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Abstract.6
In this article we consider shape optimization problems as optimal control problems via the7

method of mappings. Instead of optimizing over a set of admissible shapes a reference domain is8
introduced and it is optimized over a set of admissible transformations. The focus is on the choice9
of the set of transformations, which we motivate from a function space perspective. In order to10
guarantee local injectivity of the admissible transformations we enrich the optimization problem11
by a nonlinear constraint. The approach requires no parameter tuning for the extension equation12
and can naturally be combined with geometric constraints on volume and barycenter of the shape.13
Numerical results for drag minimization of Stokes flow are presented.14

1. Introduction. Shape optimal design is a vivid research field with a wide15
range of applications from fluid-dynamics [29, 3, 10], acoustics [38], electrostatics16
[9], image restoration and segmentation [14], interface identification in transmission17
processes [31, 12, 27] and nano-optics [15] to composite material identification [33, 27].18

In shape optimization, a shape functional j̃ : Oad → R is optimized over a set of19
admissible shapes Oad, i.e.,20

min
Ω∈Oad

j̃(Ω).(1.1)21
22

There are various ways to tackle this problem. In this work, we focus on the method23
of mappings [26, 3, 18, 8]. Here, the optimization problem (1.1) is reformulated as24
an optimization problem over a set of admissible transformations Tad defined on a25
nominal domain Ω:26

min
τ∈Tad

j(τ),(1.2)27
28

where j(τ) := j̃(τ(Ω)). This approach is closely related to techniques that use shape29
gradients and the Hadamard-Zolésio structure theorem.30

Mesh degeneration is one of the bottlenecks in performing transformation-based31
shape optimization techniques, see e.g. [7]. On the one hand, by the modeling of32
the optimization problem it has to be ensured that the boundary of the transformed33
domain is not self-intersecting. This can, e.g., be realized using bounds on the de-34
formation or geometrical constraints, such as volume and barycenter constraints. On35
the other hand, mesh degeneration also appears for large deformations of the sur-36
face even if the boundary of the domain is not self-intersecting. Therefore, finding37
transformations that preserve the mesh quality is an active field of research. In [17]38
it is proposed to work with an extension equation that preserves the mesh quality.39
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This method, however, is limited to 2d cases. Another approach is remeshing, see40
e.g. [41, 6, 2]. The quality of the mesh can be improved by using a function ψ(w)41
such that τ(Ω) = (id +ψ(w))(Ω) = Ω, where ψ(w) is either defined via the solu-42
tion of a partial differential equation or via a solution of an optimization problem.43
Both methods allow for node relocations without changing Ω and hence are so called44
r-refinement strategies. Other approaches project the shape gradient to mimic the45
continuous behaviour motivated through the Hadamard-Zolésio structure theorem [7]46
or work with extension equations that require parameter tuning in order to avoid mesh47
degeneration [30, 32, 9]. However, finding adequate parameters for a given extension48
equation tends to be a time consuming effort. Moreover, the empirically determined49
parameters are typically tailored for one specific mesh and problem setting.50

The starting point for our considerations is the fact that the second type of mesh51
degeneration is a phenomenon that only appears in the discretized setting. Thus we52
consider the problem from a continuous perspective and require sufficient high regular-53
ity of the boundary deformations analogous to [21, 34, 20, 3] where parametrizations54
of the design boundary with sufficiently high regularity are used. Instead of preserving55
mesh quality, our approach ensures that all admissible controls yield transformations56
that map the reference domain Ω to a Lipschitz domain. Since the optimization prob-57
lem is formulated in the continuous setting, this approach also allows for refinement58
and remeshing techniques, wheareas from a discretized point of view, remeshing also59
requires a reinitialization of the optimization algorithm. However, an accurate model-60
ing remains challenging since, on the one hand, the most general setting, i.e., working61
with transformations in W 1,∞(Ω)d, is difficult since it is a non-reflexive Banach space.62
On the other hand, working with smoother spaces often requires H2-conforming finite63
element methods as used in [20].64

In this work, we focus on the modeling of the shape optimization problem respect-65
ing the continuous requirements on the transformations. Motivated by the theoretical66
considerations in section 2, we consider Banach spaces X̃,X, Y such that X ↪→ X̃67
and Y ↪→ C1(Ω)d and a mapping S that is continuous as a mapping S : X → Y and68
S : X̃ → C1(Ω)d. In addition, we enrich the optimization problem with additional69
constraints and investigate70

min
c∈X

j(id +w) + α

2 ‖c‖
2
X

s.t. g(w) = 0,
w = S(c),
‖c‖X̃ ≤ η2,

det(∇(id +w)) ≥ η1 in Ω,

(1.3)71

72

for η1 ∈ (0, 1), η2 ≥ 0 where g represents geometric constraints. We choose S such73
that the requirements are fulfilled in two and three dimensions and work on Hilbert74
spaces. Therefore, we require Y ↪→ H

5
2 +ε(Ω) with ε > 0. To circumvent the use75

of H2-conforming finite elements the regularity is lifted step-wise. In this paper,76
we focus on an approach that starts with a design parameter c ∈ L2(Γd) that is77
mapped to a function b ∈ H2(Γd) by solving a Laplace-Beltrami equation. Imposing78
b as Neumann boundary condition for an elliptic extension equation we obtain a79
deformation field w. However, there are various other possibilities. Alternatively, one80
could also start with c ∈ H1(Γd) and impose b as Dirichlet boundary condition for81
the elliptic extension equation. Compared to previous approaches, the only difference82
is the additional Laplace-Beltrami equation, which ensures sufficiently high regularity83
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of the deformation field, and the additional nonlinear constraint. This allows us to84
integrate this new approach without much effort into existing methods.85

To test the formulation numerically, we focus on shape optimization for the steady86
state Stokes flow, see e.g. [25]. Figure 1.1 illustrates the geometrical configuration87
that we use as reference domain. We consider a rectangular domain with an obstacle88
in the center, which has a smooth boundary Γd, i.e. the design boundary. With Ωd we89
denote the domain encircled by Γd. On the left boundary of the domain Γin Dirichlet90
boundary conditions and on the right boundary Γout do-nothing boundary conditions91
are imposed. On the rest of the boundary no-slip boundary conditions are imposed.92
We optimize the shape of the obstacle via the method of mappings such that the drag93
is minimized.

ΓdΓin Γout

Γns

Ω

Figure 1.1. 2d sketch of the geometrical configuration for a shape optimization problem that
is governed by Stokes flow.

94
Section 2 is devoted to the general formulation of the shape optimization problem.95

Subsection 2.2 motivates the validity of this approach by theoretical considerations96
for a special choice for the control-to-deformation mapping. Section 3 presents the97
application of the abstract framework to the Stokes flow example. Also other strategies98
for the control-to-deformation mapping are presented and only tested numerically. An99
algorithmic realization for solving this optimization problem is given in subsection 3.4.100
Numerical results in subsection 3.6 show the performance of the different strategies.101

2. Shape Optimization Problem on Function Space. We consider the fol-102
lowing optimization problem103

min
c∈Dad

j(τ)

s.t. τ = id +w,
g(w) = 0,
w = S(c),

(2.1)104

105

where g(w) represents geometric constraints. The design parameter is denoted by c106
and the corresponding transformation is defined via τ := id +w. Moreover, Dad ⊂107
L2(Γ) and S are chosen such that the following assumptions hold true.108

A1 For all admissible controls c ∈ Dad there exists an open neighborhood U of109
Ω and a C1-diffeomorphism F : U → U such that F |Ω = id +S(c) a.e..110

A2 Let c1, c2 ∈ Dad. Then (id +S(c1))(Ω) = (id +S(c2))(Ω) if and only if c1 = c2111
a.e..112

The second assumption A2 guarantees that there is a one-to-one correspondence113
between shapes and controls. The first assumption A1 ensures that id +w is the114
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restriction of a C1-diffeomorphism that maps an open neighborhood of Ω to itself and115
implies the following lemma.116

Lemma 2.1. Let Ω be a smooth domain, and assumption A1 be fulfilled. Then117
(id +S(c))(Ω) is a Lipschitz-domain for all admissible c ∈ Dad.118

Proof. Follows directly from [16, Thm. 4.1].119

2.1. On the choice of Dad and S. Inspired by [13, Lem. 4], we present suffi-120
cient conditions for assumption A1 to be fulfilled. The following extension property121
will be a helpful tool.122

Lemma 2.2. Let d ∈ {2, 3}, Ω be a bounded Lipschitz domain, η1 ∈ (0, 1). Fur-123
thermore, let X, X̃, Y be Banach spaces such that Y ↪→ C1(Ω)d, X ↪→ X̃ ↪→ L2(Γ)124
and S : X → Y , S : X̃ → C1(Ω)d be continuous. Then, there exists η2 > 0 such that125
for126

Dad := {c ∈ X : det(∇(id +S(c))) > η1, ‖c‖X̃ ≤ η2},127

assumption A1 holds true.128

Proof. Let c ∈ Dad be feasible and τc : Ω→ τc(Ω), τc := id +S(c). We know that129
S(c) ∈ Y which embeds into C1(Ω)d. Moreover, there exists a constant CS > 0 such130
that131

‖S(c)‖C1(Ω)d ≤ CS‖c‖X̃(2.2)132133

for all c ∈ Dad.134
By the constraint det(∇τc) ≥ η1 we know that τc is a local diffeomorphism. For135

τc to be a global diffeomorphism bijectivity of τc has to be ensured, see [22, Sec. 2, p.136
36]. Since surjectivity holds by definition of τc, it remains to show injectivity. This137
can be achieved by choosing η2 sufficiently small such that ‖S(c)‖W 1,∞(Ω)d < 1. In138
fact, assuming that there exist x1, x2 ∈ Ω such that τc(x1)− τc(x2) = 0 implies139

‖x1 − x2‖ = ‖S(c)(x1)− S(c)(x2)‖ ≤ ‖S(c)‖W 1,∞(Ω)d‖x1 − x2‖,(2.3)140141

and hence x1 = x2 which yields injectivity. By using the inverse function theorem it142
can be shown that τ−1

c is C1 for all η2 > 0 sufficiently small, see also [13, Lem. 4].143
In order to fulfill assumption A1 we have to be able to extend τc to a C1-144

diffeomorphism F : U → U where U is an open neighborhood of Ω.145
By [4, Thm. 2.74, (2.145)] for k ∈ N0, there exists an extension operator Ext :146

C(Ω) → C(Rd) such that Ext(C`(Ω)) ⊂ C`(Rd) for all ` ∈ {0, . . . , k} and such that147
there exists C̃ > 0 with148

max
|α|=`

sup
x∈Rn

|DαExt(f)(x)| ≤ C̃‖f‖C`(Ω) ∀f ∈ C`(Ω)149

for all ` ∈ {0, . . . , k}. Hence there exists an extension w̃ and a constant Cext > 0 such150
that151

‖w̃‖C1(Rd)d ≤ Cext‖S(c)‖C1(Ω)d(2.4)152153

and w̃|Ω = S(c). We choose α > 0 and set U := Bα(Ω). Let ϕ := 1Bα
2

(Ω) ∗ ψ be the154

convolution of the indicator function 1Bα
2

(Ω) of Bα
2

(Ω) and a mollifier ψ ∈ C∞(Rd)155

such that
∫
Rd ψdx = 1 and supp(ψ) ⊂ Bα

4
(0). Hence, ϕ ∈ C∞(Rd) and there exists156

Cα > 0 such that157

‖ϕ‖C1(Rd) ≤ Cα.(2.5)158159
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Define F (x) := id + w̃ϕ, which is an element of C1(Ω)d. By (2.5), (2.4), (2.2) and the160
definition of Dad there exists C > 0 such that161

‖w̃ϕ‖C1(Rd)d ≤ CCextCαCSη2.(2.6)162163

Possibly reducing η2 such that η2 < (CCextCαCS)−1 implies injectivity of F : Rd →164
Rd analogous to (2.3). By definition, ϕ = 0 on Rd \U and hence F (Rd \U) = Rd \U .165
Due to injectivity of F : Rd → Rd there is no x ∈ U such that F (x) ∈ Rd \ U . Thus,166
F (U) ⊂ U and F : U → U is injective. Furthermore, F is a local diffeomorphism167
after possibly again reducing η2 since there exists a constant C̃ > 0 such that168

det(∇F (x)) ≥ 1− ‖det(∇F (x))− det(∇ id(x))‖C(Rd)d

≥ 1− C̃‖w̃ϕ‖C1(Rd)d ≥ 1− C̃CCextCαCSη2
(2.7)169

170

for all x ∈ Rd where we used (2.6) and that the determinant is a polynomial of degree171
d in the entries of the matrix where d denotes the dimension.172

We now show surjectivity. Since U is compact and F is continuous, F (U) is173
compact. Assume that F : U → U is not surjective, then there exists x̃ ∈ U s.t. x̃ /∈174
F (U). Since F (∂U) = ∂U (F acts like the identity on ∂U) and U is open, x̃ /∈ F (U).175
Since F (U) is compact and F is continuous, there exists x̄ ∈ argminx∈F (U)

1
2‖x− x̃‖

2
2.176

By the choice of x̄, x̄+t(x̃− x̄) /∈ F (U) for all t ∈ (0, 1]. Furthermore, x̄+t(x̃− x̄) ∈ U177
for all t ∈ (0, 1], since otherwise there would exist t̃ ∈ (0, 1) such that x̄+ t̃(x̃− x̄) ∈178
∂U = F (∂U) ⊂ F (U). This implies x̄+ t(x̃− x̄) /∈ Rd \U = F (Rd \U) for all t ∈ (0, 1].179
Therefore, x̄ + t(x̃ − x̄) /∈ F (Rd) for all t ∈ (0, 1] and Bε(x̄) 6⊂ F (Rd) for all ε > 0.180
This contradicts F : Rd → Rd being a local diffeomorphism since, for ȳ ∈ Rd such181
that F (ȳ) = x̄ (which exists since x̄ ∈ F (U)), there exists an open neighborhood of ȳ182
that is diffeomorphically mapped to an open neighborhood of x̄.183

Thus, we have shown that F is a bijective local diffeomorphism. Hence, F is a184
global diffeomorphism and C1-regularity of the inverse is again obtained as in [13, Lem.185
4] by possibly again reducing η2. Therefore, F : U → U is a C1-diffeomorphism.186

Remark 2.3. Alternatively, if one provides a mesh for the hold all domain U , w187
and the constraint det(∇(id +w)) can be defined on U .188

Lemma 2.2 motivates to consider optimization problems of the form (1.3).189

2.2. Displacement along normal directions. In order to avoid technicalities190
we consider a smooth domain Ω. Furthermore, we assume that Γ \ Γd 6= ∅. In this191
section we consider S(c) := SΩ(SΓd(c))next, where192

• next is a smooth extension of the outer unit normal vectors to Ω,193
• SΓd is the solution operator of the Laplace-Beltrami equation on Γd194

−∆Γdb+ b = f on Γd,195

• SΩ is the solution operator of the elliptic equation196

−∆z = 0 in Ω,197

z = 0 on Γ \ Γd,198

∇z · n = b on Γd.199200

In correspondence with numerical examples that we consider in subsection 3.6,201
we assume Γd to be a compact manifold without boundary. Using Lemma 2.2 we202
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prove that the assumptions A1 and A2 are fulfilled if next and the Banach space X203
are chosen in an appropriate way, see Lemma 2.6. To this end, we recall well-known204
results for the elliptic solution operators.205

Lemma 2.4 (Elliptic equation on compact manifolds without boundary). Let s ≥206
−1, Γd be a smooth and compact Riemannian manifold without boundary and consider207
the system208

−∆Γdb+ b = f(2.8)209210

on Γd, where ∆Γd denotes the Laplace-Beltrami operator on Γd. Then, for any f ∈211
Hs(Γd) there exists a unique solution b ∈ Hs+2(Γd) and the corresponding solution212
operator SΓd : Hs(Γd)→ Hs+2(Γd) is continuous.213

Proof. See [36, pp.362-363].214

Since Γd is closed and has positive distance from Γ \ Γd, classical results for the215
Dirichlet and Neumann boundary value problem also hold for the mixed boundary216
value problem in our setting whereas it gets more involved when the positive distance217
assumption is not fulfilled, see, e.g., [23].218

Lemma 2.5. Let Ω be a smooth domain and Γd ⊂ Γ be a closed subset of the219
boundary such that Γ \Γd 6= ∅. Assume that Γd and Γ \Γd have positive distance. Let220
s ≥ 2. Consider the following system221

−∆z = 0 in Ω,
z = 0 on Γ \ Γd,

∇z · n = b on Γd.

(2.9)222

223

Then, for every b ∈ Hs− 3
2 (Γd) there exists a unique solution z ∈ Hs(Ω) and the224

corresponding solution operator SΩ : Hs− 3
2 (Γd)→ Hs(Ω) is continuous.225

Proof. see [24, p.188, Rem. 7.2].226

These two lemmas imply that assumptions A1 and A2 are fulfilled for the choice227
S̃ = SΩ ◦ SΓd and X = H1(Γd) as the following lemma shows.228

Lemma 2.6. Let Ω be a bounded smooth C∞-domain and X = X̃ = L2(Γd). Let229
S̃(c) := SΩ(SΓd(c)) for all c ∈ X. Then there exists η2 > 0 such that assumptions A1230
and A2 are fulfilled for S(·) = S̃(·)next for Dad chosen as in Lemma 2.2.231

Proof. By Lemma 2.4 and Lemma 2.5, SΩ(SΓ(X)) ⊂ H 7
2 (Ω), which embeds into232

C1(Ω). Thus, S̃ fulfills the requirements of Lemma 2.2 and assumption A1 holds.233
Let c1, c2 ∈ X and S(c1)(Ω) = S(c2)(Ω). Then, S̃(c1)|Γd = S̃(c2)|Γd . Linearity and234
well-definedness of the Neumann-to-Dirichlet map for the elliptic equations (2.9), see,235
e.g., [19], implies SΓd(c1) = SΓd(c2). Thus, due to linearity of SΓd , c1 = c2 a.e. and236
assumption A2 is fulfilled.237

3. Example: Stokes flow. We now apply (1.3) to minimize the drag of an238
obstacle in steady-state Stokes flow, see Figure 1.1. The optimization problem is239

6
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given by240

min
c∈L2(Γd)

1
2

∫
τ(Ω)

(∇v : ∇v)dx+ α

2 ‖c‖
2
L2(Γd)

s.t.



∆v +∇p = 0 in τ(Ω),
div(v) = 0 in τ(Ω),
v = 0 on τ(Γd) ∪ Γns,

v = gin on Γin,

(∇v − pI)n = 0 on Γout,

τ = id +w,
w = S(c),
g(w) = 0,
det(∇τ) ≥ η1 in Ω.

(3.1)241

242

Here, v denotes the fluid velocity, p the fluid pressure and gin non-homogeneous Dirich-243
let boundary conditions on Γin and S is chosen such that the trace S(d)|Γns∪Γin∪Γout =244
0 for all admissible d ∈ L2(Γd). In order to exclude trivial solutions we add geometric245
constraints g(w) = 0 to the optimization problem (3.1), which are further discussed246
in subsection 3.2. The additional norm constraint on c is not crucial for the numerical247
implementation of this problem and is therefore neglected.248

3.1. Algorithmic realization. We want to use state-of-the-art finite element249
toolboxes to solve the optimization problem. This can, e.g., be realized by penalizing250
the inequality constraints. Hence, we obtain the equality constrained optimization251
problem:252

min
c∈L2(Γd)

1
2

∫
τ(Ω)

(∇v : ∇v)dx+ α

2 ‖c‖
2
L2(Γd) + γ1

2 ‖(η1 − det(∇τ))+‖2L2(Ω)

s.t.



∆v +∇p = 0 in τ(Ω),
div(v) = 0 in τ(Ω),
v = 0 on τ(Γd) ∪ Γns,

v = gin on Γin,

(∇v − pI)n = 0 on Γout,

τ = id +w,
w = S(c),
g(w) = 0,

(3.2)253

254

where γ1 > 0 denotes a penalization parameter and (·)+ := max(0, ·). In order to255
simplify the notation, we will use the notation Jτ := det(Dτ) in the sequel. The first256
order necessary optimality conditions of (3.2) yield a system of nonlinear, coupled257
PDEs, see subsection 3.4.258

In principle, one solution of a nonlinear system of PDEs leads to the desired259
optimal solution for a given αtarget. From a computational point of view, yet, the260
solvability of this system with semismooth Newton methods depends on the initial-261
ization. Therefore, we solve (3.2) for a sequence of decreasing regularization param-262
eters, see Algorithm 3.1. The following sections are devoted to explicitly derive the263
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Algorithm 3.1 Optimization strategy
Require: 0 < αtarget ≤ αinit, 0 < αdec < 1, 0 ≤ γ1, 0 < η1

1: k ← 0, αk ← αinit, ck ← 0
2: while αk ≥ αtarget do
3: Solve (3.2) iteratively with initial point ck and solution c
4: αk+1 ← αdecαk, ck+1 ← c
5: k ← k + 1
6: end while

optimality system of (3.2) in a weak form, see subsection 3.4. Therefore, the geo-264
metrical constraints (subsection 3.2) are discussed and the different strategies for the265
control-to-transformation mapping S are investigated in more detail.266

3.2. Geometrical constraints. For shape optimization in the context of fluid267
dynamics it is necessary to fix the test specimen in space to avoid design improvements268
by moving it to the walls of the flow tunnel or shrinking it to a point. In our situation269
this is to fix volume and barycenter of the obstacle body Ωd. In the following we use270
the symbol ·̂ to refer to the deformed geometrical entity in terms of the mapping τ .271
If, for instance, Ω denotes the reference domain, then Ω̂ := τ(Ω).272

Let U be the hold all domain and the obstacle Ω̂d = U \ Ω̂. Further let273

(3.3) vol(Ω̂d) =
∫

Ω̂d

1 dx̂, bc(Ω̂d) = 1
vol(Ω̂d)

∫
Ω̂d

x̂ dx̂274

denote volume and barycenter of the obstacle.275
In the numerical implementation we work with the corresponding boundary inte-276

gral formulations instead. Let n̂ : Γ̂d → Rd be the unit normal on Γ̂d and f ∈ L1(Γ̂d).277
According to [35, Prop. 2.47, Prop. 2.48], we have278

(3.4)
∫

Γ̂
f̂ ds(x̂) =

∫
Γ
f‖Jτ (Dτ)−>n‖2 ds(x).279

Furthermore, the normal vector on the deformed boundary Γ̂d is given in terms of the280
normal vector n on the boundary of the reference domain Γd as281

(3.5) n̂ ◦ τ = 1
‖(Dτ)−>n‖2

(Dτ)−>n.282

Applying (3.4) and (3.5) to (3.3) we obtain283

(3.6)

vol(Ω̂) =
∫

Ω̂
1 dx̂ = 1

d

∫
Γ̂d

x̂>n̂ dŝ(x̂)

= 1
d

∫
Γd

(x+ w)>(n̂ ◦ τ)‖Jτ (Dτ)−>n‖2 ds(x)

= 1
d

∫
Γd

(x+ w)>(Dτ)−>n|Jτ | ds(x).

284
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for the volume and285

(3.7)

(bc(Ω̂d))i = 1
vol(Ω̂d)

∫
Ω̂d

x̂i dx̂ = 1
vol(Ω̂d)

∫
Γ̂d

1
2x

2
i n̂i dŝ(x̂)

= 1
2vol(Ω̂d)

∫
Γd

(xi + wi)2 1
‖(Dτ)−>n‖2

[
(Dτ)−>n

]
i
‖Jτ (Dτ)−>n‖2 ds(x)

= 1
2vol(Ω̂d)

∫
Γd

(xi + wi)2 [(Dτ)−>n
]
i
|Jτ | ds(x).

286

for the i-th component of the barycenter. Hence, with the assumptions that the287
barycenter of the initial shape fulfills bc(Ωd)i = 0 and Jτ ≥ η1 > 0 we obtain the288
constant volume condition289

(3.8)
∫

Γd

(x+ w)>(Dτ)−>nJτ − x>nds(x) = 0290

and the barycenter condition reduces to291

(3.9)
∫

Γd

(xi + wi)2 [(Dτ)−>n
]
i
Jτ ds(x) = 0.292

In the sequel we shortly write ds instead of ds(x).293

3.3. On the different strategies for S. In section 2 we discuss one partic-294
ular choice of the operator S. We extend this by two further options. In general,295
the operator S involves solving an equation of Laplace-Beltrami type and an elliptic296
extension equation. Thereby, the scalar-valued control variable c is mapped from the297
shape boundary Γd to a vector-valued displacement field w in Ω. The major differ-298
ence in the considered strategies is when the variable becomes vector-valued. We thus299
consider a mapping given by300

(3.10) c
i)7→ b

ii)7→ z
iii)7→ w301

where i) is realized via the Laplace-Beltrami solution operator on Γd and ii) via a302
solution operator for an elliptic equation in Ω. Depending on when the variables303
becomes vector-valued the auxiliary z and step iii) is optional. We start by recalling304
the strategy introduced and investigated in subsection 2.2 and then numerically test305
two further strategies.306

Note that of the following choices for the operator S only strategy S1 is entirely307
covered by the lemmas in section 2. For assumption A1 Lemma 2.2 can be applied in308
all three cases. In particular, our analysis in section 2 can be used to show assumption309
A2 for strategy S1. It remains to verify assumption A2 for S2 and S3. Neverthe-310
less, we propose and numerically investigate S2 and S3 due to their computational311
attractiveness.312

First strategy (S1). This strategy only allows for displacements of Γd along313
normal directions (cf. subsection 2.2). We choose314

(3.11) S(c) := SΩ(SΓd(c))next,315

where next denotes an extension of the outer unit normal vector field to Ω. The corre-316
sponding weak formulation for the operators SΓd and SΩ (step i) and ii), respectively)317
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is given by318 ∫
Ω
∇z · ∇ψz dx =

∫
Γd

bψz ds ∀ψz(3.12)319 ∫
Γd

bψb +∇Γdb · ∇Γdψb ds =
∫

Γd

cψb ds ∀ψb.(3.13)320
321

Since our intention is to formulate everything suitable for weak form languages of the322
major FEM toolboxes, we realize step iii) in the form323

(3.14)
∫

Ω
w · ψn dx =

∫
Ω
znext · ψn dx ∀ψn.324

Second strategy (S2). As a second strategy we consider325

(3.15) S(c) := SdΩ(SΓd(c)n),326

where n denotes the outer unit normal vector field on Γd. Thus, the elliptic extension327
equation in step ii) (corresponding to the operator SdΩ) is defined to be vector-valued,328
which in terms allows to omit step iii). This reads in weak formulation as329

(3.16)
∫

Ω
(Dw +Dw>) : Dψw dx =

∫
Γd

bn · ψw ds ∀ψw330

and replaces (3.12). Note that we use the symmetrized derivative (Dw + Dw>) in331
(3.16), which corresponds to solving the Lamé system with Lamé parameters µ = 1332
and λ = 0 and is found out to lead to better mesh qualities after deformation compared333
to using Dw instead. With our approach it is not required to tune these parameters334
contrary to previous approaches, see e.g. [30, 5]. This is later substantiated with335
numerical results in Figure 3.2. Furthermore, equation (3.14) is dropped from the336
system.337

Third strategy (S3). In a third possible strategy the scalar-valued control c is338
immediately mapped to a vector-valued b in step i) by the Laplace-Beltrami solution339
operator. We obtain the following representation340

(3.17) S(d) := SdΩ(SdΓd
(cn)),341

where again n is the unit outer normal field at Γd. Note that the scalar-valued control342
c enters as a scaling of n and then a vector-valued Laplace-Beltrami type equation343
is considered. We denote the corresponding vector-valued solution operator by SdΓd

344
which is given in the following weak formulation345

(3.18)
∫

Γd

b · ψb +DΓdb : DΓdψb ds =
∫

Γd

cn · ψb ds ∀ψb.346

The operator SdΩ is the same as in S2 and given in weak form by (3.16).347

3.4. Optimality system. We present the optimality system for strategy S3.348
Strategies S1 and S2 can be handled analogously. Using that the weak formulation of349
the transformed Stokes equations is given by350

351

(3.19)
∫

Ω

(
Dv(Dτ)−1) :

(
Dψv(Dτ)−1) Jτ dx− ∫

Ω
pTr

(
Dψv(Dτ)−1) Jτ dx352

+
∫

Ω
ψp Tr(Dv(Dτ)−1)Jτ dx = 0 ∀ψv, ψp,353

354
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the Lagrangian for the energy dissipation minimization problem of a Stokes flow355
around an obstacle with fixed volume and barycenter is given by356

357
(3.20) L(w, v, p, b, ψw, ψv, ψp, ψb, c, λ, µ) =358

1
2

∫
Ω

(
Dv(Dτ)−1) :

(
Dv(Dτ)−1) Jτ dx+ α

2

∫
Γd

c2 ds+ γ1

2

∫
Ω

((η1 − Jτ )+)2 dx359

−
∫

Ω

(
Dv(Dτ)−1) :

(
Dψv(Dτ)−1) Jτ dx+

∫
Ω
pTr

(
Dψv(Dτ)−1) Jτ dx360

−
∫

Ω
ψp Tr(Dv(Dτ)−1)Jτ dx−

∫
Ω

(Dw +Dw>) : Dψw dx+
∫

Γd

b · ψw ds361

−
∫

Γd

b · ψb +DΓdb : DΓdψb ds+
∫

Γd

cn · ψb ds362

+
d∑
i=1

µi

∫
Γd

(xi + wi)2 ((Dτ)−>n
)
i
Jτ ds+ λ

d

∫
Γd

(x+ w)>(Dτ)−>nJτ − x · nds,363
364

where ψ(·) denotes the adjoint states.365
For the sake of simplicity we write in the sequel L for L(w, v, p, ψw, ψv, ψp, c, λ, µ).366

Using ((Dτ)−1)whw = −(Dτ)−1Dhw(Dτ)−1 and (Jτ )whw = Tr((Dτ)−1Dhw)Jτ , the367
first order necessary optimality conditions are given by368

Lwhw =−
∫

Ω
(Dv(Dτ)−1) : (Dv(Dτ)−1Dhw(Dτ)−1)Jτ dx369

+ 1
2

∫
Ω

(Dv(Dτ)−1) : (Dv(Dτ)−1) Tr((Dτ)−1Dhw)Jτ dx370

− γ1

∫
Ω

(η1 − Jτ )+ Tr((Dτ)−1Dhw)Jτ dx371

+
∫

Ω
(Dv(Dτ)−1Dhw(Dτ)−1) : (Dψv(Dτ)−1)Jτ dx372

+
∫

Ω
(Dv(Dτ)−1) : (Dψv(Dτ)−1Dhw(Dτ)−1)Jτ dx373

−
∫

Ω
(Dv(Dτ)−1) : (Dψv(Dτ)−1) Tr((Dτ)−1Dhw)Jτ dx374

−
∫

Ω
pTr(Dψv(Dτ)−1Dhw(Dτ)−1)Jτ dx375

+
∫

Ω
pTr(Dψv(Dτ)−1) Tr((Dτ)−1Dhw)Jτ dx376

+
∫

Ω
ψp Tr(Dv(Dτ)−1Dhw(Dτ)−1)Jτ dx(3.21)377

−
∫

Ω
ψp Tr(Dv(Dτ)−1) Tr((Dτ)−1Dhw)Jτ dx378

−
∫

Ω
(Dhw +Dhw

>) : Dψw dx379

+
d∑
i=1

µi

∫
Γd

2(xi + wi)(hw)i((Dτ)−>n)iJτ dx380
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−
d∑
i=1

µi

∫
Γd

(xi + wi)2((Dτ)−>(Dhw)>(Dτ)−>n)iJτ dx381

+
d∑
i=1

µi

∫
Γd

(xi + wi)2((Dτ)−>n)i Tr((Dτ)−1Dhw)Jτ dx382

+ λ

d

∫
Γd

(x+ hw)>(Dτ)−>nJτ ds383

− λ

d

∫
Γd

(x+ w)>(Dτ)−>(Dhw)>(Dτ)−>nJτ ds384

+ λ

d

∫
Γd

(x+ w)>(Dτ)−>nTr((Dτ)−1Dhw)Jτ ds = 0,385
386
387

Lvhv =
∫

Ω

(
Dhv(Dτ)−1) :

(
Dv(Dτ)−1) Jτ dx

−
∫

Ω

(
Dhv(Dτ)−1) :

(
Dψv(Dτ)−1) Jτ dx− ∫

Ω
ψp Tr(Dhv(Dτ)−1)Jτ dx = 0,

(3.22)

388

389
390

(3.23) Lphp =
∫

Ω
hp Tr

(
Dψv(Dτ)−1) Jτ dx = 0,391

392

Lψvhψv =−
∫

Ω

(
Dv(Dτ)−1) :

(
Dhψv (Dτ)−1) Jτ dx(3.24)393

+
∫

Ω
pTr(Dhψv (Dτ)−1)Jτ dx = 0,394

395
396

(3.25) Lψphψp = −
∫

Ω
hψp Tr

(
Dv(Dτ)−1) Jτ dx = 0,397

398

(3.26) Lψwhψw = −
∫

Ω
(Dw +Dw>) : Dhψw dx+

∫
Γd

b · hψw ds = 0,399

400

(3.27) Lbhb = −
∫

Γd

hb · ψb +DΓdhb : DΓdψb ds+
∫

Γd

hb · ψw ds = 0,401

402

(3.28) Lψbhψb = −
∫

Γd

b · hψb +DΓdb : DΓdhψb ds+
∫

Γd

cn · hψb ds = 0,403

404

(3.29) Lchc = α

∫
Γd

chc ds+
∫

Γd

hcn · ψb ds = 0,405

406

(3.30) Lλhλ = hλ
d

∫
Γ̂d

(x+ w)>(Dτ)−>nJτ − x · nds = 0,407

12
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408

(3.31) Lµhµ =
d∑
i=1

(hµ)i
∫

Γd

(xi + wi)2 ((Dτ)−>n)iJτ ds = 0,409

for all (hw, hv, hp, hψw , hψv , hψp , hc, hλ, hµ) in appropriate function spaces. We thus410
obtain a system of nonlinear, coupled PDEs in a suitable form for standard finite411
element toolboxes.412

3.5. On the semismoothness of the optimality system. We solve the sys-413
tem (3.22)-(3.31) with a semismooth Newton method. To justify this, we show semis-414
moothness of the system and therefore take a closer look at the term in (3.22) that415
appears by differentiating416

1
2

∫
Ω

((η1 − Jτ )+)2dx =
∫

Ω
(f2 ◦ ι ◦ f1(w))(x)dx = F ◦ ι ◦ f1417

418

with419

f1 : Hs(Ω)d → Hs−1(Ω), w 7→ η1 − Jτ ,420

ι : Hs−1(Ω)→ Lr(Ω), v 7→ v,421

f2 : Lr(Ω)→ L1(Ω), q 7→ 1
2(q)2

+,422

F : Lr(Ω)→ R, q 7→
∫

Ω

1
2(q)2

+dx423
424

and 2 ≤ r ≤ ∞. Since Hs−1(Ω) is a Banach algebra for s > 1 + d
2 , f1 : Hs(Ω)d →425

Hs−1(Ω) is C∞. Since s − 1 − d
2 > 0, the embedding ι is linear and continuous.426

The Nemytskii operator f2 : Lr(Ω) → L1(Ω) is Fréchet differentiable for r ≥ 2, see427
e.g. [37, Sec. 4.3.3], and thus F : q 7→

∫
Ω

1
2 (q)2

+dx is Fréchet differentiable as a428
mapping Lr(Ω) → R for r ≥ 2 with derivative F ′(q) : Lr(Ω) → R, h 7→

∫
Ω(q)+hdx.429

Let 2 ≤ r < ∞. Then F ′ ∈ Lr(Ω)∗ as an element of the dual space of Lr(Ω) can430
be identified with F ′(q) = (q)+ ∈ Lr

′(Ω) where r′ = r
r−1 . Now, by [40, Thm. 3.49],431

q 7→ (q)+ is locally Lipschitz and semismooth as a mapping Lr(Ω)→ Lr
′(Ω) for r > 2,432

which implies semismoothness of w 7→ F ′ ◦ ι ◦ f1 as a mapping Hs(Ω)d → Lr
′(Ω) by433

[40, Prop. 3.8]. Hence, since Hs−1(Ω) ↪→ L∞(Ω) for s > 1 + d
2 , the mapping434

(3.32) G : Hs(Ω)d → (Hs(Ω)d)∗, G(w)(hw) :=
∫

Ω
(η1−Jτ )+ Tr((Dτ)−1Dhw)Jτ dx435

is semismooth.436

3.6. Numerical Results. In this section we demonstrate the three proposed437
strategies S1-S3 in a two-dimensional (2d) and a three-dimensional (3d) case. In438
both cases we consider a Stokes fluid in a flow tunnel with an obstacle in the center.439
Starting from a circular shape (in 2d) and a sphere (in 3d) the task is to optimize the440
shape such that the energy dissipation measured over the domain is minimized. This441
is a classical test case, which is investigated in detail for instance in [25].442

The experimental settings in 2d are given by a rectangular domain Ω = [−10, 10]×443
[−3, 3] where the initial obstacle is a circle with radius 0.5 and barycenter at (0, 0)>.444
We consider a flow along the x1-axis which is modeled by the inflow velocity profile445

(3.33) v∞x1
= cos(2‖x‖2π

δ
)446

13

This manuscript is for review purposes only.



Algorithm 3.2 Optimization algorithm
Require: 0 < αtarget ≤ αinit, 0 < αdec < 1, 0 ≤ γ1, 0 < η1, nssn, εssn

1: Initialize all variables (w, v, p, b, ψw, ψv, ψp, ψb, c, λ, µ)0 with zero
2: k ← 0, αk ← αinit
3: while αk ≥ αtarget do
4: repeat
5: Solve (3.22)-(3.31) for (w, v, p, b, ψw, ψv, ψp, ψb, c, λ, µ)k+1 with

semismooth Newton method, (w, v, p, b, ψw, ψv, ψp, ψb, c, λ, µ)k
as initial guess and regularization parameter αk

6: if Newton’s method not converge to εssn within nssn iterations then
7: αk ← 1

2 ( αk
αdec
− αk)

8: end if
9: until Newton’s method converged

10: αk+1 ← αdecαk
11: k ← k + 1
12: end while

where δ specifies the diameter of the inflow boundary in both 2d and 3d. This is447
consistent with the zero-velocity boundary conditions at the walls of the flow tunnel.448

The discretization of the domains is performed with the Delaunay method within449
the toolbox GMSH [11]. In 2d we choose three different hierarchical grids with 1601,450
6404 and 25 616 triangles. After each refinement the grid at Γd is adapted to inter-451
polate the circular obstacle and consists of 141, 282 and 564 line segments.452

The 3d experiment is conducted in a cylindrical domain453

Ω = {x ∈ R3 : −10 ≤ x1 ≤ 10,
√
x2

2 + x2
3 ≤ 3}454

where the initial obstacle is a sphere of radius 0.5 with barycenter (0, 0, 0)>. In455
this situation Ω is discretized with 6994 surface triangles forming Γd and 118 438456
tetrahedrons in the volume.457

For all numerical computations in this section we use the PDE toolbox GET-458
FEM++ [28]. We utilize the parallelized version of this library and provide the non-459
linear optimality system (3.21)–(3.31) in the builtin language for weak formulations460
as it is. In order to solve the nonlinear system second derivatives are computed sym-461
bolically by the library. While all terms but one in (3.21)–(3.31) are classically differ-462
entiable with respect to w, the integral in (3.21), which involves the non-differentiable463
positive-part function (η1−Jτ )+, leads to a generalized derivative. Following the dis-464
cussion in subsection 3.5 of the semismoothness of the operator G in (3.32) we obtain465
for the assembly of the linearization matrix466

467

(3.34) γ1

∫
Ω
χ(η1>Jτ ) Tr((Dτ)−1Dh̄w) Tr((Dτ)−1Dhw)J2

τ468

+ (η1 − Jτ )+ Tr((Dτ)−1Dh̄w(Dτ)−1Dhw)Jτ469

− (η1 − Jτ )+ Tr((Dτ)−1Dhw) Tr((Dτ)−1Dh̄w)Jτ dx470471

for all hw, h̄w. Corresponding to [39, (4.1)] we can identify

−χ(η1>Jτ ) Tr((Dτ)−1Dh̄w)Jτ
14
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Figure 3.1. Holdall domain U and Stokes flow in Ω = U \ Ωd on the left and the optimal,
deformed configuration Ω̂d = τ(Ωd) on the right. Color denotes ‖v‖ and ‖v̂‖, respectively.

Figure 3.2. Optimal solution for regularization parameter αtarget = 10−10 following strategy
S1,S2 and S3 (from left to right). The images show a 0.28 × 0.28 section centered at the point
(−0.8, 0.0)>.

in (3.34) with an element of the generalized differential of (η1 − Jτ )+ evaluated in a472
direction h̄w.473

For the discretization of the linearization matrix and the right hand side in New-474
ton’s method we choose piece-wise linear basis functions for all variables except for475
the velocity v and its adjoint ψv. Here we choose piece-wise quadratic functions.476
For simplicity, in each iteration of Newton’s method for the system (3.21)–(3.31) the477
parallel direct LU solver MUMPS [1] is applied.478

Figure 3.1 depicts the 2d situation where color denotes the norm of the velocity479
field. The velocity profile in the 3d experiment is similar to the one shown in Figure 3.1480
since we choose the domain Ω in 3d to be the rotation body of the 2d domain.481

In all experiments in this section εssn = 1× 10−9 is chosen as tolerance of the482
relative residual norm in the semismooth Newton method in Algorithm 3.2. Further,483
if the criterion is not fulfilled after nssn = 40 steps, α is increased again.484

In Figure 3.2 we compare the optimal solution for a regularization factor of485
αtarget = 10−10 for the strategies S1, S2 and S3 on the finest grid with 25 616 triangles486
and 564 surface elements. Here the effect of the tangential movements of nodes can487
be seen. While in strategy S1 in the leftmost figure the optimal shape stays round at488
the tip, strategy S2 and S3 approximate the kink. The same holds true for the back of489
the shape, which is not shown here. Since the resulting deformation field w restricted490
to Γ̂d in S1 points in normal direction, the condition Jτ = det(I + Dw) ≥ η1 > 0491
prevents the appearance of a kink. Numerical tests show that the choice of next plays492
a decisive role. Since the reference shape Ωd is either a circle in 2d or a sphere in 3d493
with barycenter zero one can choose next(x) = x

‖x‖2
as an extension to the normal494
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Figure 3.3. Semismooth Newton iteration counts with a tolerance of relative residual εssn =
1× 10−9 for each subsequent optimization problem k with α = 1× 10−2 · 1

2
k−1, αtarget = 1× 10−10.

For S2 and S3 αdec = 1
64 is chosen, thus intermediate problems are left out.

Figure 3.4. Optimal solution for regularization parameter αtarget = 10−10 under grid refine-
ments j = 1, 2, 3, i.e. 1601 ·4j−1 triangles, 141 ·2j−1 surface lines. Strategy S1 on the left hand side
and S3 with a zoom on the nose of the shape.

vector field on Γd. The numerical results for S1 presented here are obtained for the495
choice next(x) = ( 1

2 + ‖x‖2)2x. Numerical experiments have shown that with the496
second choice of next we come closer to the optimal shapes resulting from S2 and S3497
than with the first variant.498

In Figure 3.3 the number of semismooth Newton iterations is depicted for each499
of the optimization problems. According to Algorithm 3.2 we utilize the optimal500
control of one problem as initialization for the next one with smaller regularization501
parameter α. Computations are performed on the finest 2d grid considered in this502
section, i.e. j = 3. For all three strategies S1,S2 and S3 we choose αinit = 1× 10−2503
and αtarget = 1× 10−10. While for S1 αdec = 1

2 is required to guarantee convergence504
of the semismooth Newton method within nssn = 40 we proceed with αdec = 1

64 for505
S2 and S3. We observe that the number of required iterations significantly increases506
beginning in the 14th optimization problem for strategy S1. This can be explained507
by the positive-part in the objective of (3.2) becoming active.508

In the next experiment we consider strategies S1 and S3 under mesh refinements.509
Figure 3.4 shows the corresponding results for three hierarchically refined grids result-510
ing in 1601·4j−1 triangles and 141·2j−1 surface lines for j = 1, 2, 3. The regularization511
parameter is again chosen as αtarget = 10−10. The right hand figure shows a zoom-in512
to the 0.28× 0.28 square around the tip in order to make the shapes distinguishable.513
On the left hand side, i.e. where there are only deformations in normal direction, we514
observe a slow grid-convergence towards the theoretical, optimal shape. Strategy S3,515
in contrast, leads to comparable results even on relatively coarse grids.516

Figure 3.5 visualizes the effect of the regularization parameter α. More precisely,517
a sequence of optimal shapes for different optimization problems depending on α are518
illustrated. The figure shows a transition for α = 10−k for k = 0, . . . , 10 according to519
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Figure 3.5. Optimal solution with regularization parameter α = 10−k for k = 0, . . . , 10 accord-
ing to strategy S3.

Figure 3.6. Reference Ωd (left) and transformed shape Ω̂d (right) according to optimal dis-
placement w in 3d Stokes flow with a crinkled slice through the surrounding grid. The result is
achieved with strategy S3 and αtarget = 10−10.

strategy S3 on the finest grid, i.e. it presents the intermediate, optimal solutions one520
obtains after each iterations of Algorithm 3.2. It should be mentioned that this fine521
resolution in α is chosen for demonstration purposes only. For the specific example522
we are able to choose an initial and decrement factor for α such that αtarget = 10−10523
is reached in two iterations of Algorithm 3.2. Since we are only interested in the524
optimal shape with respect to αtarget it is our intention to choose both αinit and αdec525
in Algorithm 3.2 as small as possible. This choice is made heuristically depending526
on whether the semismooth Newton method in line Algorithm 3.2 converges within a527
prescribed number of iterations. If the inner iteration does not converge, we choose528
αdec closer to one. In all two dimensional computations we choose the parameter529
η1 = 8× 10−2, γ1 = 1× 103 independently of the α-strategy.530

Figure 3.6 visualizes Algorithm 3.2 for 3d problems. It visualize the reference531
shape Γd as the surface triangulation together with a slice through the tetrahedral532
grid of the reference domain Ω in the left subfigure. On the right hand side the effect533
of the optimal displacement field w to the shape Γ̂d and the volume Ω̂ is shown. As534
mentioned above we are only interested in the optimal control c and the corresponding535
displacement field w for the regularization parameter αtarget. In the 2d examples this536
could be achieved with very few outer iterations of Algorithm 3.2, which means that537
one could start with a small αinit and proceed fast towards αtarget. However, in the 3d538
case it turns out that a more careful strategy has to be considered in order to obtain539
convergence of Newton’s method within nssn steps. The results shown in Figure 3.6540
are obtained with αinit = 1× 10−1, αtarget = 1× 10−6, αdec = 0.5, η1 = 8× 10−2,541
γ1 = 1× 103.542
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4. Conclusion and Outlook. We present a formulation of shape optimization543
problems based on the method of mappings that is motivated from a continuous per-544
spective. Using this approach replaces the problem of preventing mesh degeneration545
by the question of finding a suitable set of admissible transformations. We propose546
a method such that the set of feasible transformations is a subset of the space of C1-547
diffeomorphisms. Numerical simulations substantiate the versatility of this approach.548
Furthermore, it allows for refinement and relocation strategies during the optimiza-549
tion process and can also be combined with adaptive mesh refinement strategies and550
globalized trust region methods. This, however, is left for future research.551
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