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Abstract

In this work we present an output least-squares method for the identification of elastic material pa-
rameters for orthotropic material specimens like a wooden violin bridge. The basis for the optimisation
are measurements of the transient behaviour of the investigated object. Such an approach points out an
alternative to the widely spread usage of destructive tensile tests. Based on the dynamical output data we
then design a cost functional assessing its amplitude and phase information for the optimisation. We then
derive the sensitivities of this cost functional with help of the adjoint equation and subsequently explain the
algorithmic approach via a quasi-Newton method, i.e. the BEFGS-method in combination with an Armijo-
Goldstein line search technique. For the numerical simulations the damped elastic wave equation on the
complex three-dimensional violin bridge geometry will serve as the modelling equation. In the last section
we complete the discussion with an elucidation of several successful numerical experiments for the violin
bridge.

1 Introduction

The aim of this work is the development of a reliable parameter identification algorithm to reconstruct the
material parameters of a wood specimen from data provided by a measured transient output signal. Our main
focus will be on the application of the identification process for the material parameters of a violin bridge. These
parameters are very relevant to the individual vibrational behaviour of the bridge because they significantly
affect the sound properties of the violin bridge, and thus the sound of the overall instrument as well. The violin
bridge can be considered as the first link in a chain of mechanical wave guides which transport the vibration of
the string into the acoustical space surrounding the instrument. See also [10], [1, 8] for the importance of the
violin bridge from a physical point of view. An image of a typical violin bridge mounted on the instrument can
be seen in Figure 1. The bridge has obviously a complex three dimensional shape and is made from maple wood
which is highly anisotropic in its elastic material parameters. The elastic parameters of the wood are the Youngs
moduli Eyy, the shear moduli G;; and the Poisson’s ratios vy, where k,1 € {1,2,3}. See Section 2.1 for further
discussions and elucidation about the considered parameters. These quantities can be measured using various
physical experimental setups. Classically the determination of orthotropic materials are based on tensile tests
[5, 13, 14]. A good overview on the state of the art in the field of mechanical parameter testing can be found
in [18]. Experiments of this kind, however, are usually destructive tests and require a sufficiently large sample
of the material in a standardised geometric form. For a singular, non-reproduceable object like a violin bridge,
which was, often decades ago, cut from a slap of wood, these testing methods are not applicable. In the last
two decades affort has been made to determine materials in a nondestructive way by numerical optimisation.
An example from biomedicine is the reconstruction of elastic properties from ultrasonic measurements like in
[9, 19]. For general anisotropic medias there were many inverse problems composed to derive the anistropic
material parameters from full-field displacement measurements, see e.g. [11, 3]. The measurements as well as
the optimisation for this approach are very complex and computationally costly because one always needs to
compare displacements over the whole surface of the object. Furthermore, the necessary measurement data are
often not available in a practical setting. In contrast, the method we will present in the following chapters is
based on measurements of the transient behaviour of a material specimen at a single measurement point. These
measurements are technical much simpler and comparably easy to conduct. This opens our method to a wide
field of potential applications where the technology of a well-equipped laboratory is not at hand. Our approach



Figure 1: Closeup of a violin bridge mounted on the instrument.

via an inverse output least squares problem, therefore, is a valuable alternative leaving the considered object
unaffected during the parameter identification process.

Starting from an input-output measurement at two defined points, we analyse the transient behaviour with
tools from signal processing. Doing the same in our numerical simulation, we then can compare the measured
and simulated signals in the frequency domain. For this purpose we design a L2-costfunctional comparing
amplitude and phase of the two signals over a prescribed frequency interval.

The article is structured as follows: In Chapter 2 we start with the explanation of the mathematical model
designed for the elastic wave equation on a domain describing the 3D violin bridge geometry. Here we discuss the
dynamic state model of the elastic wave equation on the one side in Subsection 2.1, and isogeometric analysis
as a methodical basis for the numerical implementations on the other side in Subsection 2.2. Afterwards,
we formulate the variational form of the parameter identification problem in Chapter 3 and introduce the
applied costfunctional J. Subsequently, we derive the sensitivities of J with respect to the considered material
parameters in Chapter 4 with help of the adjoint equation. With the sensitivities on hand, we can turn to
the parameter optimisation and its concrete algorithmic implementation in Chapter 5. The results of several
numerical experiments for the parameter identification for the example of a violin bridge presented in Chapter
6 will then serve to demonstrate the abilities of the designed optimisation algorithm.

2 Mathematical Model

Before we start out with the discussion of the modelling equations for the vibrational behaviour of the violin
bridge, a few comments on notation are adequate. We will deal with different types of vectors: Three dimen-
sional vectors in physical space and (usually very high dimensional) vectors of coefficients for finite element
approximations. We will denote both types using bold letters, e.g. x or w. The scalar product for three-
dimensional vectors is written as x - £ whereas the scalar product for finite element coefficient vectors is written
as (w,Vv). Moreover, we use subscripts w; to address individual finite element coefficients but superscripts =™
to address components of three-dimensional vectors.

2.1 Dynamic state model

In order to get realistic simulation results, we need a physically and numerically accurate and reliable model
for the vibrational behaviour of the violin bridge. This will make our research results valuable to practitioners
as well. The underlying physical model for the small-amplitude vibrations of the violin bridge is the elastic
damped wave equation on a bounded domain Q — R?® which is a piecewise smooth, Lipschitz continuous, not
simply connected open set in R3. The Dirichlet boundary I' = 69 is a nonempty subset of the boundary 0.
On I" we assume that the bridge is clamped and remains stationary throughout the vibrational movement after
excitation, i.e. we have zero boundary conditions here. A natural choice for I" are the two bases of the feet of



the bridge where the bridge is in contact with the top plate of the violin. The dynamic evolution usually starts
from the static equilibrium, so we chose the initial conditions u(0,x) = 1(0,x) = 0 for x € Q. All together we
get the following system equations:

pu(t,x) + d(u(t,x)) — V-o(u(t,x)) = f(t,x), te[0,T],x€Q,
u(0,x) =u(0,x) =0 x €, (1)
u(t,x) =0 te[0,T],xeT

with given right hand side f € L2([0,T]; H'(£2)*). The function f describes the excitation. It is usually either
a short pulse or a chirp signal acting on some point x;, € 0Q\I'. Also the damping term in (1) needs further
specification. In our case we apply Rayleigh damping (see [12, Section 3.7.2]) and thus the damping term takes
the form J

d(u(t,x)) := apy u(t,x) + ag %[V'U(U(LX))]. (2)
The Rayleigh damping thus models the acting damping forces as a linear combination of one factor which is
proportional to velocity and a second factor which is proportional to the rate of change of the local elastic
energy.

To clarify the notations of linear elasticity we take a look at the strong form of (1):

pu=V-o+f+ (axg V-0 —ayn) (3a)
together with the constitutive equation (Hook’s law)
o=C: g(u) (3b)

for the stress tensor o and the strain e(u) = (Vu+ Vu'). The Cauchy strain tensor e(u) = 1 (Vu+ Vu'),
therefore, is linearly connected to the Cauchy stress tensor o (u) via the constitutive relation o (u) = C : e(u),
where C' = Cjjp; is a fourth order tensor. For our applications we model the maple wood of the bridge as a
homogeneous orthotropic material. Under this assumption, we can employ various symmetry properties and
arrive at the following matrix form of the constitutive relation

o11 Cii Ci2 Ciz O 0 0 €11
092 Cia Cy Co3 0 0 0 €92
o33 | _ | Cis Cas C33 0 0 0 €33 (4)
023 0 0 0 044 0 0 €23
J31 0 0 0 0 C55 0 €31
012 0 0 0 0 0 C66 €12

for o;; = (a(u))ij and €;; = (s(u))ij, i,7 =1,2,3 (see [17, Section 2.4] for details). Equation (4) can be written
in the compact form
o=Mce (5)

with the sparsity structure of M given in (4). In the engineering literature it is usual to designate the coefficients
of the inverse matrix mc = (M¢) L. In this setting one works with the matrix

1 V21 UV
By By Be 0 00
| TEn TEx Es
me 0 & 0 0
23
0 0 0 0 &z 0
0 0 0o 0 0 &

G2

This matrix is determined by the Young’s moduli Eyj , the Poisson rations vy, and the shear moduli G; of the
orthotropic material.
In preperation of the finite element formulation in the following section, we write (3a) in its weak form:

JQ plp,ydx + JQ (aM<ga, u) + age(p): (C z—:(u))) dx (6)

= | ete)s (o) dx = (o) iy ) e "



Figure 2: Sketch of the decomposition of the bridge into individual patches for NURBS discretisation.

for all ¢ € HL(£). Here we use the Sobolev spaces
HL(Q) = HF(QR?) ={u: Q> R? : w; e HY(Q) fori = 1,2,3 and u|p = 0}

and its corresponding dual space (Hf)*(Q2) and almost every ¢ € [0, T]. The second integral in (6) describes the
Rayleigh damping mechanism employed in the model.

2.2 Numerical methods and finite element formulation

The numerical solution of the wave equation (6) requires sophisticated discretisation techniques if reliable
numerical simulations shall be achieved. Here the main difficulty is the complex geometrical shape of the
domain €. To pay respect to this, we chose isogeometric elements both, for the description of the geometry,
and for the finite element basis. We do this by decomposing 2 into a number of patches, each of it being
homeomorphic to the unit cube in R3? where the homeomorphism is parametrised using tensor products of
non-uniform rational B-splines (NURBS). On each patch a local NURBS finite-element basis is defined. The
interaction between the different patches is resolved introducing mortar elements on the common interface
between two patches which act as Lagrange multipliers ensuring regularity of the global solution across the
interface. (See [7] and [4] for details regarding theory and implementation.) In Figure 2.2 a schematic drawing
of a bridge shows the chosen decomposition into patches where each patch is the homeomorphic image of the
unit cube in R? under a NURBS-based bijective transformation. Note (especially in patches No. 1, 9 and 11)
that corners and edges present in the patch need not necessarily be the images of corners and edges of the unit
cube under the NURBS transformation. In fact kinks and corners can be realised using NURBS by decreasing
the regularity of the rational B-spline basis locally. In the derivation of the FE-model for the violin bridge, we
constructed a highly precise NURBS geometry from measured p-CT scan data of an actual bridge. A detailed
explanation of this process can be found in [15].

To solve (6) numericaly we approximate the solution by a linear combination of NURBS basis functions N,

with time-dependent three dimensional coefficient vector y;(t) = (yj (), y3(t), v (t))t:
N
u(t,x) = Y N;(x)y;(t). (8)
j=1

The patchwise defined isogeometric basis functions N; : 2 — R form a NURBS basis N = {N;: j=1,..,N},
N being the number of basis function on all individual patches. We assemble the individual coeflicient vectors
y; into an overall state vector y(¢). Evaluating the weak form of the elastic wave equation for all test functions
pj'(x) = Nj(x)e™, with e™, m = 1,2, 3, denoting the canonical basis in R3, gives the discrete approximation



of (6) which takes the form of a second order ODE-system for the coefficient vector y(t):

My () + Dy'(t) + Ay (t) = £(0), (92)

y(0) =y'(0) = 0. (9b)
The mass matrix M is build up from the 3 x 3 sub-matricies (MZ’}”””)m o1 With M = p §o Ni(x) Nj(x) dn dx.
The stiffness matrix A contains the sub-matrices 4;; = §, &(N;(x)) : ((C e(N;(x ))) dx and the damping matrix

D contains the entries D;; = ayM;; + axA;;. Here Nj(x) = anzl Nj(x)e™ = anzl ¢7'(x) is the vector
valued version of the basis function N;(x). The force vector f(t) on the right-hand side comprises the forcing
terms (¢}, £(¢))m1, 1)+ We choose a time-dependent point source of the form

m — m .
(COIE0)y arye = T O Gxi) (10)
with a given input signal f : [0,7] — R, usually a chirp signal at some fixed input location x;, € 0€2. The elastic
material parameters Eyy, vk and Gy, occur in the stiffness matrix A and hence also in the damping matrix D.
If we define the parameter vector p as

.
p= (Eu,E22,E337V21,V31,V327G23,G137G12) (11)

then all finite element matrices are p-dependent. We usually write M (p), D(p) and A(p). If certain of the
parameters are set to fixed values and thus will be removed from the list of estimated parameters, corresponding
p-dependencies might disappear.

3 Variational formulation of the parameter identification problem

We now address the problem of identifying the physical parameters from measured input-output behavior of the
considered physical system and introduce a cost functional to reach his aim in an iterative optimisation process.
As mentioned in section 2.1 we use just one fixed input signal acting at a given point X;, on the surface of the
bridge.

The three-dimensional output data are given as

3 N
uout(t) = Z nglt Z xout Y t) (12)

m=1

for a given fixed measurement point Xous € 02, Xout # Xin- The time interval [0, 7] on which the output signal
is active will be finite. We shall, however, assume that T is large and the damping strong enough such that all
relevant signals have faded out at the final time ¢ = T'. It will be convenient to extend the signals by zero onto
[0, 00) especially when dealing with Fourier transforms. If the amplitude decay at the end of the time-interval
is strong enough this extension procedure will not introduce spurious frequencies in the Fourier transforms of
the signals.

To solve the parameter estimation problem, comparing measured and simulated outputs directly in an
output-least squares formulation turns out to be unfeasible. Due to the oscillatory nature of the output signal,
the resulting optimisation problem has many spurious solutions (local minima of the cost functional) and the
identification algorithm is very likely to get stuck in one of these minimas. Instead, we fit the output signal to the
measured signal in frequency space, where we choose the fitting terms for amplitude and phase independently.
For the amplitude fitting we define a Kullback-Leibler type cost functional in the form

-2 [ () ()

Wmin

We hence compare amplitudes of output- and measured data in frequency domain in a logarithmic scale. The
other term in the cost functional is a least-squares data fit of the phases. It reads

Wmax &m 2
Z J ( out Amdat ) dw. (14)
|u0ut| +e |’U’dat‘ te

Wmin




In both cases @(w) denotes the Fourier transform for a given signal v : [0,00) — R:

Q0
t(w) = f e 72Tty (t) dt .
0

The frequency interval I, = [Wmin, Wmax] for the data fit is chosen such that frequency values which are relevant
for the the acoustical properties lie within I, but the dominant frequencies in the data noise are cut off. The
role of the non-degeneracy parameter £ > 0, especially in equation (13), will be discussed in detail later in
Chapter 5.

For the identification of the parameter vector p from the given measured data u4,; we minimise the combined
cost functional

J(P) = Jam(P) + Jpu(P) (15)

over a set P  R? of physically feasible parameter vectors . Note that both data-fit terms (13) and (14) depend
on the parameter p only indirectly via the solution y(¢,p) of the discrete state equation (9) and consequently
via the output signal u,, (¢, p) where the actual p-dependence lies in the coefficients of the system matrices for

(9). Denoting
- X[ (e )

Wmin

Wmax ~m 2
Z J out Ugat dw
|um\+5 lalt,| + €

Wmin

and

for a given vector-valued signal u : [0,0) — R, we have

Jam(P) = jam(uout(P)) and Jpn(p) = jph(uout(p))~

For later reference we define the data mismatch in the amplitude part of the cost functional (13) as

Tum(wi . i(lg'wt‘”)'”). (16)

(W) + ¢

4 Sensitivity analysis and adjoint equation

In this section we will compute the sensitivities with respect to the introduced cost functional (15). Since
the explicit computation via the forward problem would be computationally very costly we therefore chose to
compute them via an adjoint approach. First we give an abstract description of the set of feasible set parameters
by P ={peR’ : py, < p < pup} with given vectors py, € RZ, and py, € R2,, of upper and lower bounds for
the parameters. Using standard regularity results for linear ODEs (c.f. Amann [2, Theorem 9.2]) it follows that
p — y(-) is a mapping in C*(P,C*([0,T], R?)) on the set P, where d is the total number of degrees of freedom

in (9). Moreover, the partial derivative y,, with respect to parameter p,, v = 1,2,...,9 solves the sensitivity
equation
Myy, (t) + Dy, + Ayp, (t) = =M, y"(t) — Dp,¥'(t) — Ap,y(t) on [0, T, (17a)
¥p. (0) =y, (0) =0 (17b)

for v =1,2...,12. Here y = y(¢,p) is the solution to the discrete state equation (9) for the given parameter
vector p. Moreover, we assume that the right-hand side of (9) is independent of the parameter p. Using (12)
for the representation of uqyt, it is obvious that also the output signal ugyy is of the same differentiability class
as y(t) and we have

N
Uoutp, (¢ Z (Xout) ¥, () -

Applying this formulation for ugys p, (£) we get the following expression for the derivatives of Jom and Jon
with respect to the parameter p,:

Jam,pV (p) = jam7u(uout (P)) * Wout,p, (p) and Jph,p,, (p) = Jph,u(uout (P)) * Uout,p, (p) (18)



where

3 ~ ~rn T
~ Wmax |[a™| + Re(um vm)
Jamu(u) - v =4 f log ( - -— dw (19)
. mZ:l Wmin |udat‘ +eé (|um| + 5) |am|
and
Jonu(1) v =2 Z J : U A 2Re(?f:’;v )\
el ) (e (ol + o) T

i [ (1 LR R )RR Y,
et Jomin \ (J@7] + s) [am| +e (It | + ) (lam] +¢) (|am] + 5)2 (lags,| +e)lam]

B JK - () )Re(a’”@m) Re(igs, ™) )]dw. (20)

@i +e - (lagyl +e)lam] ) (jam| +e)®  (lagl +e) (] +e

Wmin

It will turn out to be advantageous write explicitly 0(w) = SSO e?mwty(t)dt and exchange the order of t- and
w-integrations. With this, and the notation

3
gun(t) = Y gl ()™ (21)

m=1

with ( .2 t)
Wmax ‘,&m| + e Re m Tiw
Gam (t) =4 f log< - o dw
* Wmin |u$t‘ +e (‘um| + 5) |4
and
3
gn(t) = > gmi(t)e
m=1
with
m Wmax € Re (ﬁ’d’;t ﬁm) Re (am €27TZWt) Re (ﬁggt 62“““)
gPh(t) =2 |ﬂm‘ + e + (|,&m | + 8)|ﬁm‘ N 2 m nm dw (22)
Wmin dat (|Um| + 5) (|udat‘ + E) (|’U, | + E)
for m =1,2,3, we get
T
Jam(W) v = f gam(t) - v(£) dt (23)
0
and
T
Tona(w) v = J gon(t) - V(1) dt. (24)
0
We now continue by introducing the adjoint system
M'w"(t) — D'w'(t) + A'w(t) = r(t), (25a)
w(T)=w'(T)=0. (25b)

The component of the right-hand side vector r corresponding to the test function ¢7" are given by

17 (1) = Nj(Xout) (gam (t) + gpn(t)). (26)

Note that an end-time condition w(7T") = w'(T) = 0 is imposed on the adjoint equation (25). Consequently, we
will have to solve (25) backward in time on the interval [0,T].
Using (18), (23), and (24), we obtain

T N
qu(p>:f (gam( + gpn(t ) Z (Xout) ¥j,p, (t) dt = f <r 2 Y, (t >dt

0 j=1



The adjoint equation (25) further implies
T
Tp(0) = [ (6) = D' (1) + A'w ()., (0)

J(<W s Myy, () = (W' (t), Dyy, (1)) + (w(t), Ayy, (t >) dt.

After two partial integrations, using the initial and end conditions (17b) and (25b), we get

- f (w(t), My, (£)" + Dy, (t) + Ay, (£)) dt.

Finally, the sensitivity equation (17a) yields
T
— | 0.~ (0,370 = Dy 0 + 4, v(0)
= [ (0 My ) — w0, Dy 0 + 4,30 ) 27

For the last equality we carried out yet another partial integration in the time domain. In this final form,
the sensitivity can be readily implemented because most solution algorithms for the ODEs (9) and (25) will
automatically provide approximations for the solution vectors and their first time-derivatives.

5 Numerical Implementation of the Optimisation Process

In this section we explain our algorithmical approach via BFGS algorithms to find the optimal parameters w.r.t.
(15). We also address the possible choices of the constants €, wpax and wpi, occuring in (15) as well as our
choice for the start parameters.

5.1 Regulation of low amplitude supression

As we have seen in Section 3, the costfunctionals Jom(p), Jon(P) contain a positive constant e which prevents
the degeneracy of the two cost terms. One needs to take special care about the choice of ¢ in the numerical
implementation because it not only prevents degeneracy but also suppresses the low-amplitude part of the
signal. To identify the parameters we have deliberately chosen a logarithmic scale for the amplitude of the
signal in frequency domain because we want to match peaks in the signal over different scales of magnitude.
In the very low amplitude regime, however, the logarithmic scale still gives a considerable mismatch between
simulated and measured data which nonetheless contains very little information. The introduction of ¢ yields
that the fraction %
€ and hence its logarithm is close to zero. By choosing ¢ appropriately we, therefore, set a soft bound below
which amplitude mismatch is not considered any more in the cost functional. See Figure 6 in the next section
for plots of amplitude decay over frequency for typical output signals.

Figure 3 shows a comparison of the cost integrand J.m(w;p,e) defined in equation (16) for different values
of € over the frequency range w € [0Hz, 8000Hz]. One recognises that a decrease of € results in a decrease of the
low-amplitude suppression, especially in the high frequency band width.

Thus, the choice of € should equilibrate the level of noise suppression against the elimination of eigenfre-
quencies from the cost term J,,,. For our application we identified a value of ¢ = le — 10 as a reasonable
choice.

The maximal frequency wmax of the frequency window on which the data fit is performed plays a similar
role. Because random noise on the measured data ueyys is mostly visible in the high-frequency region of the
Fourier transformed signal, the cut-off frequency wpax eliminates high frequent noise from the data fit in the
cost functional. Consequently, both € and wy,.x play the role of regularisation parameters which help stabilising
the identification process. Both, however, must not be chosen too strict. Otherwise necessary information is
suppressed and not a available for the data inversion.

is close to one if both amplitudes |4, (w)| and |@7 (w)| are much smaller than
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Figure 3: The cost integrand of Jum(p, €) for different values of .

5.2 Choice of start parameters

A crucial point for the optimisation process is the choice of a viable start parameter set pg. In most cases we
chose the start up parameters presented in [6, Table 3.1, Table 3.2]. Thus, usually we started with the following
values for the elasticity constants displayed in Table 1.All the starting parameters are contained in the starting
parameter set pg.

Youngs (GPa) | Shear (GPa) | Poisson

moduli moduli Ratios

E1 10 G23 0.29 | 20K} 0.82
EQ 1.52 Glg 1.22 V13 0.5
E3 0.87 G12 1.10 V12 0.46

Table 1: Usual starting parameters for the elastic constants.

For validation purposes of the algorithmic implementation we usually generated reference output data with
the parameters listed in Table 1 and started with a set of parameters po € {p € R'? : py, < p < pup} Wwith
given vectors py, = 0.9 - pg and pyp = 1.1 pg.

5.3 Algorithmic Approach

For the optimisation we decided to implement the BFGS method from the group of quasi-Newton algorithms
which only needs one gradient evaluation for each iteration step. The main motivation for the choice of the BFGS
method is that it mimics the behaviour of an SQP-algorithm in the sense that it generates subproblems with
balanced curveture in all directions. This is especialy advantegous in our case because our cost functional shows
strongly unequilibrated behaviour in the different directions. Furthermore we have superlinear convergence for
the applied approach [16]. We state the algorithmic scheme for the minimisation of J by the BFGS method like
it can be found in [16], e.g.:

The step size a > 0 for the BFGS step is computed with a line search using a local quadratic model of the
cost functional. If the local model is non-convex, a backup strategy uses the last available value for the step
size a.. If the model is convex, the line search checks the Goldstein criteria to ensure that a reasonable descent



Algorithm 1 BFGS method
IHPUt: Do, H07 €tol-

k< 0;
1: top:
2: while HVJk” > Etol
3: do
g = —HiVJg;

Pk+1 = Dk + axgr (g computed by line search, see (28));
compute sk = Pg+1 — Py Yk = VIp+1 — VJg;

Hessian update:

compute pp = ﬁ;

Hipr = (I = peswyg ) He(I = pryrsy ) + prsisy s
10: k<—k+1.

11: goto 1.

© %2 NS T

will be achieved. For an arbitrary cost functional J they read as:
J(pr) + (1 — )ax VI, gr < J(pi + agr) < J(pr) + carV.J} gk, (28)

where the subscript k indicates the current values of the parameters and iterates at step k. Here g denotes the
current search direction, py the current iterate and VJi the gradient of J for the current iterate. The constant c
in general ranges between 0 and 0.5, in our concrete application we chose ¢ = 0.25. The first inequality controls
the step length from below to prevent the algorithm from getting stuck in diminishing step lengths. The second
inequality condition is also known as the Armijo condition and ensure a significant decrease along the search
direction pg. If it is not possible to fulfill both conditions after a fixed number n of step length increases, only
the Armijo rule will be checked. If the step size also fails to fulfill the Armijo condition, we fall back to our
backup strategy for the step size.

For the computation of the solutions ue, of (9) we used a Newmark-/S-time-stepping scheme [12]. For a
time-step size §; the structural equations read as

. 5?2 . ..
Uip1 = Ui + Opy + ?t (1 —2B)1ii; + 2Piii11)

Uipr = Uy + 0 (1 —y) tg + yilig1) -

This time-stepping scheme is unconditionally stable and second order accurate for 8 = 1/4 and v = 1/2.

6 Numerical examples

We perform our numerical examples using artificial data generated by the code we use for the simulation of the
elastic wave equation. For the input signal we consistently use an enforced displacement of a given point on
the upper right part of the back side of the bridge in all cases. We impose a displacement in all three space
dimensions where the amplitude of the displacement takes the form of a chirp signal in time. The chirp runs
trough frequencies between 60 Hz and 16000 Hz and acts over a time interval of 0.08 sec. See the first plot
in Figure 6 for a close-up of the first 0.015 sec of the chirp input. The total time-interval for the simulation
ends usually at 7" = 0.15 sec. As output signal, we record the displacement in all three space dimensions at a
measurement point X,u; at the front side. Figure 6 shows the locations of input and measurement points on the
bridge. The left image shows the back side, the right one, the front side. In Figure 6, plots 2—4, a typical time
series for the three dimensional output signal is depicted.

In the cost functional (15), we compare simulated and measured output data in frequency space on a
logarithmic scale. Figure 6 shows logarithmic plots of the amplitudes of all three space dimensions of the
output signal. As expected, the amplitudes decay over the frequency range. Certain concise peaks in the signals
correspond to frequencies of eigenvalues of the linear system (9). In the next Figure 6 we compare a noise-free
signal to one where 5% random Gaussian noise was added to the output in time-domain. In frequency-domain,
the noise takes control over the signal at a frequency of about 10000 Hz. We therefore cut off the matching
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Figure 4: Location of input and output points on the bridge. Left: input location, right: output location.
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Figure 5: Input and output signals for a typical simulation run.
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Figure 6: Amplitude of output signal in three space dimensions over frequency. Logarithmic scale.
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Figure 7: Amplitude and phase for noise-free and noisy (5%) data.

of simulated and given data at an upper frequency wpa.x = 10000 Hz or even below. The lower bound for the
frequency interval was set to wpi, = 0 Hz. The plot on the right-hand side in Figure 6 shows the phase for the
noise-free and noisy signal. Both phase curves were unwrapped to create a smooth curve over the frequency
range. The two curves start to diverge also at about the same frequency of 10000 Hz. Due to the data noise,
(necessary) jumps of 27 are occasionally omitted in the unwrapping process for the noisy signal. Consequently,
the average slope of the noisy phase is flatter than the slope of the noise-free curve in the range above 10000
Hz.

As a stopping criterion for the optimisation we usually worked with the gradient bound ||[VJ|| < 1074,

Table 2 shows the reconstructed values of Young’s and shear moduli for different noise-levels on the data
along with the number of iterations up to termination due to the stopping criterion. For the noise-free run, we
used an upper bound wpyax = 10000Hz whereas for the runs with noisy data, we cut off the frequency interval
at wmax = 8000Hz. The Poisson rations, mass density and damping parameters were set to the true reference
values and not changed during the iterations.

Finally, let us examine the individual runs sumarised in Table 2 in more detail. Figure 6 shows the devel-
opment of the cost functional and the norm of the gradient over the number of iterations of the optimisation
algorithm, both in a semilogarithmic scale. It is evident that the cost functional repeatedly remains nearly
constant over a number of iterations just to drop off steeply at the end of these platforms. This behavior indi-
cates the strong non-convexity of the cost functional and makes the inverse problem numerically difficult and
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Parameter: || true Starting val. Reconstructions

Noise level: 0% 0.5% 1% 5% 10%
Eq1 || 10000 | 9575.85429 10000.00012 | 9999.99985 10000.00111 | 9999.99933 | 9999.99819
Ea || 1520 | 1452.20042 1519.99997 | 1519.99992 1520.00007 1519.99987 | 1519.99922
Ess || 870 872.67939 870.0026 870.0146 869.96682 870.02698 870.16214
Gas || 290 291.99589 290.0 289.99998 290.00008 289.99998 289.99991
Gis || 1220 | 1216.26566 1220.00008 | 1220.00025 1219.99954 1220.00036 | 1220.00216
G2 || 1100 | 1046.30923 1100.0 1099.99997 1100.00001 1099.99995 | 1099.99967
rel. error || 0 0.1489 3.117-107% | 4.2196-107% | 3.8949 - 10~ | 3.154-107° | 1.89436- 10~ %
No. of iterations || - - 61 67 66 68 70

Table 2: Reconstructed Young’s and shear moduli from noisy data sets.

- Development of Cost Functional Values, Logarithmic Scale . Norm of Gradient Vectors, Logarithmic Scale
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Figure 8: Development of the cost functional and gradient norm for identification of Young’s and shear moduli.
Noise-free data.

strongly dependent on a good choice for the initial parameter vector. The next Figure 6 shows the development
of the relative errors of the reconstructed parameter over the iterations, again in a semilogarithmic scale. We
see similar platforms in the errors as we see for the cost functional. It can be observed that the parameter Fs3
is not reconstructed as well as the others and that the decrease in the error for this parameter set in later than
for the others. The parameter E33 is Young’s modulus in z-direction, the direction in which the bridge has its
smallest extension. It is evident from the reconstructions that the input-output relation is least sensitive with
respect to the Young’s modulus in this direction which makes it harder to determine.

The experiments with noisy data show that the parameter identification process is very robust with respect
to data noise. The iteration numbers up to fulfillment of the stopping criterion grow only slowly with increasing
noise level and the relative error is quite small even for 10% noise in the data. The qualitative behaviour shown
in the plots in Figures 6-6 for 1% and 10% noise respectively changes only little with varying noise.

Table 3 and Figures 6-6 show the results for the identification of the Poisson ratios. Here the Young’s and
shear moduli along with the mass density and the damping parameters were held fixed at the true reference value
and the optimisation was performed only with respect to the three Poisson rations. In general, the iteration
numbers are less than for the identification of the 6 moduli and the reconstruction is even less sensitive to
data noise. With 10% noise we still get a reconstruction with total relative error in the range of 1078, At the
beginning of the optimisation the norm of the gradient is several magnitudes larger than the for the Young’s
and shear moduli which requires a smaller startup value for the step length in the line search.

7 Conclusion

We presented an inverse identification method for the elastic parameters of wood based on the optimisation
of dynamical output data of a investigated material sample. With the illustrative example of a violin bridge
we demonstrated the capability of the presented method with a numerically complex example and successfully
identified the elastic parameters even under the consideration of measurement noise. In the future, it would
be of interest to extend the optimisation problem to other material classes than wood offering an even broader
application of the developed method to different engineering problems.
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Figure 9: Development of errors for Young’s and shear moduli. Noise-free data.
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Figure 10: Development of cost functional and gradient norm for identification of Young’s and shear moduli.
Noise level: 1%

Parameter: || true Starting val. Reconstructions
Noise level: 0% 1% 10%
vo1 || 0.61 0.59889 0.61 0.61 0.61
v3o || 0.269 | 0.25697 0.269 0.269 0.269
v31 || 0.2765 | 0.29673 0.2765 0.2765 0.2765
rel. error || O 0.1361 6.1519- 1079 | 6.8225- 1073 | 4.42249-10°
No. of iterations || - - 16 18 19

Table 3: Reconstructed Poisson ratios from noisy data sets.
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Figure 12: Development of cost functional and gradient norm for identification of Young’s and shear moduli.
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Figure 14: Development of cost functional and gradient norm for identification of Poisson ratios. Noise-free
data
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Figure 15: Development of errors for Poisson ratios. Noise-free data.
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Figure 16: Development of cost functional and gradient norm for identification of Poisson ratios. Noise level:
10%
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Figure 17: Development of errors for Poisson ratios. Noise level: 10%.
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