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Problem setting and introduction

This work is concerned with the optimal control problem
1

2
m — + S.t. Ay =u, (0OC
(y,u)EH&(g)lev(Q) 2||y yalltz(e) + Blulsvia) y=u, (0C)

=:J(y,u)

where throughout 2 C R” is a bounded C''! domain and N € {1,2,3}. The
control u belongs to the space of functions of bounded variation BV(£2), the
state y lives in Y := H{(£2), the parameter 3 is positive, and Ay = u is a
partial differential equation of the form

Ay +coy =u in {2,
y=0 on 912

with a non-negative function ¢y € L*°(§2) and a linear and uniformly elliptic
operator of second order in divergence form A : H} (2) — H=1(92), Ay(p) =
fQ Zf-:l a;;0;y0j¢ dz whose coeflicients satisfy a;; = aj; € CY1(02) for all
1,7 € {71, ..., N}. The specific feature of is the appearance of the BV
seminorm |u|gy(g) in the cost functional, which favors piecewise constant
controls and has recently attracted considerable interest in PDE-constrained
optimal control, cf. [7LT2[T3|[15122][23]24]27]28]30] and the earlier works [I617].
The majority of these contributions focuses on deriving optimality conditions
and studying Finite Element approximations. In contrast, the main focus of
this work is on a path-following method. Specifically,

— we propose to smooth the TV seminorm in J and add an H' regularization,
and we show in an infinite-dimensional setting that the solutions of the
resulting auxiliary problems converge to the solution of ;

— we present a non-standard reformulation of the optimality conditions of the
auxiliary problems and show local convergence of an infinite-dimensional
inexact Newton method when applied to this reformulation;

— we derive a practical path-following method that yields accurate solutions
for and illustrate its capabilities in numerical examples for 2 C R2.

To the best of our knowledge, these aspects have only been investigated partially
for optimal control problems that involve the TV seminorm in the objective. In
particular, there are few works that address the numerical solution when the
measure Vu is supported in a two-dimensional set. In fact, we are only aware of
[22], where a doubly-regularized version of the Fenchel predual of is solved
for fixed regularization parameters, but path-following is not applied. We stress
that in our numerical experience the two-dimensional case is significantly more
challenging than the one-dimensional case. A FeNiCs implementation of our
path-following method is available at https://imsc.uni-graz.at/mannel/
publications.phpl It includes all the features that we discuss in section [6]
e.g., a preconditioner for the Newton systems, a non-monotone line search
globalization, and inexact path-following.
A further contribution of this work is that
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— we provide an example of (OC) for N = 2 with fully explicit solution.

For the case that Vu is defined in an interval (N = 1) such examples are
available, e.g. [1330], but for N = 2 this is new.

Let us briefly address three difficulties associated with . First, the fact
that is posed in the non-reflexive space BV({2) complicates the proof of
existence of optimal solutions. By now it is, however, well understood how to
deal with this issue also in more complicated situations, cf. e.g. [I3L15].

Second, we notice that u > |u|BV(Q) is not differentiable. We will cope
with this by replacing |u|gy () with a smoothed functional ¢5, § > 0, that
satisfies ¥o(-) = |-|pv(). The functional 5 that we use for this purpose is
well-known, particularly in the imaging community, e.g. [1,[20]. However, in
most of the existing works the smoothing parameter & > 0 is fixed, whereas we
are interested in driving  to zero. We will also add the regularizer 7”“”%{1( o)’
v 2> 0, to J and drive vy to zero. For fixed 7, > 0 the optimal control @, 5 of the
smoothed and regularized auxiliary problem turns out to be a C''® function for
some « > 0 and we will use this higher regularity in the convergence analysis of
(an inexact) Newton’s method, for instance to prove that the adjoint-to-control
mapping has a locally Lipschitz continuous Fréchet derivative; cf. Theorem
In contrast, for v = 0 only @5 € BV(§2) can be expected.

Third, numerical experiments show that for standard formulations of the
optimality system, e.g. those that result from reduction to the control, path-
following Newton methods are not able to sufficiently reduce the smoothing
parameter 0. In fact, we have consistently encountered this phenomenon in our
previous work [I3L2TL2728,30] involving the TV seminorm. As a remedy we
propose to eliminate the control from the optimality system by regarding it as
an implicit function of the adjoint state, an approach that may be of interest in
its own right. Since the control depends nonlinearly on the adjoint state, this
increases the computational costs in comparison to standard formulations of
the optimality system, e.g. reduction to the control or an all-at-once approach,
where the dependencies are linear. On the other hand, the implicit approach
enables us to reduce § far below the levels that we achieved with standard
formulations of the optimalty system. In addition, we provide measures that
lower the computational burden of this approach.

Let us set our work in perspective with the available literature. We regard
it as one of the main contributions that we show on the infinite-dimensional
level that the solutions of the auxiliary problems converge to the solution of
, cf. section The asymptotic convergence for vanishing H'! seminorm
regularization is analyzed in [I5], Section 6] for a more general problem than
, but the fact that our setting is less general allows us to prove convergence
in stronger norms than the corresponding [I5, Theorem 10]. The asymptotic
convergence for a doubly-regularized version of the predual of is estab-
lished in [22] Appendix A], but one of the regularizations is left untouched, so
convergence is towards the solution of a regularized problem, not towards the
solution of . Next, we demonstrate that an infinite-dimensional inexact
Newton method, applied to the aforementioned non-standard reformulation
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of the optimality system, converges locally for the auxiliary problems. This
is non-trivial to prove because the implicit control and the adjoint state are
coupled by a quasilinear PDE. A related result is [22, Theorem 3.5], where
local g-superlinear convergence of a semismooth Newton method is shown for
the doubly-regularized Fenchel predual for fixed regularization parameters. Yet,
since we work with a different optimality system, the overlap is rather small.

Turning to the discrete level we provide a Finite Element approximation
and demonstrate that the Finite Element solutions of the auxiliary problems
converge to the corresponding true solutions. Finite Element approximations
for optimal control in BV involving the TV seminorm have also been studied in
[0, T2LT3115L23L24,27,28,30], but in our assessment the regularization of
that we propose is not covered by these studies.

The BV-term in favors sparsity in the gradient of the control. Other
sparsity promoting control terms that have been studied during recent years
are measure norms and L!-type functionals, e.g., [2L10L1T 1418 T9B3TB3445].

TV-regularization is also of significant importance in imaging problems and
its usefulness for, e.g., noise removal has long been known [41]. However, the
character of imaging problems is substantially different from optimal control
problems, for instance because the forward operator in imaging problems is
usually cheap to evaluate and non-compact.

This paper is organized as follows. After some preliminaries in section
we consider existence, optimality conditions and convergence of solutions in
section 2] In section [3] we establish differentiability of the adjoint-to-control
mapping, which paves the way for proving local convergence of an inexact
Newton method in section [4] Section [5| addresses the Finite Element approxi-
mation and its convergence, while section [§] provides the path-following method.
Numerical experiments are presented in section [7]} including for the test problem
with explicit solution. Several technical results such as Holder continuity of
solutions to quasilinear PDEs are deferred to the appendix.

1 Preliminaries
We recall facts about the space BV({2), introduce an index s, and collect
properties of the solution operator of the PDE in (OC)).

1.1 Functions of bounded variation

The following statements about BV({2) can be found in [4, Chapter 3] unless
stated otherwise. The space of functions of bounded variation is defined as

BV($2) := {uéLl(Q) : sup / udivvdx<oo}.
vECH(IN,[[|v]]le <1 /12

Here and throughout, |- | denotes the Euclidean norm, so we are using the
isotropic total variation. It can be shown that v € BV(£2) iff there exists a vector
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measure (Op,u,...,0:yu)l = Vu € M(2)V such that for all i € {1,...,n}
there holds

/ Oy, uv dx = —/ U0y, vde Yo € C3°(£2),
2 2

where M({2) denotes the linear space of regular Borel measures, e.g. [42]
Chapter 2]. The BV seminorm (also called TV seminorm) is given by

lulBv () = sup /udivvdx.
VECH()N vl <1V 12

We endow BV(£2) with the norm [|-[|gv (@) := [|/z1(2) + | - [Bv(02) and recall
from [B, Thm. 10.1.1] that this makes BV(£2) a Banach space. Obviously, we
have the inclusion W11(§2) C BV(§2). Moreover, BV(f2) embeds continuously
(compactly) into L"(£2) for r € [1, 2] (r € [1, i25)), see, e.g., [, Cor. 3.49
and Prop. 3.21]. We use the convention that &~ = oo for N = 1. Also
important is strict convergence, e.g. [4l5].

Definition 1 For r € [1, %] the metric dgv - is given by
dBV,’r': BV(Q) X BV(Q) — R,
(u,v) = [lu—vl|Lr(a) + ||U|BV(Q) - |’U\BV(Q)| .

Convergence with respect to dgv 1 is called strict convergence.

Remark 1 The embedding BV(£2) < L"(2), for r € [1, 3~5],
dpv,r is well-defined and continuous with respect to ||-||gv(e)-

implies that

We will also use the following density property.

Lemma 1 C>(02) is dense in (BV(£2) N L"(£2), dpv,) forr € [1, <]

Proof By straightforward modifications the proof for the special case r =1, [5]
Thm. 10.1.2], can be extended, using that the sequence of mollifiers constructed
in the proof converges in L", see [5, Prop. 2.2.4]. O

1.2 The smoothed BV seminorm

We employ the smoothed BV seminorm v5: BV(£2) — [0, 00) given by

Ys(u) := sup {/ udivo ++/6(1 — |v]2)dz : v e CHR)N, [[|v]|lL=(n) < 1}.
7

It has the following properties.

Lemma 2 The following statements are true for all § > 0.
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1. For any u € BV(S2) there holds

ul gy = Yo(u) < s(u) < |ulpyoy + V5|92).

2. s is lower semi-continuous with respect to the L*(§2)-topology.
3. s is convez.
4. For all u € WH(£2) we have

Ps(u) = / Vo + |Vul?de.
7
5. The function 15|10y is Lipschitz with respect to ||-|| g1 ().

Proof The first four statements are from [II, Section 2] and the last one follows
from H'(£2) — W11(£), 4. and and the Lipschitz continuity of r — v/§ + r2.
O

Remark 2 The smoothing function s for the TV seminorm is frequently used
in imaging problems, e.g. [1120].

1.3 The index s

For the remainder of this work we fix a number s = s(N) € (1, i) with

BV(2) —< L%(2) — H~ ().

Remark 3 Consider, for instance, N = 2 and any r € (1,2). Then we have
BV(£2) < L"(£2) and H'(2) — L7 (§2) so that any s € (1,2) can be used.

1.4 The solution operator of the state equation

Lemma 3 For every u € H=1(02) the operator equation Ay = u in (OC) has
a unique solution y = y(u) € Y. The solution operator

S:H Y N) =Y, uw yu)

is linear, continuous, and bijective. In particular, S is L°-L? continuous. More-
over, for given q € (1,00) there is a constant C > 0 such that

1Sullw2.q(2) < CllullLa(o)
is satisfied for all w € L(12).

Proof Except for the estimate all statements follow from the Lax-Milgram
theorem. The estimate is a consequence of |26, Lemma 2.4.2.1, Theorem 2.4.2.5].
O

Remark 4 From BV () — L*(£2) — H~'(£2) and Lemma [3| we obtain that
(OC)) has a nonempty feasible set.
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2 The solutions of original and regularized problems

In this section we prove existence of solutions for (OC)) and the associated
regularized problems, characterize the solutions by optimality conditions, and
show their convergence in appropriate function spaces.

2.1 The original problem: Existence of solutions

To establish the existence of a solution for (OC)) we use the reduced problem

. 1 2
ueIél\l]I(lQ) §||Su — yQHL2(Q) + Blulpv(a) - (ROC)

=j(w)

Lemma 4 The function j : BV(2) = R is well-defined, strictly convez, and
continuous with respect to dpy,s.

Proof The term 3| Su — yQ||%2(m is well-defined by Remark [4] and strictly
convex in u due to the injectivity of S. Since |-|gy(g) is convex, the strict
convexity of j follows. The continuity holds because S is L°-L? continuous. 0O

The strict convexity implies that j has at most one (local=global) minimizer.
Theorem 1 The problem has a unique solution @ € BV(S2).
Proof The proof is included in the proof of Theorem 2] a
As usual, the optimal state y and the optimal adjoint state p are given by

§:=8u €Y NW>™N(0) and p=5"(y—ya),

N
—1 N

where, due to BV(£2) — L¥-1({2) and Lemma we have ry = x5
N € {2,3}, respectively, ry > 1 arbitrarily large for N = 1. Moreover,
is the adjoint operator of S wrt. the L? inner product. Since S* = S and
U —ya € L*(92), Lemmayields p € P for

for

S*
P:= H*(2)N HY (D).

It is standard to show that p is the unique weak solution of

Ap+cp=9y—ye in 2,
p=20 on 0f2.

2.2 The original problem: Optimality conditions

The optimality conditions for (ROC]|) are provided in appendix [C| They are
only needed for the construction of the test problem in appendix [D]
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2.3 The regularized problems: Existence of solutions

Smoothing the BV seminorm and adding an H'! regularization to j yields

n L

g 2
pin - SllSu = vellZzi) + BYs(w) + 5 lullh (o), (ROC,, 5)

=:jy,5(u)
where we set j, 5(u) :== 400 for u € BV(2) \ H'(£2) if v > 0.

Lemma 5 For any 7,0 > 0 the function j, s : BV(£2) = RU {+oo} is well-
defined and strictly convex, and the function j, s|m1 (o) 5 H' continuous.

Proof The well-definition and strict convexity of j, ; follow similarly as for
j in Lemma [4] The continuity follows term by term. For the first term it is
enough to recall from Lemma [3|the L2-L? continuity of S. The second term is
Lipschitz in H' by Lemma The continuity of the third term is clear. a

To prove existence of solutions for (ROC, s) we use an auxiliary result.

Lemma 6 Let (up),cy C BV(2) be such that (j(uk))yey is bounded. Then
(HukHBV(Q))keN s bounded.

Proof We denote by C' > 0 a generic constant. The sequence (|Uk|BV(_Q))
is bounded because for each £ € N we have

keN

(.
luk|Bv(0) < J(Bk) <C.

The Poincaré inequality holds in BV(£2), see [40, Theorem 4.10], hence

||uk — ftk| Ls(2) < C|Uk|BV(Q) <C Vk € N, (1)

where uy, := ﬁ fQ uy dz denotes the integral mean of ug. From

Surllz2(0) — lyallee(2) SISur — yellr22) < 1/2j(uk) < C,

it follows that (||Suk||£2(2))ken is bounded. Together with the L*-L? continuity
of S and this gives

k| 1Sl L2 (2) = [1STk| L2(2) < [1Suk — Stk|lp2(2) + [[SukllL22) < C.

The injectivity of S yields S1 # 0, so (|dg|)ken is bounded, which implies
boundedness of (||Jux||1:(2)) by (1)) and thus also of (|Jug1: (o)) |

Theorem 2 For any 7,6 > 0, (ROC, 4 has a unique solution u., s € BV({2).
For v > 0 we have u,5 € H*(12).
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Proof For v > 0 the existence of @i, s € H'(£2) follows from standard arguments
since j.5| 1 () is strongly convex and H ! continuous by Lemma [5 It remains
to argue for v = 0. Let 6 > 0. There is a sequence (ug);cy C BV({2) such that

lim i — inf i '
i .o uk) ueg\l/(n)‘]%‘s(u)

Moreover, there exists C' € R such that for all £k € IN
) 1
Jlug) = §||Su;< —yolliz(o) + BlurlBv(e)

1 .
< §||5wc — ol 7z + Bvs(ur) < jys(ur) < C,

where we used |ug|gv(o) < ¥s(ux) from Lemma |2l By Lemma@ we have that
(lur |l ) ey is bounded. Since BV(§2) is compactly embedded in L°({2), there
is a subsequence of (uy)ren, denoted the same way, such that limy_ oo ||ug —
TUry,5]| e (2) = 0 for some @, 5 € L*(£2). As S is L*-L? continuous and s is L*
lower semi-continuous by Lemma [2| we obtain

j%5(ﬂ%5) < liknigfj%(;(uk) = uE]iBI\l/f(Q)j’yjé(U).

This implies [ty,5|pv(2) < ¥s(ty,5) < Jy,5(ty,5)/8 < 00, 50 Uy,5 € BV(£2) is a

minimizer of (| s). As j. s is strictly convex, the minimizer is unique. 0O

Optimal state §y,5 and optimal adjoint state p, 5 for (ROC, ) are given by
Yny,5 = Sa%(; eyYyn WQ’TN(_Q) and Py, = S* (ﬂ%(; — y_o) e P,

where ry = % for N € {2,3}, respectively, ry > 1 arbitrarily large for
N = 1. In particular, p, s is the unique weak solution of

Ap +cop = Jys —yo  in L2,
p=20 on 0f2.

2.4 The regularized problems: Optimality conditions

The objective j, s has the following differentiability properties.

Lemma 7 For ~,6 > 0 the functional j., s : H*(£2) — R is Lipschitz continu-
ously Fréchet differentiable and twice Gateaux differentiable. Its first derivative
18

gy s(Wv = (S*(Su = ya),v) 2 (o) + BUs (W0 + 1w, v) (o) Vv € H' (),

where
(Vu, Vv)

2 /0 + [Vul?

Proof Tt suffices to establish the claim for s, which is done in Lemma[I7] O

Ps(u)v = dx Yo € H'(0).
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For differentiable convex functions a vanishing derivative is both necessary
and sufficient for a global minimizer. This yields the following result.

Theorem 3 For~,d§ > 0 the control i, s € H'(£2) is the solution of (ROC, )
iff

b s(tys)v=0  Vve H'(2),
which is the nonlinear Neumann problem
V’Uq kX V’U)

dx
A O+ \Vu,y,5|2

= —(Pys: V)22 Vv € H'(R2).
(2)

Y(ty,5,) 1 (02) + 5/

2.5 Convergence of the path of solutions

We prove that (ty,s, §v,5,D~,6) converges to (u,y,p) for v,8 — 0. As a first step
we show convergence of the objective values.

Lemma 8 We have

L REB(02(00)
Gt (Tt 8) ————— jj(@).

Proof Let € > 0 and let ((yx,dx))ken C RZ, converge to (0,0). There holds

0< j’mék (a'Yka‘sk) 7‘7‘(1_‘) = [j’)'k,ék (ﬂ’wmtsk) 7‘7'%70(5%70)] + [j’WmO (ﬂw,o) *](u)] )

where we used j(@) < j(Uy,.5,) < Jy,ox (Uyp,s,)- The first term in brackets
satisfies

j’YIm(sk (ﬂw,ék) - jvk,O(avk,O) < j’qu(sk (ﬂw,o) - jvk’O(ﬂw,O)

= 5#}51@ (ﬂ’kao) - ﬂ|ﬁ7k70|BV(Q) < ﬂm|9|,

where the last inequality follows from Lemmal[2] For the second term in brackets
we deduce from Lemma and the dpy,s continuity of j established in Lemma E|
that there is u. € C*°({2) such that |j(@) — j(u.)| < e. This yields

Jyi,0 (Ui ,0) = 3(1) < iy 0(ue) — ji()
= j(ute) + S lluel s ) = 3(@) < e+ Sl el g,
Putting the estimates for the two terms together shows
et () = 5(@)] < BV 2] + €+ HUEHHl(Q)
For k — oo this implies the claim since

0 < liminf |jy, 5, (Uy,,6,) — ()] < Hmsup|jy, s, (Uy,,5.) — J(@)] < e
k—o0 k—o0
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We infer that the optimal controls s converge to @ in L" for suitable r.

(7,6)—(0,0)

Lemma 9 For any r € [1, 125) we have ||iy,s — |10 0.

Proof Let ((k,0k))ken C RZ%, converge to (0,0). Let C' be so large that
Vi, 0k < C for all k. The optimality of i, s, and Lemmayield for each k € IN

J(Wy,50) < Joeoi (U 80) < G (0) < e (0).

Lemma [6| and the compact embedding of BV(£2) into L"(£2), r € [s, 5),
imply that there exists @ € L"(§2) such that a subsequence of (&, s,)cn
denoted in the same way, converges to @ in L"(§2). It is therefore enough to
show u = @. Since j is lower semi-continuous in the L° topology, we have

](ﬂ) < likniiréfj(ﬂ%,(sk) < th_l,'g.}f T80 (a’mﬁk) = ](ﬂ),
where we used Lemma (8] to obtain the last equality. This shows @ € BV(£2),
hence Theorem [I] implies % = 4. O
In fact, the convergence of . s to @ is stronger.

Theorem 4 For any r € [1, :25) we have dpv,(tiy,s5, 1)

: (4,8)=+(0,0)

0.

Proof For any v, > 0 we have j(@) < j(ly,5) < Jvy,5(Uy,5), SO Lemmayields
lim(,5)—(0,0) J(Ty,s5) = j (). Furthermore, there holds

5’|Q|Bv(n) - \%,5|BV(Q)‘ < |j(ﬂ) _j(ﬂv,é)’
1), o i
+ 5152 = yelso = 1585 — yalfaq)

By Lemma |§| and the continuity of S from L*(£2) to L?(§2) we thus find

(7,0)=(0,0) |

|%y,5BV(2) U Bv(2)

Together with Lemma [J] this proves the claim. a
We conclude this section with the convergence of (7,5, P+,5) to (7, D).

Theorem 5 For any r € [1, :25) and any 1’ € [1,00) we have

19y,6 — gllwzr2) =0 and w0 1Py,6 = Pllw2. () = 0.

(5) (oo) (s )

Proof The continuity of S from L7 to W24 for any ¢ € (1, 00), see Lemma
implies with Lemma |§| that lim(,5)—(0,0)[1%.6 — gsz (@) = 0 for any r €
1, & N1 , %) such that W2 (£2) —
L (£2) is satisfied, we can use the L”-W?2" continuity of S* = S to find
imy 5)-(0,0)[Py.6 = Pllw2r () = lim(y,6)50,0) 19" (Ur.6 — Dllw2.7 () =0. D

). Since for any ' € (1,00) there is r € [1
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Remark 5 The results of section P can also be established for nonsmooth
domains (2, but §,p, ¥,s, Dy, may be less regular since S may not provide the
regularity stated in Lemma[3] A careful inspection reveals that only Theorem [f]
has to be modified. If, for instance, 2 C R™, N € {2,3}, is a bounded Lipschitz
domain, then [43, Theorem 3] implies that Theorem [5| holds if W?2" and w2’
are both replaced by H", where r € [1,3) is arbitrary. If £2 is convex, then [26],

Theorem 3.2.1.2] further yields that W2 can be replaced by H?.

3 Differentiability of the adjoint-to-control mapping

Vu> +yu=p in {2,
3)

The main goal of this section is to show that the PDE
: s
—div + —
< v Vo + [ Vul?
’YJrL Vu,v | =0 on 012
VO + [ Vul?

has a unique weak solution u = u(p) € CH*(§2) for every right-hand side
p € L*°(£2), and that p — u(p) is Lipschitz continuously Fréchet differentiable
in any open ball, having a Lipschitz constant that is independent of v and ¢,
provided v > 0 and & > 0 are bounded away from zero. This is accomplished
in Theorem |7} Note that we suppress the dependency on v, 4§ in u = u(p; v, 9).
Assumption 6 We are given constants 0 < v9 <%, 0 < dg < 6° and b° > 0.

We denote I := [y9,7"] x [00,0°] and write B C L>(82) for the open ball of
radius b° > 0 centered at the origin in L>(£2).

Let us first establish well-definition of p — u(p) and a Lipschitz estimate.

Lemma 10 Let Assumption [6] hold. Then there exist L > 0 and o € (0,1)
such that for each (v,6) € I and all p1,p2 € B the PDE has unique weak
solutions uy = uy(p1) € CH(2) and uy = ua(pz) € CHY(2) that satisfy

[ur = uzlloracg) < Llpr = p2ll oo o) -
In particular, we have the stability estimate

||u1||01,a(9) <L ||p1||Loo(Q) :

Proof Unique existence and the first estimate are established in Theorem [13]
in the appendix. The second estimate follows from the first for p, = 0. g

We introduce
v

f:RY - RV, fw):=p

so that reads
- div(vVu + f(Vu)) +yu=p in H'(2)*. (4)

We now show that the adjoint-to-control mapping is differentiable.
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Lemma 11 Let Assumption @ hold and let o € (0,1) be the constant from
Lemma (10, For each (v,6) € I the mapping B > p — u(p) € CH*(2) is
Fréchet differentiable. Its derivative z = u'(p)d € CH*(2) in direction d €
L>°(£2) is the unique weak solution of the linear PDE

—div({’yl + f’(Vu(p))}Vz) +yz=d in £,
([’yl—f— f'(Vu(p))]Vz,l/> =0 ond,

and there exists C > 0 such that for all (v,9) € I, allp € B, and all d € L™(12)
we have

12llcra(oy < Clldll Lo (o) -

Proof Let p € B and d € L>(42) be such that p+d € B. From Lemma [10] we ob-
tain u(p) € CH*(02) and ||[u(p)||cra(0) < C|lpl|L<(2), where C is independent
of 7,8, p. Combining this with Lemma [T§] implies

I _ Vu(p)Vu(p)”

VEFIVupP (54 |Vu(p)2)?

f'(Vulp)) = € CO(Q,RYVY) - (6)

and the estimate [|A||co.a(g) < a® for A := I + f/(Vu(p)) with a constant
a® that does not depend on 7, d, p. This shows that Theorem [12|is applicable.
Thus, it follows that the PDE has a unique weak solution z € Ch((2)
that satisfies the claimed estimate. Concerning the Fréchet differentiability we
obtain for r := u(p + d) — u(p) — z € CH*(2)

_ div ( v+ 7 (u))] w) Fr
— _div (Wu(p + d)) +yu(p + d) + div (wu(p)) — vulp)
+ div ( T+ (Vu(p)] w) 7z = div(f'(Vu(p)w)
= div(f(Vu(p+d)) = £ (Vu(p) — f (Vu(p))w),

where we set w := w(p,d) := Vu(p + d) — Vu(p). Theorem [12| implies that
there is C' > 0, independent of d, such that

17l ey < C[| £ (Vuto + D) = 1(Tulw)) = 7 ((p)

Coe ()
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The expression in the norm on the right-hand side satisfies the following
pointwisely in {2

F(Vulp +d)) = f(Vu(lp)) — f'(Vulp))w
(A f'(Vu(p) + tw) — f'(Vu(p)) dt) w

(Al 01 " (Vu(p) + Ttw) drtdt) [w, w].

Lemma [18] yields

1 1
Irlevey = [ [
0 0

As f € C3(RM,RY) with bounded derivatives we have that f” is Lipschitz
continuous and bounded. We infer from Lemma [I§ and Lemma [I0] that

2

" (Vu(p)+rtw) Hcma(n) drdt Hu(p+d)7u(p)‘

cLe ()

2
||T||Clv‘1(_(2) < CHdHLw(Q)v

which shows [|r[|cre (o) = o(||d|| () since C is independent of d. O
Theorem 7 Let Assumption@ hold and let o € (0,1) be the constant from
Lemma (10, Then the mapping v’ : B — L(L>(2),C*(Q2)) is Lipschitz
continuous and the Lipschitz constant does not depend on (v,6), but only on

Q? N: o0, 707 60; 6% and b°.

Proof Let p,q € B and d € L*(£2). Set z, := V(u/(p)d) and z, := V(u'(¢)d).
Then

—div(y[z = 2] + £/ (Vu(p) 2 — ' (Vu())2,) + 7 [/ ()d — ' (g)d] =0
holds in H'(£2)*. Thus, the difference r := u/(p)d — u'(q)d satisfies
= div(y97) + 1 = div ([ (Tulp))zp — J (Tu(a)) )
= div( ' (Vu(p)) Vr )+ div ([ (Vu(p) - £/(Vula))]z,),
from which we infer that
—div([41 + f/(Vu(p)]9r) + 7 = div ([ (Va(p) = /' (Vu(@)])
in H'(£2)*. By the same arguments as below (6), 4 := vI + f'(Vu(p)) satisfies

| Al co.o(0) < a” with a constant a” that does not depend on v, 8, p, g. Moreover,
A is clearly elliptic with constant 7. By Theorem [12] this yields

Irllerca) < O] [F (Vu) = 7 (Vu@)] = ..,
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Here, C' > 0 does not depend on p, g, but only on the desired quantities. From
Lemma [I§ and Lemma [1] we infer that

< | (Tuw) - £ (V)]

HTHCLQ(Q CO,LY(Q)||d||Loc(Q)'
Lemma [I8 and Lemma [T0] therefore imply

[ (p) — u/(q)HL(LOC(Q),CLQ(Q))
/ i (Vu(q) + t[Vu(p) — Vu(q)D dt
0

1
SC/‘
0

The first factor is bounded since f” is bounded and Lipschitz. This demonstrates
the asserted Lipschitz continuity. O

<c|

||Vu(p) - VU’(Q) ||C0,a(_Q)
Co-(82)

I (Vu(q) +t[Vu(p) — VU(Q)D ’

o () dt [|p — q”LOO(Q)'

Remark 6 Theorem (7| stays valid if (2 is of class C for some o > 0.

4 An inexact Newton method for the regularized problems

In this section we introduce the formulation of the optimality system of
(ROC., ) on which our numerical method is based, and we show that the
application of an inexact Newton method to this formulation yields local
convergence. We use the following assumption.

Assumption 8 We are given constants 0 < o < ~°, 0 < §g < 8° and b° > 0.
We denote I := [y0,7°] x [d0,0°] and fix (v,6) € I.

Introducing

: © 12 _ ( Ay —u(=p)

F:YxP—=Y"xL(N), F(y,p): <y—yQ—A*p> (7)
the optimality conditions from Theorem [3|are given by F'(¥,s,P~,5) = 0, and
the pair (g5, P+,6) is the unique root of F. We suppress the dependency of
u=u(p;7,d) and F = F(y,p;7,0) on v,d. By standard Sobolev embeddings
we have P C H?(£2) < L*(£2), hence u(—p) € C(£2) for some a > 0 by
Lemma so F is well-defined. We mention the work [44], where a Newton
system with a somewhat similar structure is considered.

The next two lemmas yield convergence of an inexact Newton method.

Lemma 12 Let Assumption@ hold. Then F defined in is locally Lipschitz
continuously Fréchet differentiable. Its derivative at (y,p) € Y X P is given by

o ey s (2) ()

Proof Only p — u(—p) is nonlinear, so the claims follow from Theorem O
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Lemma 13 Let Assumption@ hold. Then F'(y,p) is invertible for all (y,p) €
Y x P.

Proof The proof consists of two parts. First we show that F'(y,p) is injective
and second that it is a Fredholm operator of index 0, see [32, Chapter IV,
Section 5]. These two facts imply the bijectivity of F'(y, p). For the injectivity
let (0y,dp) € Y x P with F'(y,p)(dy,dp) =0 € Y* x L3(£2), i.e.

0=Ady+u (—p)dpeY” and 0=0y— A*pec L*(2), (8)
and therefore

169117202y = (A*6p, 6y) 2(2) = — (W' (—p)6p, 6p) L2(02)-

The representation of z := u'(—p)dp from Lemma [11] yields

_H(Sy”%ﬁ(.@) = <{’YI + f/(vu(_p))} VZ, vz) + '7(27 Z)LQ(_Q)
L2(0) (9)
> (f - .
> (£(Vu(-p)V2Vz)
Since f’ is positive semi-definite, we find ||5y\|%2(m < 0. This shows dy = 0. By
this yields A*dp = 0 in L?(£2), hence dp = 0, which proves the injectivity.
To apply Fredholm theory we decompose F’(y,p) into the two operators

Pam= (3 %)+ (767).

We want to use [32, Chapter IV, Theorem 5.26], which states: If the first
operator is a Fredholm operator of index 0 and the second operator is compact
with respect to the first operator (see [32] Chapter IV, Introduction to Section
3]), then their sum F’(y,p) is also a Fredholm operator of index 0. By the
injectivity of F'(y,p) this implies its bijectivity.

The operators A : Y — Y* and A* : P — L?(2) are invertible by Lemma
and thus

Y x P—Y*x L*(0), (6y,5p)H(oA* 5p

is invertible and in particular a Fredholmoperator of index 0. It remains to
show that

repy e, oo (3G ()

is compact with respect to the first operator. Thus, we have to establish that
for any sequence (((Syn7 (Spn))neN C Y x P such that there exists a C > 0 with

(I6ynlly + lIopallp) + (Il Adya|

ve + |A%0pallr2(2)) < C Yn e N, (10)
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the sequence ((u'(—p)dpn, (5yn))n€N C Y* x L2({2) contains a convergent subse-
quence. By we have that (||dyn ||y )nen is bounded. The compact embedding
Y << L?(£2) therefore implies the existence of a point § € L?(§2) and a
subsequence, denoted in the same way, such that [|0y, — §||2(0) — 0. We
also have that (||6p, | p)nen is bounded. In particular ||6py, || (o) < b° for all
n € IN for some b° > 0. By Lemma [11] this implies that (u/(—p)épn)nen is
bounded in C1*(§2). Since C1*(£2) <~ Y*, the proof is complete. O

We consider the following inexact Newton method to find the root of F
given by . The norm that appears is that of Y* x P*.

Algorithm 1: An inexact Newton method for (ROC, ;|

Input: (yo,po) €Y x P, (v,6) € RZ, n € [0,00)
1 for k=0,1,2,...,1it, do
2 if F'(yx,pr) = 0 then set (y*,p*) := (yx,px); stop
3 Compute (dyg, 0pg) such that

1F(yr, pre) + F' (yrs pr) (0yr, Sp) | < me || F(ywe, prc) ||, where my € [0, 7]

4 Set (Yk+1,Pr+1) = Wk, Pr) + (8Yk, Opk)
5 end

Output: (y*,p*)

It is well-known that the properties established in Lemma[I2)and Lemma
are sufficient for local linear/q-superlinear/q-quadratic convergence of the
inexact Newton method if the residual in iteration k is of appropriate order,
e.g. [33] Theorem 6.1.4]. Thus, we obtain the following result.

Theorem 9 Let Assumption@ hold. If (yo,po) € Y x P is sufficiently close to
(Uy,5,Dv,5), then Algom'thm either terminates after finitely many iterations with
output (y*,p*) = (Y.,5,P,5) or it generates a sequence (yi,pr) that converges
r-linearly [g-linearly/q-superlinearly/with g-order 14 w] to (4.5, D~,5), provided
n <1 [nis sufficiently small/mi — 0/nr = O(|F(yk, px)||)/. Here, w € (0,1]
18 arbitrary; for w = 1 this means ¢-quadratic convergence.

Remark 7 The same rates of convergence can also be established if an inexact
Newton method is applied to standard formulations of the optimality system
of (ROC, ). We focus on the implicit formulation (7)) since in our numerical
experiments this was the only approach that proved capable of sufficiently
reducing v, § for 2 C R2. For instance, with a control-based formulation and
for a fixed coupling § = 0.01y we could not reduce ~ below roughly 10~°. Also,
the algorithm was quite sensitive, e.g., a slight variation in the initial data
could lead to a much higher number of total iterations. Both observations are
well in line with our previous experience [I32TL27128[30] on PDE-constrained
optimal control problems involving the TV seminorm. In contrast, working with
is much more stable and enabled us to reduce 7 to levels below 107!, as
the numerical results in section [7] show. We point out that the homotopy path
(7,9) = (ty,5,Yv,5, P~,5) is not affected by the reformulation of the optimality
system, so it is appropriate to compare the final values of ~.
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5 Finite Element approximation

In this section we provide a discretization scheme for (ROC, s|) and prove its
convergence. Throughout, we work with a fixed pair (v,4) € R2,,.

5.1 Discretization

We use Finite Elements for the discretization of . Control, state
and adjoint state are discretized by piecewise linear and globally continuous
elements on a triangular grid. We point out that discretizing the control by
piecewise constant Finite Elements will not ensure convergence to the optimal
control @, g, in general; cf. [6, Section 4].

For all h € (0,hp] and a suitable hg > 0 let 7, denote a collection of
open triangular cells T' C (2 with h = maxyrey, diam(T). We write (2, =
int(Ure7, T). We assume that there are constants C' > 0 and ¢ > % such that

dist(902,,002) < Che, |2\ 2u] 2250, |952,] < C. (11)
We further assume (75)ne(0,no) to be quasi-uniform and §2;, C §2j, for h' < h.
The assumptions in are rather mild and in part implied if, for example,
2 and (£2,)p>0 are a family of uniform Lipschitz domains, cf. [29, Sections
4.1.2&4.1.3]. We also utilize the function spaces

Vi = {vh € C(§2,) : v is affine linear VT € ’Th} . Y = VN Hy(02y).

Because Vj, < H1(£2;) it follows that Yj, contains precisely those functions of
Vi, that vanish on 042,. We use the standard nodal basis @1, 2, ..., ©dim(v;,)
in V, and assume that it is ordered in such a way that ¢1, 92, ..., ©dim(y;) 18
a basis of },. For every u € L?(§2;,) there is a unique y;, € Y}, that satisfies

J.

and by defining Spu := y, we obtain the discrete solution operator Sy :

L?(£2) — Yy, to the PDE in (OC]). The discretized version of (ROC, 4 is
given by

N
Z a;;0;yn0jon | + coynn dr = / uppdz  Vop €Y

ij=1 2n

1 Y2
min iHShU — Yo |20, + Bs(u) + 3 ullg (2, (ROCy 5,

ueVy

=:J~,8,n(u)

where yg, represents the restriction of y, to {2;,. By standard arguments
this problem has a unique optimal solution . s . Based on u, s, we define
Yvy, 6,0 = Shﬂy,é,h and Dy,o,h = S;(Shﬁ%&h — th). For h — 0 the triple
(Try,6,h> Ury,5,h> Py,5,n) converges to the continuous optimal triple (t-,s5, ¥,5,Dy,5)
in an appropriate sense, as we show next.
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5.2 Convergence

In this section we prove convergence of the Finite Element approximation.
We will tacitly use that extension-by-zero yields for each v € Y}, C H(2;) a
function in H}(§2). Also, we need the following density result.

Lemma 14 Let hold. For each ¢ € C™(£2) N Hi(12) there erists a
sequence (@n) C Yy such that lim,_o+[|on — @lla1(2,) = 0.

Proof Given ¢ and a sufficiently small h we define ¢, € Y, on the in-

ner nodes 1,2, .., %dim(y;) Of 2, \ 02, as ¢ and as zero on the nodes
Tdim(Yp)+1s - - - » Tdim(V,) on the boundary. That is, we set
o(x;) ifx; € 2,
xi) =
on(i) {o if 2; € 012,

Inserting the nodal interpolant I € V}, and utilizing an inverse inequality,
e.g. [25 Corollary 1.141], we find

e = enllar @ < Il = Inellm e, + Ch lon — InellL2(o,),

where C' > 0 is independent of h. An interpolation error estimate shows that the
first term on the right-hand side converges to 0 for h — 0T, see for example [25]
Theorem 1.103]. Owing to the definition of ¢, the second term only involves
elements near the boundary 92, hence

W2llen = Inglliago =2 D0 len — Inelliay
_TET
TNONR,#D

< ChV? Z len = Il 7 7)-
T€Th
Tﬁaﬂh#m

By and the quasi-uniformity we find that the number of boundary triangles
is proportional to Ch~(N=1 hence

! max |<p(3:l)‘2

-2 2 -1 2
iy, < VT N2 =
R lon—Inell12(0,) < Ch x}gggh’@h(ﬂfz) ne(xi)|” = Ch Jax

We find due to ¢ = 0 on 912, dist(9§2,,012) < Ch¢ and the boundedness of
V¢ that the term on the right-hand side is bounded by Ch~172¢, After taking
square roots this concludes the proof as ¢ > % O

Theorem 10 Let hold. We have

hlgg+ ||(a%5,h>37'y,5,hap’y,5,h) - (ﬂ%&y%ﬁ’ﬁwﬁ)HLz(Q)s =0,

where Uiy 5.1, §Yvy,5,n and Dy s.n are extended by zero to (2.
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Proof By the optimality of the function values it is easy to see that there
exists a constant C' > 0, independent of h, such that % 54 71(0,) < C. Using
extension by zero we now find that ||4.sn | m1(0) < C.

Let (hn)nen be a zero sequence. After taking a subsequence, not rela-
beled, we may assume that it is monotonically decreasing. From the compact
embedding of H}(£2) into L?(£2) and the reflexivity of H}(§2) we obtain a
subsequence and a § € Hg () such that g, 54, ——— ¢ strongly in L?(£2) and
weakly in Hj(§2). Extending @, by 0 to £2 and using the fact that L?(£2)
is a Hilbert space we obtain on a subsequence, denoted the same way, that
Uy, 5,k * Le2y, 272, 4 weakly in L2(£2) for some @ € L2(£2). Let ¢ € C°(02)
and ¢, be defined as in Lemma [I4, We then have

0= A(Ty.6.h,)Ph, — (Uy.b.h,» Ph,) L2 (20) —— A — (1, 0) L2(2)-

Thus § = S by the density of C2°(£2) in Hj(£2). The analogous arguments
show that the adjoints converge in the same way to some p € H}(§2) with
p = S*(§—yn). It therefore remains to show that (i, g, p) is the unique optimal

triple to (ROC., 5). We will use Theorem [3| for that. Let u € H(£2) N C>(£2)
and Inu € H*(£2;,) denote the usual nodal interpolant. Then it is well-known,

e.g. [25, Theorem 1.103], that [[u — In, ul g1 (0, ) 2722, 0. Moreover, it is
straightforward to see that @ and p satisfy iff & minimizes

By we also have that @, 5, minimizes G}, which is defined analogously
to G with {2;, and py 4. Let 7 € N be arbitrary and n > n. We therefore find
by hi > hy, that (2, C (25, and

Gh, (Uy,5,n,) < Gh, (Uy,5,h,) < Gh, (In,u).

n—oo

By u— In,ullmi(a,,) ——= 0, |2\ 2y,| === 0 and p,sn, —— p in
L?(02) we obtain
lim Sup Ghﬁ (ﬂ'Y»é:hn) S G(U).

n—oo
As in previous arguments we have 1¢, s n, o, g, G weakly in H'({2,,)
and strongly in L?(£2y,,). Since u — [, /0 +[Vu[? dz is weakly lower semi-

continuous with respect to the L?(£2;,) norm, cf. [I, Section 2], we obtain
Gh, (@) < liminf G, (Uy,s,5,) < limsup Gp, (Uy,5,n,) < G(u).
n—00 n—00
Sending 7t — oo shows that @ is a minimizer of G, hence G’'(%) = 0, which

implies the condition of Theorem [3| Together with § = S@ and p = S*(§ — y)
this demonstrates (4, 9, p) = (t~,s5, Uv,5, Pv,5), thereby concluding the proof. O

Corollary 1 Let hold. We have

hl_i>r{)1+ H(g'y,d,hyﬁ'y,é,h) - (g’y,éaﬁ'y,ﬁ)”Hl(Q)z = Oa

where §y 5.0 and Py s.n are extended by zero to (2.
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Proof Let Rpy € Y}, denote the Ritz projection with respect to A. Extending
Yv,5,h € Yn and Ryy by zero to {2 we clearly have
1Fv.60 = Ul @) < Tv.60 — Bubllae,) + 1BrY — Il (o)

By definition, ¢+, — Rp¥ satisfies

A(Yy,6n — BrY)(on) = (Uy,5n — Uy 0n)12(0,) Y € Y.
Thus, choosing ¢y = ¥,5.» — Rxy and using the ellipticity of A and ¢y > 0 in 2
together with the Poincaré inequality in {2 yields a constant C' > 0, independent
of h, such that [[§y.5.n — Rudlls ) < Clliiysn — il 12y 2= 0, where we
also used extension by zero and Theorem Since Ry h—_>0—++ y in Y, the

N
H'(£2) convergence 4.1 h=07, g follows. The proof for p, s 5 — p is analogue.
O

6 Numerical solution

Based on the Finite Element approximation from section [5| we now study an
inexact Newton method to compute the discrete solution (4,5, Pv,5,hs Uvy,s5,h)
and we embed it into a practical path-following method.

6.1 A preconditioned inexact Newton method for the discrete problems

In this subsection we prove local convergence of an inexact Newton method
when applied to a discretized version of (7)) for fixed (v,d) € R%. To this end,
let us introduce the discrete adjoint-to-control mapping uy,. (We recall that
the constant hg > 0 is introduced at the beginning of section )

Lemma 15 Let h € (0,hg]. For every p € L?({2;,) there exists a unique
up, = up(p) € Vi, that satisfies the following discrete version of

(Vvuh + f(Vun), V@h)L + 7 (up, th)Lz(Qh) = (P en)rz0,) Ve € Vi

(12)

2(2n)

The associated solution operator uy, : L2(£2,) — Vj, is Lipschitz continuously
Fréchet differentiable. Its derivative u (p) € L(L*(2,),Vh) at p € L*(£2,) in
direction d € L*(§2y,) is given by z, = u},(p)d € V3, where zj, is the unique
solution to

([’ﬂ + f’(Vuh(p))}VZh,VsOh> + V(Zm%)pmh) = (d,n)r2(2,)
L2(02p)
Yo € V.
(13)
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Proof The proof is similar to the continuous case, but easier, so we omit it. O

With u;, at hand we can discretize @ by

Frp Yy xY, =Y xY" Fr(y,p) = M
hiYn h h h h (Y, ) (y—ynh—Ap

The same F}, is obtained if we consider the optimality conditions of (ROC, s 1)
and express them in terms of (y, p). Moreover, (§,5,1, Dv,5,n) 1 the unique root
of F} and the properties of F' from Lemma [12] and Lemma [13| carry over to Fj,.

Lemma 16 Let h € (0, ho]. The map Fy, : Yy, x Y}, — Y,* x Y, is Lipschitz
continuously Fréchet differentiable. Its derivative at (y,p) € Y, X Yy, is given
by

" " Al (— 0
Fflb(yvp): Yh X th — Yh X Yh’ (52/75])) = (I h_(Af)> (5%) .

Moreover, Fy(y,p) is invertible for every (y,p) € Y.

Proof The differentiability follows from Lemma Since dim(Yy x V) =
dim(Y} x Y}'), it is sufficient to show that Fj (y,p) is injective. This can be
done exactly as in Lemma [T3] 0

Similar to Theorem [J] we have the following result.

Theorem 11 Let h € (0,hg] and n € [0,00). Then there is a neighborhood
N C Yy, x Yy of (§y,6,h,Pv,6,n) sSuch that for any (yo,po) € N any sequence

(yk, pr) that is generated according to (Yr+1,Pk+1) = Yk, Pk)+ (0yk, Opk), where
(Oyk, Opr) € Yi X Y3, satisfies for all k >0

| Fn(yks o) + Fr (Y, o) 0y, 601) | < 1 || Fn (yies o) ||

with (ng) C [0,7], converges r-linearly [q-linearly/q-superlinearly /with g-order

14w/ to (Uy,5,h,Pvy,5,n), provided n < 1 [n is sufficiently small/m, — 0/mi, =
O(|| Fr(yk, pi)||¥)]. Here, w € (0,1] is arbitrary.

As a preconditioner for the fully discrete Newton system

Fy(y.p) = (ﬁ u,E(AqP)> one can use P := (diaﬁA) —diag(AT)>(' |
14

It is sparse, cheaply invertible, and it does not change for fixed discretization.
In [47] it is shown that diagonal preconditioning has a favorable effect on the
distribution of the eigenvalues for Galerkin matrices. Our numerical experiments
suggest that it can also be sensible to employ better approximations than
diag(A) in P, e.g., a (modified incomplete) LU factorization of A.
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Algorithm 2: Inexact path-following inexact Newton method

Input: (fo,po) € Ya X Ya, (70,00) € RZ4, £ >0

1 fori=0,1,2,... do

2 set (yo,po) := (Yi, Ps)

3 for k=0,1,2,... do

4 if [ Fy(yk, pr)ll < p(vi,6;) then

5 set (§i+1,Pit1) = (Y, Pr)

6 go to line

7 end

8 choose n; > 0 and use preconditioned GMRES to determine (dyg, dpx) such

that [|rg|| < nel|Fr(ye, pr)ll
9 call Algorithm |3} input wy, := (yi, pr), dwk := (6yk, 6pk); output: A
10 set (Yk+1,Pk+1) = (Yk, Pk) + Ak (0Yk, Opk)
11 end
12 select o; € (0,1)
13 if [[(Ge41, 87 But1) = (0, B )| g1 < (1 = 0)8l(Gig1, 87 it 1)l g1 for
t=1i,i— 1 then set (y*,p*) := (Ji+1,Pit+1); Stop

14 set ('Yi+1:5i+1) = (Ui'yi,aiéi)
15 end

Output: (y*,p*)

6.2 A practical path-following method

The following Algorithm [2|is a practical path-following inexact Newton method
to solve . We use the residual ry, := F, (yx, px) + F} (yx, Pk) (OYk, 0Dk )-

The function p : R%; — R prescribes how small the Newton residual
should be for fixed v, d. In the implementation we use p(7v,d) = max{1076,~},
which may be viewed as inexact path-following. For the forcing term 7 we use
the two choices ny, = 7, := 107% and ny, = 7y, := max{107%, min{107%71,/5;}},
where k = k(i). For 7, we have 7y < ||Fn(yx,pr)| since we terminate the
inner loop if ||Fy(yk, px)|| < 1076, Theorem [11] therefore suggests quadratic
convergence for the choice 7, = 7 and this can indeed be observed. Similarly,
N = N corresponds to superlinear convergence. For both choices, however, we
found in the numerical experiments that it is more efficient to also terminate
GMRES if the Euclidean norm of r; drops below 7, respectively, 7 although
this can prevent quadratic, respectively, superlinear convergence.

The control uy,(—py) is computed with a globalized Newton method. The
method terminates when the Newton residual falls below a threshold that
decreases with (v;,d;). The linear systems are solved using SciPy’s sparse direct
solver spsolve. As an alternative we experimented with a preconditioned
conjugate gradients method (PCG). The results were mixed: While the use of
PCG diminished the total runtime of Algorithm [2]if all went well, we observed
on several instances that it broke down for smaller values of (;, d;).

We choose o; based on the number of Newton steps that are needed to
compute the implicit controls {up(—pg)}x in outer iteration ¢. If this number
surpasses a predefined m € IN, then we choose o; > o;_1. If it belongs to
[0,0.75m], then we choose ¢; < ;1. Otherwise, we let o; = 0;_1. In addition,
we respect the bound o; > 0.25 for all ¢, since we found in the numerical exper-
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iments, cf. Table [3| below, that choosing ¢; too small can prevent convergence
in some cases. The weighing 1/ in the termination criterion is made since the
amplitude of the adjoint state is roughly of order 5 in comparison to the state.
In all experiments we use kK = 1073,

Algorithm [3] augments Algorithm [2] by a non-monotone line search global-
ization introduced in [35]. The non-monotonicity allows to always accept the
inexact Newton step and yields potentially larger step sizes than descent-based
strategies. The intention is to keep the number of trial step sizes low since
every trial step size requires the evaluation of F} and hence a recomputation
of up(—pk). Assuming for simplicity that u,(—pg) is determined exactly for
each k, it is possible to show convergence of (yi,px) from arbitrary starting
points and to prove that eventually step size 1 will be accepted, which in turn
ensures that the convergence rates of Theorem [11] are available for every fixed
(i, 0;). In the numerical experiments we use 7 = 104 and we observe that in
the vast majority of iterations full steps are taken.

All norms without index in Algorithm [2| and [3| are L2(£2;,) norms.

Algorithm 3: Computation of step size

1 Input: (wg,dwg), 7>0
2 for 1=0,1,2,...do
a | i o+ 2w < (14 e ) 1 ()] - 727 Gwy 2 then set
A == 27! stop
4 end
Output: Mg

7 Numerical results

We provide numerical results for two examples. Our main goal is to illustrate
that Algorithm can robustly compute accurate solutions of . The results
are obtained from a Python implementation of Algorithm [2| using DOLFIN
[38,39], which is part of FEniCS [3l37]. The code for the second example is
available at https://imsc.uni-graz.at/mannel/publications.php.

7.1 Example 1: An example with explicit solution

The first example has an explicit solution and satisfies the assumptions used
in this work. We consider (OC]) for an arbitrary 8 > 0 with non-convex C*>
domain 2 = B (0) \ Ba,(0) in R?, A= —A and ¢y = 0. The desired state is

B

=53 ((1 +7)sin(r) — 1 — (27“2 -1) cos(?“)) +y

yo(r)
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Fig. 1: Numerically computed optimal solutions for Example 1

where r(z,y) = /22 + 32, and the optimal state 7 is

g(r) = {—§ + Aln(r/(4m)) + B if r € (2m,3n),
C'ln(r/(4m)) if r € (3, 4m)

with constants A, B, C' whose values are contained in appendix [D] The optimal
control is
ﬂ(r) = 1(2#,377) (’I”)

The optimal value is j (%) ~ 24.853% +59.22(3. In appendixlﬂwe provide details
on the construction of this example and verify that (7, ) is indeed the optimal
solution of If not stated otherwise, then 8 = 103 is employed.

We use unstructured triangulations that approximate 9{2 increasingly better
as the meshes become finer, cf. . Figure [1| depicts the optimal control @y,
optimal state g, and negative optimal adjoint state —py, which were computed
by Algorithm [2] on a grid with 1553207 degrees of freedom (DOF).

We begin by studying convergence on several grids. We use the fixed ratio
(7:/8;) = 102 and apply Algorithm [2] with (70,d0) = (1,0.01) and (o, po) =
(0,0). We use the two forcing terms 7, = 1076 =: 7, for all k¥ (and all i) and
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Table 1: Example 1: Number of Newton steps and errors for several meshes; the
first value is for the forcing term 7y, the second for 7j, (only shown if different)

DOF Yfinal #it #itu Ej Eu Sy Ep

1588 12x1078/9.3 x 1072 58/72 390/428 3.4x 1072 187 23 6.0 x 1072
6251 1.7/1.6 x 10710 78/91  597/608 4.0x107% 73 1.1  33x1072
24443  2.1/1.5 x 10~1! 55/64  454/491 9.4 x107* 51 050 1.3 x1072
97643  5.4/6.2 x 107! 46/48 407/380 3.3x107% 3.7 022 5.6x1073
389027 4.6/4.3 x 1010 32/34 367/358 12x10"* 28  0.09 29x1073

Table 2: Example 1: Course of Algorithm

i i o (#it" #it},) & & & &} Tt T

0/1/2 1.0/0.45/0.18 0.45/0.41/0.37  (0,0) 575 155 385 9.8x107% 0 0

3 6.8 x 1072 0.33 (1,1) 5.7 4 1.8 14 1440  11.3

4 2.2 x 1072 0.30 (1,2) 2.0 38 1.0 048 959 0.83

12 8.7x 1076 0.32 (3,18) 1.8x107% 51 023 88x107% 35 0.22

13 2.8 x107¢ 0.31 (3,20) 87x107% 43 023 68x107% 2.0 0.15

14 8.7 x 1077 0.28 (3,18) 51x107% 39 022 60x107% 084  0.073

15 2.4 x 1077 0.26 (5,20) 38x107% 37 022 57x107% 032  0.027

16 6.4 x 1078 0.25 (3,15) 3.5x107* 3.7 022 56x107% 013 82x1073

17 1.6 x 10=8 0.25 (3,16) 3.3x107* 3.7 022 56x107% 0.081 22x1073

18 4.0 x 1079 0.25 (3,15) 3.3x107* 3.7 022 56x107% 0.060 7.0x10°*

19 9.9 x 10~10 0.25 (3,20) 3.3x107* 3.7 022 56x107% 0.045 3.6x10°*

20 2.5 x 10~10 0.25 (3,22) 33x107* 3.7 022 56x107% 0.028 22x10°*
)

21 6.2x10"1  — (3,33 33x107% 3.7 022 56x1073 0017 1.4x104

N, = max{107% min{107*=1 /&§;}} =: 7. Tableshows #it, which represents
the total number of inexact Newton steps for (y,p), and #it,, which is the
total number of Newton steps used to compute the implicit function u. Table[T]
also contains the errors

EJ = |j7final76final7h - -7|’ Ey 1= ”ﬁﬁnal - aHLl(Q*)a

as well as

Ey = |[gnal — Glar0.,  Ep = |Poinal — Bl (a.)-

where (2, represents a reference grid with DOF = 1553207. To evaluate the
errors, Ufnal, Yanal aNd Panal are extended to (2, using extrapolation. Table |Z|
provides details for the run from Table [I] with DOF = 97643 and 1, = 7.
Tableincludes 7= |(Jix1, B Dir1) — (gi,ﬁilﬁi)”Hl(Qh), which appears in
the termination criterion of Algorithm and also 7 = [|u(pit1) —u(Pi)l L2(2,)-

Table [1| indicates convergence of the computed solutions (@final, Jinal, Pfinal)
to (i, y,p) and of the objective value j,. .\ suna.h 10 J. It also suggests that
convergence takes place at certain rates with respect to h. Moreover, the
total number of Newton steps both for (y,p) and for u stays bounded as DOF
increases, which may suggest mesh independence. The choice 1 = 7j;, frequently
yields lower numbers of Newton steps for (y,p) and for w, yet the runtime
(not depicted) is consistently higher than for 7 = 7 since more iterations
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Table 3: Example 1: Results for fixed values (0;) = o; the first value is for the
forcing term 7, the second for 7 (only shown if different)

4 7Vfinal #it #itu gj Eu gy gp

0.2 6.6 x 10712 48/51 505/512 9.4 x 10~ 51 0.50 1.3x1072
0.3 3.5x10711 51/57 408/405 9.4 x 1074 51 050 1.3 x 1072
0.5 23x10710 70/86 454/466 9.4 x 10~ 51 0.50 1.3x1072
0.7 5.1x10710 97/130  522/552 9.4 x 10~ 51 050 1.3x 1072

0.9 1.1/8.0x107% 276/474 1261/1329 9.4/9.5x10™* 51 050 1.3 x 1072

Table 4: Example 1: Results for a sequence of nested grids

DOF Yfinal F#it Fity, Sj Eu gy Sp

6655 6.7 x 1073 7 39 6.5x10"1 30 1.2 1.8 x 101
25596 4.8 x 1072 13 175 77%x107% 83 051 1.7x10°2
100336 8.6 x 10~7 16 117 55x107% 4.1 023 5.6x1073
397248 4.4 x 10711 34 387 1.4x10~% 28 0.09 32x10°3

of GMRES are required to compute the step for (y,p). Specifically, using 7
saves between 5% and 36% of runtime, with 36% being the saving on the finest
grid. In the vast majority of iterations, step size 1 is accepted for (y, px). For
instance, all of the 52 iterations required for DOF = 97643 and 1 = 7 use
full steps; for DOF = 6251 and n;, = 7, 86 of the 87 iterations use step size 1.

Table [3| displays the effect of fixing (0;) = ¢ in Algorithm [2| The mesh uses
DOF = 24443 and is the same as in Table[Il

For both forcing terms, o = 0.3 yields the lowest runtime. In comparison,
the adaptive choice of o; that we employ requires about 6% more runtime. For
o = 0.1 the iterates failed to converge for both forcing terms once 15 = 10712
is reached because up, (—py) could not be computed to sufficient accuracy within
the 200 iterations that we allow for this process. Together with Table [3] this
shows that small values of o; can increase the number of steps required for
u and even prevent convergence. We therefore let o; > 0.25 for all 4 in all
experiments, although this diminshes the efficacy of Algorithm [2|in some cases.

Table [4] shows results for n; = 7 and a sequence of nested grids, where the
grids are refined once v; < 1072, v; < 107% and ~; < 107°, respectively.

We note that the errors &;, £, £, and &, in the last line of Table E| are of
similar size as their counterparts in the last line of Table[l] Since the iteration
numbers in these lines are similar as well, the variant on the fixed grid somewhat
surprisingly requires a lower runtime than the nested variant. The reason is that
the computation of uy(—pg) after the last grid refinement at ; = 8.6 x 107
requires 200 iterations. We leave the issue of reducing this large number (and
correspondingly the runtime) as a future topic and mention that, in contrast,
in example 2 the usage of nested grids is clearly advantageous.
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Table 5: Example 1: Results for various values of (; the first line is for the
choice (v;/d;) = 102, the second for (v;/6;) =1

B 10-1 10—2 10—4 10-5

(#it,#ity) /Ew (28,373)/21  (37,217)/7.2  (100,914)/4.3  (153,1230)/4.1
(#it, #ity)/Euw  (40,435)/21  (78,795)/7.3  (126,996)/4.3  (137,1147)/4.1

Table 6: Example 1: Iteration numbers and errors for several ratios 7;/d;; the
computations for 7;/8; € {1071,1072} use a lower accuracy

’L;LZ 5ﬁnal #it #itu gg gu E,‘y gp

1072 3.0x 108 71 288 99x10~%* 51 050 1.3x10°2
10~ 3.0x10°8 58 246 99x10"%* 51 050 1.3x10°2
1 1.8 x 10712 102 469 9.4x10"% 51 050 1.3x10°2
10! 2.9x10~12 80 396 94 x10~* 51 050 1.3x10°2
102 2.3x10712 70 454 94x10"% 51 050 1.3x10°2
103 1.9 x 10712 59 475 94x10~* 51 050 1.3x10°2

We now turn to the robustness of Algorithm [2} We emphasize that in our
numerical experience the robustness of algorithms for optimal control problems
involving the TV seminorm in the objective is a delicate issue. Table [f] displays
the iteration numbers required by Algorithm [2| for different values of 8 on
the mesh with DOF = 24443 along with the error &; for n, = 7 for the
two choices (v;/d;) = 102 and (;/d;) = 1. The omitted values for 8 = 1073
and (7;/9;) = 10% are identical to those from Table [1| for DOF = 24443 and
ni = 7. Table[6] provides iteration numbers and errors for various fixed choices
of (7y;/8;) on the mesh with DOF = 24443 for 3 = 1073, ny, = 7, and (0;) = 0.5.
For the ratios 107! and 10~2 we increased & from 1072 to 5 - 1072 to obtain
convergence. Since our goal is to demonstrate robustness, no further changes
are made although this would lower the iteration numbers.

Table[5]and [f]suggest that Algorithm [2]is able to handle a range of parameter
values without modification of its internal parameters.

7.2 Example 2

From section [3| onward we have required {2 to be of class Ct1. To show that
Algorithm [2| can still solve if £2 is only Lipschitz, we now consider an
example from [22, section 4.2] on the square 2 = [—1,1]%. We have A = —A,
co =0, 8=10"% and yo = 1p, where D = (—0.5,0.5)2. We use uniform
triangulations throughout this example and denote by n 4+ 1 the number of
nodes in coordinate direction. Figure |1| depicts the optimal control %y, optimal
state g and negative optimal adjoint state —pj, which were computed with
n = 1024. Apparently, 4, is piecewise constant.
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Fig. 2: Numerically computed optimal solutions for Example 2

Table 7: Example 2: Number of Newton steps and errors for several meshes

n Yfinal #it #Hity gj Eu Sy Ep

32 1.7 x 1011 43 321 1.8x1072 86 0.75 9.0 x 103
64 1.7 x 1011 48 551 9.9 x 1073 4.3 0.37 4.9 x 1073
128 32x10711 46 902 49x1073% 23 0.19 2.4 x 1073
256 3.3x1071 50 1212 22x1073 1.1 0.081 1.1x1073
512 5.6x10711 58 2868 7.3x10"%* 0.42 0.031 42x10°%

Throughout, we use the fixed ratio (v;/d;) = 10~2 and apply Algorithm
with (70, d0) = (0.01, 1) and (o, po) = (0,0). As in example 1, cf. Table[6] other
ratios for v;/d; can be employed as well. We only provide results for 7 since
the forcing term 7 does not yield lower runtimes in this example; both forcing
terms produce the same errors, though. Table [7] displays iteration numbers and
errors for different grids, while Table [§] shows details for n = 256.

Table [7] hints at possible mesh independence for (y,p), but suggests that
the number of Newton steps for u increases with n. The depicted errors are
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Table 8: Example 2: Course of Algorithm

i i o; (it #itl) €l & & & Tt T4
0-4 001/... 0.45/...  (0,0) 0.42 34 34 1.7x1072 0 0

5 6.7x1075  0.27 (2,7) 6.0x1072 27 1.9 4.2x1072 498 7.3

6 1.8x107%  0.26 (2,37) 34x1072 23 1.6 24x1072 212 3.4
11 29x1077  0.55 (2,59) 31x1073% 12 050 46x107% 164 1.6
12 1.6x1077  0.55 (2,59) 1.6x107% 9.6 039 34x1073 126 1.6
13 9.0x107%  0.53 (2, 56) 44x107* 74 0.29 25x1073 95 1.4
14  47x107% 053 (3,70) 45x107* 53 0.21 1.9x 1073 7.6 1.4
21 95x10710  0.52 (3,64) 21x107% 1.3 0084 1.1x107% 062  0.32
22 50x10710 047 (2,23) 21x107% 1.1 0.083 1.1x10"% 038 024
23 2.4 x 10710 045 (2,56) 21x107% 1.1 0.081 1.1x107% 0.28 0.27
24 1.1 x 10710 0.59 (2,80) 21x107% 1.1 0.081 1.1x1073 0.15 0.17
25  6.2x107' 053 (2,15) 22x107% 1.1 0.081 1.1x1072 0.062 0.052
26 33x1071  — (2,17) 22x107% 1.1 0.081 1.1x10~2 0.042 0.037

Table 9: Example 2: Results for a sequence of nested grids

n Yfinal #it #itu S] gu gy 5p

64 4.0 x 10~° 5 26 39x1072 25 1.8 3.4 %1072
128 4.8 x10~7 12 260 1.7x 1073 14 064 6.3x10°3
256 6.3 x 1079 19 481 1.7x 1073 2.1 0.10 1.2 x 1073
512 5.6x 10711 20 792 7.3x107% 042 0.031 42x10°%

Table 10: Example 2: Results for various values of 8. A sequence of nested
grids is used and the displayed iteration numbers are for the finest grid only

B 1073 1074 1075 5x 1076
(#it,#itu) /€5 (12,117)/3.3 x 1073 (22,355)/2.8 x 1073 (70,958)/2.4 x 1073 (104,1569)/2.2 x 1073

computed by use of a reference solution that is obtained by Algorithm [2] with
Nk = Tk on the mesh with n = 1024. As in the first example it seems that
convergence with respect to h takes place at certain rates. The majority of
iterations use full Newton steps for (y, p). For instance, all but one of the 50
iterations for n = 256 use step length one.

Table [9] shows the outcome of Algorithm [2]if a sequence of nested grids is
used, where the grids are refined once v; < 107, 7; < 1076 and ~; < 1078,
respectively. This simple strategy reduces the runtime by about 57% while
providing the same accuracy as a run for n = 512, cf. the last line of Table [7}

Table adresses the robustness of Algorithm [2| with respect to 5. The
computations are carried out on nested grids and the displayed iteration
numbers are those for the finest grid, which has n = 128. The reference solution
is computed for n = 256. The final grid change happens once y; < 1078,
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Table indicates that Algorithm [2] is robust with respect to 8. As in
example 1 it is possible to achieve lower iteration numbers through manipulation
of the algorithmic parameters. For instance, if the final grid change for 3 = 10~
happens once 7; < 102 instead of v; < 1078, then only (41,638) iterations
are needed on the final grid instead of (70, 958).

8 Summary

We have studied an optimal control problem with controls from BV in which the
control costs are given by the TV seminorm. By smoothing the TV seminorm
and adding an H' regularization term we obtained a family of auxiliary
problems whose solutions converge to the optimal solution of the original
problem in appropriate function spaces. For fixed smoothing and regularization
parameter we showed local convergence of an infinite-dimensional inexact
Newton method applied to a reformulation of the optimality system that
involves the control as an implicit function of the adjoint state. Based on a
convergent Finite Element approximation a practical algorithm was derived
and it was demonstrated that the algorithm is able to robustly compute the
optimal solution of the control problem with considerable accuracy. To verify
this, a two-dimensional test problem with known solution was constructed.

A Differentiability of s
Lemma 17 Let § >0, N € N and let 2 C RN be open. The functional

vs : HY(2) = R, ub—>/ 5+ |Vul? dz
5 (£2) Q\/ [Vul

ts Lipschitz continuously Fréchet differentiable and twice Gateaux differentiable. Its first
derivative at u in direction v and its second derivative at u in directions v,w are given by

W (u)v = M dz  and ¥} (u)[v,w] = (Vv, Vw) _ (Vy, Vo) (Vu, Vw) .
T e P P f AR T Gt v

Proof First Gateaux derivative
Let u,v € H(£2). As s — /3 + s is Lipschitz on [0, c0) with constant 21%, we obtain for

allt € [—1,1], t £ 0,

VO + [Vu+ tVo2 — /5 + [Vul?
t

Vo] - (2|Vul + [Vo))
<
2V

Thus, we can apply the theorem of dominated convergence, which yields

a.e. in £2. (15)

_ 7 _ p)
lim Ys(u+ tv) — s (u) :/ lim Vo + [Vu + tVol V3 + [Vl de :/ (Vu, Vo) .
t—0 t o t—0 t 2 /3 + |Vul2
From
(Vu, Vo) </ (Vu, Vo) | o IVull 22y IVl 20 < lull g1y llvll g o)
2 /6 +|Vul? “Jae |6+ |Vul? - Vs - Ve
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we see that the functional v — 9§ (u)v is linear and continuous.
Second Gateaux derivative

Let u,v,w € H'(£2). Since g : RN — R, g(y) := \/%, with z € RV fixed, is Lipschitz
continuous on RY with constant %‘Zl, we obtain for all t € R, t # 0,
1 t 2
H (VuttVw, Vo) (VW) | 2 \GiGw  aein2  (16)
LV + [ Vu+tVw]Z /5 + [Vul? V5

Dominated convergence yields

P (u + tw)v — Y5 (u)v / i 1 (Vu + tVw, Vv) (Vu, Vo) d
m = m — — X
2t20t \ 6+ |[Vu+tVuw2 /6 +|Vul?
(Vv, Vw) (Vu, Vo) (Vu, Vw) d
z

o o+ [VuP? (5+|Vu|2)%

where we used the directional derivative of g to derive the last equality. From (16| we deduce
the boundedness of the bilinear mapping (v, w) — 9§ (u)[v, w] by

li
t—0 t

(Vv, Vw) (Vu, Vo) (Vu, Vw) 2
- dz| < —=|lvllg1(o)llwll g (0)- (17)
2 VEFIVUP (54 |VuP)? Vo T

Lipschitz continuous Fréchet differentiability
From we infer that sup, ¢ g1 (o) 195 (Wl g1 (o)== < %, which implies that u — 9% (u)

is Lipschitz with constant %, hence u — s (u) is Fréchet differentiable. O

B Hélder continuity for quasilinear partial differential equations

To prove results on the Holder continuity of solutions to quasilinear elliptic PDEs, we first
discuss linear elliptic PDEs.

Theorem 12 Let o € (0,1) and let 2 be a bounded C1® domain. Let o, > 0 be given. Let
A € CO (2, RVN*NY be a uniformly elliptic matriz with ellipticity constant u and let v > ~o.
Let a® > 0 be such that 7, Al go.a(2y < a®. Then there is a constant C > 0 depending

only on o, 2, N, p, a® and o such that for any p € L>®(82) and any f € C%*(2,RN) the
unique weak solution u to

{— div(AVu) + yu =p —div(f) in £,

(18)
0a,u=0 on I,

satisfies u € C1*(2) and

lullcr.aqa) < C (Ipllzoe(a) + 1 flcoae)) -

Proof A standard ellipticity argument delivers unique existence and ||ul| g1 (o) < CllpllL (),
where C only depends on the claimed quantities. Moreover, by [46, Theorem 3.16(iii)]

lull g2, v 420 () HI VUl g2, N 420 () < C(“pI|L2,(N+2a—2)+(Q)+||f”£2=N+2"(Q)+||u||H1(Q)>'

Here, C' depends on all of the claimed quantities except v, and £2:*(£2) denotes a Cam-
panato space; for details see [46, Chapter 1.4]. The definition of Campanato spaces im-
plies Hp||£2y(N+2a72)+(Q) < Cllplleo (2~ Using the isomorphism between £2:N+2%(£2) and

C%(§2) from [46, Theorem 1.17 (ii)] we obtain

lulcraay < € (Illoe(a) + I lco.ace) + lullma)) -

The earlier ellipticity estimate concludes the proof. m}
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The next result follows directly from [36, Theorem 2] and requires no proof.

Theorem 13 Let 2 be a bounded C1'%" domain for some o' € (0,1]. Let A : 2 x RxRY —
RN,B:2xRxRN R, M>0and0< X< A. Let k,m > 0 and suppose that

N

D O Aj(w,um&igs > Ak + [nl3) ™€, (ellipticity) (19)
i,j=1

N

Z |On; Aj (z,u,m)| < A(N + |T]|2)m, (boundedness of A) (20)
i,j=1
|B(z,u,n)| < /1(1 + |77|2)m+2, (boundedness of B) (21)

as well as the Holder continuity property
1 ’ ’
|A(z1,u1,m) = Ao, uz,m)| < AL+ [nl2) ™ (lo1 — 22| +Jur —u2|*)  (22)

are satisfied for all x,z1,x2 € 2, u,ui,u2 € [—M,M] and n,& € RYN. Then there exist
constants a € (0,1) and C > 0 such that each solution uw € H'(R2) of

/ Az, u, Vu)TVpde :/ B(z,u, Vu)pdx Vo € HY()
2 2

satisfies
lulloraey < C.
Here, C > 0 only depends on o', 2, N, A/X\, m, and M, while a € (0,1) only depends on
o', N, A/\ and m.
We collect elementary estimates for Hélder continuous functions.

Lemma 18 Let 2 C RN be nonempty, let a > 0, and let f,g € CO(2). Then:
o [Ifgllco.aay < Ifllcoayllglco.a(ay-
o [[Vet+ flleoaay < Vet Ifllco.any for alle> 0.
o If|f| > e>0 on 2 for some constant € > 0, then there holds
||1/f||co,a(9) < e_2Hf||(,‘0-,0<(!2) +e

o 1Al lloo.eqm < Illgoa g, for all b€ COO(2,RN),
o Let N; € N and let U; C RNi be nonempty, 1 < i < 4. For ¢ € C%1(Uz,Us),
h € C%*(Uy,Usz) and H € C%*(Us,Uy) there hold

|60 hllgo.o(uy,ug) < 1Dlco1(uy,us) Mo, uy) + 191l Lee (U3,U3)
and
1H © @llco.a(uy,v0) S 181801 17,05y H 000 (s, 04) + 1H Lo (Ug,04)-

Proof First claim: Because of |f(2)g(x) — f(¥)9(v)| < [f(®)||g9(z) — g(w)] + lg(¥)| | f(z) —
T < (N fllLee(2ylgleo.aay + 9llLe @) fleo.a(o))lz — y|* for all z,y € £2, we infer
[f9lco.aay < IIfllLe@)l9lco.e 2y + ll9llLee(2)[flco,a(qy- Together with | fgllLe~ (o) <
[If oo (2yllgll Lo (s2) this implies the first claim.

Second claim: Since ¢(t) := Ve + t2 is Lipschitz continuous with constant 1 in R, the
assertion follows from the fifth claim by use of |[\/€ 4+ f2||Loo () < Ve+ IfllLoe(2)-

Third claim: Since ¢(t) := |t|~! is Lipschitz continuous with constant e~2 in R\ (—¢,¢),
the assertion follows from the fifth claim, applied with Us := {f(z) : = € 2}, by use of
Pl oo (g, t5) = 117 ooy < et

Fourth claim: The assertion follows from the fifth claim.
Fifth claim: For z,y € U1 we have

[¢(h(z)) = S(h(Y))] < [Blco.1(uy,us) M) = R(Y)] < [Dlco. (,y,us) [Plco.e vy vyl — Yl

Together with |¢(h(2))| < supycy,|¢(Y)| = l|@llLoc(v,,u,) for all z € Ur we obtain the
assertion for ¢ o h. The assertion for H o ¢ can be established analogously. m}
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We can now establish the desired regularity and continuity result for .

Theorem 14 Let 2 C RN be a bounded C1%" domain for some o’ € (0,1]. Let B > 0 and
YW >y>7 >0and s >8> > 0. Byu=u(p) € H(£2) we denote for each p € L>(£2)
the unique weak solution of
v+
B

—div<
+ ———= | Vu,v | =0 on I
([ veemm] ™)

Then for every b > 0 there emists a € (0,1) such that u : Byo — CL%(82) is well-
defined and Lipschitz continuous, i.e. ||u(p1) — u(p2)llct.a(g) < Lllp1 — p2llLoo(q) for all
p1,p2 € Byo C L°(£2) and some L > 0. The constants L and « are independent of v and 0,
but may depend on o/, 2, N, B, b°, v0,7°, 60 and &°.

__B
V8 + [Vul?

:|Vu)+’yu:p in §2,
(23)

Proof Let b° > 0 and let p1,p2 € L°°(£2) with ||p1]| oo (), IP2l oo (2) < 8°.

Part 1: Showing existence of uj,uz € H(9).
For i = 1,2 we define

F;: HY(2) - R,

v Aol g + ﬂ/g o+ Vo2 dz — (i, ) 2.

Invoking the convexity of 15, cf. Lemma EL we obtain that Fj is strongly convex, which
implies the existence of a unique minimizer u; € H1({2). Since F; is Fréchet differentiable by
Lemma [17} we have F'(u;) = 0 in H(2)*, which is equivalent to (23]

Part 2: Showing uy, uz € L*>°(Q2) and an estimate for ||u1 | q) and [Juz||L~ @)
Fix M > 'yalbo and let w; s := min(M, max(—M,u;)), i = 1,2. For any IN 5 p > 1 we have

2p—1 2p—2
v(ui,pM ) =@p—Dwi” " Vui - L yrcu;<my € L*(92).
Testing (23) with u?pj\zl yields

2p—1
Y(ui uiy ) L2 (2)

2p—1 2p—2 ap—2  |Vuil?
N (p7Ui’pM )Lz(m . 1)/{ M<u; <M} qmip Wui‘z * Buip o+ |1Vu‘|2 a
- Uj (3
2p—1 2p—1 L 2p—1
<pllnoe ) ;s e 2y < BOULI 20 (@) llui g ||L21351 o 00102127 ui,ar [l o gy -

In combination with

2p—1
Y(uis w2 o)

=7 / u?pder/ uy(—M)?P~1 dx+/ w M?P~ 1 dz
{—M<u;<M} {ui<-M} {M<u;}
2 2 2 2
=7 (”WLZEP({M@KM}) " /{u-<7M}(7M) rlet /{M<u‘} M pdw) 2 0llw 2 )

B
this yields vollui,amllL2p(2) < b0|02|27 . Sending p — oo gives llwiprllLoe 2y < Vglbo. As
M > 'yalbo by assumption we conclude that

luill oo (2) < 75 t0 fori=1,2. (24)
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Part 3: Obtaining Ccla regularity of uj,us
We use Theorem to establish the C1+*(£2)-regularity of u1 and uz. We apply it with
m =0, A(z,u,n) = yn+Bn/\/d + |n|?, B(z,u,n) = pi(x) for i = 1,2, k = 0, identical values
for o/, A = 40, A = max{b®,7ON + 60_1/25(N + N2)} and M = 'yo_lbo, cf. (24). Since A is
independent of (z,u) and continuously differentiable, it is easy to see that the requirements
of Theorem [13|are met. This shows u1,us € CH*(£2) for some a > 0 and yields

luillgr.e 2y < C, (25)

where C' > 0 and « € (0,1) depend only on the quantities o/, 2, N, A/\ = 70_1/1 and
M = ~5 0.

Part 4: Lipschitz continuity of p — u(p)
Taking the difference of the weak formulations supplies

N Vup Vuz _ - 1
Vel | AVi+ 8 - B +'y<pudx:/ ppdx Ve € H (£2),
/Q < Vo + [Vui? Vo + [Vuz|? Q ()
(26)

where we abbreviated @ := u; — u2 and p := p1 — p2. The function H : RY — R given by
H(v) := /8 + |v|? is convex. Let t € [0, 1] and denote by u” : £2 — R the C1:®(£2) function
uT(x) := uz(z) + 7a(z). For every z € £2 it holds that
Vui(x) Vua(z)
VE+TVur (@) /6 +[Vuz(2)]?

= VH (Vui(z)) — VH(Vuz(z))

1
= / V2H(Vu™ (z)) dr Vi(z),
0
where the integral is understood componentwise. Together with we infer that @ satisfies

- div(Ava) Yhd=F in 2,
0

where A : 2 — RY*N is given by
. 1
Az) == ~T + 5/ V2H(Vu™ (z)) dr.
0

In order to apply Theorem [12]to this PDE, we show A € C%(, RN*N), The convexity of
H implies that V2 H is positive semi-definite. Thus we find for any v € R and any = € 22
v A(z)v > ~lw]? > yolv|?

For z € 2 and 1 < 4,5 < N it holds that

- 1
Ay@I <y +8 [ [V @)],] dr a0+ s [|[v*H(van),

J ‘Loo(m'

We also have for all z,y € 2

@) - At <8 [ [v2a(vw @) - v rvwr @] | ar
<8 sup |[V2H(V"(2)) = VZH(VW" (3)]
T€[0,1] v
< B sup [VzH(V’uT)]__ z—y|%,
r€[0,1] ijlco.a ()
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which shows |Ai]“co,a(n) < Bsup,ep1]l[VEH(uT)]ijlco.a (). Together, we infer that

- 0 ) )
||A11Hc0,a(m <7 +2B721ﬁ)1] H[V H(VuT)]

for all 1 < 4,57 < N. From Lemmawe obtain for every fixed 1 <1i,7 < N

- 2
i ’coya(m (27)
BziuTBIjuT

1
S Do By
‘COMO) - H Vo + [VuT? Vo Va2 co.a(2)
_3
SC(”HWHCO,QM Va0 | 0 1907P) 2 covam))’

where C only depends on do. Since ||Vuillco,a(p), [[Vuzlgo,a(g) < C by (25), there holds

||Vu"'||co,a(9) < C with the same C' > 0. This C only depends on o/, 2, N, 8, b°, v9, v°
and §p. This and Lemma [T§] show

ooy < OO+ IVEH T g + VT 197 . )

<o(1+4 (Vo + 197 llgom o)) <€,

[[v2H (V)]

ij +
C0a(02)

[[v2H(vur)]

ij

where C > 0 is independent of 7 and only depends on the quantities stated in the theorem.
Hence, with the same C' there holds
sup H [V2H (V") V1<i,j<N.
7€[0,1]

o <
Wilcoe(2) =
Inserting this into yields A € C9(2,RN*N) with HA”CO,Q(Q) < 4% +28C, so
Theorem is applicable. We obtain ||il|¢1,a (o) < C|PllLe(2), Wwhere C only depends on
the claimed quantities. This proves the asserted Lipschitz continuity of p — u(p). [}

C The original problem: Optimality conditions

The first order optimality conditions of (ROC]) can be obtained by use of [§]. The space
W (div; £2), g € [1,00), that appears in the following is defined in [8] Definition 10].

Theorem 15 Let 2 C RN, N € {1,2,3}, be a bounded Lipschitz domain and let rn = %

if N > 1, respectively, rn € [1,00) if N =1. Then we have: The function @ € BV(§2) is the
solution of (ROC) iff there is

h e L= (2, RY) n WiN (div; £2)
that satisfies H|l_z|||Loo(Q> < B and divh = p, where § is defined as in section as well as

= qua LN a.e. in 2\ {z: Vig(z) =0},
|Viig|
gt —a
Th:ﬂwvﬂ H-a.e. in Ja,
[ut(z) — = (z)|
Th = Boc, |Vic|-a.e.

Here, the first, second and third equation correspond to the absolutely continuous part, the
Jjump part, respectively, the Cantor part of the vector measure V. Also, oc, is the Radon-
Nikodym density of V. with respect to |Vie|, cf. e.g. [9, Theorem 9.1]. Moreover, vy is the
Jump direction of @ and Jg denotes the discontinuity set of @ in the sense of [§, Definition
3.63]. Further, H' is the Hausdorff measure of Jg. The operator T: dom(T) C Wdi"’q(Q) N
L>®(2,RN) — LY(2,RN,|Vu|) is called the full trace operator and is introduced in [8,
Definition 12]. We emphasize that h € dom(T).

Proof The well-known optimality condition 0 € 9j(@) from convex analysis can be expressed
as —% € dlt|pv(g), so the claim follows from [8, Proposition §8]. O

Remark 8 _Theorern implies the sparsity relation {z : Viiq(z) # 0} C {z : |h(z)| = B}
Since {x : |h(z)| = B} typically has small Lebesgue measure (often: measure 0), @ is usually
constant a.e. in large parts (often: all) of £2; cf. also the example in section@
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D An example with explicit solution

Using rotational symmetry we construct an example for for N = 2 with an explicit
solution. We let A = —A and ¢p = 0 in the governing PDE. We define h: [0,00) — R,
h(r) := g(cos(%r) — 1) and §2 := Bag(0) \ Br(0), where the parameters R > 0 and 8 > 0
are arbitrary. We introduce the functions

r(@,y) = Va2 +y?, h(n,y) = h(r(@,y))Vr(z,y)  and  a(z,y) =1, sr, (7(2,9),

all of which are defined on 2. The problem data is given by
P :=divh, y:=Su and yp = Ap+ 7.

We now show that these quantities satisfy the properties of Theorem By construction g and
P are the state and adjoint state associated to @ and we have p = div h. We check the properties
of h. Since |Vr| =1 for (z,y) € 2, we obtain |h(x,y)| = [h(r(z,y))| < %2 = . We also see
that h is C! in 2 and satisfies h = 0 on 842 so that h € L (2, RN) N W (div; 2) for any
g € [1,00). By [8 Proposition 6] we have Th = h. As Va(z,y) = —Vr(z, y)H})BSR (0>(a:, Y),

we find that V4 has no Cantor part and no parts that are absolutely continuous with

respect to the Lebesgue measure. Thus, the first and third condition on h in Theorem are

trivially satisfied. For (z,y) € 0B3r (0) = Ja we have h(z,y) = —fVr(z,y) = —fra and
2

at(z) =0, @ (x) = 1 for = € Jg, hence the second condition on h in Theoremholds. Let
us confirm that p satisfies the homogeneous Dirichlet boundary conditions. From Ar = r—1!
and |Vr|2 = 1 we obtain

p=divh = VA(r)TVr + h(r)Ar = &' () |Vr)?2 + 77 h(r) = &' () + 7~ h(r).

Thus, p satisfies the boundary conditions. Let us confirm that § satisfies the boundary
conditions. The Ansatz g(z,y) = §(r(z,y)), with § : 2 — R to be determined, yields

—1(r,3r/2)(r) = —t(z,y) = Ay(z,y) = div(j (r)Vr) = §"(r) + v~ 19/ (r).
This leads to

Cln(r/(2R)) if r € (3R/2,2R),

and it is straightforward to check that g satisfies the boundary conditions and is continuously
differentiable for the parameters

LI ICT0 Rk SO (1 - 1n(3/4))

g(r) = {—rj + Aln(r/(2R)) + B if r € (R,3R/2),

_ R? 18In(3/2) -5

d K
an 8 In(1/4)

8 In(1/4) ’ )
All in all, the optimality conditions of Theorem @ are satisfied. Moreover, the optimal value
in this example is given by

L 1 _ 1. _
j(a) = 5||y - yn\liz(m + Blalpv(n) = 5||AP||2Lz(Q) + Blalsv(n),

which for R = 27 results in

L. pB?m 5 15 . 27 . . 5 5
jla) = e 37° + In(8) + i Ci(27) — T Ci(4m) + 3 Ci(87) | + 678 ~ 24.853° + 59.223

with Ci(t) := — [ 2T dr.
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