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Abstract

We consider the dissociation limit for molecules of the type X2 in the Kohn-Sham density
functional theory setting, where X can be any element. We prove that when the two
atoms in the system are torn infinitely far apart, the energy of the system convergences to

min
α∈[0,N ]

(
IXα +IX2N−α

)
, where IXα denotes the energy of the atom with α electrons surrounding

it. Depending on the “strength” of the exchange this minimum might not be equal to the
symmetric splitting 2IXN . We show numerically that for theH2-molecule with Dirac exchange
this gives the expected result of twice the energy of a H-atom 2IH1 .
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1 Introduction

Density functional theory (DFT) was developed by Hohenberg, Kohn and Sham [15, 17] in the
1960s and is to this day one of the most widely spread electronic structure models in quantum
chemistry, biology and materials science because of its good compromise between accuracy and
computational cost. The idea behind DFT is to transform the high-dimensional Schrödinger
equation into a low-dimensional and thus computationally manageable problem.

The trade-off in this approach is the introduction of the so-called exchange-correlation func-
tional, which is in theory exact but in practice unknown. Therefore a lot of effort [32, 31, 3, 33, 29]
has gone into building good approximations to this functional. In this paper we consider the
simplest form of these models, the local density approximation (LDA). Even here the resulting
mathematical properties are still far from being understood. Furthermore as observed in [27]
starting in the early 2000s newer approximations actually become worse in predicting the electron
densities. This is due to only focusing on the energies and in the process sacrificing mathematical
rigor in favor of the flexibility of fitting to empirical data. Thus in the present article we want
to focus on fundamental properties that the exchange-correlation functional should fulfill.

Our main goal is to analyze the dissociation limit of any symmetric diatomic molecule, i.e. any
molecule of the form X2, in Kohn-Sham (KS) DFT. Simply put we ask the question, what
happens to the energy of the system, when the distance between the two atoms is artificially
increased further and further until they are torn infinitely far apart? Our main result takes the
following form

Theorem (Theorem 1 – Informal Version). Let IX2

2N,R and IXλ be the energy of the X2-molecule
with distance R between the atoms and the X-atom with λ electrons defined by (20). Then we
have

lim
R→∞

IX2

2N,R = min
α∈[0,N ]

(
IXα + IX2N−α

)
. (1)

In the long range limit, the ground-state energy of the X2-molecule is identical to the energy
of two non-interacting atoms - one with electron mass α and one with electron mass 2N−α. The
physical expectation here is, that it is optimal to split the electrons evenly (i.e. the minimum is
attained for α = N).

The question if or rather for which λ one has symmetric splitting, i.e.

2Iλ < Iλ+ε + Iλ−ε for all 0 < ε < λ,

already plays an important role in Thomas-Fermi and related theories, see e.g. [21].
To our knowledge the fact that the lowest energy splitting is always given by two neutral

atoms is not even proven in full quantum mechanics, rather only in Thomas-Fermi theory and
perturbations thereof, where the behaviour of the energy with respect to the particle number is
completely understood. A simple sketch of this is presented in Figure 1.

Note furthermore that in full quantum mechanics and thus for exact HK-DFT charge quan-
tization occurs, i.e. α in (1) can be restricted to integer values, as proven in [10].

As will be discussed in detail in Section 3 if the exchange becomes too strong, we observe
symmetry breaking, i.e. the right hand side of (1) does not equal 2IXN .

In the physics literature, this is a well-known challenge: While spin-restricted Kohn-Sham
calculations yield qualitatively correct results (i.e. by nature preserve spin-symmetry) they only
give reasonable energies close to the actual bond length. Spin unrestricted schemes on the other
hand yield better energies but may prefer ionic solutions at long ranges [11, 30].

This dilemma has recently attracted mathematical interest. In case of the H2 molecule at
fixed bond-length (see [16]) and for periodic systems (see [14]), symmetry breaking occurs for
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strictly convex constant

Z NETF (N)

Figure 1: The Thomas-Fermi energy ETF (N) with respect to the particle number N . For
positively charged systems N < Z it is strictly convex, for N > Z it remains constant.

sufficiently strong exchange contributions. These issues in LDA-DFT and related theories like
Thomas-Fermi-Dirac-von Weizsäcker is caused by the Dirac term −

∫
ρ4/3, which to some extend

makes the functional concave and can thus lead also to nonattainment, see e.g. [25].
The rest of the paper is structured as follows: The next section sets the stage by defining and

motivating all the energy functionals needed, giving our main result in Theorem 1 the necessary
detail. In Section 3 we put it into context by considering first a one-dimensional DFT model
where we can always determine the right hand side of (1). Then we consider the full three
dimensional case and fill the gap in our theoretical results by numerical evidence.

The last section contains all the proofs, with the most interesting point being that we apply the
concentration-compactness lemma not to a minimizing sequence but to a sequence of minimizers.
Figure 4 summarizes the structure of the proof to help not get lost in technical details.

2 Setting the stage

2.1 Density functional theory

To put our result into perspective we recall here shortly the basic fundamentals of DFT. A
standard reference would be [28]. Readers familiar with the topic might want to skip this section.

The starting point is a system of N non-relativistic electrons under influence of an external
potential v(x) and with a repulsive interaction potential vee(x− y) (Born-Oppenheimer approx-
imation).

For a molecule with M atomic nuclei at positions R1, . . . , RM ∈ R3, with individual charges

Z1, . . . , ZM ∈ N and total atomic charge Z =
M∑
i=1

Zi, and with N electrons the potential v(x) is
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just the ensuing Coulomb potential of their positions and charges

v(x) := −
M∑
i=1

Zi
|x−Ri|

, x ∈ R3.

The class of admissible functions A – the so-called N -electron wave functions – is given by

A :=
{

Ψ ∈ L2
(
(R3 × Σ)N ;C

)
: ∇Ψ ∈ L2,Ψ antisymmetric, ||Ψ||L2 = 1

}
,

where Σ :=
{
|↑〉, |↓〉

}
denotes the set of spin-states.

Now we can finally define the energy functional EQM ,

EQM [Ψ] := T [Ψ] + Vne[Ψ] + Vee[Ψ], (2)

where

T [Ψ] :=
1

2

∫
(R3

Σ)N

N∑
i=1

|∇xiΨ(x1, s1, . . . , xN , sN )|2 dz1 . . . dzN

describes the kinetic energy,

Vne[Ψ] :=

∫
(R3

Σ)N

N∑
i=1

v(xi) |Ψ(x1, s1, . . . , xN , sN )|2 dz1 . . . dzN

gives the electron-nuclei interaction energy, and

Vee[Ψ] :=

∫
(R3

Σ)N

∑
1≤i<j≤N

vee(xi − xj) |Ψ(x1, s1, . . . , xN , sN )|2 dz1 . . . dzN

is the electron-electron interaction energy. The exact quantum mechanical ground state energy
is now defined as

EQM0 := inf
Ψ∈A
EQM [Ψ]. (3)

Unfortunately due to the curse of dimensionality there is no hope of ever solving (3) for
interesting molecular systems. Hence in Kohn-Sham (KS) DFT one does not consider the wave
function Ψ but the one-body electron-density

ρ(x) =

∫
R3(N−1)

|Ψ(x, z2, . . . , zN )|2 dz2 . . . dzN .

This leads to a nonlinear PDE system for the density. The energy is then given by the KS energy
functional

E [Φ] =
∑
α

1
2

∫
R3

|∇ϕα|2 +

∫
R3

vρdx+ 1
2

∫
R3

∫
R3

ρ(x)ρ(y)

|x− y|
dx dy + Exc[ρ],

where Φ denotes the collection of the orbitals
(
ϕα
)
α

and ρ =
∑
α |ϕα|2.

The Hohenberg-Kohn theorem [15] guarantees the existence of a functional Exc[ρ] – depending
only on the density – such that KS energy gives the same as exact N -body Schrödinger equation.
Meaning if we knew the exact functional Exc, we would not lose any information. Hence a lot of
effort has been put into creating applicable approximations to this functional [31, 32, 3, 29].

The prototypical example for an Exc[ρ]–approximation is given by

Exc[ρ] =

∫
R3

exc(ρ(x)) dx, exc = −cxcρ
4/3. (4)
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2.2 Mixed-states

This section shortly recalls the description using mixed states, i.e. density matrices. Let S1

denote the vector space of trace class operators on L2(R3) and introduce the subspace H :=
{γ ∈ S1 : |∇|γ|∇| ∈ S1} endowed with the norm || · ||H := tr(| · |)+tr

(∣∣|∇| · |∇|∣∣) and the convex

set K := {γ ∈ S(L2(R3)) : 0 ≤ γ ≤ 1, tr(γ) <∞, tr
(
|∇|γ|∇|

)
<∞}. Let us first remark that

EQM0 = inf

{
〈Ψ | HV

N | Ψ〉 : Ψ ∈ A
}

= inf

{
tr
(
HV
NΓ
)

: Γ ∈ DN

}
,

(5)

(6)

where DN is the set of N -body density matrices defined by

DN =

{
Γ ∈ S

(
HN

)
: 0 ≤ Γ ≤ 1, tr(Γ) = 1, tr(−∆Γ) <∞

}
. (7)

In the above expression, S
(
HN

)
denotes the vector space of bounded self-adjoint operators on

HN and the condition 0 ≤ Γ ≤ 1 stands for 0 ≤ 〈Ψ | Γ | Ψ〉 ≤ ||Ψ||2HN for all Ψ ∈ HN .
From a physical point of view, (5) and (6) mean that that the ground state energy can be

computed either by minimizing over pure states – characterized by wave functions Ψ – or by
minimizing over mixed states – characterized by density operators Γ.

As before we define the electronic density for any N -electron density operator Γ ∈ DN

ρΓ(x) := N
∑
σ∈Σ

∫
(R3

Σ)(N−1)

Γ(x, σ, z2, . . . , zN ;x, σ, z2, . . . , zN ) dz2 . . . dzN . (8)

Note that here and below we use the same notation for an operator and its Green kernel.
Then we get for the electron densities{
ρ : R3 → R : ∃Γ ∈ DN , ρΓ = ρ

}
= R =

{
ρ : R3 → R : ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3

ρdx = N

}
.

Let Γ be in the above admissible set, the one-electron reduced density operator ΥΓ associated
with Γ which is the self-adjoint operator on L2(R3

Σ) with kernel

ΥΓ(x, y) = N

∫
(R3

Σ)N−1

Γ(x, z2, . . . , zN ; y, z2, . . . , zN ) dz2 . . . dzN .

Furthermore it is known, see e.g. [7], that{
Υ : ∃Γ ∈ DN , ρΓ = ρ

}
=

{
Υ ∈ RDN : ρΓ = ρ

}
, (9)

where

RDN =

{
Υ ∈ L2(R3

Σ) : 0 ≤ Υ ≤ 1, tr(Υ) = N, tr(−∆xΥ) <∞
}

and

ρΥ(x) :=
∑
σ∈Σ

Υ(x, σ;x, σ).

(10)

(11)
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This leads to the so-called extended Kohn-Sham models

IEKSN [V ] := inf

{
tr
(
− 1

2∆xΥ
)

+

∫
R3

ρΥV dx+ J [ρΥ] + Eex[ρΥ] : Υ ∈ RDN

}
. (12)

Note, up to now no approximation has been made, such that for the exact exchange-correlation
functional EQM0 = IEKSN for any molecular system containing N electrons. Unfortunately, there
is no tractable expression of Exc[ρ] that can be used in numerical simulations.

Before proceeding further, and for the sake of simplicity, we will restrict ourselves to closed-
shell, spin-unpolarized systems. This means that we will only consider molecular systems with
an even number of electrons N = 2Np, where Np is the number of electron pairs in the system,
and we will assume that electrons “go by pairs”.

Hence, the constraints on the one-electron reduced density operator originating from the
closed-shell approximation read:

Υ(x, |↑〉, y, |↑〉) = Υ(x, |↓〉, y, |↓〉) and Υ(x, |↑〉, y, |↓〉) = Υ(x, |↓〉, y, |↑〉) = 0. (13)

Introducing γ(x, y) = Υ(x, |↑〉, y, |↑〉) and denoting ργ(x) = 2γ(x, x), we obtain the spin-unpolarized
extended Kohn-Sham model

IREKSN (V ) = inf

{
E(γ) : γ ∈ KNp

}
, (14)

where the energy functional E is given by

E(γ) = tr(−∆γ) +

∫
R3

ργV dx+ J [ργ ] + Exc[ργ ], (15)

and the admissible set looks like

KNp =

{
γ ∈ S(L2(R3)) : 0 ≤ γ ≤ 1, tr(γ) = Np, tr(−∆γ) <∞

}
. (16)

Note that the factor 1
2 in front of the trace vanishes due to the definition of γ and accounts

for the spin.
Furthermore, by spectral theory we have for any γ ∈ KNp

γ =
∑
i≥1

λi|ϕi〉〈ϕi| (17)

with

ϕi ∈ H1(R3),

∫
R3

ϕiϕj dx = δij , λi ∈ [0, 1],

∞∑
i=1

λi = Np,

∞∑
i=1

λi||∇ϕi||2L2 <∞. (18)

2.3 Dissociation

In this section we shortly introduce the energy functionals we will be using in this paper. The
Kohn-Sham energy functional is given by

EV [γ] := tr[−∆ γ] +

∫
R3

V ρ dx+
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x− y|
dxdy +

∫
R3

exc
(
ρ(x)

)
dx, (19)

6



where ρ(x) = 2γ(x, x) and V denotes the external potential. Note that the factor 2 is used since
we are considering a spin-unpolarized system. Let X be any atom with Z number of protons.
Then for the X2 molecule we have

V X2

R = − Z

| · |
− Z

| · −R|
, EX2

R [γ] := EV
X2
R [γ],

and similar for the X-atom

V X = − Z

| · |
, EX [γ] := EV

X

[γ].

Here and in the following to keep notation a bit simpler we will denote by R the position of the
second nucleus and also its distance to the origin, as long as it is clear from context which one
we are referring to.

We then define the ground state energies

IX2

λ,R := inf
γ∈Kλ

EX2

R [γ], IXλ := inf
γ∈Kλ

EX [γ], (20)

where the admissible set is given by

Kλ :=
{
γ ∈ S(L2(R3)) : 0 ≤ γ ≤ 1, tr(γ) = λ, tr(−∆ γ) <∞

}
. (21)

Furthermore we introduce the problem at infinity, corresponding to a system without nuclei

I∞λ := inf
γ∈Kλ

E∞[γ], E∞[γ] := tr[−∆ γ] +
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x− y|
dx dy +

∫
R3

exc
(
ρ
)

dx. (22)

To shorten notation we will denote by T [γ] = tr[−∆ γ] the kinetic energy, V [γ] =
∫
V (x)ρ(x)

describes the electron-nuclei interaction, J [ρ] = 1
2

∫ ∫ ρ(x)ρ(y)
|x−y| is the Hartree energy and the

exchange-correlation term is given by Exc[ρ] =
∫
exc(ρ). In addition define the bilinear form

corresponding to J by D[f, g] =
∫ ∫ f(x)g(y)

|x−y| . Furthermore if the statement holds true for all of

the three infima, we simply write Iλ.
Next let us give the assumption on the exchange-correlation term. Note that we can use the

same setting as [1] for the local-density approximation (LDA).

Assumption 1 (LDA-exchange-correlation). Let exc : R+ → R be a C1-function such that

1. exc(0) = 0,

2. e′xc ≤ 0,

3. ∃0 < β− ≤ β+ < 2
3 such that

∣∣e′xc(ρ)
∣∣ ≤ C(ρβ− + ρβ+

)
,

4. ∃1 ≤ α < 3
2 such that lim sup

ρ→0

exc(ρ)
ρα < 0.

Note that the prototypical exchange-correlation functional in the LDA-setting (4) coming
from the uniform electron gas satisfies these assumptions with α = 4

3 and β− = β+ = 1
3 .
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Remark. The existence of minimizers to these functionals for neutral or positively charged

systems is due to [1]. We will also be using the following standard results proven there.

First some properties of the electron mass to ground state energy map λ 7→ Iλ.

Lemma 1 (Properties of the infimum [1]). Let IX2

λ , IXλ and I∞λ be as defined above. Then the

following holds

1. All the maps λ 7→ Iλ are continuous and strictly decreasing for any λ ≥ 0.

2. We always have I0 = 0 and −∞ < IX2

R,λ < IXλ < I∞λ < 0.

3. Furthermore all the Iλ satisfies the subadditivty condition, i.e.

Iλ ≤ Iα + I∞λ−α ∀α ∈ [0, λ] (23)

Furthermore minimizing sequences for Iλ cannot vanish.

Lemma 2. The three functionals EX2 , EX , E∞ are all continuous on H.

The next lemma summarizes the standard bounds on the energy functional. We note that
in the following C will describe a generic constant, which may have different values at each
appearance, indicating some finite positive constant independent of the surrounding variables.

Lemma 3 (Bounds on the energy functional). For all γ ∈ K, we get
√
ργ ∈ H1(R3) and the

following inequalities:

(i) Lower bound on the kinetic energy:

1

2
||∇√ργ ||2L2 ≤ tr[−∆ γ] (24)

(ii) Upper bound on the Coulomb energy:

0 ≤ J [ργ ] ≤ C tr[γ]
3
2 tr[−∆ γ]

1
2 (25)

(iii) Bounds on the interaction energy between nuclei and electrons:

−4Z tr[γ]
1
2 tr[−∆ γ]

1
2 ≤

∫
R3

ργ(x)V (x) dx ≤ 0 (26)

(iv) Bounds on the exchange-correlation energy:

−C
(

tr[γ]1−
β−
2 tr[−∆ γ]

3β−
2 + tr[γ]1−

β+
2 tr[−∆ γ]

3β+
2

)
≤ Exc[ργ ] ≤ 0 (27)
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(v) Lower bound on the energy:

E [γ] ≥ 1

2

(
tr[−∆ γ]

1
2 − 4Z tr[γ]

1
2

)2

− 8Z2 tr[γ]− C
(

tr[γ]
2−β−
2−3β− + tr[γ]

2−β+
2−3β+

)
(28)

(vi) Lower bound on the energy at infinity:

E∞[γ] ≥ 1

2
tr[−∆ γ]− C

(
tr[γ]

2−β−
2−3β− + tr[γ]

2−β+
2−3β+

)
. (29)

In particular, minimizing sequences of Iλ (20) and I∞λ (22) are bounded in H.

Lemma 3 is a central point for the existence of minimizer in the fixed nuclei setting but more
importantly for us it bounds the minimizers independently of the position of the nuclei.

Let us now restate the main result of this paper.

Theorem 1 (Dissociation limit). Let IX2

λ,R and IXλ be defined by (20), then we have for positively

and neutrally charged molecules, i.e. for λ ≤ 2Z,

lim
R→∞

IX2

λ,R = min
α∈[0,λ]

(
IXα + IXλ−α

)
. (30)

Theorem 1 says the energy of the X2-molecule converges – as the nuclei are pulled infinitely
far apart – to the minimum over distributing the amounts of electrons λ on two separated X-
atoms. For linear problems this directly gives 2IXλ/2, i.e. a symmetric splitting, but for nonlinear

problems α 7→ IXα +IXλ−α might take its minimum at another value. Whether the right hand side
gives the expected symmetric minimum or not, will be discussed on the basis of the H2 molecule
in the next Section.

We want to stress again that we consider the spin-restricted setting also for the two atoms.
Hence applying it to an H-Atom with a single electron has to be taken with a grain of salt.

3 Symmetric Dissociation or not ?

The question which arises now is of course is: Does

min
α∈[0,1]

(
IHα + IH2−α

) ?
= 2IH1 , (31)

hold or not, i.e. do we have the right dissociation limit which we expect from physical intuition
or which holds also for the Schrödinger equation. The answer is it depends on the “strength” of
the exchange-correlation functional. To discuss this further take exc(ρ) = −cxcρ4/3 – the proto-
typical example arising from the homogeneous electron gas – with the constant cxc determining
the strength of the exchange term.

To get a better feeling for what determines if the splitting is symmetric or not, i.e. if α = 1
is the minimizer in (31), we consider first a one-dimensional model.
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3.1 Onedimensional model

As we will see in the following section, it is quite hard to determine when

min
α

(
IHα + IH2−α

)
= 2IH1 .

To understand the problem better we study in this section the one-dimensional problem. Since
the Coulomb potential is not well suited for the one dimensional case, we consider v(x) = δ0(x),
i.e. a simple contact potential [26]. The corresponding full Schrödinger system for the H2-
molecule looks like

EH2

R = inf
ψ∈H1(R2),
‖ψ‖L2=1

〈ψ,H(x, y)ψ〉, H(x, y) =
∑

z∈{x,y}

−1

2

d2

dz2
− δ0(z)− δR(z) + δ|x−y|(z) (32)

and the energy for the H-atom becomes

EH = inf
ψ∈H1(R),
‖ψ‖L2=1

〈ϕ, h(x)ϕ〉, h(x) = −1

2

d2

dx2
− δ0(x). (33)

As for the standard Schrödinger system also here we have the right dissociation limit.

Proposition 1 (Dissociation limit for the Schrödinger setting). For the full Schrödinger setting

we always have

lim
R→∞

EH2

R = 2EH , (34)

i.e. the right dissociation limit.

Proof. See Section 4.3.

Note that Theorem 1 gives exactly the same result in the nonlinear case, but in the linear
case every pair (α, 2− α) gives the same result, so we always have symmetric dissociation.

Now we consider the DFT version of this system. Note that in this case the Hartree term
takes the form

J [ρ] =
1

2

∫ ∫
ρ(x)v(x− y)ρ(y) dxdy =

1

2

∫
ρ2(x) dx.

Furthermore the exchange energy per volume looks like exc(ρ) = −cxcρ2, where the exponent is
2 = 1 + 1

d and cxc = 1
4 see [26, 18].

In total our energy functional for the H-atom takes the form

EH [ρ] =
1

2

∫ (√
ρ
′)2

dx−
∫
vρdx+

1

2

∫ ∫
ρ(x)ρ(y)v(|x− y|) dxdy + Exc[ρ]

=
1

2

∫ (√
ρ
′)2

dx− ρ(0) +
(

1
2 − cxc

) ∫
ρ2 dx.

And analogously for the H2-molecule

EH2 [ρ] =

∫ (√
ρ
′)2

dx− ρ(0)− ρ(R) +
(

1
2 − cxc

) ∫
|ρ|2 dx.
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In the same way as in Section 4 we can show the dissociation limit

lim
R→∞

IH2

R = min
α∈[0,2]

IHα + IH2−α.

Due to replacing the Coulomb potential by a contact potential we simplify the problem
because the Hartree and the exchange energy take the same form. Hence the energy functional
ρ 7→ EH [ρ] is clearly convex for cxc ≤ 1

2 .
This property is inherited by the infimum. Take any ρα, ρβ nonnegative and with L1-norm

α, β, respectively. Then,

Iλα+(1−λ)β ≤ E [λρα + (1− λ)ρβ ] ≤ λE [ρα] + (1− λ)E [ρβ ],

taking the infimum over ρα, ρβ gives the convexity of α 7→ Iα.
Therefore we have for cxc ≤ 1

2

2I1 = 2I 1
2α+

1
2 (2−α)

≤ Iα + I2−α,

so symmetric splitting occurs.
For cxc >

1
2 there is no symmetric splitting anymore. In order to see this, note that taking

the test-functions (1± η)ρ1 with ρ1 the minimizer to I1 yields

I1+η + I1−η ≤ 2I1 + 2η2
(

1
2 − cxc

) ∫
ρ2

1 dx < 2I1,

i.e. 2I1 is the strict global maximum. Furthermore in this setting the ground state density can
be found explicitly, see e.g. [34]:

ρ = |ψ|2, with ψ(x) = a · sech
(
b|x|+ x0

)
, (35)

where the parameters a, b, x0 only depend on α and cxc and are given by

x0 = arctanh
(1

b

)
, a =

√
b2

2(b− 1)
, b = 1− α1− 2cxc

2
.

With this we obtain

IHα + IH2−α =
1

12
(α2(3− 12c2xc) + 6α(4c2xc − 1)− 4(1 + 2cxc + 4c2xc))

which directly implies
min
α∈[0,2]

IHα + IH2−α = IH2 .

Therefore for cxc >
1
2 , we always have both electrons bound at one nucleus.

The fact that the minimum is attained at an integer, is also something we observe numerically
in the 3D case. From the view point of physics this make sense since we can not split an electron
in half, but it is non obvious why this drops out of the mathematics.
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3.2 The three dimensional case

Now we go back to the physically more interesting case of three dimensions. Since we are just
considering the H-atom the kinetic energy is the same as the von-Weizäcker kinetic energy, i.e.

E [ρ] =
1

2

∫
R3

|∇√ρ|2 dx+

∫
R3

V ρ dx+ J [ρ] +

∫
R3

exc(ρ) dx (36)

and with the energy as before

Eα = inf
ρ∈Aα

E [ρ], Aα := {ρ ∈ L1 :
√
ρ ∈ H1(R3),

∫
R3

ρ dx = α}.

In this section assume the exchange functional in (36) is given by exc(ρ) = −cxcρ4/3 (Dirac-
exchange).

Then for cxc � 1 we observe symmetry breaking as in the one-dimensional case.

Proposition 2 (Neutrally charged case). For cxc = 0 we have the correct splitting, i.e. α = 1

is the unique global minimizer to α 7→ Eα + E2−α. On the other hand there exists a c(N) > 0

such that if cxc > c(N) we obtain

2EN >
(
Eα + E2N−α

)
∀α 6= N

i.e. symmetry breaking occurs.

Proof. We start with the extreme case with cxc = 0, then the functional ρ 7→ E [ρ] is strictly

convex and hence we obtain for any admissible densities ρα, ρ2N−α with mass α and 2N − α,

respectively

2EN ≤ 2E [ 1
2ρα + 1

2ρ2N−α] < E [ρα] + E [ρ2N−α].

Taking now the infimum over ρα and ρ2N−α gives

2EN = min
α∈[0,N ]

(
Eα + E2N−α

)
.

So here the minimum is really attained at the symmetric splitting. Furthermore we also have

that α = N is always the strict global minimizer. If minimizer exist for every α ∈ [0, N + ε] then

we directly get a strong inequality 2EN < Eα + E2N−α for α 6= N , since in this case α = N

would be a strict local minimum and hence the global minimum. If we do not have minimizer,

then this can only happen if α 7→ Eα is not strictly decreasing anymore for α > N , but due to

convexity and the fact that α 7→ Eα is monotonically decreasing, we must have Eα = EN for

every α ∈ [N, 2N ]. But in this case we have

Eα + E2N−α = Eα + EN > 2EN .

12



Now we consider the second statement, i.e. we take cxc to be large. In order to see this, let

ρN denote a minimizer of EN and η ∈ (0, N). Then

E(N+η) + E(N−η) ≤ E [(1 + η
N )ρN ] + E [(1− η

N )ρN ]

= 2
(
T [ρN ] + V [ρN ]

)
+
(
(1 + η

N )2 + (1− η
N )2

)
J [ρN ] +

(
(1 + η

N )
4/3 + (1− η

N )
4/3
)
Exc[ρN ]

= 2EN + η2

N2

(
2J [ρN ] + 4

9Exc[ρN ]

)
+ o
(
η2

N2

)
,

where we used the Taylor-expansion for (1± η)4/3. Now we can use Hardy-Littlewood-Sobolev

and then Hölder interpolation to bound J [ρN ].

2J [ρN ] =

∫
R3

∫
R3

ρN (x)ρN (y)

|x− y|
dxdy ≤ CHLS ||ρN ||26

5
≤ CHLS ‖ρN‖

2/3
1 ‖ρN‖

4/3
4/3 .

So we get using ‖ρN‖1 = N

2J [ρN ] + 4
9Exc[ρN ] ≤

(
CHLSN

2/3 − 4

9
cxc

)∫
R3

ρ
4/3
1 dx < 0,

for cxc >
9
4CHLSN

2/3. Putting in the numbers, i.e. using the optimal CHLS given in [20] we see

that

cxc >
9

4

√
π

Γ(1)

Γ( 5
2 )

(
Γ(3)

Γ( 3
2 )

)2/3

N
2/3 ≈ 5.1615 N

2/3

suffices. In this case the symmetric splitting of the mass is not the minimum, in fact it is the

maximum since the remaining terms in the Taylor expansion all have negative sign.

While Proposition 2 deals with the extreme cases cxc = 0 and cxc � 1, we were not able

to prove symmetric splitting for the physically most interest case cxc = 3
4

(
3
π

)1/3
. Therefore, we

studied the behavior numerically. As in the one-dimensional setting 3.1, the minimum seems to
be always attained at an integer pair. But the transition from symmetric to asymmetric seems
to be more interesting since the function λ 7→ IHλ + IH2−λ does not simply switch from convex to
concave.

The computations for Figures 2 and 3 were done using the OCTOPUS package [2]. We remark
that after rescaling to an L2 normalized orbital, IHλ can be computed from a more standard DFT
problem with modified electron-electron interaction potential (fractional charge) and modified
exchange constant (cp. Slater X-α exchange).

If we already start with a positively charged molecule in the beginning and thus wonder about
the minimum of α 7→ E2λ−α + Eα for λ < N we can get a stronger result.

Proposition 3 (Positively charged case). Let λ < N , then there exists a constant c(λ) > 0 such

that for all cxc < c(λ) we have

min
α∈[0,λ]

(
E2λ−α + Eα

)
= 2Eλ.

13



Figure 2: The function λ 7→ IHλ + IH2−λ for increasing values of cxc

Figure 3: For the standard choice of the constant cxc = 3
4

(
3
π

)1/3
we get numerically the right

dissociation.

Proof. As in the proof of Proposition 2 we know that for cxc = 0 the symmetric splitting is the

strict global minimum. By continuity it thus suffices to show that it stays a local one for all cxc

small enough.

This follows quite straightforward by result of Le Bris [19], where he proved that the mapping

α 7→ Eα is strictly convex for α ≤ Z and cxc > 0 small enough. This directly implies

2Eλ < Eλ−α + Eλ+α, ∀ α ∈ (0, Z − λ).

Remark. Note that Le Bris originally proved his convexity result for the Thomas-Fermi-Dirac-

Von Weizsäcker model. But since he considered an arbitrary non-negative constant in front of

the Thomas-Fermi term, this reduces to our model in the hydrogen case, if we set this constant

to zero.
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4 Dissociation limit – The proof

This section contains the proof to Theorem 1, it is split into two parts containing the upper
bound and lower bound, respectively.

4.1 Upper bound

We begin by proving the upper bound to Theorem 1, i.e.

lim sup
R→∞

IX2

λ,R ≤ min
α∈[0,λ2 ]

(
IXα + IXλ−α

)
. (37)

For this purpose, given ε > 0 take γα ∈ Kα and γλ−α ∈ Kλ−α, s.t.

E [γα] ≤ IHα + ε
2 and E [γλ−α] ≤ IHλ−α + ε

2 .

Thanks to the continuity of the energy functionals established in Lemma 2 and the fact that the
finite rank operator and the functions C∞c (R3) are dense in H and L2(R3), respectively, we may
assume that both γα and γλ−α have finite rank with range in C∞c (R3).

Then define the operator γR := γα+ τRγλ−ατ−R, where τR is the unitary operator on L2(R3)
defined by (

τRf
)
(x) := f(x−R).

For R large enough we have γR ∈ Kλ and thus

IX2

λ,R ≤ E
X2

R [γR]

≤ EX [γα] + EX [γλ−α] +

∫
R3

∫
R3

ργλ−α(x−R)ργα(y)

|x− y|
dxdy

≤ IXα + IXλ−α + ε+

∫
R3

∫
R3

ργλ−α(x−R)ργα(y)

|x− y|
dxdy

R→∞−−−−→ IXα + IXλ−α + ε

Taking the limsup yields
lim sup
R→∞

IX2

λ,R ≤ I
X
α + IXλ−α + ε.

Since ε > 0 and also α ∈ [0, λ] were arbitrary, we get the desired assertion.

4.2 Lower bound

The lower bound is more difficult, we want to prove

lim inf
R→∞

IX2

λ,R ≥ min
α∈[0,λ]

(
IXα + IXλ−α

)
. (38)

Our proof idea is to use the concentration-compactness lemma, which is usually applied to a
minimizing sequence, but this time act on a sequence of minimizers

(
γRn

)
n

of IX2

λ,Rn
for a sequence(

Rn
)
n

tending to infinity.

In the following we will denote the arising subsequence also with
(
γRn

)
n

to keep notation clearer.
Furthermore in the following C > 0 will denote a generic constant, which may have different val-
ues at each appearance, indicating some finite positive constant independent of the surrounding
variables.
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RN → ∞,

ϕRN ∈ arg min IX2
λ,Rn

by Lemma 4 , there is a sub-

sequence such that either

lim
k→∞

sup
y∈RN

∫
BR(y)

ρRk dx = 0

(Vanishing)

∃α ∈ (0, λ), ρ1k, ρ
2
k ∈ L1(RN )

nonnegative such that

ρRk − (ρ1k + ρ2k)→ 0,∥∥ρ1k∥∥L1 → α,
∥∥ρ2k∥∥L1 → λ− α

dist
(
supp(ρ1k), supp(ρ2k)

)
−→∞.

(Dichotomy)

∀ε > 0 ∃R < ∞ such that∫
BR(yk)

ρRk dx ≥ λ− ε

(Concentration)

 lim inf
n→∞

EH2
Rn

[ρX2
Rn

] ≥ 0  

(Lemma 1)

for a subsequence

sup
k

min{|yk|, |yk −Rk|} <∞

(Lemma 6)

EH2
Rn

[ρX2
Rn

] ≥ min
α∈[0,λ

2
]

(
IXα + IXλ−α

)
�

EH2
Rn

[ρX2
Rn

] ≥
T∑
l=1

IH,∞αl + EH2
Rn

[ρ2n]

ρ1Rn stays close to

exactly one nucleus

EH2
Rn

[ρ2n] ≥ min
β

(
IHβ + IHλ−

∑
l αl−β

)
�

ρ1Rn does not stay close to

exactly one nucleus

by Lemma 4 up to a subsequence,

ρ2Rn ≈ ρ̃
1
Rn + ρ̃2Rn

with

EH
2

Rn [ρ̃1Rn ] ≥ IH,∞α̃

Figure 4: Structure of the proof for the lower bound. The loop on the bottom-right can only be

visited a finite number of times.
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Lemma 4 (Lions [22]). Let (ρn)n≥1 ⊆ L1(RN ) be a sequence of nonnegative functions such that∫
RN

ρn dx = λ, λ > 0 fixed.

Then there exists a subsequence (ρnk)k≥1 satisfying one (and only one) of the following properties:

1. Concentration There is (ynk)k≥1 ⊆ RN such that ρ(·+ ynk) is tight, i.e.

∀ε > 0 ∃R <∞ :

∫
BR(yk)

ρnk dx ≥ λ− ε

2. Vanishing For any R <∞, we have

lim
k→∞

sup
y∈RN

∫
BR(y)

ρnk dx = 0,

3. Dichotomy There is α ∈ (0, λ) and ρ1
k, ρ

2
k ∈ L1(RN ) nonnegative such that∫

RN
|ρnk − ρ1

k − ρ2
k| −→ 0,∫

RN
ρ1
k −→ α and

∫
RN

ρ2
k −→ λ− α

dist
(
supp(ρ1

k), supp(ρ2
k)
)
−→∞.

For the dichotomy case we will actually use the stronger statement given in [23] see below.
Hence we have to distinguish three cases. Note that case 2. and 3. correspond to the same

thing, i.e. the electron mass is distributed over the two nuclei. The concentration case is only
the extreme case where the entire mass stays at one nucleus.

Therefore let us start with the vanishing case.
Case 1: Vanishing:

We apply the bounds for the energy functional EX2 established in (3), which yields∥∥∥∥∇√ρX2

Rn

∥∥∥∥ ≤ C + EX2 [ρX2

Rn
] = C + IX2

λ,Rn
≤ C,

which implies that the sequence
(
ρX2

Rn

)
n

is bounded in H1(R3). Hence we can apply the following
lemma by Lions.

Lemma 5 (P.-L. Lions [23]). Let 1 ≤ p ≤ ∞, 1 ≤ q <∞ with q 6= Np
N−p =: p∗ if p < N . Assume

that (un)n≥1 and
(
∇un

)
n

are bounded in Lq(RN ) and Lp(RN ), respectively. If

sup
y∈RN

∫
BR(y)

|un|q dx
n→∞−−−−→ 0, for some R > 0,

then un → 0 in Lα(RN ) for α between q and p∗ (if p ≥ N set p∗ =∞).

With p = q = 2 we obtain that√
ρX2

Rn

n→∞−−−−→ 0, in Lα(R3), α ∈ (2, 6).
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So clearly we get

Exc[ρ
X2

Rn
] = −cxc

∫
R3

(
ρX2

Rn

)4/3
dx

n→∞−−−−→ 0.

Furthermore we can split the Coulomb potential V = v1 + v2 with v1 ∈ Lq(R3) and v2 ∈ Lr(R3)
with 3

2 < r, q <∞. Hence by applying Hölder inequality we obtain∣∣∣∣ ∫
R3

1

|x|
ρX2

Rn
dx

∣∣∣∣ ≤ ‖v1‖q
∥∥∥ρX2

Rn

∥∥∥
q′

+ ‖v2‖r
∥∥∥ρX2

Rn

∥∥∥
r′

n→∞−−−−→ 0.

Analogously for the second nucleus with Coulomb potential 1
|·−Rn| . So combining those two

results yields
lim inf
n→∞

EX2,Rn [ρX2

Rn
] ≥ 0,

but this contradicts the upper bound (37) we established

0 ≤ lim inf
n→∞

EX2,Rn [ρX2

Rn
] ≤ lim sup

n→∞
EX2,Rn [ρX2

Rn
] ≤ min

α∈[0,λ2 ]

(
IXα + IXλ−α

)
< 0  .

Therefore Vanishing cannot occur.
Case 2: Concentration: Assume concentration occurs, i.e.

∀ ε > 0 ∃ (yn)n, M <∞ :

∫
BM (yn)

ρX2

Rn
(x) dx ≥ λ− ε ∀ n.

Intuitively this corresponds to

E [ρX2

Rn
]
n→∞−−−−→ IHλ + IH0 = IHλ .

We start off with a small lemma.

Lemma 6. The sequence (yn)n stays bounded around 0 or (Rn)n, to be more precise (up to a

subsequence)

∃ L <∞ ∀n ≥ 0 : |yn| ≤ L or |yn −Rn| ≤ L.

Proof. Assume |yn| > L and |yn − Rn| > L for any L > 0 (in particular L � M). We estimate

the Coulomb interaction by applying Cauchy-Schwarz and then Hardy’s inequality to obtain

∫
ρX2

Rn

|x|
dx =

∫ √
ρX2

Rn

√
ρX2

Rn

|x|
dx ≤

(∫
ρX2

Rn
dx

)1/2(∫ ρX2

Rn

|x|2
dx

)1/2

≤ 2

(∫
ρX2

Rn
dx

)1/2(∫
|∇
√
ρX2

Rn
|2 dx

)1/2

≤ C
(∫

ρX2

Rn
dx

)1/2

,

where we used that the H1-seminorm of
(√

ρX2

Rn

)
n

stays bounded. Now if |yn| > L we obtain

(∫
BL−M (0)

ρX2

Rn

|x|
dx

)2

≤ C
∫
BL−M (0)

ρX2

Rn
dx ≤ C

(
λ−

∫
BM (yn)

ρX2

Rn
dx

)
≤ Cε
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and the analogous result for the Coulomb interaction with the other nucleus.

Then,

−V X2

Rn
[ρX2

Rn
] =

∫
R3

ρX2

Rn

(
1

|x|
+

1

|x−R|
dx

)

=

∫
BL−M (0)

ρX2

Rn

|x|
dx+

∫
BL−M (Rn)

ρX2

Rn

|x−Rn|
dx+

∫
BcL−M (0)

ρX2

Rn

|x|
dx+

∫
BcL−M (Rn)

ρX2

Rn

|x−Rn|
dx

≤ 2λ

L−M
+ 2Cε

1/2.

Since this inequality holds for any L > M we can take L→∞ and then ε→ 0, which gives

V X2

Rn
[ρX2

Rn
]
n→∞−−−−→ 0.

But this would imply

IXλ ≥ min
α∈[0,λ2 ]

(
IXα + IXλ−α

)
≥ lim sup

n→∞
EX2

Rn
[ρX2

Rn
] ≥ lim inf

n→∞
EX2

Rn
[ρX2

Rn
] = lim inf

n→∞
E∞[ρX2

Rn
] ≥ I∞λ ,

in contradiction to the strict inequality in Lemma 1 (ii). This finishes the proof.

So Lemma 6 gives us either |yn| ≤ L or |yn −R| ≤ L for some L > 0. W.l.o.g. we can in the
following assume that |yn| ≤ L (otherwise transform the coordinate system by a reflection s.t. 0
gets mapped to Rn. This leaves the energy functional unchanged.)
The last step consists now in a cut-off argument.

By Lemma 3 the sequence (γX2

Rn
)n stays uniformly bounded in H and hence we have (up to

subsequence)

γX2

Rn

∗
⇀ γ∗ in H,

√
ρX2

Rn
⇀
√
ρ∗ in H1(R3).

Since we are in the concentration case and the (yn)n stays bounded, we can choose for any ε > 0
a compact set K ⊆ R3 such that∫

K

ρX2

Rn
dx ≥

∫
BM (yn)

ρX2

Rn
dx ≥ λ− ε.

Therefore we get for the limit ρ∗ using convergence in Lploc

‖ρ∗‖1 ≥
∫
K

ρ∗ dx = lim
n→∞

∫
K

ρX2

Rn
dx ≥ λ− ε,

since ε > 0 was arbitrary we get ‖ρ‖1 = λ. Therefore ρX2

Rn
convergences also strongly in L1 and

due to the weak convergence in H1 also strongly in Lp(R3) for p ∈ [1, 3).
Therefore we get ∫

R3

1

|x−Rn|
ρX2

Rn
dx

n→∞−−−−→ 0.

Using now the sequential weak lower semi-continuity of T we obtain

lim inf
n→∞

EX2 [γX2

Rn
] ≥ E∞[γ∗]−

∫
R3

1

|x|
ρ∗ dx = EX [γ∗] ≥ IXλ = IXλ + IX0 .
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Case 3: Dichotomy: Take a smooth partition of unity ξ2 + ζ2 = 1 such that

0 ≤ ξ, ζ ≤ 1, ξ(x) = 1, if |x| ≤ 1, ξ(x) = 0 if |x| ≥ 2 and ζ(x) = 0, for |x| ≤ 1, ζ(x) = 1 for |x| ≥ 2.

Furthermore assume
‖∇ξ‖∞ ≤ 2 and ‖∇ζ‖∞ ≤ 2,

and consider the dilated functions ξK(x) = ξ
(
x
K

)
and ζK(x) = ζ

(
x
K

)
. Now if we use the detailed

construction of the dichotomy case given in [23] (compare also [1]), we can assume that (up to a
subsequence), there exists

• α ∈ (0, λ)

• a sequence of points (yn)n ∈ R3

• two increasing sequences of positive real numbers (K
(1)
n )n and (K

(2)
n )n such that

lim
n→∞

K(1)
n =∞ and lim

n→∞

K
(2)
n

2
−K(1)

n =∞

such that the sequences γ
(1)
n := ξ

K
(1)
n
γX2

Rn
ξ
K

(1)
n

and γ
(2)
n := χ

K
(2)
n
γX2

Rn
χ
K

(2)
n

satisfy



ρ
γ
X2
Rn

= ρ
γ

(1)
n

on BK1,n(yn), ρ
γ
X2
Rn

= ρ
γ

(2)
n

on BcK2,n(yn),

lim
n→∞

tr γ(1)
n = α,

lim
n→∞

tr γ(1)
n = λ− α,

ρ
γ

(1)
n

+ ρ
γ

(2)
n
− ρ

γ
X2
Rn

n→∞−−−−→ 0 in Lp for all p ∈ [1, 3),

‖ργn‖
Lp
(
B
K

(2)
n

(yn)\B
K

(1)
n

(yn)

) n→∞−−−−→ 0 in Lp for all p ∈ [1, 3),

lim
n→∞

dist
(
Supp

(
ρ
γ

(1)
n

)
,Supp

(
ρ
γ

(2)
n

))
=∞,

lim inf
n→∞

tr
[
−∆

(
γn − γ(1)

n − γ(2)
n

)]
≥ 0.

(39)

In terms of the energy functional this splitting gives

EX2 [γX2

Rn
] = E∞[γ(1)

n ] + E∞[γ(2)
n ] +

∫
R3

ρ
γ

(1)
n
V X2 +

∫
R3

ρ
γ

(1)
n
V X2 +

∫
R3

ρ̃nV
X2

+ tr
[
−∆

(
γn − γ(1)

n − γ(2)
n

)]
+D[ρ

γ
(1)
n
, ρ
γ

(2)
n

] +D[ρ̃n, ργ(1)
n

+ ρ
γ

(2)
n

] + J [ρ̃n]

+

∫
R3

exc
(
ρX2

Rn

)
− exc

(
ρ
γ

(1)
n

)
− exc

(
ρ
γ

(2)
n

)
,

where we have denoted ρ̃n = ρX2

Rn
− ρ

γ
(1)
n
− ρ

γ
(2)
n

. Since ρ̃n converges to zero in Lp(R3) for all

p ∈ [1, 3), we obtain ∫
R3

ρ̃nV
X2 +D[ρ̃n, ργ(1)

n
+ ρ

γ
(2)
n

] + J [ρ̃n]
n→∞−−−−→ 0.
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Furthermore for the Coulomb-interaction between ρ
γ

(1)
n

and ρ
γ

(2)
n

we have

D[ρ
γ

(1)
n
, ρ
γ

(2)
n

] ≤ dist
(
Supp

(
ρ
γ

(1)
n
, ρ
γ

(2)
n

))−1
∥∥∥ργ(1)

n

∥∥∥
1

∥∥∥ργ(2)
n

∥∥∥
1

n→∞−−−−→ 0

and also the difference in the exchange terms vanishes

∣∣∣∣ ∫
R3

exc
(
ρX2

Rn

)
− exc

(
ρ
γ

(1)
n

)
− exc

(
ρ
γ

(2)
n

)∣∣∣∣
≤

∫
BK2,n

(yn)\BK1,n
(yn)

∣∣exc(ρX2

Rn

)∣∣+
∣∣exc(ρHγ(1)

n

)∣∣+
∣∣exc(ρHγ(2)

n

)∣∣
≤ 3C

(∥∥∥ρX2

Rn

∥∥∥p−
Lp−
(
BK2,n

(yn)\BK1,n
(yn)
) +

∥∥∥ρX2

Rn

∥∥∥p+

Lp+

(
BK2,n

(yn)\BK1,n
(yn)
) ) n→∞−−−−→ 0,

where the exponents p± are given by p± = 1 + β±. Using the lim inf estimate for the kinetic
energy from (39), we obtain

EX2 [γX2

Rn
] ≥ E∞[γ(1)

n ] + E∞[γ(2)
n ] +

∫
R3

ρ
γ

(1)
n
V X2 +

∫
R3

ρ
γ

(2)
n
V X2 +R(n) (40)

with a remainder R(n)
n→∞−−−−→ 0. The last step is to deal with the nuclei part and to go from

V X2 to V X ; here we again have to distinguish three cases.
Case1: ρ

γ
(1)
n

stays close to exactly one nucleus (w.l.o.g. the one at the origin), i.e.

dist
(
0, B

K
(1)
n

(yn)
)

stays bounded and dist
(
Rn, BK(1)n(yn)

) n→∞−−−−→∞.

Note that this necessarily implies that dist
(
0,Supp(ρ

γ
(2)
n

)
)
→ ∞ due to triangle inequality.

Hence, ∫
R3

ρ
γ

(1)
n

1

|x−Rn|
dx,

∫
R3

ρ
γ

(2)
n

1

|x|
dx

n→∞−−−−→ 0

and thus taking the limit in (40) and using the continuity of λ 7→ IXλ gives

lim inf
n→∞

IX2

λ,Rn
= lim inf

n→∞
EX2 [γX2

Rn
] ≥ lim inf

n→∞
EX [γ(1)

n ] + EX [γ(2)
n ] ≥ IXα + IXλ−α ≥ min

α∈[0,λ2 ]

(
IXα + IXλ−α

)
.

Case 2: ρ
γ

(1)
n

does not stay close to any of the two nuclei, i.e.

dist
(
{0, Rn},Supp

(
ρ
γ

(1)
n

)) n→∞−−−−→∞.

Then (40) becomes

min
α∈[0,λ2 ]

(
IXα + IXλ−α

)
≥ lim inf

n→∞
EX2 [γX2

Rn
] ≥ I∞α + lim inf

n→∞

(
E∞[γ(2)

n ] +

∫
R3

ρ
γ

(2)
n
V X2

)
= I∞α + lim inf

n→∞
EX2 [γ(2)

n ]

≥ I∞α + lim inf
n→∞

EX2 [γ̃n]︸ ︷︷ ︸
=:Jλ−α

,
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where γ̃n is a minimizer of the problem IX2

λ−α,Rn for each n.
Case 3: Here ρ

γ
(1)
n

stays close to both of the nuclei and hence ρ
γ

(2)
n

does not stay close to any

of the two. Thus we get the same result as in case 2, but with α and λ− α exchanged.
So we obtain

Jλ ≥ IX,∞α + Jλ−α (case 2) or Jλ ≥ IX,∞λ−α + Jα (case 3),

and since the opposite inequality always holds we arrive at

Jλ = I∞α + Jλ−α (case 2) or Jλ = I∞λ−α + Jα (case 3). (41)

Note also that the part splitting off to infinity (i.e. γ
(1)
n in case 2 and γ

(2)
n in case 3) is almost a

minimizing sequence for the problem at infinity (I∞α in case 2 and I∞λ−α in case 3) in the sense
that

lim
n→∞

E∞[γ(1)
n ] = I∞α and lim

n→∞
tr[γ(1)

n ] = α.

Now we are in the same position as in the beginning of the proof: We have a sequence γ̃n of
minimizers to the functional EX2

Rn
but now with the mass constraint

‖ρX2
‖ = λ− α < λ ≤ N. (42)

Going through the entire procedure of the proof again, it either ends after a finite amount of
steps (i) or we always end up into the dichotomy case and there case 2 or 3 (ii) compare Figure
4.

Case (i): After a finite amount of steps we get

Jλ ≥
T∑
l=1

I∞αl + Jλ−
∑T
l=1 αl

≥
T∑
l=1

I∞αl + min
β

(
IXβ + IX

λ−β−
∑T
l=1 αl

)
. (43)

Let the minimum at the right hand side be attained at β̃, then we can just apply the weak
subadditivity inequality from Lemma 1 to obtain the desired assertion

(43) =

T∑
l=1

I∞αl + IX
β̃

+ IX
λ−β̃−

∑T
l=1 αl

≥ IX
β̃

+ IX
λ−β̃ ≥ min

α∈[0,λ2 ]

(
IXα + IXλ−α

)
.

Case (ii): This case is the more intricate one.
After the first splitting we have for the sequence γ̃n that ‖ργ̃n‖1 = λ − α < λ. In order to

show that such a splitting can not occur infinitely many times we start with considering the
Euler-Lagrange equations of the system.

Lemma 7 (Euler-Lagrange equations). Let γR be a minimizer to the energy functional EX2

R to

the mass constraint tr[γR] = λ then it satisfies the Euler-Lagrange equations

γR = 1(−∞,εF )

(
hγR

)
+ δ, with 0 ≤ δ ⊂ Ker

(
hγR − εF

)
(44)

for some εF < 0 called the Fermi energy, and with the Hamiltonian

hγR =
(
− 1

2 ∆ +ργR ∗ 1
|x| + V X2

R + e′xc(ργR)
)
.

Furthermore, we have

γR ∈ arg min{tr[hγRγ] : γ ∈ Kλ}. (45)

22



Proof. This is a standard result, but let us shortly proof it (for a more detailed version see

[13]). If γR is a minimizer for EX2

R with tr[γR] = λ we have for any γ ∈ Kλ the inequality

EX2

R [tγ + (1− t)γR] ≥ EX2

R [γR]. In particular

∂

∂t
EX2

R [tγ + (1− t)γR]

∣∣∣∣
t=0

≥ 0. (46)

A direct calculation leads to

∂

∂t
EX2

R [tγ + (1− t)γR]

∣∣∣∣
t=0

= tr
[
hγR(γ − γR)

]
with hγR as above. Due to (46) we must have γR ∈ arg min{tr[hγRγ] : γ ∈ Kλ}. the representa-

tion of γR then immediately follows.

Note that (45) implies that in fact only finitely many orbitals are occupied, i.e.

γ =

n∑
l=1

|ϕl〉〈ϕl|+
m∑
l=n

λl|ϕl〉〈ϕl|,

with λl ∈ [0, 1].
Furthermore every occupied orbital ϕln is an eigenstate of the corresponding hamiltonian hγ̃n ,

i.e. satisfies (
− 1

2 ∆ +ργ̃n ∗ 1
|x| + V X2

Rn
+ e′xc(ργ̃n)

)
ϕln + θlnϕ

l
n = 0, (47)

where −θ1
n < −θ2

n ≤ . . . denotes the ordered eigenvalues. Our first step consist in proving that
for fixed l the sequence

(
θln
)
n

stay bounded away from 0.

Lemma 8. Denote by
(
θln
)
n

the sequence of smallest eigenvalues in (47), then we have

lim inf
n→∞

θln > 0. (48)

Proof. To see this note

hργ̃n ≤ −
1
2 ∆ +ργ̃n ∗ 1

|x| + V X2

Rn
= h̃n,

so it is enough to consider the latter operator h̃n. As in [24] consider a radially symmetric

function ψ ∈ C∞c with ‖ψ‖2 = 1 and set ψσ = σ3/2ψ(σ·). Then we get

〈ψσ, h̃nψσ〉 =
1

σ

∫
R3

|∇ψ|2 dx+
1

σ

∫
R3

Vσ(x)|ψ|2 dx+
1

σ

∫
R3

(
ρσ,γ̃n ∗ 1

|x|

)
|ψ|2 dx,

where Vσ = − Z
|x| −

Z∣∣x−Rnσ ∣∣ and ρσ,γ̃n = σ3ργ̃n(σ·). Due to radial symmetry we have

∫
R3

(
ρσ,γ̃n ∗ 1

|x|

)
|ψ|2 dx =

∫
R3

∫
R3

|ψ|2(y)

max{|x|, |y|}
dy ργ̃n(x) dx

≤ ‖ργ̃n‖1︸ ︷︷ ︸
λ−α

∫
R3

|ψ|2(y)

|y|
dy.

23



By Rayleigh-Ritz we thus have for every fixed n taking σ →∞

−θ1
n = inf〈ψ, hργ̃nψ〉 ≤ inf〈ψ, h̃nψ〉 ≤

(
λ− α− 2Z

)︸ ︷︷ ︸
<0

∫
R3

|ψ|2(y)

|y|
dy,

where the right hand side is independent of n. For l > 1 simply take a family of orthogonal

functions
(
ψj
)k
j=1

with the same properties as ψ above, the min-max principle then gives the

result.

Since also for γ̃n the dichotomy case occurs we get γ̃
(1)
n and γ̃

(2)
n with the same properties as

listed in (39). Define ωln := (1 − ξ
K

(1)
n
− χ

K
(2)
n

)ϕln = εnϕ
l
n and ϕl1,n = ξ

K
(1)
n
ϕln, ϕ

l
2,n = χ

K
(2)
n
ϕln.

Note that 0 ≤ εn ≤ 1 and ‖∇εn‖∞ → 0. Furthermore we have

ρ
γ̃

(i)
n

=
∑
l

λ
(n)
l |ϕ

l
i,n|2,

where 0 ≤ λ(n)
l ≤ 1 is the occupation number of the lth orbital. By multiplying (47) with ωln, we

obtain ∫
R3

∇ωln · ∇ϕln dx
n→∞−−−−→ 0.

Since ∇ωln = εn∇ϕln + ϕln∇εn and ε2
n ≤ εn we also get∫

R3

ε2
n|∇ϕln|2 dx

n→∞−−−−→ 0,

which finally implies ∇ωln → 0 in L2(R3). Combining this with the fact that the supports of
ϕl1,n and ϕl2,n go infinitely far apart for n→∞ (47) becomes

(
− 1

2 ∆ +ρ
γ̃

(1)
n
∗ 1
|x| + V X2

Rn
+ e′xc(ργ̃(1)

n
)
)
ϕl1,n + θlnϕ

l
1,n

n→∞−−−−→
H−1

0(
− 1

2 ∆ +ρ
γ̃

(2)
n
∗ 1
|x| + V X2

Rn
+ e′xc(ργ̃(2)

n
)
)
ϕl2,n + θlnϕ

l
2,n

n→∞−−−−→
H−1

0

(49)

(50)

Note here that the eigenvalues θln are the ones from hγ̃n and that the support of one of the two

sequences drifts infinitely far way of both nuclei. W.l.o.g. let it be γ̃
(1)
n , then

dist
(
{0, Rn}, ργ̃(1)

n

) n→∞−−−−→∞

and since γ̃
(1)
n is almost a minimizing sequence to I∞α (compare above), it cannot vanish. There-

fore there exists κ,M > 0 and a sequence (yn)n of points in R3 such that∫
BM (yn)

ρ
γ̃

(1)
n

(x) dx ≥ κ > 0. (51)

Furthermore we necessarily have

dist
(
{0, Rn}, (yn)n

) n→∞−−−−→∞
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and thus (49) becomes for the translated density matrix γ̄
(1)
n := τyn γ̃

(1)
n τ−yn with orbitals ϕ̄l1,n(

− 1
2 ∆ +ρ

γ̄
(1)
n
∗ 1
|x| + e′xc(ργ̄n(1))

)
ϕ̄l1,n + θlnϕ̄

l
1,n

n→∞−−−−→
H−1

0.

Finally note that
√
ρ
γ̄

(1)
n

⇀
√
ρ 6= 0 in H1(R3) due to (51).

Now if our procedure never stops we can as in [1] construct an infinity of sequences
(
ϕlk,n

)
n∈N

such that for every k ∈ N



∀n ∈ N, ψl,k,n :=
(√

λ
(n)
l ϕlk,n

)
,
√
ρ
γ

(k)
n

bounded in H1(R3),

∫
R3

ρ
γ

(k)
n

= αk, ργ(k)
n

=
∑
l

|ψl,k,n|2

(
− 1

2 ∆ +ρ
γ

(k)
n
∗ 1
|x| + e′xc(ργ(k)

n
)
)
ψl,k,n + θlnψl,k,n = ηn

H−1

−−−−→
n→∞

0

ψl,k,n converges to ψl,k weakly in H1, strongly in Lploc for 2 ≤ p < 6 and a.e. on R3,√
ρ
γ

(k)
n

converges to
√
ρk 6= 0 weakly in H1, strongly in Lploc for 2 ≤ p < 6 and a.e. on R3,

where ∑
k∈N

αk ≤ λ− α. (52)

Note furthermore that ∑
l

‖ψl,k,n‖2H1

stays bounded independent of k or n. Thus taking the limit n→∞ we get

(
− 1

2 ∆ +ρk ∗ 1
|x| + e′xc(ρk)

)
ψl,k + θlψl,k = 0, (53)

where θl = lim inf
n→∞

θln > 0. Furthermore we have

ρk =
∑
l

|ψl,k|2. (54)

Since the mass of the ρ
γ

(k)
n

does not depend on n we obtain from (52)

lim
k→∞

‖ρk‖1 = 0.

By multiplying (53) with ψl,k and using assumption 1 we obtain

0 ≥ 1

2

∑
l

‖∇ψl,k‖22 +
∑
l

∫
R3

|ψl,k|2e′xc(ρk) dx

≥ 1

2

∑
l

‖∇ψl,k‖22 − C
∑
l

( ∥∥ψ2
l,k

∥∥
1

1−β−
+
∥∥ψ2

l,k

∥∥
1

1−β+

)
‖ρk‖1

≥ 1

2

∑
l

‖∇ψl,k‖22 − C ‖ρk‖1
∑
l

‖ψl,k,n‖2H1︸ ︷︷ ︸
<∞

.
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Thus we obtain ∑
l

‖∇ψl,k‖22
k→∞−−−−→ 0.

Applying standard elliptic regularity results [12] to (53) now give us the inequality

‖ψl,k‖∞ ≤ C ‖ψl,k‖H1 ,

where the constant C > 0 does not depend on k and thus

lim
k→∞

∑
l

‖ψl,k‖2∞ = 0.

Thus by (54) we also obtain
lim
k→∞

‖ρk‖∞ = 0.

Again from (53) and from Assumptions 1 we deduce

θl ‖ψl,k‖22 ≤ C
(
‖ρk‖2β−∞ + ‖ρk‖2β+

∞
)
‖ψl,k‖22 . (55)

Now note that due to (45) at most N different energy levels are occupied. Thus

‖ψl,k,n‖22 = λnl = 0,

for all l corresponding to the (N+1)th or higher eigenvalues without counting multiplicity. Note
that due to degeneracies this might not be the same as l > N . Therefore we directly get for
those l

‖ψl,k‖2 = 0.

Thus the mass of ρk is distributed among only finitely many energy levels l. Therefore for at
least one fixed level l we can find up to a subsequence in k ψl,k such that

‖ψl,k‖2 6= 0, ∀k,

because otherwise we would have ‖ρk‖1 = 0. Hence (55) becomes

θl ≤ C
(
‖ρk‖2β−∞ + ‖ρk‖2β+

∞
) k→∞−−−−→ 0,

which is a contradiction to Lemma 8.
Thus case (ii) can not happen and the proof is hence complete.

4.3 Proof of Proposition 1

For the upper bound we can take a ϕ ∈ C∞c (R) and consider as a testfunction for the H2

Hamiltonian just the tensor product ψ = ϕ ⊗ ϕ(· − R), i.e. ψ(x, y) = ϕ(x)ϕ(y − R). Then we
directly get

lim
R→∞

EH
2

R ≤ lim
R→∞

〈ψ,HR(x, y)ψ〉

= lim
R→∞

2〈ϕ, h(x)ϕ〉+ |ϕ|2(R) + |ϕ|2(−R) + 2

∫
ϕ(±y)ϕ(y −R) dy

= 2〈ϕ, h(x)ϕ〉,

where we used that the last three terms vanish as soon as R > diam(suppϕ). Taking now the
infimum w.r.t. ϕ and noting that the Hamiltonian h is continuous on H1(R) we get the result.
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4.3.1 Lower bound

Since the electron-electron interaction is positive we directly get

H(x, y) ≥ h̃(x) + h̃(y), (56)

where h̃(x) = − d2

dx2
− δ0(x)− δR(x). To determine the infimum over the right hand side, we can

just consider tensor-products of functions due to the additive structure. Hence we only need to
consider

〈ϕ, h̃(x)ϕ〉, ϕ ∈ L2(R).

Therefore consider any arbitrary ϕ ∈ H1(R), and two cut-off functions ξ1 and ξ2 with

ξ2
1 + ξ2

2 = 1, ξ1(x) = 1 for x ≤ 1
3 , ξ1(x) = 0 for x ≥ 2

3 .

Defining then
ϕi = ξi

( ·
R

)
ϕ,

gives with a straightforward calculation

〈ϕ, h̃(x)ϕ〉 ≥ 〈ϕ, h0(x)ϕ〉+ 〈ϕ, hR(x)ϕ〉+ o(1)

≥ ε
(
‖ϕ1‖22 + ‖ϕ2‖22

)
+ o(1) = ε ‖ϕ‖22 + o(1),

where we used that the lowest eigenvalue ε = EH of h(x) does not depend on the position of
the single nucleus in the system.

Combining this lower bound with (56) directly gives the desired assertion.
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