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Abstract. This work is motivated by recent interest in the topic of point-

wise tracking type optimal control problems for the Stokes problem. Pointwise
tracking consists of point evaluations in the objective functional which lead to

Dirac measures appearing as source terms of the adjoint problem. Consider-

ing bounds for the control allows for improved regularity results for the exact
solution and improved approximation error estimates of its numerical coun-

terpart. We show a sub-optimal convergence result in three dimensions that
nonetheless improves the results known from the literature. Finally, we offer

supporting numerical experiments and insights towards optimal approximation

error estimates.

1. Introduction. For Ω ⊂ R3, an open non-empty convex polyhedral domain,
we consider the following pointwise tracking type optimal control problem. Let

{~xi}i∈I 6= ∅ be a finite subset of Ω and {~ξi}i∈I a corresponding set in R3. We
denote the space of controls as Q = L2(Ω)3. Then, the pointwise tracking type
optimal control problem is given by

Minimize J(~u, ~q) =
1

2

∑
i∈I

(~u(~xi)− ~ξi)2 +
α

2
‖~q‖2L2(Ω) for ~q ∈ Q, subject to

−∆~u+∇p = ~q in Ω, (1a)

∇ · ~u = 0 in Ω, (1b)

~u = ~0 on ∂Ω, and (1c)

~a ≤ ~q(x) ≤ ~b componentwise for a.a ~x ∈ Ω, (1d)

for ~a < ~b componentwise, ~a,~b ∈ R3 and α > 0. We choose p to have zero mean.
The space of admissible controls fulfilling (1d) is denoted by Qad. Similar to the
corresponding elliptic optimal control problem, which is discussed in [2, 4, 6, 10], it
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quickly follows that the point evaluations of ~u in J lead to singular sources on the
right-hand side of the adjoint equation

−∆~z +∇r =
∑
i∈I

(~u− ~ξi)δ~xi in Ω, (2a)

∇ · ~z = 0 in Ω, (2b)

~z = ~0 on ∂Ω, (2c)

with r having zero mean. We denote the sum on the right-hand side of (2a) as DΣ

to simplify notation.
The Dirac source δ~xi is supported at ~xi. In spite of the singularities on the right-

hand side it is possible to derive almost optimal convergence rates for the control in
the control-constrained case when the control is discretized using piecewise constant
functions.

This analysis is motivated by recent interest in the Stokes pointwise tracking
type problem in [14]. Let h > 0 denote the discretization parameter describing the
maximal mesh size. Using cell-wise constant discretization for the control space,
a O(|lnh|3h) convergence rate is proven in [14, Theorem 3, Remark 2] for the
control approximation error in two dimensions and O(|lnh|h1/2) in three dimensions
based on new weighted stability results in [13]. Similar analysis has already been
conducted for the standard Poisson problem in [2, 4, 6, 10]. Furthermore, the
authors of [14] give references for potential applications and also discuss an optimal
control problem featuring Dirac sources on the right-hand side of the state equation.

Related to this problem are state constrained optimal control problems for the
Stokes system as introduced in [12]. State constraints also lead to measure valued
right-hand sides of the adjoint equation. The low regularity of the right-hand side
motivates an existence and uniqueness approach for the solution of the Stokes prob-
lem based on very weak solutions. The case of state constraints has been already
discussed at length for the Poisson problem, see for example [8, 24].

Using new results for local pointwise estimates of the Stokes problem in [3] we
improve the estimate in three dimensions to O(|lnh|2/3h5/6). The technique we
employ is similar to the approach used in [4] but significantly different in some
details, in particular in how we handle the behavior of the solution of the adjoint
equation close to the singularities. While for the respective Poisson problem the
absolute value of the solution of the adjoint equation grows towards infinity the
closer it is to a singularity, this does not happen in the case of the Stokes problem
for certain parameter settings.

Here we consider Taylor-Hood finite elements of an order greater than or equal to
three for the solutions of the discrete state and discrete adjoint state equations. For
the control, we consider a variational discretization as in [19] as well as discretization
with cell-wise constant functions as in [4, 14].

In the following we begin our analysis by recalling and introducing basic proper-
ties of the optimal control problem (1). Next we consider the discretized problem
and multiple approximation error results for the quantities involved, finally leading
up the approximation error estimates for the control.

2. Preliminaries and regularity results. We now introduce basic notation.
Throughout this paper, we employ the usual notation for the Lebesgue, Sobolev
and Hölder spaces. These spaces can be extended in a straightforward manner to
vector functions, with the same notation but with the following modification for the
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norm in the non-Hilbert case: if ~u = (u1, u2, u3), we then set

‖~u‖Lr(Ω) =

[∫
Ω

|~u(~x)|rd~x
]1/r

where | · | denotes the Euclidean vector norm for vectors or the Frobenius norm for
tensors.

We denote by (·, ·) the L2(Ω) inner product and specify subdomains by subscripts
in the case they are not equal to the whole domain. Ls0(Ω) contains the Ls(Ω)
function with mean zero for 1 ≤ s ≤ ∞. For Sobolev spaces, e.g., H1

0 (Ω)3 or

W 1,s
0 (Ω)3 denote the respective Sobolev spaces of functions with zero boundary

conditions. Here W−1,s′(Ω)3 is the dual space of W 1,s
0 (Ω)3.

2.1. Regularity of solutions to state and adjoint state equations. Next we
recall some results for solutions to the state (1a) to (1c) and adjoint equation (2a)
to (2c). We consider the solutions to the respective (very) weak formulations.

To keep notation simple, we introduce an auxiliary problem for which we describe
all properties not directly related to the optimal control problem. Analysis for

this problem will done in the following sections for different right-hand sides ~f .
Existence and uniqueness of solutions to the weak formulation of the Stokes problem

on bounded domains are shown, for example, in [15, Theorem IV.1.1] for ~f ∈
H−1(Ω)3, for ~f with even less regularity we give an existence result below. The
regularity results for polyhedral domains stated next can be found, e.g., in [23,

Chap. 11] and partially in [11]. For 1 < s < ∞ and ~f ∈ W−1,s(Ω)3 let (~w, ϕ) ∈
W 1,s

0 (Ω)3 × Ls0(Ω) solve

a((~w, ϕ), (~v, l)) = (~f,~v) ∀(~v, l) ∈W 1,s′

0 (Ω)3 × Ls
′
(Ω), (3)

for

a((~w, ϕ), (~v, l)) = (∇~w,∇~v)− (ϕ,∇ · ~v) + (∇ · ~w, l)
where we choose ϕ to have zero mean. Then, there holds

‖~w‖W 1,s(Ω) + ‖ϕ‖Ls(Ω) ≤ C‖~f‖W−1,s(Ω). (4)

Furthermore, for ~f ∈ L2(Ω)3, (~w, ϕ) are elements of (H1
0 (Ω) ∩ H2(Ω))3 × H1(Ω)

and

‖~w‖H2(Ω) + ‖ϕ‖H1(Ω) ≤ C‖~f‖L2(Ω). (5)

And finally, for ~f ∈ L∞(Ω)3 and σ ∈]0, 1[, depending on the largest interior angle
of the domain, we have

‖~w‖C1,σ(Ω̄) + ‖ϕ‖C0,σ(Ω̄) ≤ C‖~f‖L∞(Ω). (6)

A discussion of this result can also be found below [17, Theorem 3].

Result (5) shows that (1) is well defined and we can introduce for ~f ∈ L2(Ω)3

a linear control-to-state mapping for the velocity S : L2(Ω)3 → C(Ω̄)3 and the

pressure Sp : L2(Ω) → L2
0(Ω) ∩ H1(Ω) such that S ~f = ~w and Sp ~f = ϕ as the

components of the solution to (3).
Due to the linearity of S, Sp, the convexity of the cost functional and the fact

that α > 0, standard arguments as in [26] lead to the existence of a unique solution
to the optimal control problem (1).

Next, we discuss the regularity of the solution to the adjoint equation. Since we

were not able to locate existence and uniqueness results for ~f ∈ W−1,s(Ω)3 with
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1 < s < 3/2, in particular not for ~f ∈M(Ω)3, in the available literature on convex
polyhedral domains, we apply a result on Lipschitz domains due to Brown and Shen
[7, Theorem 2.9]. We state a version of the theorem adapted to our notation.

Proposition 1. For Ω a bounded Lipschitz domain in R3 and f ∈W−1,s(Ω)3 with

ε̃ > 0 small and (3 + ε̃)/(2 + ε̃) < s < 3 + ε̃ there exist unique ~w ∈W 1,s
0 (Ω)3 and a,

up to a constant, unique ϕ ∈ Ls(Ω) such that

−∆~w +∇ϕ = ~f in Ω,

∇ · ~w = 0 in Ω,

~w = ~0 on ∂Ω.

In particular, this then holds for ~f ∈ W−1,s(Ω)3 with 3/2 − ε < s < 3 + ε̃ for
ε > 0 sufficiently small.

Remark 1. On polyhedral domains one may extend the range of s using the reg-
ularity results in [23]. For our purposes Proposition 1 is sufficient here.

Having established existence and uniqueness for this kind of right-hand side ~f
we are now able to discuss the solution to the adjoint equation. The right-hand
side of the adjoint problem (2a) to (2c) consists of a linear combination of regular
Borel measures in the space M(Ω)3 which can be motivated as the dual space
of continuous functions on Ω. By the well-known Sobolev embedding theorem it
follows that for i ∈ I, δ~xi ∈W−1,s(Ω) for s < 3

2 . Thus, based on this consideration,
Proposition 1 and regularity result (4), we conclude that there exists a solution

(~z, r) ∈W 1,s
0 (Ω)3 × Ls0(Ω).

The following result is relevant for deriving approximation error estimates of the
adjoint equation. Since the point evaluations in the cost functional are located in the
interior of the domain, we are interested in the regularity of a dual problem to (2a)
to (2c) in the interior of the domain, away from the boundary. In the following we
denote by Ω1 b Ω2 that a domain Ω1 is contained in Ω2 and dist(Ω1, ∂Ω2) > d > 0.

Proposition 2 (Interior regularity for Stokes). Let (~w, r) ∈ H1
0 (Ω)3 ×L2

0(Ω) solve

−∆~w +∇ϕ = f

∇ · ~w = 0

~w = 0

~f ∈ L∞(Ω). Then we get for Ω1 b Ω2 b Ω the following semi-norm estimate

|~w|W 2,p(Ω1) + |ϕ|W 1,p(Ω1) ≤ Cp‖f‖L∞(Ω) for all 1 < p <∞,

with C independent of p.

Proof. The proposition, for the most part, is already available in [15, Theorem
IV.4.1] with

|~w|W 2,p(Ω1) + |ϕ|W 1,p(Ω1) ≤ C(‖~f‖Lp(Ω2) + ‖~w‖W 1,p(Ω2\Ω1) + ‖ϕ‖Lp(Ω2\Ω1)).

Now, by (6) we can bound ‖~w‖W 1,p(Ω1\Ω2) + ‖ϕ‖Lp(Ω1\Ω2) for p→∞ by ‖~f‖L∞(Ω)

and obviously ‖~f‖Lp(Ω1) is bounded as well, such that we get

‖~w‖W 2,p(Ω1) + ‖ϕ‖W 1,p(Ω1) ≤ C‖~f‖L∞(Ω).
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It remains to trace the dependency on p of the constant C. Starting from [15, The-
orem IV.4.1] we can trace the constant over [15, Theorem IV.2.1] to [15, Theorem
II.11.4] and [15, Remark II.11.2] to the form stated in the theorem.

2.2. Optimality condition and derivatives. First we consider derivatives of the
cost functional, which also motivates the introduction of the adjoint problem. For
~q ∈ Qad we define the reduced cost functional as j(~q) = J(~q, S~q).

Lemma 2.1. For ~q, δ~q ∈ Q, the directional Fréchet derivative of the reduced cost
functional j is given by

j′(~q)(δ~q) = (α~q + ~z, δ~q),

where ~z ∈W 1,s(Ω)3 solves

−∆~z +∇r =
∑
i∈I

(S~q − ~ξi)δ~xi in Ω,

∇ · ~z = 0 in Ω,

~z = ~0 on ∂Ω,

which corresponds to (2a) to (2c). The second directional derivative is given for
~q, δ~q, τ~q ∈ Q by

j′′(~q)(δ~q, τ~q) =
∑
i∈I

Sδ~q(~xi)Sτ~q(~xi) + α(δ~q, τ~q).

Proof. The explicit derivatives follow directly from the linearity of S and the defi-
nition of the Fréchet derivative.

Using the adjoint equation, it is possible to formulate necessary and sufficient
first order optimality conditions following standard arguments which can be found,
e.g., in [22, 26].

Lemma 2.2. A control q̄ ∈ Qad with associated state ū = Sq̄ ∈ (H1
0 (Ω) ∩H2(Ω))3

is an optimal solution to the problem (1) if and only if there exists an adjoint state

z̄ ∈ (W 1,s
0 (Ω))3 such that ū solves (1a) to (1c) with right-hand side q̄ and z̄ solves

(2a) to (2c) with ~u = ū in the right-hand side where q̄ and z̄ satisfy the following
inequality

(z̄ + αq̄, ~q − q̄) ≥ 0 ∀~q ∈ Qad. (8)

The variational inequality is equivalent to the following projection formula

q̄ = P[~a,~b]

(
− 1

α
z̄

)
, (9)

where P[~a,~b] is applied componentwise and defined as P[a,b](~v) = min(~b,max(~a,~v)),

with min, max being also applied componentwise and pointwise.

2.3. Regularity of the optimal solution q̄. We derive a regularity result based

on (9) for solutions to (3) with right-hand side ~f = ~µ ∈ M(Ω)3. This is a well
defined application of the regularity result for (3) since M(Ω)3 is compactly em-
bedded into W−1,s(Ω)3 for s < 3/2. This follows from an duality argument and
the Sobolev embedding for the maximum norm, see, e.g., [1, Theorem 10.10]. More
details can be found in Section 3.4.

Lemma 2.3. Let ~w be the solution of (3) with right-hand side ~µ ∈ M(Ω)3. Then,

Proj[− ~M, ~M ](~w) ∈ H1
0 (Ω)3 for every ~M ∈ R3

+.
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Proof. We deduce the result similarly to [9, Lemma 3.3] but take into account the

additional pressure term. Let {~µk}k ⊂ L2(Ω)3 be a sequence, such that ~µk
∗
⇀ ~µ

and ‖~µk‖L1(Ω) ≤ ‖~µ‖M(Ω). Then, let (~wk, ϕk) ∈ (H1
0 (Ω)∩H2(Ω))3×H1(Ω) be the

solution of

−∆~wk +∇ϕk = ~µk in Ω, (10a)

∇ · ~wk = 0 in Ω, (10b)

~wk = ~0 on ∂Ω. (10c)

Now since M(Ω)3 is compactly embedded into W−1,s(Ω)3 for s < 3/2, it fol-
lows ~wk → ~w strongly in W 1,s(Ω)3. Now we consider the projection ~wMk =
Proj[− ~M, ~M ](~wk) which by [27, Corollary 2.1.8] is continuous from W 1,s(Ω)3 →
W 1,s(Ω)3. Thus, we also have ~wMk → ~wM strongly in W 1,s

0 (Ω)3, where ~wM is
defined as Proj[− ~M, ~M ](~w). Using (10a) to (10c) we now can conclude

‖∇~wMk ‖2L2(Ω) = (∇~wMk ,∇~wMk ) ≤ (∇~wk,∇~wMk ) (11)

= (~µk, ~w
M
k ) + (ϕk,∇ · ~wMk )

≤ ‖~wMk ‖L∞(Ω)‖~µk‖L1(Ω) ≤ | ~M |‖δ~xi‖M(Ω)

and from this that {~wMk }k is bounded in H1
0 (Ω)3 and there exist ~wM ∈ H1

0 (Ω)3 and
a subsequence of {~wMk }k such that ~wMk ⇀ ~wM weakly in H1

0 (Ω)3. Now due to the
strong convergence of ~wMk in W 1,s(Ω)3 we get ~wM ∈ H1

0 (Ω)3.
Note that in (11) we made use of [20, Theorem A.1] or [27, Corollary 2.1.8]

which guarantee the existence of all weak partial derivatives. In particular those
that vanish on neighborhoods on which the projection is active and the function
constant. Furthermore we used that the divergence of ~wk is zero.

Since δ~xi ∈M(Ω) we can apply this result for q̄ = P[~a,~b]

(
− 1
α z̄
)

and we conclude

the following corollary.

Corollary 1. Let q̄ be the solution of (1). Then, q̄ ∈ H1(Ω)3.

3. Finite element approximation and estimates. In the following we intro-
duce finite element spaces for the state and adjoint state equations as well as a
discretization of the control space Q and the space of admissible controls Qad.

3.1. State and control. Let Th be a regular, quasi-uniform family of triangu-
lations of Ω̄, made of closed tetrahedra T , where h is the global mesh-size and

L2
0(Ω) the space of L2(Ω) functions with zero-mean value. Let ~Vh ⊂ H1

0 (Ω)3

and Mh ⊂ L2
0(Ω) be a pair of finite element spaces satisfying a uniform discrete

inf-sup condition, as, e.g., in [18]. The respective discrete solution associated
with the velocity-pressure pair (~w, ϕ) ∈ H1

0 (Ω)3 × L2
0(Ω) is defined as the pair

(~wh, ϕh) ∈ ~Vh ×Mh that solves the following equation based on the bilinear form
a(·, ·)

a((~wh, ϕh), (~vh, lh)) = (~f,~vh) ∀(~vh, lh) ∈ ~Vh ×Mh, (12)

for suitable ~f . In particular, we require the assumptions in [3, Section 2.4] to hold.
A suitable finite element space is given for example by Taylor-Hood finite elements
of order greater than or equal to three. More details can be found in [3, Remark
2.10]. The assumptions regarding the finite element space enable us to use [3,
Corollary 2.17, Remark 2.18], here stated as the following proposition.
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Proposition 3. For Ω1 b Ω2 b Ω with dist(Ω̄1, ∂Ω2) ≥ d ≥ κ̄h and for (~w, ϕ) ∈
(L∞(Ω2)3×L∞(Ω2))∩ (H1

0 (Ω)3×L2
0(Ω)) the solution to (3) with ~f ∈ L∞(Ω)3 and

(~wh, ϕh) the solution to (12), we have

‖~w − ~wh‖L∞(Ω1) ≤ inf
(~vh,lh)∈~Vh×Mh

C|lnh|
(
‖~w − ~vh‖L∞(Ω2) + h‖ϕ− lh‖L∞(Ω2)

)
+ Cd|lnh|

(
h‖~w − ~vh‖H1(Ω) + ‖~w − ~vh‖L2(Ω) + h‖ϕ− lh‖L2(Ω)

)
.

Here, the constant Cd depends on the distance to Ω1 from ∂Ω2.

Similar to the exact solution in Section 2 we can define respective control-to-

state maps in the discrete case, for the velocity Sh : Q → ~Vh and the pressure

Sph : Q→Mh such that Sh ~f = ~wh and Sph
~f = ϕh as the components of the solution

to (12).
The space of discrete admissible controls is given by

Qad,h = Qh ∩Qad (13)

where Qh is the space of piecewise constant functions

Qh = {~q ∈ L2(Ω̄)3 : ~q|T ∈ P0(T )3 ∀T ∈ Th}.

For Qh we now introduce the L2 projection πh : L2(Ω)3 → Qh of a function
~q ∈ L2(Ω)3 as πh~q ∈ Qh satisfying

(πh~q, ~rh) = (~q, ~rh) ∀~rh ∈ Qh. (14)

Using orthogonality, πh can also be characterized as

(πh~q)i =
1

|K|

∫
K

~qid~xi for 1 ≤ i ≤ 3

on each cell K ∈ Th. Now using Poincaré’s inequality [21, Theorem 12.30] on each
cell K we get for 1 ≤ s <∞ and ~q ∈W 1,s(Ω)3

‖πh~q − ~q‖Ls(K) ≤ Ch‖∇~q‖Ls(K). (15)

Summing up, we conclude

‖πh~q − ~q‖Ls(Ω) ≤ Ch‖∇~q‖Ls(Ω). (16)

Note that while the convergence result holds for 1 ≤ s < ∞ we still require ~q ∈
L2(Ω)3 to apply property (14).

3.2. Discrete optimal control problem and optimality conditions. We can
then formulate the discrete version of (1) as

Minimize J(~uh, ~qh) for ~qh ∈ Qad,h

subject to

a((~uh, ph), (~vh, lh)) = (~qh, ~vh) ∀(~vh, lh) ∈ ~Vh ×Mh. (17a)

We have the following adjoint problem

a((~zh, rh), (~vh, lh)) =
∑
i∈I

(~uh − ~ξi)~vh(~xi) ∀(~vh, lh) ∈ ~Vh ×Mh, (18)

which can again be motivated by the following derivatives of the objective func-
tional. For ~q ∈ Qad we define the discrete reduced cost functional jh(~q) = J(~q, Sh~q).
We get the following first and second derivatives with respect to ~q for jh.
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Lemma 3.1. For ~q, δ~q ∈ Q, the first directional Fréchet derivative of the reduced
cost functional jh is given by

jh(~q)(δ~q) = (α~qh + ~zh, δ~q),

where ~zh ∈ ~Vh solves

a((~zh, rh), (~vh, lh)) =
∑
i∈I

(Sh~q − ~ξi)~vh(~xi) ∀(~vh, lh) ∈ ~Vh ×Mh

which corresponds to (18). The second directional derivative is given for ~q, δ~q, τ~q ∈
Q by

j′′h(~q)(δ~q, τ~q) =
∑
i∈I

Shδ~q(~xi)Shτ~q(~xi) + α(δ~q, τ~q). (19)

Proof. The form of the derivative follows as for the continuous case.

Similarly to the continuous case we then have the following optimality condition.

Lemma 3.2. A control q̄h ∈ Qad,h with associated state ūh = Shq̄h ∈ ~Vh is an
optimal solution to the problem (17) if and only if there exists an adjoint state

z̄h ∈ ~Vh such that ūh solves (17a) with right-hand side q̄h and z̄h solves (18) with
right-hand side ūh and q̄h satisfies the following inequality

(z̄h + αq̄h, ~qh − q̄h) ≥ 0 ∀~qh ∈ Qad,h. (20)

3.3. Error estimates for the solutions to state and adjoint state equations.
In this section, we consider convergence rates for the discrete Stokes problem with
bounded right-hand side.

Lemma 3.3. Let Ω1 b Ω2 b Ω, ~w ∈ H1
0 (Ω)3 the velocity solution to (3) and ~wh

the respective finite element velocity solution. Then, for ~f ∈ L∞(Ω)3 there holds

‖~w − ~wh‖L∞(Ω1) ≤ C|lnh|2h2‖~f‖L∞(Ω) + Cd|lnh|h2‖~f‖L2(Ω)

for dist(Ω1, ∂Ω2) ≥ d > 0.

Proof. Due to Proposition 3 we have

‖~w − ~wh‖L∞(Ω1) ≤ inf
(~vh,lh)∈~Vh×Mh

C|lnh|(‖~w − vh‖L∞(Ω2) + h‖ϕ− lh‖L∞(Ω2))

+Cd|lnh|(h‖~w − ~vh‖H1(Ω) + ‖~w − ~vh‖L2(Ω) + h‖ϕ− lh‖L2(Ω)).
(21)

[5, Corollary 4.4.24] shows that we get the expected convergence rates for finite
element functions (~vh, lh) since (~w, ϕ) are sufficiently regular. In particular, to use
nodal interpolation we conclude from (6) that (~w, ϕ) ∈ C1,σ(Ω)3 ×C0,σ. This then
shows the result for the second line in (21) due to (~w, ϕ) ∈ H2(Ω)3 ×H1(Ω). For
the first line we can argue by [5, Corollary 4.4.24] and Proposition 2 that

‖~w − vh‖L∞(Ω0) + h‖r − lh‖L∞(Ω0)

≤ Ch2−3/p(‖∇2 ~w‖Lp(Ω0) + ‖∇ϕ‖Lp(Ω0))

≤ Cph2−3/p‖~f‖L∞(Ω).

Choosing p = |lnh|, we get ph2−3/p ≤ C|lnh|h2 and thus follows the result.

Using this, we can now prove a “dual” result for the adjoint equation.
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Lemma 3.4. For the velocity solution ~z ∈ W 1,s
0 (Ω)3 of (2a) to (2c) and ẑh the

solution of the respective finite element problem with right-hand side DΣ there holds
the following error estimate

‖~z − ẑh‖L1(Ω) ≤ C|lnh|2h2(‖~q‖L2(Ω) +
∑
i∈I
|~ξi|).

Proof. Using a dual formulation with ~f = sgn(~z − ẑh) ∈ L∞(Ω)3 as the right-hand
side of (3) we get

‖~z − ẑh‖L1(Ω) = (~f, ~z − ẑh)

= (∇~w,∇(~z − ẑh))− (ϕ,∇ · (~z − ẑh))

= (∇(~w − ~wh),∇(~z − ẑh)) + (ϕ,∇ · ẑh) + (∇~wh,∇(~z − ẑh)) (22)

= (∇(~w − ~wh),∇(~z − ẑh)) + (ϕ,∇ · ẑh) + (∇ · ~wh, r − r̂h)) (23)

= (∇(~w − ~wh),∇~z) + (ϕ,∇ · ẑh)

+ (∇ · ~wh, r)− (∇(~w − ~wh),∇ẑh)) (24)

= (∇(~w − ~wh),∇~z) + (ϕ,∇ · ẑh)

+ (∇ · ~wh, r)− (ϕ− ϕh,∇ · ẑh)) (25)

= (∇(~w − ~wh),∇~z) + (ϕ,∇ · ẑh) + (∇ · ~wh, r)− (ϕ,∇ · ẑh)

= (∇(~w − ~wh),∇~z)− (∇ · (~w − ~wh), r) (26)

= (~w − ~wh, DΣ)

≤ ‖~w − ~wh‖L∞(Ω1)

∑
i∈I
|~u(~xi)− ~ξi|‖δ~xi‖M(Ω)

≤ C|lnh|2h2‖~f‖L∞(Ω)(‖~q‖L2(Ω) +
∑
i∈I
|~ξi|).

We used (3), the fact that ~z is divergence free and inserted ~wh in (22). Next we
test (2a) to (2c) and the respective finite element formulation with ~wh to get (23),
use in (24) and (25) that ~wh is discretely divergence free and test (3) with ẑh. To
proceed, we use that ẑh is discretely divergence free and that ~w is divergence free
to arrive at (26) where we apply the weak formulation of (2a) to (2c). Finally, we
apply Lemma 3.3 with Ω1 containing all ~xi for i ∈ I.

One also quickly surmises that ‖~q‖L2(Ω)+
∑
i∈I |~ξi| only depends on the prescribed

values ~ξi and the control constraints.

3.4. L2 projection approximation error estimates for adjoint and control.
We start with a convergence result for the L2 projection of z̄ ∈ W 1,s(Ω)3 with
s < 3/2. The convergence rate of the projection for a sufficiently regular function is
discussed in (16). The question is now one of regularity. To analyze the dependence
on s when we consider the error in the Ls norm we choose s = 3/2− ε and let the
Hölder conjugate s′ be given by (1/s+ 1/s′ = 1). Then, by the Sobolev bound on
the supremum norm [1, Theorem 10.10], we have ~v ∈ L∞(Ω)3 and

‖~v‖L∞(Ω) ≤
(∫

BR(~x0)

d~x

|~x− ~x0|2s
)1/s

‖∇~v‖Ls′ (Ω).
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Since Ω is bounded, it is contained in the ball BR(~x0). Transforming to spherical
coordinates, we can rewrite this as

‖~v‖L∞(Ω) ≤ C
(∫ R

0

ρ2−2sdρ
)1/s

‖∇~v‖Ls′ (Ω)

≤ C
(∫ R

0

ρ−1+2εdρ
)1/s

‖∇~v‖Ls′ (Ω)

= C
([ 1

2ε
ρ2ε
]R

0

)1/s

‖∇~v‖Ls′ (Ω)

≤ Cε−1/s‖∇~v‖Ls′ (Ω).

Using a duality argument we get

‖DΣ‖W−1,s(Ω) = sup
~v∈W 1,s′

0 (Ω),‖~v‖
W

1,s′
0 (Ω)

≤1

〈DΣ, ~v〉

≤ ‖DΣ‖M(Ω)‖~v‖C0(Ω)

≤ ‖DΣ‖M(Ω)‖~v‖L∞(Ω)

≤ Cε−1/s‖DΣ‖M(Ω). (27)

These considerations allow us to prove the following lemma.

Lemma 3.5. Let ~z ∈ W 1,s
0 (Ω)3 be the solution to (2a) and s is defined as above.

Then, it holds for the L2 projection πh to the space of cellwise constant functions

‖~z − πh~z‖Ls(Ω) ≤ Chε−1/s‖DΣ‖M(Ω)

Proof. This follows by applying (16) and (27).

Since the optimal solution q̄ to Problem (1) is given by Proj[~a,~b](z̄), we obtain

by Lemma 2.3 that q̄ ∈ (L∞(Ω ∩H1
0 (Ω))3 due to Lemma 2.3, thus motivating the

following suboptimal convergence result for the L2 projection onto cellwise constant
functions.

Lemma 3.6. Let q̄ ∈ (L∞(Ω ∩ H1
0 (Ω))3 be the solution to the optimal control

problem Problem (1) and s′ as above. Then, it holds for the L2 projection πh to the
space of cellwise constant function

‖q̄ − πhq̄‖Ls′ (Ω) ≤ Ch
2/s′‖∇q̄‖2/s

′

L2(Ω)

Proof. The result follows from an application of (15). To see that we consider
q̄ − πhq̄ on the cell K

‖q̄ − πhq̄‖s
′

Ls′ (K)
=

∫
K

|q̄ − πhq̄|s
′
d~x ≤ ‖(q̄ − πhq̄)s

′−2‖L∞(K)‖q̄ − πhq̄‖2L2(K)

≤ Ch2‖∇q̄‖2L2(K).

Since q̄ ∈ Qad, summing over all cells gives the conclusion of the lemma.

Remark 2. As mentioned, we consider this estimate suboptimal, which is due to
the fact that the regularity of q̄, as derived in Corollary 1, is likely not the best
possible regularity result. Compared to the elliptic problem studied in [4], where it
was shown that the control actually lies in W 1,∞(Ω), the Stokes fundamental solu-
tions exhibits large jumps at the singularity depending on the approach direction
in certain situations. In particular, one can construct examples such that in every



POINTWISE TRACKING CONTROL FOR STOKES 11

neighborhood of the singularity we can find an open subset where the solution is
bounded and thus the projection does not become active for the whole neighbor-
hood, leading to less regularity for the gradient of the projected solution. Based
on the behavior of the fundamental solution one can straightforwardly construct
optimal control problems also exhibiting this behavior. This is visualized in Fig-

Figure 1. Threshold visualization of the first component of a so-
lution ~qh to Problem (17).

ure 1. Depicted is a neighborhood of a point ~xi for the first component of ~qh. Only
cells where the function value is greater or respectively smaller than a threshold are
visible. Note that also for this discrete solution in the neighborhood of ~xi there are
subsets on which the function appears to be bounded, i.e. the thresholds do not
become active and the respective cells are not visible.

3.5. Error estimates for the objective functional. Next we give an approxi-
mation result for difference of the directional Fréchet derivatives of j and jh.

Lemma 3.7. For ~q, δ~q ∈ Qad, it holds

|j′(~q)(δ~q)− j′h(~q)(δ~q)| ≤ C|lnh|2h2‖δ~q‖L∞(Ω).

Proof. Due to Lemma 2.1 and Lemma 3.1 we get

|j′(~q)(δ~q)− j′h(~q)(δ~q)| = |(~z − ~zh, δ~q)|

with ~z and ~zh defined as in Lemma 2.1 and Lemma 3.1. Defining ẑh ∈ ~Vh as the
solution of

a((ẑh, r̂h), (~vh, lh)) =
∑
i∈I

(S~q − ~ξi)~vh(~xi) ∀(~vh, lh) ∈ ~Vh ×Mh (28)

we obtain by the triangle inequality

|(~z − ~zh, δ~q)| ≤ |(~z − ẑh, δ~q)|+ |(ẑh − ~zh, δ~q)|.
We first consider the first term on the right-hand side. Splitting the scalar product
and then using Hölder’s inequality and Lemma 3.4 gives

(~z − ẑh, δ~q) ≤ ‖~z − ẑh‖L1(Ω)‖δ~q‖L∞(Ω) ≤ C|lnh|2h2‖δ~q‖L∞(Ω). (29)
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For the second term we use the auxiliary problem (12) with right-hand side δ~q.

Now, since ẑh − ~zh ∈ ~Vh and (∇ · (ẑh − ~zh), ϕh) = 0, we can write due to (28)

(ẑh − ~zh, δ~q) = a((ẑh − ~zh, r̂h − rh), (~wh, ϕh)) =
∑
i∈I

(S~q − Sh~q)~wh(~xi).

Since ~xi for i ∈ I does not lie on the boundary, we can choose subsets Ω1 b Ω2 b Ω
which fulfill the requirements of Lemma 3.3. Thus, we can conclude

(ẑh − ~zh, ~q − ~qh) ≤ C‖S~q − Sh~q‖L∞(Ω1)‖~wh‖L∞(Ω1)

≤ C‖S~q − Sh~q‖L∞(Ω1)(‖~w‖L∞(Ω1) + ‖~w − ~wh‖L∞(Ω1))

≤ C|lnh|2h2‖~q‖L∞(Ω)(‖δ~q‖L2(Ω) + |lnh|2h2‖δ~q‖L∞(Ω))

Combined with (29) and the fact the ~q ∈ Qad this proves the lemma.

Lemma 3.8. Let ~p, ~q, δ~q ∈ L2(Ω). Then, there holds

|j′h(~q)(δ~q)− j′h(~p)(δ~q)| ≤ C‖~q − ~p‖L2(Ω)‖δ~q‖L2(Ω).

Proof. To show the result, we first show a maximum norm bound for Sh. Due to
[3, Theorem 2.14, Remark 2.18] we obtain, e.g. for ~q ∈ L2(Ω)3

‖Sh~q‖L∞(Ω) ≤ ‖S~q‖L∞(Ω) + ‖S~q − Sh~q‖L∞(Ω)

≤ ‖~q‖L2(Ω) + inf
(~vh,lh)∈~Vh×Mh

C|lnh|(‖S~q − ~vh‖L∞(Ω)

+ h‖Sp~q − lh‖L∞(Ω)).

Since (S~q, Sp~q) ∈ C1,σ(Ω)3 × C0,σ(Ω) due to (6) we can conclude for h ≤ 1 that

‖Sh~q‖L∞(Ω) ≤ ‖~q‖L2(Ω)(1 + C|lnh|h) ≤ C‖~q‖L2(Ω).

With this result in mind and Lemma 3.1 we then see due to the mean value theorem
for arbitrary ~ρ ∈ Q that

j′h(~q)(δ~q)− j′h(~p)(δ~q) = j′′h(~ρ)(~q − ~p, δ~q) =
∑
i∈I

Sh(~q − ~p)(~xi)Shδ~q(~xi) + α(~q − ~p, δ~q)

which can be bounded as

|j′h(~q)(δ~q)− j′h(~p)(δ~q)| ≤ C‖~q − ~p‖L∞(Ω)‖Shδ~q‖L∞(Ω) + α|(~q − ~p, δ~q)|
≤ C‖~q − ~p‖L2(Ω)‖δ~q‖L2(Ω).

4. Error estimates for ‖q̄ − q̄h‖L2(Ω). In this section, we discuss approximation
error estimates for two types of control discretization. Before considering discretiza-
tion with piecewise constants as introduced in Section 3, we show a result for the
so called variational discretization which was first discussed in [19].

4.1. Variational Discretization. Variational discretization means we do not dis-
cretize the control, i.e., Qad,h = Qad. It should be noted that the control nonetheless
has a discrete structure due to discretization of the adjoint state and the variational
inequality (20). The variational discretization allows for a more direct approach
when proving the following convergence result, since we can test the discrete opti-
mality condition with the solution to the continuous optimal control problem.
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Theorem 4.1. Let q̄ ∈ Qad be the solution of Problem (1) and q̄h ∈ Qad the
solution of the corresponding discrete Problem (17) with Qad,h = Qad. Then, it
holds

‖q̄ − q̄h‖L2(Ω) ≤ C|lnh|h.

Proof. For δ~q = τ~q = q̄ − q̄h it follows from (19)

α‖q̄ − q̄h‖2L2(Ω) ≤ j
′′
h(~ρ)(q̄ − q̄h, q̄ − q̄h)

with ~ρ ∈ Q arbitrary. By the mean value theorem, (20) and (8) it follows

α‖q̄ − q̄h‖2L2(Ω) ≤ j
′′
h(~ρ)(q̄ − q̄h, q̄ − q̄h)

= j′h(q̄)(q̄ − q̄h)− j′h(q̄h)(q̄ − q̄h)

= (~zh + αq̄, q̄ − q̄h)− (z̄h + αq̄h, q̄ − q̄h)

≤ (~zh + αq̄, q̄ − q̄h)− (z̄ + αq̄, q̄ − q̄h)

= j′h(q̄)(q̄ − q̄h)− j′(q̄)(q̄ − q̄h).

Here ~z and ~zh are as in Lemma 2.1 and Lemma 3.1 with ~q = q̄. Applying Lemma 3.7
shows the result.

4.2. Discretization with piecewise constant functions.

Theorem 4.2. Let q̄ ∈ Qad be the solution of Problem (1) and q̄h ∈ Qad,h the
solution of the corresponding discrete Problem (17) with Qad,h as defined in (13).
Then, it holds

‖q̄ − q̄h‖L2(Ω) ≤ C|lnh|2/3h5/6.

Proof. Since in this case Qad 6= Qad,h we need to consider the L2 projection when
testing the optimality conditions. To do so we split

‖q̄ − q̄h‖L2(Ω) ≤ ‖q̄ − πhq̄‖L2(Ω) + ‖πhq̄ − q̄h‖L2(Ω).

We get that the first term is bounded by Ch‖∇q̄‖L2(Ω) due to (16) and Lemma 2.3.
For the second term we argue as in the variational case with the mean value theorem
with ~ρ ∈ Q

α‖πhq̄ − q̄h‖2L2(Ω) ≤ j
′′
h(~ρ)(πhq̄ − q̄h, πhq̄ − q̄h)

= j′h(πhq̄)(πhq̄ − q̄h)− j′h(q̄h)(πhq̄ − q̄h)

≤ j′h(πhq̄)(πhq̄ − q̄h)− j′(q̄)(q̄ − q̄h),

where we used the optimality conditions (20) and (8) in the last line. We can further
expand this to

α‖πhq̄ − q̄h‖2L2(Ω) = [j′h(πhq̄)(πhq̄ − q̄h)− j′h(q̄)(πhq̄ − q̄h)]

+ [j′h(q̄)(πhq̄ − q̄h)− j′(q̄)(πhq̄ − q̄h)]− j′(q̄)(q̄ − πhq̄)
= I1 + I2 + I3.

For I1 we can apply Lemma 3.8 and get by Young’s inequality

I1 ≤ C‖πhq̄ − q̄‖L2(Ω)‖πhq̄ − q̄h‖L2(Ω) ≤ Ch2 +
α

2
‖πhq̄ − q̄h‖2L2(Ω).

Then, I2 is dealt with by Lemma 3.7

I2 ≤ C|lnh|2h2‖πhq̄ − q̄h‖L∞(Ω) ≤ C|lnh|2h2.
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And finally we apply Lemma 3.5 and Lemma 3.6 to I3. Recall that we chose
s = 3/(2− ε) which implies s′ > 3. Now by the L2 orthogonality of the projection
πh we get

|I3| = |(αq̄ + z̄, q̄ − πhq̄)| = |((αq̄ + z̄)− πh(αq̄ + z̄), q̄ − πhq̄)|
≤ ‖(αq̄ + z̄)− πh(αq̄ + z̄)‖Ls(Ω)‖q̄ − πhq̄‖Ls′ (Ω)

≤ Ch1+2/s′ε−1/s.

Next, we simplify the expression for h and ε and choose ε appropriately. For s′ we
get

s′ =
3− 2ε

1− 2ε

and thus for h2/s′ , h < 1 and ε small

h2(1−2ε)/(3−2ε) ≤ h2(1−2ε)/3 = h2/3h−4ε/3.

We choose ε = 1/|lnh| = −1/ ln(h). Then, it follows h−4ε/3 = e4/3, implying

|I3| ≤ C|lnh|
2

3−2/|lnh|h5/3 ≤ Ch5/3|lnh|2/3.

We conclude that in this convergence estimate, I3 is the dominating term and
therefore the statement of the lemma follows.

Remark 3. The proof shows that the estimate of I3 is the limiting factor for
the convergence rate estimate. To achieve an optimal convergence rate, one would
require a regularity estimate q̄ = P~a,~b(z̄) ∈W

1,3+ε(Ω)3.

5. Numerical experiments. We conduct numerical experiments to support the
result in Theorem 4.2. The optimal control problems are solved by the optimization
library RoDoBo [25] and the finite element toolkit Gascoigne [16]. The empirical
convergence rates are computed by comparing solutions with a solution computed
on a mesh twice as fine as the finest mesh which we compare.

While in our numerical experiments we consider a slightly different setting than
that introduced in Section 3, using local projection stabilization finite element meth-
ods on meshes of hexahedral geometry instead of Taylor-Hood finite elements on
a triangulation, the results indicate better rates than in Theorem 4.2 for h small
enough.

Our results coincide with the output shown in [14, Fig. 2 (Ex.2)] when consid-
ering the same example problem ([14, Example 2]) which we introduce next.

Example 1. Let Ω = (0, 1)3, ~a = (a, a, a)T , ~b = (b, b, b)T , α = 1.99, ~ξ0 =
(−1,−1,−1)T and ~x0 = (0.5, 0.5, 0.5)T with I = {0} and a and b to be chosen
later. Then, we consider the optimal control problem as in Problem (1) but with
the state equation

−∆~u+∇p = ~f + ~q in Ω,

∇ · ~u = 0 in Ω,

~u = ~0 on ∂Ω,

with

~f =
1

π
∆curl((sin(2πx1) sin(2πx2) sin(2πx3))2~e1) +∇(x1x2x3).
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Remark 4. This is not precisely the same example as stated in [14, Example
2] because there the authors consider a problem with a slightly different forcing
term and inhomogeneous Dirichlet boundary condition but the essential numerical
behavior should be unchanged.

101 102 103 104 105 106

10−3

10−2

10−1

Degrees of freedom Ndof

a = −10, b = 2

a = −0.4, b = 0.4

a = −0.1, b = 0.1

N
−1/6
dof ∼ h1/2

N
−1/3
dof ∼ h

Figure 2. Error ‖q̄n − q̄h‖L2(Ω) for cellwise constant control dis-

cretization and different choices for the bounds ~a and ~b. q̄n denotes
the approximate solution on a finer mesh.

The resulting empirical convergence rates for different bounds ~a and ~b are shown
in Figure 2 where Ndof corresponds to the number of cells in the mesh and q̄n to
the approximate solution computed on a finer mesh. When the constraints do not
become active because h is not small enough, we observe a convergence rate h1/2

as in the case a = −10, b = 2. For the intermediate case a = −0.4, b = 0.4 we see
that as soon as the constraints become active, the convergence rate increases.

Finally, for a = −0.1, b = 0.1, we immediately observe an empirical convergence
rate of O(h) which is faster than the result we have proven in Theorem 4.2. That
is likely due to q̄ being in W 1,3+ε for ε > 0 which is better than what we have
shown with Lemma 2.3. More careful analysis of the impact of P[~a,~b] on the Stokes

fundamental solution might provide additional insights.

Remark 5. Example 1 is well behaved in the sense that the singularities in the
adjoint equation do not exhibit the behavior described in Remark 2. Additional
tests ran for a modified problem also resulted in a numerical convergence rate of
O(h).

REFERENCES.

[1] H. W. Alt, Linear functional analysis, Universitext, Springer-Verlag London,
Ltd., London, 2016, An application-oriented introduction, Translated from the
German edition by Robert Nürnberg.

[2] H. Antil, E. Otárola and A. J. Salgado, Some applications of weighted norm
inequalities to the error analysis of PDE-constrained optimization problems,
IMA J. Numer. Anal., 38 (2018), 852–883.



16 REFERENCES

[3] N. Behringer, D. Leykekhman and B. Vexler. Global and Local Pointwise
Error Estimates for Finite Element Approximations to the Stokes Problem on
Convex Polyhedra. SIAM J. Numer. Anal., 58(3):1531–1555, 2020.

[4] N. Behringer, D. Meidner and B. Vexler, Finite element error estimates for
optimal control problems with pointwise tracking, Pure Appl. Funct. Anal., 4
(2019), 177–204.

[5] S. C. Brenner and L. R. Scott, The mathematical theory of finite element
methods, vol. 15 of Texts in Applied Mathematics, 3rd edition, Springer, New
York, 2008.

[6] C. Brett, A. Dedner and C. Elliott, Optimal control of elliptic PDEs at points,
IMA J. Numer. Anal., 36 (2016), 1015–1050.

[7] R. M. Brown and Z. Shen, Estimates for the Stokes operator in Lipschitz
domains, Indiana Univ. Math. J., 44 (1995), 1183–1206.

[8] E. Casas, Error estimates for the numerical approximation of semilinear elliptic
control problems with finitely many state constraints, ESAIM Control Optim.
Calc. Var., 8 (2002), 345–374, A tribute to J. L. Lions.

[9] E. Casas, M. Mateos and B. Vexler, New regularity results and improved error
estimates for optimal control problems with state constraints, ESAIM Control
Optim. Calc. Var., 20 (2014), 803–822.

[10] L. Chang, W. Gong and N. Yan, Numerical analysis for the approximation
of optimal control problems with pointwise observations, Math. Methods Appl.
Sci., 38 (2015), 4502–4520.

[11] M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-
dimensional domains with corners. I. Linearized equations, SIAM J. Math.
Anal., 20 (1989), 74–97.

[12] J. C. de los Reyes, C. Meyer and B. Vexler, Finite element error analysis for
state-constrained optimal control of the Stokes equations, Control Cybernet.,
37 (2008), 251–284.
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