 4.10.
Our standing assumptions on the quantities in (4.1) are as follows:

Assumption 4.1 (standing assumptions for the study of problem (4.1)).
• Ω ⊂ Rd, d ∈ {2, 3}, is a bounded, convex, polygonal/polyhedral domain.
• ν > 0, T > 0, yD ∈ L∞(0, T ;L2(Ω)) and y0 ∈ H1

0 (Ω) ∩W 2,∞(Ω) are given.
• ψ ∈ W 2,∞(Ω) is a subharmonic function and the continuous representatives

of ψ and y0 satisfy ψ < 0 and ψ < y0 everywhere in cl(Ω).

Note that a classical Slater condition in L∞((0, T )×Ω) cannot be satisfied in the
above situation since the solution map S : u 7→ y of the governing PDE only maps into
the space L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) 6↪→ L∞((0, T )× Ω), cf. the discussion in
[48, 49]. To calculate an approximation of the (necessarily unique) solution ū of (4.1),
we use a standard dG(0)-cG(1)-scheme analogous to that in [7, 22, 31, 40, 41] (i.e.,
FE-functions that are piecewise constant in time and piecewise affine and continuous
in space). We collect our standing assumptions on the involved meshes etc. in:

Assumption 4.2 (assumptions and notation for the discretization of (4.1)).
• We are given a family of partitions 0 =: t0 < t1 < ... < tM := T of the interval

(0, T ] into cells Im := (tm−1, tm] of length km := tm − tm−1, m = 1, ...,M ,
with maximum width k := maxm km ≤ min(1/2, T/4) such that there exist
absolute constants c1, c2, c3 > 0 with

c−1
1 ≤ km

km+1
≤ c1 ∀m = 1, ...,M − 1 and km ≥ c2kc3 ∀m = 1, ...,M.
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• We are given a quasi-uniform family of triangulations Th of the domain Ω
with mesh size h < 1/2. (See, e.g., [7, 10] for the definitions of these terms.)

• The temporal and spatial widths k and h satisfy a compatibility condition of
the form k ≤ Chσ with some constants C, σ > 0.

• Vh is the finite element space defined by

Vh :=
{
v ∈ C(cl(Ω))

∣∣ v|τ is affine for all cells τ ∈ Th and v|∂Ω = 0
}
.

• Vkh is the space-time finite element space defined by

Vkh :=
{
v ∈ L2(0, T ;Vh)

∣∣ vm := v|Im = const ∈ Vh for all m = 1, ...,M
}
.

• xl, l = 1, ...,dim(Vh), are the interior nodes of the triangulation Th.
• B : Vkh × Vkh → R is the bilinear form defined by

B(vkh, wkh) :=

M∑
m=2

(
vmkh − vm−1

kh , wmkh
)
L2(Ω)

+

M∑
m=1

km (∇vmkh,∇wmkh)L2(Ω)d

+
(
v1
kh, w

1
kh

)
L2(Ω)

.

Note that we do not require additional ∂t-terms in B here since we consider this
bilinear form only on the space Vkh, cf. [42]. As a discrete counterpart of the PDE

(4.2)

∂ty −∆y = u a.e. in Ω for a.a. t ∈ (0, T ),

tr(y) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ),

y(0) = y0 a.e. in Ω

in (4.1), we consider the following variational problem:

(4.3) ykh ∈ Vkh, B(ykh, vkh) = (u, vkh)L2(0,T ;L2(Ω)) +
(
y0, v

1
kh

)
L2(Ω)

∀vkh ∈ Vkh.

We summarize the (for us relevant) approximation properties of the discretization
scheme (4.3) in:

Lemma 4.3 (FE-error estimates for the discretization of (4.2)). The problem (4.3)
admits a unique solution Skh(u) := ykh ∈ Vkh for every u ∈ L2(0, T ;L2(Ω)) and all
k and h. Further, the solution maps S : u 7→ y and Skh : u 7→ ykh of (4.2) and (4.3)
satisfy the following error estimates:

i) There exists a constant C > 0 independent of k, h, y0 and u with

‖S(u)− Skh(u)‖L2(0,T ;L2(Ω)) ≤ C
(
k + h2

) (
‖u‖L2(0,T ;L2(Ω)) + ‖y0‖H1(Ω)

)
∀u ∈ L2(0, T ;L2(Ω)).

ii) There exist constants C, ρ > 0 independent of k, h, y0 and u with

‖S(u)− Skh(u)‖L∞((0,T )×Ω)

≤ C |ln(k)| |ln(h)| (kρ + hρ)
(
‖u‖L∞((0,T )×Ω) + ‖y0‖W 2,∞(Ω)

)
∀u ∈ L∞((0, T )× Ω).

iii) For every open set D ⊂ Rd that is compactly contained in Ω, there exists a
constant C > 0 independent of k, h, y0 and u with

‖S(u)− Skh(u)‖L∞((0,T )×D)

≤ C |ln(k)|2 |ln(h)|5
(
k + h2

) (
‖u‖L∞((0,T )×Ω) + ‖y0‖W 2,∞(Ω)

)
∀u ∈ L∞((0, T )× Ω).
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Proof. The well-definedness of the solution operator Skh : u 7→ ykh follows from
classical results for elliptic problems after rewriting (4.3) as a time stepping scheme,
cf. the proof of [42, Theorem 3.2], and the error estimates in i) and iii) can be found,
e.g., in [7, Lemma 5.33, Lemma A.36]. Compare also with the regularity results for S
in [23, Theorem 2.9b)] in this context and with the FE-analysis in [26]. It remains to
prove ii). To this end, we note that [23, Theorem 3.1] and [38, Theorem 1] yield that
there exist constants C, ρ > 0 independent of k, h, y0 and u such that the solutions
of (4.2) and (4.3) with right-hand side u ∈ L∞((0, T )× Ω) satisfy

‖S(u)‖C0,ρ((0,T )×Ω) ≤ C
(
‖u‖L∞((0,T )×Ω) + ‖y0‖W 2,∞(Ω)

)
and

‖S(u)− Skh(u)‖L∞((0,T )×Ω) ≤ C |ln(k)| |ln(h)| inf
vkh∈Vkh

‖S(u)− vkh‖L∞((0,T )×Ω).

By plugging in a suitable interpolant of the function S(u) on the right-hand side of
the last inequality and by exploiting the C0,ρ-regularity of S(u) on (0, T ) × Ω, we
arrive at the estimate in ii) as desired. This completes the proof.

Using (4.3), we can discretize (4.1) as follows:

(4.4)

Minimize
1

2

∫ T

0

‖ykh − yD‖2L2(Ω)dt+
ν

2

∫ T

0

‖u‖2L2(Ω)dt

w.r.t. u ∈ L2(0, T ;L2(Ω)), ykh ∈ Vkh,
s.t. B(ykh, vkh) = (u, vkh)L2(0,T ;L2(Ω)) +

(
y0, v

1
kh

)
L2(Ω)

∀vkh ∈ Vkh,

and ymkh(xl) ≥ ψ(xl) ∀m = 1, ...,M ∀l = 1, ...,dim(Vh).

From standard subdifferential calculus rules, we obtain (analogously to [31]):

Proposition 4.4 (solvability and optimality conditions for (4.4)). The problem
(4.4) admits a unique solution ūkh ∈ L2(0, T ;L2(Ω)) for all k and all h. This solution
is an element of Vkh and there exist multipliers λ̄ml, m = 1, ...,M , l = 1, ...,dim(Vh),
and an adjoint state p̄kh such that ūkh and its state ȳkh := Skh(ūkh) satisfy
(4.5)

ūkh, p̄kh, ȳkh ∈ Vkh, λ̄ml ∈ R, p̄kh + νūkh = 0,

B(vkh, p̄kh) =

∫ T

0

(ȳkh − yD, vkh)L2(Ω) dt−
M∑
m=1

dim(Vh)∑
l=1

λ̄mlvmkh(xl) ∀vkh ∈ Vkh,

(ȳmkh − ψ)(xl) ≥ 0, λ̄ml ≥ 0, λ̄ml(ȳmkh − ψ)(xl) = 0 ∀m, l.

Proof. Since the reduced objective function of (4.4) is strictly convex and coercive,
the existence and uniqueness of a solution ūkh ∈ L2(0, T ;L2(Ω)) are obvious. It
remains to show that ūkh ∈ Vkh and (4.5) hold. To this end, we note that the control

u :=

{
− 1
k1
y0 a.e. in I1

0 else

trivially satisfies Skh(u) = 0 > ψ everywhere in cl(Ω). The discrete problem (4.4)
thus admits a Slater point, and we may use the sum and the chain rule for the convex
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subdifferential, see [24, Propositions I5.6, I5.7], to deduce that there exists an element
µ̄kh ∈ V ∗kh of the negative normal cone of the set

(4.6) {vkh ∈ Vkh | vmkh(xl) ≥ ψ(xl) for all m = 1, ...,M and all l = 1, ...,dim(Vh)}

at ȳkh := Skh(ūkh) such that

(4.7)

∫ T

0

(
ȳkh − yD, S0

kh(z)
)
L2(Ω)

dt+ ν (ūkh, z)L2(0,T ;L2(Ω)) −
〈
µ̄kh, S

0
kh(z)

〉
Vkh

= 0

holds for all z ∈ L2(0, T ;L2(Ω)), where S0
kh : L2(0, T ;L2(Ω)) → Vkh denotes the

solution map of the discretized PDE (4.3) with initial value zero. If we express this
multiplier µ̄kh in the basis of V ∗kh spanned by the Dirac functionals δml(vkh) := vmkh(xl),
m = 1, ...,M , l = 1, ...,dim(Vh), and take into account the properties of the set in
(4.6), then it follows straightforwardly that µ̄kh =

∑
m,l λ̄

mlδml has to hold with
coefficients λ̄ml that satisfy the conditions in the last line of (4.5). Suppose now that
p̄kh is the unique element of Vkh that satisfies the variational identity in the second
line of (4.5) for these λ̄ml. Then, the definitions of S0

kh and λ̄ml and (4.7) yield

0 = B(S0
kh(z), p̄kh) + (νūkh, z)L2(0,T ;L2(Ω)) = (z, p̄kh + νūkh)L2(0,T ;L2(Ω))

for all z ∈ L2(0, T ;L2(Ω)). This shows that p̄kh + νūkh = 0 has to hold, that ūkh is
indeed an element of Vkh, and that ūkh, ȳkh, p̄kh and λ̄ml satisfy (4.5) as claimed.

Note that the control is discretized variationally in the above, cf. [22, 31, 35], and
that the structure of (4.5) is completely analogous to that of the KKT-system (3.26)
satisfied by ū, see Example 3.9. To relate the solutions ū and ūkh of the problems
(4.1) and (4.4) to each other, we need two auxiliary results. The first one collects
some properties of the multipliers in (3.26) and (4.5):

Lemma 4.5. The measure λ̄ ∈ M([0, T ] × cl(Ω)) and the multipliers λ̄ml ∈ R in
the optimality systems (3.26) and (4.5) satisfied by the solutions ū and ūkh of (4.1)
and (4.4), respectively, are unique. Further, there exist an open set D ⊂ Rd, which
is compactly contained in Ω, and constants C, ε > 0 such that the support of λ̄ is a
subset of [ε, T ]×D and such that, for all sufficiently small k and h, it holds

(4.8) ‖ūkh‖L2(0,T ;L2(Ω)) + ‖ȳkh‖L2(0,T ;L2(Ω)) +
∑
m,l

λ̄ml ≤ C.

Proof. The uniqueness of the multipliers λ̄ml follows immediately from (4.5), and
the uniqueness of the measure λ̄ is a straightforward consequence of our assumptions
ψ < 0 and ψ < y0, the continuity and zero boundary conditions of the state ȳ = S(ū),
the conditions on λ̄ in (3.26), and Corollary 3.6. In the proof of Corollary 3.6, we
have further already established that the support of λ̄ is contained in the contact set
{(t, x) ∈ [0, T ] × cl(Ω) | (ȳ − ψ)(t, x) = 0}, and this set is trivially contained in a
cylinder of the form [ε, T ]×D with some open set D that is compactly contained in Ω
and some ε > 0 due to the continuity and zero boundary conditions of ȳ and again the
properties ψ < 0 and y0 > ψ. It remains to prove (4.8) for all sufficiently small k and
h. This boundedness property, however, follows immediately from the fact that the
control u := −∆y0 ∈ L∞((0, T ) × Ω) satisfies C([0, T ] × cl(Ω)) 3 S(u) = y0 ≥ ψ + ε
in Ω for a.a. t ∈ (0, T ) with some ε > 0, the L∞-error estimate in Lemma 4.3ii), and
exactly the same calculation as in the proof of [31, Lemma 2].
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Our second auxiliary result is concerned with the regularity and approximability
properties of the function that we obtain when we solve the adjoint equation in (3.26)
with right-hand side −λ̄. Before we state it, we introduce some notation:

Definition 4.6 (Ritz projection, discrete Laplacian and nodal interpolation).
Henceforth, we denote with:

i) ∆h : Vh → Vh the discrete Laplacian defined by

(−∆hvh, zh)L2(Ω) = (∇vh,∇zh)L2(Ω)d ∀zh ∈ Vh, ∀vh ∈ Vh.

ii) Rh : H1
0 (Ω)→ Vh the Ritz projection onto Vh defined by

Rh(v) ∈ Vh,
∫

Ω

∇(v −Rh(v)) · ∇zhdx = 0 ∀zh ∈ Vh ∀v ∈ H1
0 (Ω).

iii) Ikh : Vkh → C([0, T ]× cl(Ω)) the interpolation operator defined by

Ikh(vkh)(t) :=
t− t0
k1

v1
kh ∀t ∈ I1,

Ikh(vkh)(t) :=
t− tm−1

km
vmkh +

tm − t
km

vm−1
kh ∀t ∈ Im ∀m = 2, ...,M.

iv) Lh : C(cl(Ω))→ Vh the Lagrange interpolation operator associated with Vh.

We can now prove:

Lemma 4.7. Let λ̄ denote the measure in the optimality system (3.26), and let
Ikh : Vkh → C([0, T ] × cl(Ω)) be defined as in Definition 4.6iii). Then there exists a
unique, weak solution ζ ∈ L∞((0, T )× Ω) ∩ L2(0, T ;H1

0 (Ω)) of the PDE

(4.9)
−∂tζ −∆ζ = −λ̄ in (0, T )× Ω,

tr(ζ) = 0 on (0, T )× ∂Ω, ζ(T ) = 0 in Ω,

and there is a constant C > 0 independent of k and h such that ζ and the function
ζkh ∈ Vkh defined by

(4.10) B(vkh, ζkh) =
〈
−λ̄, Ikh(vkh)

〉
C([0,T ]×cl(Ω))

∀vkh ∈ Vkh

satisfy

(4.11) ‖ζ − ζkh‖2L2(0,T ;L2(Ω)) ≤ C |ln(k)|3 |ln(h)|6
(
k + h2

)
.

Proof. Note that the properties of the adjoint state p̄ in (3.26), the linearity of the
adjoint equation, the L∞(0, T ;L2(Ω))-regularity of the function ȳ− yD, and classical
results for parabolic PDEs with L∞(0, T ;L2(Ω))-right-hand sides, cf. Proposition 2.3
and [42, Proposition 2.6], immediately yield the existence of a (necessarily unique)
weak solution ζ ∈ L∞((0, T ) × Ω) ∩ L2(0, T ;H1

0 (Ω)) of (4.9), and that the unique
solvability of (4.10) follows from exactly the same arguments as in the case of (4.3).
The first part of Lemma 4.7 is thus trivial. It remains to establish the estimate (4.11).
To this end, we first prove that there exists a constant C > 0 independent of k and h
such that the functions ζkh defined by (4.10) satisfy

(4.12) ‖ζkh‖L∞((0,T )×Ω) ≤ C |ln(k)| |ln(h)| .
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So let us consider an arbitrary but fixed x0 ∈ Ω and some m ∈ {1, ...,M}, and let δ̃x0

be a mollification of the Dirac measure δx0
at x0 as constructed in [50, Appendix A5],

i.e., a function δ̃x0
∈ L1(Ω) supported in one cell of the mesh Th satisfying

vh(x0) =
(
δ̃x0 , vh

)
L2(Ω)

∀vh ∈ Vh

and ‖δ̃x0
‖L1(Ω) ≤ C for some constant C > 0 independent of k and h. Then there

exists a unique solution %kh ∈ Vkh of the problem

B(%kh, vkh) =

∫
Im

∫
Ω

1

km
δ̃x0

vmkhdx dt = vmkh(x0) ∀vkh ∈ Vkh,

and we obtain from [39, Theorem 11] that we can find a constant C > 0 independent
of k and h with

(4.13)

M∑
m=1

km‖∆h%
m
kh‖L1(Ω) + ‖%1

kh‖L1(Ω) +

M∑
m=2

‖%mkh − %m−1
kh ‖L1(Ω) ≤ C |ln(k)| ,

where ∆h : Vh → Vh is the discrete Laplacian from Definition 4.6i). By exploiting the
properties of the functions ζ, ζkh and %kh, (4.13), the definition of the operator Ikh,
the stability estimate ‖Ikh(vkh)‖L1(0,T ;L1(Ω)) ≤ C‖vkh‖L1(0,T ;L1(Ω)) for all vkh ∈ Vkh
(which is easy to check), and the fact that the Ritz projection Rh satisfies

‖Rh(v)‖L∞(Ω) ≤ C |ln(h)| ‖v‖L∞(Ω) ∀v ∈ H1
0 (Ω) ∩ L∞(Ω)

for some C > 0 independent of k and h, see [38, Lemma 5], we may now compute

ζmkh(x0)

= B(%kh, ζkh)

=
〈
−λ̄, Ikh(%kh)

〉
C([0,T ]×cl(Ω))

=

∫ T

0

(∂tIkh(%kh), ζ)L2(Ω) + (∇Ikh(%kh),∇ζ)L2(Ω)d dt

=

∫ T

0

(∂tIkh(%kh), ζ)L2(Ω) + (∇Ikh(%kh),∇Rh(ζ))L2(Ω)d dt

≤ C |ln(h)|
(
‖∂tIkh(%kh)‖L1(0,T ;L1(Ω)) + ‖∆hIkh(%kh)‖L1(0,T ;L1(Ω))

)
= C |ln(h)|

(
‖%1
kh‖L1(Ω) +

M∑
m=2

∥∥%mkh − %m−1
kh

∥∥
L1(Ω)

+ ‖Ikh(∆h%kh)‖L1(0,T ;L1(Ω))

)
≤ C |ln(k)| |ln(h)| ,

where the constant C may change from step to step but is always independent of k
and h. This establishes (4.12) as desired. To prove the estimate (4.11), we can now
use a standard duality argument: Let w ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) be the
(necessarily unique) solution of the PDE

∂tw −∆w = sgn(ζ − ζkh) a.e. in Ω for a.a. t ∈ (0, T ),

tr(w) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ), w(0) = 0 a.e. in Ω,

and let wkh be the discrete approximation of w defined by

wkh ∈ Vkh, B(wkh, vkh) = (sgn(ζ − ζkh), vkh)L2(0,T ;L2(Ω)) ∀vkh ∈ Vkh.
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Then w is also an element of C([0, T ] × cl(Ω)) by [42, Proposition 2.7], and we may
use the definition of Ikh and the properties of w, ζ, wkh, and ζkh to obtain

‖ζ − ζkh‖L1((0,T )×Ω)

= (sgn(ζ − ζkh), ζ − ζkh)L2(0,T ;L2(Ω))

=

∫ T

0

(∂tw, ζ)L2(Ω) + (∇w,∇ζ)L2(Ω)d dt−B(wkh, ζkh)

=
〈
λ̄, Ikh(wkh)− w

〉
C([0,T ]×cl(Ω))

≤ ‖λ̄‖M([0,T ]×cl(Ω))

(
‖wkh − w‖L∞((ε,T )×D) + ‖Ikh(wkh)− wkh‖L∞((ε,T )×D)

)
≤ ‖λ̄‖M([0,T ]×cl(Ω))‖wkh − w‖L∞((ε,T )×D)

+ k‖λ̄‖M([0,T ]×cl(Ω))

(
‖w1

kh‖L∞(Ω)

k1
+ max
m=2,...,M

∥∥wmkh − wm−1
kh

∥∥
L∞(Ω)

km

)
.

Here, ε > 0 and D ⊂ Ω are chosen as in Lemma 4.5, i.e., such that supp(λ̄) ⊂ [ε, T ]×D
and cl(D) ⊂ Ω. Due to [39, Corollary 2, Theorem 11] and Lemma 4.3iii), the last
estimate yields that there exists a constant C > 0 independent of k and h with

‖ζ − ζkh‖L1((0,T )×Ω) ≤ C |ln(k)|2 |ln(h)|5
(
k + h2

)
.

Since ζ is an element of L∞((0, T )×Ω) and since the sequence {ζkh} satisfies (4.12),
we may now conclude that the L2-error between ζ and ζkh satisfies

‖ζ − ζkh‖2L2(0,T ;L2(Ω)) ≤ ‖ζ − ζkh‖L∞((0,T )×Ω)‖ζ − ζkh‖L1((0,T )×Ω)

≤ C |ln(k)|3 |ln(h)|6
(
k + h2

)
.

This completes the proof.

We are now in the position to prove the main result of this section:

Theorem 4.8 (FE-error estimate for (4.1)). There exists a constant C > 0 such
that the solutions ū and ūkh of the problems (4.1) and (4.4) satisfy

(4.14) ‖ū− ūkh‖L2(0,T ;L2(Ω)) ≤ C |ln(k)|3/2 |ln(h)|3
(
k1/2 + h

)
for all sufficiently small k and h.

Proof. To establish (4.14), we proceed along roughly the same lines as in the
proof of [12, Theorem 5.5]. Let us first introduce some notation: Henceforth, with
ζ and ζkh, we again denote the functions in (4.9) and (4.10), respectively, and with
λ̄ ∈ M([0, T ] × cl(Ω)) and λ̄ml ∈ R the multipliers in the systems (3.26) and (4.5).
Further, we define ϑ, χ, θ, θkh and ξkh to be the (necessarily unique) solutions of the
auxiliary problems

−∂tϑ−∆ϑ = ȳ − yD a.e. in Ω for a.a. t ∈ (0, T ),

tr(ϑ) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ), ϑ(T ) = 0 a.e. in Ω,

−∂tχ−∆χ = S(ūkh)− yD a.e. in Ω for a.a. t ∈ (0, T ),

tr(χ) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ), χ(T ) = 0 a.e. in Ω,

−∂tθ −∆θ = ȳkh − yD a.e. in Ω for a.a. t ∈ (0, T ),

tr(θ) = 0 a.e. on ∂Ω for a.a. t ∈ (0, T ), θ(T ) = 0 a.e. in Ω,

θkh ∈ Vkh, B(vkh, θkh) = (ȳkh − yD, vkh)L2(0,T ;L2(Ω)) ∀vkh ∈ Vkh,
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and

ξkh ∈ Vkh, B(vkh, ξkh) = −
M∑
m=1

dim(Vh)∑
l=1

λ̄mlvmkh(xl) ∀vkh ∈ Vkh.

Here, S again denotes the solution operator of the PDE (4.2). Note that the properties
of the functions ϑ, ζ, θkh and ξkh and the adjoint states p̄ and p̄kh in (3.26) and (4.5)
imply −νū = p̄ = ϑ+ ζ and −νūkh = p̄kh = θkh+ ξkh, and that Proposition 2.3 and a
simple reparametrization argument yield ϑ, χ, θ ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)).
From the PDEs for ϑ and χ, we further obtain

(ϑ− χ, ū− ūkh)L2(0,T ;L2(Ω))

= (ϑ− χ, ∂t(S(ū)− S(ūkh))−∆(S(ū)− S(ūkh)))L2(0,T ;L2(Ω))

= (−∂t(ϑ− χ)−∆(ϑ− χ), S(ū)− S(ūkh))L2(0,T ;L2(Ω))

= ‖S(ū)− S(ūkh)‖2L2(0,T ;L2(Ω)) ≥ 0.

The above estimate allows us to compute

ν‖ū− ūkh‖2L2(0,T ;L2(Ω)) ≤ (νū+ ϑ− νūkh − θkh + θkh − χ, ū− ūkh)L2(0,T ;L2(Ω))

≤ (−ζ + ξkh, ū− ūkh)L2(0,T ;L2(Ω))

+ ‖χ− θkh‖L2(0,T ;L2(Ω)) ‖ū− ūkh‖L2(0,T ;L2(Ω))

≤ (ξkh − ζkh, ū− ūkh)L2(0,T ;L2(Ω))

+ ‖ζkh − ζ‖L2(0,T ;L2(Ω)) ‖ū− ūkh‖L2(0,T ;L2(Ω))

+ ‖θ − θkh‖L2(0,T ;L2(Ω)) ‖ū− ūkh‖L2(0,T ;L2(Ω))

+ ‖χ− θ‖L2(0,T ;L2(Ω)) ‖ū− ūkh‖L2(0,T ;L2(Ω)) ,

which, in combination with Young’s inequality, implies that there exist constants
C1, C2 > 0 depending only on ν with
(4.15)
‖ū− ūkh‖2L2(0,T ;L2(Ω))

≤ C1 (ξkh − ζkh, ū− ūkh)L2(0,T ;L2(Ω))

+ C2

(
‖ζkh − ζ‖2L2(0,T ;L2(Ω)) + ‖θ − θkh‖2L2(0,T ;L2(Ω)) + ‖χ− θ‖2L2(0,T ;L2(Ω))

)
.

Note that, from Lemma 4.7, we immediately obtain that

(4.16) ‖ζ − ζkh‖2L2(0,T ;L2(Ω)) ≤ C |ln(k)|3 |ln(h)|6
(
k + h2

)
,

and that Lemma 4.3i), a simple reparametrization in time and Lemma 4.5 yield

(4.17) ‖θ − θkh‖L2(0,T ;L2(Ω)) ≤ C(k + h2)‖ȳkh − yD‖L2(0,T ;L2(Ω)) ≤ C(k + h2)

for all sufficiently small k and h, where C is again a generic constant independent of
k and h. From the Lipschitz continuity properties of the map S in Proposition 2.3,
again a reparametrization, Lemma 4.5 and Lemma 4.3i), we may further deduce that

‖χ− θ‖L2(0,T ;L2(Ω)) ≤ C‖S(ūkh)− Skh(ūkh)‖L2(0,T ;L2(Ω))

≤ C
(
k + h2

) (
‖ūkh‖L2(0,T ;L2(Ω)) + ‖y0‖H1(Ω)

)
≤ C

(
k + h2

)
.
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It remains to estimate the first term on the right-hand side of (4.15). To this end, we
note that the properties of ξkh, ζkh, ȳkh, ȳ, λ̄ and λ̄ml yield
(4.18)
(ξkh − ζkh, ū− ūkh)L2(0,T ;L2(Ω)) = B(Skh(ū)− ȳkh, ξkh − ζkh)

=
〈
λ̄, Ikh (Skh(ū)− ȳkh)

〉
C([0,T ]×cl(Ω))

+
∑
m,l

λ̄ml(ȳmkh − Skh(ū)m)(xl)

=
〈
λ̄, Ikh (Skh(ū)− Lh(ψ))

〉
C([0,T ]×cl(Ω))

+
〈
λ̄, Ikh (Lh(ψ)− ȳkh)

〉
C([0,T ]×cl(Ω))

+
∑
m,l

λ̄ml(ψ − Skh(ū)m)(xl)

≤
〈
λ̄, Ikh (Skh(ū)− Lh(ψ))

〉
C([0,T ]×cl(Ω))

+
∑
m,l

λ̄ml max (0, (ψ − Skh(ū)m)(xl))

=
〈
λ̄, Ikh (Skh(ū))− ȳ

〉
C([0,T ]×cl(Ω))

+
〈
λ̄, ψ − Ikh (Lh(ψ))

〉
C([0,T ]×cl(Ω))

+
∑
m,l

λ̄ml max (0, (ψ − Skh(ū)m)(xl)) ,

where Skh denotes the solution map of (4.3), where Ikh and Lh are the interpolation
operators defined in Definition 4.6, and where Lh(ψ) is identified with an element of
Vkh. For the first term on the right-hand side of (4.18), we obtain, analogously to the
estimate for the quantity

〈
λ̄, Ikh(wkh)− w

〉
C([0,T ]×cl(Ω))

in the proof of Lemma 4.7,

from Lemma 4.5, Lemma 4.3iii) and the results in [39] that〈
λ̄, Ikh (Skh(ū))− ȳ

〉
C([0,T ]×cl(Ω))

≤ C |ln(k)|2 |ln(h)|5
(
k + h2

)
.

Further, for the second term on the right-hand side of (4.18), it holds〈
λ̄, ψ − Ikh (Lh(ψ))

〉
C([0,T ]×cl(Ω))

≤ Ch2

for all sufficiently small k and h due to the definition of Ikh, the properties of the
support of λ̄ in Lemma 4.5 and the W 2,∞-regularity of ψ. To finally control the third
term on the right-hand side of (4.18), we note that Lemma 4.3ii), our assumption
ψ < 0 on ∂Ω, and the continuity and zero boundary conditions of ȳ imply that there
exist a constant ε > 0 and an open set D ⊂ Rd, which is compactly contained in Ω,
such that, for all sufficiently small k and h, we have

Skh(ū) ≥ ψ + ε a.e. in (0, T )× Ω \D

and, as a consequence,

max (0, (ψ − Skh(ū)m)(xl)) = 0 for all xl with xl ∈ Ω \D and all m.

Using the above, Lemma 4.3iii) and again Lemma 4.5, we obtain∑
m,l

λ̄ml max (0, (ψ − Skh(ū)m)(xl)) ≤ C‖max (0, ψ − Skh(ū)) ‖L∞((0,T )×D)

≤ C‖max (0, ȳ − Skh(ū)) ‖L∞((0,T )×D)

≤ C |ln(k)|2 |ln(h)|5
(
k + h2

)
for all sufficiently small k and h, where C is again a generic constant. The desired
estimate (4.14) now follows immediately from (4.15), (4.16) and (4.17).
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Quite surprisingly, the error estimate (4.14), that we have established in the last
theorem by exploiting the improved regularity results from section 3, can itself be
used to derive further information about the regularity properties of ū. Indeed, by
proceeding along the lines of [41, Section 7.1], we obtain:

Corollary 4.9 (Hs(0, T ;L2(Ω))-regularity of optimal controls). The optimal
control ū of (4.1) is also an element of Hs(0, T ;L2(Ω)) for all 0 < s < 1/2.

Proof. Suppose that s ∈ (0, 1/2) is arbitrary but fixed, consider the family of
equidistant partitions of the time interval (0, T ) associated with the widths kl := 2−lT ,
l ∈ N, and choose a quasi-uniform sequence of triangulations of Ω such that there exists
a constant c > 0 with c−1k

1/2
l ≤ hl ≤ c k1/2

l for all l ∈ N. Then it follows from (4.14)
that we can find constants C > 0 and ε ∈ (0, 1/2− s) independent of l such that the
solutions ū and ūl := ūklhl of (4.1) and (4.4) satisfy ‖ū− ūl‖L2(0,T ;L2(Ω)) ≤ Cks+εl for
all sufficiently large l ∈ N. Using this inequality and the same inverse estimate as in
the proof of [41, Theorem 7.1], we obtain that, for all l2 ≥ l1 ≥ L, L ∈ N sufficiently
large, we have

‖ūl1 − ūl2‖Hs(0,T ;L2(Ω))

≤
l2−1∑
l=l1

‖ūl − ūl+1‖Hs(0,T ;L2(Ω)) ≤
l2−1∑
l=l1

k−sl+1‖ūl − ūl+1‖L2(0,T ;L2(Ω))

≤
l2−1∑
l=l1

k−sl+1

(
‖ūl − ū‖L2(0,T ;L2(Ω)) + ‖ū− ūl+1‖L2(0,T ;L2(Ω))

)
≤ C

l2−1∑
l=l1

k−sl+1

(
ks+εl + ks+εl+1

)
≤ 2s+1CT ε

∞∑
l=L

2−εl = o(1),

where the Landau symbol refers to the limit L → ∞. This shows that {ūl} is a
Cauchy sequence in Hs(0, T ;L2(Ω)) and, since we already know that ūl converges to
ū in L2(0, T ;L2(Ω)), that ū ∈ Hs(0, T ;L2(Ω)) as claimed.

In summary (see (3.26) and Corollary 4.9), we have now proved that the optimal
control ū of (4.1) satisfies

(4.19) ū ∈ L∞((0, T )× Ω) ∩ L2(0, T ;H1
0 (Ω)) ∩BV ([0, T ];Y ∗γ ) ∩Hs(0, T ;L2(Ω))

for all s ∈ (0, 1/2) and all γ > d/2. Note that this inclusion recovers in particular all
of the regularity properties that have been established in [41] for solutions of parabolic
problems with L∞-bounds on the control and state constraints of integral type.

4.1. Numerical experiments. To validate the error estimate (4.14), we con-
sider a simple numerical example with a known analytic solution: Define

ρ(s) :=


sin(π/4) + π cos(π/4) (s− 1/4) if s ∈ (0, 1/4)

sin(πs) if s ∈ [1/4, 3/4]

sin(3π/4) + π cos(3π/4) (s− 3/4) if s ∈ (3/4, 1)

and

ϕ(s) :=


128s3 − 48s2 if s ∈ (0, 1/4)

−1 if s ∈ [1/4, 3/4]

128(1− s)3 − 48(1− s)2 if s ∈ (3/4, 1)

,
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and set Ω := (0, 1)2, T := 1, y0 := 0, ν := 10−5 and

(4.20)

ψ(x1, x2) := −ρ(x1)ρ(x2),

ȳ(t, x1, x2) := ϕ(t) sin(πx1) sin(πx2),

ū(t, x1, x2) := ϕ′(t) sin(πx1) sin(πx2) + 2π2ϕ(t) sin(πx1) sin(πx2),

yD(t, x1, x2) := ϕ(t) sin(πx1) sin(πx2)− νϕ′′(t) sin(πx1) sin(πx2)

+ 4π4νϕ(t) sin(πx1) sin(πx2)− 1(1/4,3/4)3(t, x1, x2)

for a.a. t ∈ (0, 1) and (x1, x2) ∈ Ω, where ϕ′′ is understood in the weak sense. Then it
is easy to check that Ω, T , ν, yD, y0 and ψ satisfy the conditions in Assumption 4.1
and that ū and ȳ solve the KKT-system (3.26) with the adjoint state p̄ := −νū and the
multiplier λ̄ := 1(1/4,3/4)3 . This shows that the function ū is the (necessarily unique)
global minimizer of the problem (4.1) when ψ etc. are chosen as in (4.20).

The experimental orders of convergence

(4.21)

(EOCh)l :=
log ‖ū− ūhlkl‖L2(0,T ;L2(Ω)) − log ‖ū− ūhl−1kl−1

‖L2(0,T ;L2(Ω))

log hl − log hl−1
,

(EOCk)l :=
log ‖ū− ūhlkl‖L2(0,T ;L2(Ω)) − log ‖ū− ūhl−1kl−1

‖L2(0,T ;L2(Ω))

log kl − log kl−1

that are obtained in the above situation when ū is approximated by means of the
discretization scheme (4.4) on meshes with temporal and spatial widths kl, hl, l ∈ N,
can be seen in Tables 1 and 2. Here, we have considered standard Friedrichs-Keller
triangulations of the spatial domain Ω = (0, 1)2 and equidistant partitions of the time
interval (0, 1). The discrete problems (4.4) have been solved by reformulating the
necessary and sufficient optimality condition (4.5) as a system of equations by means
of the complementarity function Φ(a, b) := min(a, b), and by subsequently applying a
semismooth Newton method with tolerance 10−10. We would like to point out that the
calculation of the yD-integral in (4.5) was carried out with a subdivided three-point
Gauss-rule in space and time in our numerical experiments (i.e., overall twelve nodes
per triangle and 6 nodes per time interval). This choice was made to ensure that the
discontinuous desired state yD is integrated properly for all spatial/temporal meshes
with h−1 = 2l, k−1 = 2m, l,m ∈ N, even in those cases where these meshes do not
resolve the boundary of the active set (1/4, 3/4)3 accurately. The same integration
procedure has been used for the calculation of the L2((0, T )× Ω)-errors in (4.21).

hl (EOCh)l (EOCk)l

1
4 - -
1
8 0.5541 0.2770
1
12 1.8847 0.9423
1
16 1.9656 0.9828
1
20 1.9884 0.9942

(a) kl = 0.5h2
l

hl (EOCh)l

1
4 -
1
8 0.3876
1
12 1.8794
1
16 1.9559
1
20 1.9688

(b) kl ≡ 1/1024

kl (EOCk)l

1
16 -
1
24 0.9101
1
32 0.9384
1
40 0.9520
1
48 0.9596

(c) hl ≡ 1/64

Table 1: EOCs in L2(0, T ;L2(Ω)) for sequences of meshes that resolve the boundary
of the active set (1/4, 3/4)3 perfectly in space and time. In (a), the spatial and the
temporal widths are coupled, and in (b) and (c) one of the widths is fixed.
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hl (EOCh)l (EOCk)l

1
6 - -
1
10 1.1231 0.5615
1
14 1.2088 0.6044
1
18 1.0842 0.5421
1
22 1.0316 0.5158

(a) kl = 0.5h2
l

hl (EOCh)l

1
6 -
1
10 1.0960
1
14 1.1961
1
18 1.0745
1
22 1.0244

(b) kl ≡ 1/1026

kl (EOCk)l

1
10 -
1
18 0.8993
1
26 0.8865
1
34 0.8645
1
42 0.8308

(c) hl ≡ 1/66

Table 2: EOCs in L2(0, T ;L2(Ω)) for sequences of meshes that do not resolve the
boundary of the active set (1/4, 3/4)3 in space and time. In (a), the spatial and the
temporal widths are coupled, and in (b) and (c) one of the widths is fixed.

As the results in Tables 1 and 2 show, the orders of convergence observed in
our numerical experiments depend strongly on how well the employed temporal and
spatial meshes fit to the active set (1/4, 3/4)3 of the exact solution in (4.20). If we
choose sequences of meshes that resolve the boundary ∂(1/4, 3/4)3 precisely, then it
holds ‖ū− ūhlkl‖L2(0,T ;L2(Ω)) ≈ O(kl+h2

l ) and the error in the optimal control decays
twice as fast as predicted by (4.14); see Table 1. If, however, we consider sequences
with h−1

l = 2 + 4ml and k−1
l = 2 + 4nl for some ml, nl ∈ N and, by doing so, ensure

that the boundary ∂(1/4, 3/4)3 always cuts through the middle of the mesh cells, then
the rate of convergence is significantly reduced and we end up with a behavior which is
roughly of the form ‖ū− ūhlkl‖L2(0,T ;L2(Ω)) ≈ O(k0.85

l +hl); see Table 2. Note that the
order of convergence observed in h here is precisely that derived in Theorem 4.8 while
the rate in k is slightly higher than in our a priori error estimate. The reason for this
faster convergence w.r.t. k is most likely that the optimal control and the adjoint state
in our test case enjoy far more temporal regularity than predicted by (4.19). (It seems
to be difficult do construct a situation where the conditions in Assumption 4.1 are
satisfied and the control ū possesses, e.g., only BV - or Hs-regularity with s ∈ (0, 1/2)
in time.) We would like to point out that similar observations have also been made
in the numerical experiments conducted in [31, Section 5] and [41, Section 8]. The
dependence of the order of convergence on the resolution of the active set further
closely resembles effects documented in [16].

We conclude this paper with some remarks on the results of the last sections and
possible extensions of our analysis:

Remark 4.10.
• It is important to realize that - although we know that the optimal control
ū is in L∞((0, T )×Ω) in the situation of (4.1) - we do not have any a priori
bound for the L∞((0, T ) × Ω)-norm of the discrete controls ūkh. If such a
bound was available, one could introduce artificial control constraints and
proceed along the lines of [31] to derive an estimate analogous to (4.14) with
improved logarithmic factors. However, at least to the best of the authors’
knowledge, there is currently no way to exclude that the L∞((0, T )×Ω)-norm
of ūkh blows up, e.g., logarithmically in k and h.

• Note that introducing the interpolant Ikh in Lemma 4.7 is essential for the
proof of (4.14) as this operator ensures that the discrete auxiliary problem
(4.10) with right-hand side λ̄ is sensible. Without Ikh, we would end up with
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a dual pairing between elements of Vkh and M([0, T ] × cl(Ω)) at this point
which is not well-defined due to the discontinuity in time of the functions in
Vkh. A similar effect cannot be observed in the elliptic case, see [12, Section 3].

• Using the same techniques as in the proof of Theorem 4.8, it is also possible
to derive finite element error estimates for problems involving additional box
constraints on the control and/or general second-order partial differential
operators of the type (2.1). (Note that, in the presence of control constraints,
some care has to be taken to ensure that the adjoint state p̄ is still an element
of L∞((0, T )×Ω) and that additional assumptions may be necessary to ensure
that an operator A of the form (2.1) satisfies a discrete maximal parabolic
regularity estimate analogous to that in [39, Theorem 11].) We omit a detailed
discussion of this topic to keep this paper concise.

• We expect that the regularity results established in section 3 can also be
extended to optimal control problems governed by semilinear parabolic partial
differential equations as studied, e.g., in [47]. However, such a generalization
requires carefully redoing the analysis in [4] which, in its current form, does
not allow for additional non-linearities. We leave this topic for future research.

Appendix A. Truncation operations in Sobolev-Bochner spaces. In
what follows, we collect and prove several auxiliary results on pointwise properties
of Sobolev-Bochner functions that are needed for our analysis. For convenience, we
state the lemmas in this section in a general format, i.e., we do not tacitly assume
here that the quantities Ω etc. satisfy the conditions in Assumption 2.1.

Lemma A.1 (Stampacchia’s lemma for Sobolev-Bochner functions). Suppose
that a T > 0, a domain Ω ⊂ Rd, d ≥ 1, and a v ∈ L2(0, T ;H1(Ω)) are given. Define
v+ := max(0, v), where max(0, ·) acts pointwise a.e. in (0, T )×Ω. Then the function
v+ is an element of L2(0, T ;H1(Ω)), the gradient ∇(v+) ∈ L2(0, T ;L2(Ω,Rd)) ∼=
L2((0, T )× Ω;Rd) of v+ satisfies

(A.1) ∇(v+) =

{
∇v Ld+1-a.e. in {v > 0}
0 Ld+1-a.e. in {v ≤ 0}

,

and we have

(A.2) ∇v = 0 Ld+1-a.e. in {v = 0}.

If, further, the function v additionally possesses H1(0, T ;L2(Ω))-regularity, then v+

is also an element of H1(0, T ;L2(Ω)) and it holds

(A.3) ∂t(v
+) =

{
∂tv Ld+1-a.e. in {v > 0}
0 Ld+1-a.e. in {v ≤ 0}

,

as well as

(A.4) ∂tv = 0 Ld+1-a.e. in {v = 0},

and if v is even in L2(0, T ;H2(Ω)), then the Hessian ∇2v ∈ L2(0, T ;L2(Ω,Rd×d)) ∼=
L2((0, T )× Ω;Rd×d) of v satisfies

(A.5) ∇2v = 0 Ld+1-a.e. in {v = 0}.
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Proof. The L2(0, T ;H1(Ω))-regularity of v+ follows straightforwardly from the
results in [3, Section 5.8] and [34, Section 3], the formula (A.1) can be established
completely analogously to [3, Theorem 5.8.2], and to obtain (A.2), it suffices to note
that (A.1) and the linearity of the operator ∇ yield

0 = ∇v −∇(v+ + v−) = ∇v −∇(v+)−∇(v−) =

{
∇v Ld+1-a.e. in {v = 0}
0 Ld+1-a.e. in {v 6= 0}

,

where v− is again short for min(0, v) = −max(0,−v). This proves the first part of
the lemma. Let us assume now that v is also an element of H1(0, T ;L2(Ω)). Then
the H1(0, T ;L2(Ω))-regularity of v+ and the formula (A.3) follow from [54, Corollary
2.3, Equation (2)], and the derivation of (A.4) is completely along the lines of that
of (A.2). It remains to establish (A.5). To this end, we first note that, for every
v ∈ L2(0, T ;H2(Ω)), we have (due to (A.2) and since ∂nv ∈ L2(0, T ;H1(Ω)) holds for
all spatial partial derivatives ∂nv, n = 1, ..., d)

(∂nv)1{v=0} = 0 ∈ L2((0, T )× Ω) ∀n = 1, ..., d

and

(∂m∂nv)1{∂nv=0} = 0 ∈ L2((0, T )× Ω) ∀m,n = 1, ..., d.

The above implies in particular that

1{v=0} = 1{∂nv=0}1{v=0} ∈ L2((0, T )× Ω) ∀n = 1, ..., d

and, as a consequence, that

(∂m∂nv)1{v=0} = (∂m∂nv)1{∂nv=0}1{v=0} = 0 ∈ L2((0, T )× Ω) ∀m,n = 1, ..., d.

This establishes (A.5) and completes the proof.

We are now in the position to state a criterion for pointwise-a.e. boundedness
in the space-time cylinder (0, T ) × Ω that extends the results of [37, Chapter II,
Appendix B] to the parabolic setting:

Lemma A.2 (pointwise bounds via growth estimates). Suppose that a T > 0, a
bounded Lipschitz domain Ω ⊂ Rd, d ≥ 1, and a v ∈ L2(0, T ;H1(Ω))∩L∞(0, T ;L2(Ω))
are given such that the truncations

(A.6) vl := min(0, v + l) + max(0, v − l) =


v − l a.e. in {v ≥ l}
0 a.e. in {|v| < l}
v + l a.e. in {v ≤ −l}

, l ≥ 0,

satisfy

(A.7) ‖vl‖2L∞(0,T ;L2(Ω)) + ‖vl‖2L2(0,T ;H1(Ω)) ≤
∫ T

0

∫
Ω

|f ||vl|dxdt ∀l ≥ L

for some f ∈ L∞(0, T ;Lq(Ω)), q > max (d/2, 1), and L ≥ 0. Then there exists a
constant C > 0 depending only on Ω, T , q and d such that

(A.8) ‖v‖L∞((0,T )×Ω) ≤ L+ C‖f‖L∞(0,T ;Lq(Ω)).
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Proof. To establish (A.8), we proceed along the lines of [37, Lemma II.B2] (cf.
also [21, Lemma 3.6]). Let us first assume that d > 2 and define

λl : (0, T )→ R, λl(t) := Ld({x ∈ Ω : |v(t, x)| ≥ l}), l ≥ 0.

Then the function λl is well-defined for each representative of v ∈ L2(0, T ;L2(Ω)) and
all l ≥ 0, and the upper semicontinuity of the map

L2(Ω) 3 z 7→ Ld({x ∈ Ω : |z(x)| ≥ l}) ∈ R

for all l ≥ 0 and the Pettis measurability theorem, see [34, Corollary 3.1.2], imply that
λl is measurable for all l ≥ 0 and can be identified with an element of L∞(0, T ). From
the Sobolev embedding H1(Ω) ↪→ L2d/(d−2)(Ω), the definition (A.6) and Lemma A.1,
we now obtain that there exists a constant C > 0 depending only on Ω and d such
that, for all 0 ≤ l ≤ m, we have

‖vl‖2L∞(0,T ;L2(Ω)) + ‖vl‖2L2(0,T ;H1(Ω))

≥ ess sup
t∈(0,T )

∫
{|v(t,·)|≥l}

(|v(t, x)| − l)2dx+ C

∫ T

0

(∫
{|v(t,·)|≥l}

(|v(t, x)| − l)
2d
d−2 dx

) d−2
d

dt

≥ (m− l)2

(
‖λm‖L∞(0,T ) + C

∫ T

0

λm(t)
d−2
d dt

)
.

On the other hand, the L∞(0, T ;Lq(Ω))-regularity of the function f , the condition
q > max (d/2, 1), again the embedding H1(Ω) ↪→ L2d/(d−2)(Ω), the inequalities of
Hölder and Young, and the elementary estimates

q(d+ 2)

2d
>
d+ 2

4
≥ 1 and s := 1 +

4

d
− 2

q
> 1

allow us to compute that∫ T

0

∫
Ω

|f ||vl|dxdt

≤ C
∫ T

0

(∫
{|v(t,·)|≥l}

|f(t, x)|
2d
d+2 dx

) d+2
2d

‖vl(t)‖H1(Ω)dt

≤ C
∫ T

0

(∫
{|v(t,·)|≥l}

|f(t, x)|qdx

) 2d
q(d+2)

λl(t)
1− 2d

q(d+2)


d+2
2d

‖vl(t)‖H1(Ω)dt

≤ C
∫ T

0

‖f(t)‖Lq(Ω)λl(t)
d+2
2d −

1
q ‖vl(t)‖H1(Ω)dt

≤ C‖f‖2L∞(0,T ;Lq(Ω))

∫ T

0

λl(t)
d+2
d −

2
q dt+

1

2
‖vl‖2L2(0,T ;H1(Ω))

≤ C‖f‖2L∞(0,T ;Lq(Ω))

(‖λl‖ 4
d−

2
q

L∞(0,T )

)1/s
(∫ T

0

λl(t)
d−2
d dt

)1/s
s

+
1

2
‖vl‖2L2(0,T ;H1(Ω))
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holds for all l ≥ 0, where C > 0 is a generic constant which depends only on d, q and
Ω and which may change from step to step. Applying Young’s inequality once again
on the right-hand side of the last estimate yields∫ T

0

∫
Ω

|f ||vl|dxdt

≤ C‖f‖2L∞(0,T ;Lq(Ω))

((
‖λl‖

4
d−

2
q

L∞(0,T )

)1/(s−1)

+

∫ T

0

λl(t)
d−2
d dt

)s
+

1

2
‖vl‖2L2(0,T ;H1(Ω))

= C‖f‖2L∞(0,T ;Lq(Ω))

(
‖λl‖L∞(0,T ) +

∫ T

0

λl(t)
d−2
d dt

)s
+

1

2
‖vl‖2L2(0,T ;H1(Ω)).

From (A.7), we may now deduce that there exists a constant C = C(q, d,Ω) > 0 and
an exponent s > 1 such that the (trivially non-negative and non-increasing) function

Λ: [0,∞)→ [0,∞), Λ(l) := ‖λl‖L∞(0,T ) +

∫ T

0

λl(t)
d−2
d dt,

satisfies

Λ(m) ≤ C(m− l)−2‖f‖2L∞(0,T ;Lq(Ω))Λ(l)s ∀L ≤ l ≤ m.

The above implies, in combination with [37, Lemma IIB.l], that there exists a (differ-
ent) constant C = C(q, d,Ω, T ) > 0 with Λ(L+C‖f‖L∞(0,T ;Lq(Ω))) = 0. The estimate
(A.8) now follows immediately from the definitions of Λ and λl. This proves the claim
in the case d > 2. For d ∈ {1, 2}, the proof of (A.8) is completely along the same
lines and only requires minor modifications due to the degenerate Sobolev conjugate.
We leave the details to the reader.

As an immediate consequence of Lemma A.2, we obtain the following result that
allows to establish the L∞-regularity of the adjoint state p̄ in Theorem 3.4.

Lemma A.3 (pointwise estimates for parabolic PDEs). Suppose that Ω ⊂ Rd,
d ≥ 1, is a bounded Lipschitz domain and that a T > 0 is given. Assume further
that amn, a0 ∈ L∞(Ω), m,n = 1, ..., d, are functions which satisfy the conditions in
(2.2) a.e. in Ω for all m,n = 1, ..., d and all ξ ∈ Rd with some α > 0, that χ is a
non-negative element of L∞((0, T )×Ω), and that A : H1

0 (Ω)→ H−1(Ω) is defined as
in (2.1). Then the parabolic partial differential equation

(A.9)

∂tv +Av + χv = f in (0, T )× Ω,

tr(v) = 0 on (0, T )× ∂Ω,

v(0) = g in Ω,

admits a unique (weak) solution v = v(f, g) ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω)) for

all f ∈ L2(0, T ;H−1(Ω)) and all g ∈ L2(Ω), and, for every q > max(d/2, 1), there
exists a constant C > 0, which depends only on Ω, T , d, q and α, such that

(A.10) ‖v(f, g)‖L∞((0,T )×Ω) ≤ ‖g‖L∞(Ω) + C‖f‖L∞(0,T ;Lq(Ω))

holds for all f ∈ L∞(0, T ;Lq(Ω)) and all g ∈ L∞(Ω).
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Proof. The existence of a unique solution v ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω))

of (A.9) for all f ∈ L2(0, T ;H−1(Ω)) and all g ∈ L2(Ω) follows straightforwardly
from [4, Theorem 1.14]. It remains to prove (A.10). To this end, let us suppose that
arbitrary but fixed f ∈ L∞(0, T ;Lq(Ω)) and g ∈ L∞(Ω) with q > max(d/2, 1) are
given, denote with v = v(f, g) the solution of (A.9) associated with f and g, and define
vl, l ≥ 0, as in (A.6). Then the embedding L2(0, T ;H1

0 (Ω)) ∩ H1(0, T ;H−1(Ω)) ↪→
C([0, T ];L2(Ω)) and Lemma A.1 yield that vl ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω))
holds for all l ≥ 0, and we may use (A.9), the formula (A.1), and exactly the same
regularization argument as in the proof of [54, Lemma 3.3] to compute that∫ s

0

∫
Ω

fvldxdt =

∫ s

0

〈∂tv, vl〉H1
0 (Ω) +

∫
Ω

d∑
m,n=1

amn(∂mv)(∂nvl) + (a0 + χ)vvl dxdt

≥
∫ s

0

〈∂tv, vl〉H1
0 (Ω) +

∫
Ω

d∑
m,n=1

amn(∂mvl)(∂nvl) dxdt

≥ 1

2
‖vl(s)‖2L2(Ω) −

1

2
‖vl(0)‖2L2(Ω) + α

∫ s

0

∫
Ω

|∇vl|2dxdt ∀s ∈ (0, T ).

The above implies, in combination with Friedrichs’ inequality, the observation that
vl(0) = min(0, g+l)+max(0, g−l) = 0 holds for all l ≥ ‖g‖L∞(Ω) and trivial estimates,
that there exists a constant C = C(Ω, α) > 0 with

‖vl‖2L∞(0,T ;L2(Ω)) + ‖vl‖2L2(0,T ;H1(Ω)) ≤
∫ T

0

∫
Ω

C|f ||vl|dx dt ∀l ≥ ‖g‖L∞(Ω).

The claim now follows immediately from Lemma A.2. This completes the proof.

Note that the crucial point of Lemma A.3 is that the constant C in (A.10) is
independent of the coefficient χ. This is what makes it possible to obtain the inclusion
(3.13) in Theorem 3.4 by passing to the limit in (3.14).

We remark that results similar to that in Lemma A.3 can also be found, e.g., in [53,
Chapter 5], albeit under different regularity assumptions on the right-hand side and
for different boundary conditions. Further, we would like to point out that, completely
analogously to the proof of Lemma A.3, one can also establish L∞-estimates for other
types of parabolic partial differential equations and even certain evolution variational
inequalities. Compare, e.g., with the results for elliptic problems in [17, Section 2], [21,
Lemma 3.6] and [37, Section IIB] in this context. We do not state these generalizations
here since they are not needed for the analysis of the problem (P).
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[47] I. Neitzel and F. Tröltzsch, On convergence of regularization methods for nonlinear
parabolic optimal control problems with control and state constraints, Control Cybernet.,
37 (2008), pp. 1013–1043.
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