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TOPOLOGY OPTIMIZATION VIA DENSITY BASED APPROACHES

J. HAUBNER*, F. NEUMANN', AND M. ULBRICH?
Key words. Topology optimization, phase field, Stokes flow
AMS subject classifications. 35R30, 49K20, 49Q10, 65K10

Abstract. A new method for performing density based topology optimization for Stokes flow is
presented, which differs from previous approaches in the way the underlying mixed integer problem
is relaxed. It is theoretically justified by a thorough theoretical investigation regarding existence
of solutions and differentiability. Based on these results a numerical realization is presented which
applies an H*-regularization for the control.

1. Introduction. Shape and topology optimization denotes a family of opti-
mization problems aiming to find the optimal shape with respect to a given objective
function on a set of admissible shapes O,4. Shape optimization problems are given
by

SRORALS
where jN : Ouq — R denotes a shape functional [26, Def. 4.3.1] and O,4 denotes a set
of admissible shapes. There are many different applications in fluid mechanics and
structural optimization such as weight reduction or airplane optimization, see [44, 13].
In [1], shape optimization is utilized in a biomedical engineering setting to analyze
blood flow.

In order to have well-definedness in a classical sense, and to develop optimization
theory and methods, a metric structure has to be imposed. This can be realized in
various ways leading to different concepts. One possibility is given via transforma-
tions, which leads to the concept of shape derivatives, e.g. [49], and the method of
mappings, e.g. [45]. Another way is the imposition of a metric via characteristic
functions, or, equivalently, via functions that attain values in {—1,1}, on a domain
D C R%. The latter, which is the focus of this work, is abstractly given by

minj(x), s.t. g(x) <0, x € {-1,1} ae. ,
X

where g represents constraints, e.g. the volume constraints, and j(xq) := 7(Q) for
1 for z € Q,

-1 for z € D\ Q.

It naturally allows for shapes with different topologies and is, therefore, referred to as
topology optimization. However, due to its infinite dimensional mixed integer nature,
this optimization problem is hard to solve. On that account, different relaxation
techniques were introduced to handle this problem. In this paper, we examine a
relaxation that is different from existing approaches.

While topology optimization was initially introduced and studied for structure
mechanical problems (e.g. [12, 50, 4]), [15] was the pioneering work in applying

every characteristic function xq, Q € Ouq, defined by yq =
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this method to the fluid mechanical setting based on the Stokes equations. The
theoretical analysis was complemented [31] and extended to the steady state Navier-
Stokes equations [32, 30]. For a survey on applications of topology optimization in
fluid mechanical problems, see, e.g., [8, 44]. Here, we consider topology optimization
for the Stokes problem, using the setting proposed in [15].

Problems in shape and topology optimization are highly complex and have to be
treated carefully. Numerical methods typically rely on relaxation techniques [15, 33],
however, one still has to deal with the nonlinear nature of the problems which typically
leads to many local minima. The approach in [15] is restricted to a specific objective
function. [33] can deal with more general objective functions and is based on the
reformulation of the {—1, 1}-constraint

minj(p), s.t. g(p) <0, / (PP =1)dé =0, -1<p<1ae.
P D

and the relaxation
.. n
minj(p) 47 [ (6= 1de+ Tlolg, st g(p) <0, 1< p<Tae
peEY D 2

for Y = H'(D). Here, the sphere constraint [, (p*> —1)d{ = 0 is penalized in the
objective function value and intermediate values between —1 and 1 are allowed. Since
an interfacial layer is included, it is called phase field approach. For numerical investi-
gations, in [34] the problem is further relaxed by penalizing the constraint —1 < p <1
using

1 1. .
Y(p):= 5” max (0, p — 1)||2(py + §|| min(0, p+1)[172p)
1 1
= 5” max(0, p — 1)1 (p) + §H max(0, —p — 1)?|| L1 (p).-

Moreover, this approach was also applied for problems that are governed by the steady
Navier-Stokes flow, see, e.g., [36, 35].

A similar formulation that—to the best of the authors’ knowledge—has not been
investigated so far and is worth examination is given by

(L) minj) = 3+ 7500+ Folf st 90) 0. [ (ol = 1)dg =0

for p, g > 1. In contrast to previous approaches, the sphere constraint and the penal-
ization

1 1
(1.2) Tplp) o = Jllmax(0, p = 1)l oy + Zfl max(0, =p = 1)l ().

are generalized (basically in order to be able to work with BV -spaces). In addition, the
sphere constraint is kept as an equality constraint. In this paper, we consider (1.1)
for minimizing the total potential power in the Stokes flow on a Lipschitz domain
D Cc R¢, d € {2,3} with outer unit normal n. More precisely, we investigate the PDE
constrained optimization problem

(1.3) i(p) = J(p,S(p)),
2
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with S : p +— wu being the solution operator of the generalized Stokes equations,
compare [15],

a(p)u — pAu+Vp=f on D,
(1.4) div(u) =0 on D,

u=up ondD,

where f € H=1(D)% denotes a source term and up € H2(dD)% denotes Dirichlet
boundary conditions. Moreover, @ : R — R is chosen such that a > 0, a(x) = 0 for
x> 1and a(x) > 1 for ¢ < —1, and the Nemytskii operator « is defined by

(1.5) a:palp), alp)(§) = alp(§))

for a.e. £ € D. Hence, where p(§) > 1, the standard Stokes equations are solved,
whereas for p(§) < —1 the a(p)u term dominates and forces u to be small. The cost
functional that we consider is the total potential power function defined by

(1.6) J(p,u) = %(a(p)u,u)D + %(VmVu)D - (f,u)p,

compare [15]. Here, (u,v)p := [, u-vd¢ denotes the L2-inner product on D. We will
pose the volume constraint

(L.7) olp) =1 /D (p(€) + 1)de —V <0,

2

which upper bounds the volume of the fluid domain by a constant V' > 0.

In Section 2 we consider the solution operator for the generalized Stokes equations.
We extend the results in [34] to less restrictive choices of a and prove a differentiabil-
ity result. Section 3 presents a continuity and differentiability result for superposition
operators that will be used to show differentiability of T, and later also for showing
a differentiability result for a. These results are used to show existence of solutions
and, in Section 4, differentiability of the reduced objective under assumptions on the
Banach space Y. Section 5 considers the limit behavior for increasing penalization pa-
rameter . Section 6 motivates different settings, that fulfill all requirements that are
needed for the theoretical analysis. In Section 7 we discuss the numerical realization.
Section 8 presents the results.

2. On the solution operator for the generalized Stokes equations. Let
d € {2,3}, X be a Banach space and

U:={ue H (D) : uw=up on dD, div(u) = 0},
V:={ve H}(D)? : div(v) = 0}.

The weak formulation of (1.4) is given by: find w € U such that

(2.1) E(p,u)(v) := (a(p)u, v)p + u(Vu, Vo) p = (f,v) p=1 (D)2, 11 (D)e

for all v € V, see e.g. [39, Remark 5.1]. In this section, we show well-definedness
(Lemma 2.1), continuity (Lemma 2.2) and Fréchet differentiability (Lemma 2.3) of
the solution operator S : X — U C H*(D)%, p +— w of (2.1) under general assumptions
on the superposition operator a.
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LEMMA 2.1 (Well—deﬁnedness of the solution operator). Let D C R? be a bounded
Lipschitz domain, up € H? 3(0D)¢ with fé)D up-nds =0 and f € H-*(D)4. Moreover,
assume that for every p € X, a: X — L°(D), defined by (1.5), with s > 1 for d =2
and s > 3 5 for d =3, is bounded on an open neighborhood around p, i.e. there exists
an open subset X c X with p e X, and a constant C > 0 depending on p such
that ||o(p)||rs(py < C for all p € X. Then, for every p € X, there exists a unique
u = u(p) € U such that (1.4) is fulfilled and a constant ¢ > 0 (that depends on p)
such that

[ull rrpya < el fll-1(pye + HuD”H2(8D) )-

Proof. The proof is based on [39, Lemma 5.1] and Lax—Milgram’s theorem. First,
we reduce the variational equation (2.1) to a homogenous problem By [39, Lemma
4.1], there exists a continuous extension operator ext : {g € H? 3(0D)4 fé)D g-nds =
0} = {u € H (D) : div(u) = 0}, § — ext(§) such that ext(§ )|3D = g. Let
w = ext(up), i.e., there exists a constant C' such that [|w| g1 (pye < C’||uDHH2 (OD)d
and w|spp = up. Hence, u € U solves (2.1) if and only if ug := u — w € V solves

a(ug,v) : = (a(p)ug,v)p + w(Vuo, Vu)p
(2.2) = <f, 'U>H—1(D)d7H1(D)d — (OL(,D)U),’U)D — M(V’w, V’U)D
=:(f, V) H-1(D)e,H(D)d-

Let p € X and p € X = X(p). Since a(p) > 0, with Poincaré’s inequality, we
obtain coercivity of the bilinear form a : V x V. — R. By H'(D) — L7 (D), the
assumptions on «, and Holder’s inequality there exists a constant C' > 0 such that

(2.3) (a(p)u,v)p < Cllalp)

The properties of « yield a constant C' depending on p such that

||’UHH1(D)d~

(2.4) (a(p)u,v)p < Cllull g (pya-llvll g1 (pya

This implies continuity of a : V' x V — R, and in combination with continuity of ext

£l (pye < CUIFll-1(pye + lle(p)
< CUlf -2 (py2 + llupll

()t + Wl z1(pya)

2.5
(2.5) o)

with a generic constant C' > 0 depending on p. Applying Lax—Milgram’s theorem
yields a unique solution ug € V' that fulfills (2.2) and there exists a constant C' such
that

(26) ol oyt < COI -1y + lunll 3 )

Hence, u = ug + w is a solution of (2.1) and, with (2.6), continuity of ext and the
triangle inequality, there exists a constant C' > 0 depending on p such that

lull g (pye = |luo + wll g1 (pye < luollgr(pye + 1wl g1 (pya
< C(Ifllg-1(pya + llupl|
4

H%(D)d)'
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Lemma 2.1 gives bijectivity of E(p,u) as a mapping X x H'(D)¢ — H-*(D)?¢ and
thus the well-definedness of the solution operator S : X — H'(D)? p s u, where
(u,p) is the solution to the partial differential equation (1.4).

LEMMA 2.2 (Continuity of the solution operator). Let D C R? be a bounded
Lipschitz domain, up € Hz(0D)% with Jop up-nds =0 and f € H-*(D)%. Moreover,
assume that o : X — L*(D), defined by (1.5), with s > 1 ford =2 and s > 2 for
d =3, is continuous. Then, S: X — HY(D)¢, p s u is continuous.

Proof. Let p1, p2 € X. By Lemma 2.1 we know that there exist unique uq,us € U
such that

(a(pr)ui,v)p + u(Vur, Vo)p = (f,v)p,
(a(p2)uz,v)p + p(Vuz, Vv)p = (f,v)p,

for all v € V. Substracting the two equations gives

2.7 (alpr)(ug = w1),v)p + p(V(ug = u1), Vo) p = —((a(p2) = a(p1))uz, v)p-

Testing with v = ug — uy, using a(p;) > 0, the Poincaré inequality, and (2.3) yields

(2.8) lug — w1l g1 (pya < Cllalp2) — alp1)llLs(pyllvall gDy

for a constant C' > 0. Continuity of o implies boundedness on an open neighborhood
around p;. Hence, by Lemma 2.1, there exists a constant C,, > 0 and § > 0 such
that [luz|| g1 (pye < Cp, for all pa € Bs(p1). Thus (2.8) and the continuity of a yield
continuity of S. ]

LEMMA 2.3 (Fréchet differentiability of the solution operator). Let D C RY be a
bounded Lipschitz domain, up € H2z(dD)? with Jop up - nds =0 and f € H-*(D)%.
Moreover, assume that « : X — L°(D), defined by (1.5), with s > 1 for d = 2 and
s> % for d =3, is continuously differentiable. Let po € X. Then, S: X — H'(D)?
is Fréchet differentiable in an open neighborhood of py.

Proof. By Lemma 2.1, for ug = S(pp) it holds that E(pg,uo) = 0. Using Holder’s

inequality it can be verified that (w,u) — w - u is continuously differentiable as a
1

mapping L*(D) x HY(D)? — L"(D)?, with r = %, and since H'(D)% < L'~ (D)%
it is also Fréchet differentiable as a mapping L*(D) x H*(D)% — H~1(D)%. Linearity
of u +— Vu as a mapping H'(D)? — L?(D)?*4 | continuous differentiability of o and
the chain rule, therefore, yield continuous differentiability of (p,u) — E(p,u) as a
mapping X x HY(D)? — H~Y(D)?. By linearity of u — F(p,u) and Lemma 2.1,
E.(po,uo) € L(U, H-Y(D)?) is bijective, i.e. continuously invertible. The implicit
function theorem thus yields Fréchet differentiability of S in an open neighborhood
of pg. d

3. Existence of solutions of the relaxed problem. This section gives an ex-
istence result for the relaxed problem if Y is reflexive (Theorem 3.9) or Y = BV (D)
(Theorem 3.10). For deriving these results, continuity results for j (Lemma 3.6,
Lemma 3.7, Lemma 3.8) and T, (Corollary 3.2) are needed. We also show differen-
tiability (see Section 4) in the following lemma, from which continuity and differen-
tiability of T, follow (Corollary 3.2).

LEMMA 3.1. Let D C R? be a measurable, bounded subset of RY, p > r > 1 and
z € {~1,1}. Then the mapping h : R — R, h(z) := Lmax(0,zz — 1)" is convez,

T
5
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non-negative and continuous. Furthermore, the associated superposition operator
1
(3.1) Ty : LP(D) — L*(D), Tu(p)(§) = —max(0,2p(€) —1)"

is convex and continuous. Assume thatp > r > 1, then h is continuously differentiable
and T, defined in (3.1) is Fréchet differentiable with derivative

T, (p) € L(LP(D), LY(D)), [T} (p)w](§) = zmax(0, zp(€) — 1) w(€).
Moreover, Ty, is continuously differentiable.
Proof. Let hq(-) := z-—1 and hs(-) := max(0,-)". Then the mapping
x> h(zx) = ha(hy(x))

for all z € R is convex, since hy is affine linear and hs is convex for » > 1. Moreover,
it is continuous and, for > 1, continuously differentiable with h'(x) = 2z max(0, zx —
1)"~L. Convexity of T}, is inherited from the convexity of h. Since |T}(p)(¢)| <
@\p(g)r, [51, Section 4.3.3] implies continuity of T}, : LP(D) — L'(D) for p = r, and,
since D is bounded, for p > r. The superposition operator T}, associated to h’ and
given by

T (p)(€) = 2 max(0, 2p(¢) — 1)~

fulfills the growth condition

(3-2) T (p)(€) < C(L+ 1p(&)"™T)

for a constant C' > 0. Hence, T}, : LP(D) — L*(D) with 1 < s < -5 and, therefore,
in particular, for s = p%l since p > r > 1. By [51, Section 4.3.3], this implies Fréchet
differentiability of T}, : LP(D) — L*(D) with derivative

T,(p) € LILP(D), LY(D)), [T} (p)w](€) = Tw (p)(€)w(S).

Since h’ is continuous and, therefore, fulfills thg Carathéodory condition, and the
growth condition (3.2) holds, T}, : LP(D) — L»-1(D) is well-defined and thus con-
tinuous by [51, Section 4.3.3], [10, Theorem 3.1]. Hence, T}, is continuously (Fréchet)
differentiable. 0
With this lemma continuity and differentiability of Y,, follow directly.

COROLLARY 3.2. Let D C R¢ be a measurable, bounded subset of R¢, and p > 1.
Then the mapping Y, is convez, continuous as a mapping LP(D) — R and continu-
ously differentiable with derivative

T} (p) € L(LY(D), R),
Ty (ow = | (max(0,p(6) = 1" = max(0.~p(6) = D" ()

Moreover, T, : LP(D) — R is weakly lower semicontinuous.

Proof. Follows from Lemma 3.1 and the fact that continuity and convexity imply
weak lower semicontinuity [21, Corollary 3.9]. |

LEMMA 3.3. Let d € {2,3}, D C R? be a bounded Lipschitz domain. Let Y
be a reflexive Banach space such that Y embeds compactly in a Banach space X,
Y — LP(D) for p > 1. Let (yx)ren be a bounded sequence in'Y. Then there exists a
subsequence (yx)ker, K CN, and y € Y such that y,, =~y inY, Yy — y in X, and
Ym — ¢ in LP(D) for m — oco.

This manuscript is for review purposes only.



Proof. Since (yr)ren is bounded in Y, there exists a Y-weakly convergent sub-
sequence (yx)rker, K C N, that converges to a y € Y [21, Theorem 3.17]. Since
Y < LP(D), this subsequence also converges weakly in LP(D) to the same limit. [5,
Lemma 10.2(1)] concludes the proof. 0

LEMMA 3.4. Letd € {2,3}, D C R? be a bounded Lipschitz domain, Y = BV (D),
pe(l,5%4), g€ (1, 7%), X = L9(D) and (yx)ken be a bounded sequence in'Y. Then
there exists a subsequence (yi)rex, K C N andy € Y such that y, —~*yinY, yp — ¥y
in X, and yp, — g in LP(D) for K 3 k — oo.

Proof. By [20, Lemma 6.108], BV (D) embeds continuously into Ld%l(D) and
compactly into LI(D) for ¢ € [1,7%;). Since BV (D) is compactly embedded into
L1(D), there exists y € L(D) and a subsequence (yi)rexk,, K1 C N that converges
L4(D)-strongly to y. Since D is bounded, L4(D) is continously embedded into L' (D)
and, therefore, (yx)rer, converges Li-strongly to §.

Since (yx)kek, is bounded in BV (D) and converges L'-strongly to ¥, (yx)ker, con-
verges BV -weakly* to y [7, Proposition 3.13].

By the continuous embedding of BV (D) into LP(D), (yx)kek, is bounded in LP(D).
Thus, there exists a limit point z and a weakly convergent subsequence (yx)keck,,
Ky C Ky, that converges LP-weakly to . Since weak convergence in LP implies weak
convergence in L! for bounded D, (yx)rex, converges weakly to . Since (yi)rer,
converges strongly to y in L'(D), it also converges L'-weakly to 7, which implies
z=71.

LEMMA 3.5 (Continuity and boundedness from below of .J). Let d € {2,3}, D C
R? be a bounded Lipschitz domain. Let X be a Banach space. Assume that oo : X —
L*(D), defined by (1.5), with s > 1 for d = 2 and s > % for d = 3, is continuous.
Then J : X x H' (D)% — R is continuous. Moreover, J is bounded from below.

Proof. Recall that J is defined in (1.6). We exemplarily show continuity of
the first summand of J(p,u) given by (a(p)u,u)p. Consider the multilinear form
m(wy, we, ws3) := (wywsz, ws)p. By Holder’s inequality and the continuous embedding
HY (D)4 — LT (D)%, there exists a constant C' > 0 such that

< s s s
(3.3) [m (w1, wa, w3)| < [Jw1l|r, (D)||w2|\LS{1(D)d”ws”L%(D)d

< Cllwillzs(pylw2ll g1 (pye lwal| 1 (pya-

Therefore, m : L*(D) x H*(D)? x H*(D)? — R is well-defined. Due to continuity
of a, the mapping (p,u) — (a(p),u,u) is continuous as a mapping X x H'(D)? —
L*(D) x HY(D)4 x HY(D)?. Thus, we obtain continuity of (p,u) — m(a(p),u,u) =
(a(p)u,u)p. The other terms can be handled analogously.

It holds that J is bounded from below since by Poincaré’s inequality and Young’s
inequality there exists a constant C' > 0 such that

1

5(04(@“7 u)p + %(V%VU)D = (f,u)p = Cllullgrpya = [ flla-1(pyallvll ()

C 1
2 EHUHHl(D)d - %”f”H*l(D)UL o

LEMMA 3.6 (Continuity and boundedness from below of j). Let d € {2,3}, D C
R? be a bounded Lipschitz domain. Let X be a Banach space. Assume that o : X —
L*(D), defined by (1.5), with s > 1 for d =2 and s > 2 for d = 3, is continuous.
Then j : X — R is continuous. Moreover, j is bounded from below.

7

This manuscript is for review purposes only.



282
283
284
285
286
287
288
289
290
291

313
314

315
316
317
318
319
320

wWww
1N
DO —

N
w

Proof. Follows from Lemma 3.5 and Lemma 2.2. 0

LEMMA 3.7 (Weak lower semicontinuity of j). Let d € {2,3}, D C R? be a
bounded Lipschitz domain. Let X be a Banach space, Y be a reflexive Banach space
such that Y embeds compactly in X, Y — LP(D) for p > 1. Assume that o : X —
L*(D), defined by (1.5), with s > 1 for d = 2 and s > % for d = 3, is continuous.
Then j : Y — R is weakly lower semicontinuous.

Proof. We proof this statement via contradiction. Assume that j is not weakly
lower semicontinuous. Then there exists § > 0 and a sequence (pg)reny with Y-weak
limit p € Y such that j(pr) < j(p) — ¢ for all k € N. Since every weakly convergent
sequence is bounded, (pi)ren is bounded. By Lemma 3.3 we obtain a subsequence
(pr)kex, K C N, that converges X-strongly to p. Lemma 3.6 implies

3 (pk) —3(P)| =0

for K 3 k — oo. This yields a contradiction. a

LEMMA 3.8 (Weak* lower semicontinuity of j). Let d € {2,3}, D C R? be a
bounded Lipschitz domain, Y = BV(D), p € (1,%], q € (1,%), X = LY(D).
Assume that o : X — L*(D), defined by (1.5), with s > 1 for d =2 and s > 3 for
d = 3, is continuous. Then j:Y — R is weakly* lower semicontinuous.

Proof. The proof of Lemma 3.7 can be adapted using Lemma 3.4 instead of
Lemma 3.3. a

THEOREM 3.9. Let d € {2,3}, D C R? be a bounded Lipschitz domain, up €
H%(OD)d with faD up -nds =0 and f € H~Y(D)?. Moreover, let p,q > 1, X, Z be
Banach spaces and 'Y be a reflexive Banach space such that'Y is compactly embedded
into X and X — LYD) and Y — LP(D). Assume that a : X — L*(D), defined
by (1.5), with s > 1 for d =2 and s > 3 for d = 3, is continuous, g : X — Z is
continuous and {p € Y : g(p) <0, [,(|p|? —1)d§ = 0} is non-empty. Then, for
fized vy, > 0, the optimization problem defined by (1.1) - (1.6) attains a solution.

Proof. Due to Lemmas 2.1 and 2.2 we can directly look at the reduced problem
(1.1). By Lemma 3.6, j(p) is bounded from below. Hence, a minimizing sequence
(Pr)ren C Y can be chosen such that g(px) < 0, [},(|pr|?—1)dé = 0 for all k € N, the
objective function values of the minimizing sequence are monotonically decreasing,
and

(3.4)
O 1 . . U
Jim j(ok) + 2Ty (o) + 5 loklly = min 3(p) +7Tp(p) + 5llAll5-

PEY. 9(p)<0, [, (Ipl1-1)de=0

Due to the regularization term in the objective function, (||pk|ly )ren is bounded and,
therefore, by Lemma 3.3 there exists p € Y and a subsequence (pg)rex, K C N, such
that pp, = pinY and pp — pin X for K 5 k — oo. Since Y — LP(D), p. — p
in L?(D). The mapping p — Y,(p) is weakly lower semicontinuous as mapping
LP(D) — L*(D) by Corollary 3.2. With Y < LP(D), the weak lower semicontinuity
of j (Lemma 3.7), and the weak lower semicontinuity of the norm we hence obtain

. oy . 7
(3.5) 3(P) +4p(p) + S NIPI5 < 5ok) + L (o) + S llolly

for all ¥ € K and due to the monotonicity of the minimizing sequence also for all
8
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k € N. What remains to show is the admissibility of p. Since X embeds into L(D),

[ ot =1yde = tim_ [ (o7~ 1)de =0,
D D

Together with continuity of g : X — Z we know that p is admissible, which proves
that p is a minimizer. ]

THEOREM 3.10. Let d € {2,3}, D C R? be a bounded Lipschitz domain, up €
Hz(OD)® with Jopup -nds = 0 and f € H-'(D)*. Moreover, let Y = BV (D),
p € (1, d%‘ll], q € (1, d%il), X = LY(D), and Z be a Banach space such that g : X — Z
is continuous. Assume that oo : X — L*(D), defined by (1.5), with s > 1 for d = 2
and s > 3 for d =3, is continuous, and {p € Y : g(p) <0, [,(|p|? —1)d¢ = 0} is
non-empty. Then, for fized v,n > 0, the optimization problem defined by (1.1) - (1.6)

attains a solution.

Proof. The adaption of the proof of Theorem 3.9 is straightforward, using that
the BV-norm is weak™ lower semicontinuous [54, Theorem 5.2.1], Lemma 3.4 and
Lemma 3.8 instead of Lemma 3.3 and Lemma 3.7. O

4. On the differentiability of the reduced objective.

LEMMA 4.1 (Continuous differentiability of J). Let d € {2,3}, D C R? be a
bounded Lipschitz domain. Let X be a Banach space. Assume that « : X — L*(D),
defined by (1.5), with s > 1 ford =2 and s > % for d = 3, is continuously differen-
tiable. Then J : X x HY(D)? — R is continuously differentiable.

Proof. The multilinear form m : (w1, ws,ws) — (wiws,ws)p is well-defined as
a mapping L*(D) x H (D)% x H'(D)¢ — R by (3.3). Due to continuous differen-
tiability of «, the mapping (p,u) — (a(p),u,u) is continuously differentiable as a
mapping X x HY(D)? — L*(D) x H' (D)4 x H*(D)?. Hence, by the chain rule,
(p,u) = m(a(p),u,u), which corresponds to the first summand of J, is continuously
differentiable as a mapping X x H'(D)? — R. Continuous differentiability of the
other terms can be proven analogously. ]

LEMMA 4.2 (Fréchet differentiability of j). Let d € {2,3}, D C R be a bounded
Lipschitz domain. Let X be a Banach space. Assume that o : X — L*(D), defined by
(1.5), with s > 1 ford =2 and s > % for d =3, is continuously differentiable. Then
j is Fréchet differentiable.

Proof. Follows from Lemma 4.1 and Lemma 2.3 using the chain rule. a

LEMMA 4.3 (Fréchet differentiability of j). Let d € {2,3}, D C R? be a bounded
Lipschitz domain, X andY be Banach spaces such that the requirements of Lemma 3.3
are fulfilled. Assume that o : X — L*(D), defined by (1.5), with s > 1 for d = 2
and s > 2 for d = 3, is continuously differentiable and - — || - |3 is continuously
differentiable as a mapping Y — R. Then j is Fréchet differentiable.

Proof. Follows from Lemma 4.2, Corollary 3.2 and continuous differentiability of
the norm. O

Remark 4.4. Due to the non-differentiability of the BV-norm the adaption of
Lemma 4.3 requires either smoothing techniques, see e.g. [2], or, in convex cases,
working with nonsmooth optimization approaches [23, 18].

5. Limit considerations for increasing penalty parameter. We now show
that, in the limit, p attains almost everywhere the values 1 or —1 if the penalty
parameter 7 is sent to infinity.
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THEOREM 5.1. Let Y be a reflexive Banach space. Let (yi)ken C R be a strictly
monotonically increasing sequence with limyg_, v = oo. Let the prerequisites of
Theorem 3.9 be fulfilled and (pr)ken C Y be a sequence of global optimal solutions of
(1.1) for v = v (which exists due to Theorem 3.9). Assume that

(5.1) .a={peY : g(p) <0, /D(|p|q —1)d¢=0, —-1<p<lae}

is non-empty. Then there exists a subsequence (px)rer, K C N, that converges X -
strongly and Y -weakly to p € Y, which is an optimal solution of

o n 2
5.2 IS
(5:2) Jmin j(p) + 5 llelly

Proof. The proof is inspired by the proof of [52, Theorem 18.2] and consists of
several steps. Define P,, (p) := j(p) + vk - Yp(p) and j(p) := j(p) + 2pll3 -
Step 1: The sequence (P, (pr))ken is monotonically increasing.

Since v < Ye+1, Lp(pr+1) > 0 and py is a global optimal solution of (1.1) for v =
it holds

Py (pr) < Py (prs1) = J(prs1) + 16 Lp(prs1)

~

< J(prt1) + Vo1 Tp(pra1) = Pypy (Prt1)-

Step 2: The sequence (Y, (pr))ken is monotonically decreasing.
We know that P, (pr) < Py, (prs1) and Py, (prs1) < Py, (pr). Adding both
inequalities leads to the inequality

YL p(Pk) + Vi1 Lp(Prt1) < W Yp(pr+1) + Vi1 Lp(pr)-

This is equivalent to the inequality

Ye(Tp(pr) = Tp(prt1)) < Yrt1(Tp(pr) = Tp(prt1))-

Since v, < Yx+1, we have

Tp(pr) = Tplprs1) > 0.
Step 3 The sequence (j(pi))ren is monotonically increasing.
It holds Py, (px) < Py, (pr+1), and by step 2, Y, (px) > Tp(pr+1). In combination
with v, > 0 for all k£ € N, this leads to the inequality

0 < Py, (pr+1) — Poy (or) = J(prs1) — 5(ox) + e (Xp(prs1) — Tplpr))
< Jlprs1) — J(pr)-

Step 4: It holds limy_,00 Tp(px) = 0.
The set P4 is non-empty, and thus, there exists p € ®,4 and a corresponding 4 = S(p)
such that Y, (p) = 0. Using optimality of py and step 3, we have

~

3(p) = Py, () = Py, (pr) = j(pr) + v Yp(pr) = 5(p0) + 1 Yp(or)

for all k € N. Therefore, 7(po) + £ Y,(px) is bounded and for y, F2o0, o we have

T, (pr) ~=25 0.

10
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Step 5: There exists a subsequence (pg)rex, K C N that converges X-strongly and
Y-weakly to p € Y, which is an optimal solution of (5.2).

Due to continuity of 7 : ¥ — R (Lemma 3.6 and continuity of the norm), optimality
of pr, Tp(pr) > 0, and non-emptyness of ®ya, (j(pr))ren is bounded since there exists
p € ®,q such that

00 > j(p) = Py, (p) = Py (pr) = j(pr) + v Lp(pr) = 3 (o) > (po)-

Since j is bounded from below (Lemma 3.6), (||px|ly)ren is bounded. Due to the
compact embedding of Y in X, by Lemma 3.3 there exists a subsequence (px)rex,
K CN, peY such that pp - pin X and pp = pin Y for K 3 k — co. Step 4 and
weak lower semicontinuity of T, : LP(D) — R (Corollary 3.2) imply that

<Y,(p) < liminf YT =
0<Tp(p) < Jiminf Tp(px) =0,

and, therefore, —1 < p <1 a.e. Continuity of g implies g(p) < 0. Since X — L%(D),
we also know that [, (|p|¢ — 1)d¢ = 0. Hence, p € ®qq.

For the following inequalities, we use that v, Y,(px) > 0 for all £k € N and that py, is
optimal for P,,. Since for all p € ®,4 it holds that T, (p) = 0, we have

~

J(or) < Py, (pr) < Py (p) = j(p)-

In combination with the weak lower semicontinuity of ; as a mapping ¥ — R
(Lemma 3.7), p is an optimal solution of (5.2) since

j(p) < liminf j(pr) < j(p) for all p € Puq. 0
K>k—o0

Remark 5.2. Theorem 5.1 can also be proven if we replace the reflexivity of Y
with the requirements of Lemma 3.4.

Remark 5.3. Theorem 5.1 requires the global optima of the relaxed problems.
In practice, due to the nonlinear nature of the optimization problems, one typically
obtains local optima. The quality of these optima typically depends on the intial
point for the optimization and on appropriate regularization techniques, such as a
term that corresponds to a penalization of the perimeter of the resulting optimal
shapes. Another approach is using deflation techniques [46].

6. Choice of Y, X, Z, g, p, ¢ and «. Summarizing the requirements of the
previous sections, we obtain the following assumptions.

Assumption 1. Let Y, X, Z, g, p, ¢ and a superposition operator a defined by
(1.5), satisfy
Y is either reflexive or Y = BV(D),
Y embeds compactly in X, with X < L9(D) with ¢ > 1,
Y — LP(D) with p > 1,
« is continuously differentiable as a mapping X — L*(D), defined by (1.5),
Withs>1ford:2and52%ford:3,
D4, defined in (5.1), contains an element p such that j(p) < oco. In particular,
Y should allow for jumps of p along hypersurfaces,
e ¢ is continuous as a mapping X — Z.

The following lemma will be helpful to prove Fréchet differentiability of a.
11
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LEMMA 6.1. Letp > g > 1 andt > 1 be such that qt < p. Let o be a superposition
alz|t if x <0,

0 else ,

with &« > 0. Then, o : LP(D) — L4(D) is continuously differentiable.

Proof. Can be shown analogously to Lemma 3.1. It holds a(z) := max(0, (—z)?),
which is locally Lipschitz continuous with @' (z) = tmax(0,(—z)'~1). We consider
the superposition operator a(p)(§) := a(p(§)), which fulfills the growth condition
la(p)(€)] < alp(€)|t. This implies continuity of « for t = 2 [51, Section 4.3.3]. In
addition, o(p)(§) := a'(p(§)) maps p € LP(D) to L"(D) with r = ;£5. Hence « is
continuously differentiable [51, Section 4.3.3]. d

operator defined by (1.5) and a(x) :=

One choice of Y that allows for fulfilling the above requirements is the space BV (D).
The corresponding total variation (TV) term in the regularization promotes piecewise
constant behavior of optimal solutions, see e.g. [47, 19].

LEMMA 6.2. The choice d € 2, Y = BV(D), X = LY(D), p=2,q€ (1,3), g

SME T oS0 and alp)(€) = alp(©)) for al
else

&€ D, with a > 1 satisfies Assumption 1.

given by (1.7), Z = R, a(z) =

Proof. The assumptions on Y are fulfilled due to [7, Proposition 3.13, Definition
3.11], and [54, Theorem 5.2.1], see also proof of Lemma 3.4. By [20, Lemma 6.108],

BV (D) embeds continuously into L (D) and compactly into L"(D) for r € (1, 747).

The Fréchet differentiability of a follows from Lemma 6.1. O
The total variation is, in general, not accessible for computation. For an indicator
function of a subset Q C D it corresponds to the perimeter of {2, see [7, Section 3.3].
If we consider smoother functions u € W1 (D), then TV (u) can be computed via

/ Yl dé.
D

see [2, Section 2]. However, TV (u) is not differentiable, which is disadvantageous for
optimization, in particular Lemma 4.3 is not applicable, see also Remark 4.4.
Another choice for Y is the space H?(D), o < 4.

LEMMA 6.3. Let D be a bounded Lipschitz domain. The choice d = 2, Y =
H°(D), o = %, X =IL8D),p=28,q=2 5=2,g gwen by (1.7), Z = R,

az* if <0

, and a(p)(&) = a(p(§)) for all € € D, with & > 1 satisfies
0 else

a(z) = {
Assumption 1.

Proof. It holds that with o < 1, H?(D) < LP(D) for p = ;2% and H?(D)
embeds compactly into L?(D) for any ¢ € [1,5) [6, Theorem 4.4], [3, Theorem 7.34],
[27, Theorem 6.7]. Hence, we can choose p = 8 and ¢ = 2, which also gives continuity

and differentiability of o according to Lemma 6.1. |

The H?(D)-norm is given as

1
I =y = (I 122y + 1+ 12)2,

where the H?-seminorm is, e.g., given by the Sobolev-Slobodeckij seminorm
|u(z) — u(y)|? 1
(61) o= dy da)?
pJp = —yl4t?

12
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[28, 40] propose to work with a slightly different norm, which - under assumptions on
the weighting x(x,y) - is equivalent to the original H?-norm according to [40, Lemma
2.1]:

1
(6.2) - WMoy = (I 1720y + 1 [2.0) %
where
Ju(@) — u(y)|? 1
(6.3) | |ko := (/D . W“(%Z/)@“)%

and x(x,y) fulfills [40, Assumption 2.1], e.g.

1 if -yl <o
6 if o~y <4,
0 else,

see [40, Remark 2.2]. For convenience, we work with the continuously differentiable
approximation

1 if [lz -yl <9,
(6.5) ala,y) = § SOEHTS) it e~y € (3, 59),
0 else,

for f(r) := 2r3 — 3r? + 1, which also fulfills [40, Assumption 2.1]. Working with
this definition of the norm reduces the computational effort to assemble the H? (D)-
matrix. However, for fixed §, the bandwidth of the matrix increases for decreasing
mesh size. It might be convenient to have a matrix with fixed bandwidth. This
requires to choose 6 = O(h). In the following, we motivate that this is justified in our
application as long as o = () is adapted correspondingly.

One is often interested in shapes with bounded total variation, compare Re-
mark 5.3. When working with H?(D), o < g, it is a priorily not clear if the optimal
shape has bounded variation. For this reason, we take a closer look into the theory.
In [16] it is shown that a function u € L'(D) is an element of BV (D) if and only if

L _ |u(z) — u(y)|
liminf(l1 — & / —————dydz < c0.
ipf( ) pJp |z —yl¢te

G—1

More precisely, if D is a Lipschitz domain, there exists a constant ¢ that depends on
d such that

(6.6) lim (1-9) /D i Wdydx L e TV (u)

for all w € BV (D), where TV (u) denotes the total variation of u [25, 42]. A similar
result can also obtained for the seminorm (6.3). Let o = 15, u € BV(D,{-1,1})
and let § > 0 be chosen arbitrarily. Then, since |u| =1 a.e., and

[ [ g, L[ w0,
D D JD

b Jo =y 2 o =yl

_1 |u(z) — u(y)|? 1/ lu(z) — uly) 2
_2/D = l‘i(llfyy)dydx+2 o T gl (1 - k(x,y))dydz.

13
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Since
1 [u(z) — u(y)®
—(1-2 — 2 (1 - dyd
15 U)/D P (1 - k(z,y))dydx |
1 u(z) — u(y)]? 2 —d—2
gfl—Qa// ——— dydz| < 2|D|*(1 — 20)d 7,
U2 [ el < 2P~ 20)
we have

L1 |u(z) — u(y)|?
hmfl—2a/ ————k(x,y)dydx = TV (D
H%—Q( ) Y M = (z,y)dy (D)
if 0 = 0(0) such that o — 1~ and (1 —20)§~ 9729 — 0 for § — 0. This motivates to
consider the following setting.

LEMMA 6.4. Let D be a bounded Lipschitz domain. The choice d € {2,3}, Y =
HU(D); : <o< %z X = L%(D)7 p= %7 qg=2,s= %; g given by (17)7 Z = R}

8
alx| if ©<—1,

a(x) = &(—%r4+2127%x+f’—6) if —1<z<1,
0 else,

and a(p)(&) := a(p(§)) for all & € D, with & > 1 satisfies Assumption 1.

Proof. Follows as in Lemma 6.3. Since continuous differentiability of « is not
directly covered by Lemma 6.1, we prove it here. It holds that p > ¢ > 1. Furthermore,
« is Lipschitz continuous with

—Q for £ < —1,
a(r)=qa(—2®+3z—3) for —1<E<1,
0 else.

It fulfills the growth condition |a(p)(§)] < a(|p(§)| + 1). Hence, continuity of « :
L?(D) — L%(D) follows with [51, Section 4.3.3]. Since &/(p)(§) = @' (p(€)) maps
p € LP(D) to L*>*(D) and p > ¢, continuous differentiability follows with [51, Section
4.3.3]. O

Remark 6.5. Our experiments indicate that the 3(a(p)u,u)p term in the objec-
tive function is important for the numerical performance. Moreover, choosing a(z) > 0
for 2 € (—1,1) shows faster convergence than having a plateau by choosing a(x) =0
for « € (0,1). This relates to the observations in connection with [34, Figure 7].

7. Numerical realization. In the scope of the work we realize the setting of
Lemma 6.4 for the particular choice d =2, 0 = 1—76. To discretize the states (u,p) we
use mixed Taylor-Hood finite elements, i.e. piecewise quadratic continuous Lagrange
finite elements (CG2 FEM) for the velocity v and piecewise linear continuous Lagrange
finite elements (CG1 FEM) for the pressure p. The design variable p is discretized
with piecewise constant discontinuous Lagrange finite elements (DGO FEM) in order
to for the discretized space to be a subset of Y.

Remark 7.1. The volume constraint prevents p from being constantly 1 or —1.
Using CG1 FEM for p enforces an interfacial region with width of at least O(h), in
which p € (—1,1). Hence, the sphere constraint enforces values of p" which are bigger
than 1 or smaller than —1. This, however, leads for a fixed mesh size h to an optimal
objective function j value that diverges to oo for v — oo.

14
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By (1;) we denote the nodal basis functions of the CG1 FEM space SI' ¢ H'(D),
by (¢x) the nodal basis functions of the CG2 FEM space S§ C H!(D), and by (®})
the nodal basis functions of DGO FEM space S c H?(D). Therefore, the discrete
representations of the velocity u € H'(D)?, the pressure p € L2(D) and of the design
variable p € H?(D) are the following:

uf (€) =Y (W)kdr(), pE) =D pete(€), p"(€) =D p;®;(9),
k L J

for i € {1,...,d} with coefficient vectors (u;), p, p. Since it is discretized with CG1
FEM, for p" the entries of p correspond to the nodal values. For p", p contains the
values on the cells.

7.1. State Equation. The pressure solving (1.4) is only unique up to an additive
constant [14]. Therefore, we choose p to be in the Banach space LZ(D) = {p €
L*(D) : fD pd¢ = 0}. Thus, the variational problem of the state equation, having a
unique solution, is:

Findue U= {ue H'(D)? : u=upondD} and p € Il = L3(D) s.t.

,u/D Vu : Vodé + /Doz(p)u ~vd€ — /Dpdiv(v)df = /Df -vd€,
/D qdiv(u)dé = 0,

for all v € HY(D)?4, q € LE(D). We define the bilinear forms
a:H'(D) x H(D) = R, a(u,v) :== (Vu, Vv) 2(p),
bi : H'(D) x L*(D) = R, b;(v,q) := (v, q)r2(p)
and the linear form
F;: H'(D) = R, F;(v) = (f;,v)2(pya-
Additionally, we have the nonlinear form
r: HO(D) x H\(D) x H'(D) = R, r(p;u,0) := (a(p)u, ) 2()-

Therefore, the variational formulation of the state equation for D C R? can be written
as:
Find w € U and p € I s.t.

(E(p,u,p), (v, Q)>H*1(D)d><H*,Hé(D)d><H
d d
= palui,vi) + r(p;ui, v;) — bi(vi, p) + bi(ui,q) — > Fi(vi) =0

i=1 i=1

for all v € H3(D)? and ¢ € LZ(D). This variational problem with Dirichlet boundary
condition can be reduced to a homogeneous problem by choosing a function up € U
and setting u = w + up with (w,p) € H} (D)% x LE(D) solving

d
> pa(wy, v;) + r(pswi, vi) = bi(vi, p) + bi(wi, g)
i=1

d
=Y Fi(vi) = palups, vi) = r(p;upssvi) = biupi, q)
i=1

15

This manuscript is for review purposes only.



639
640

for all (v, q) € H} (D)4 x L3(D).
The discrete version of the nonlinear terms r(p; u;, v;), @ € {1,...,d}, is

rp o) = 3 alpg) (w); (v /D B4(€)6;(6) b (€)d = u] R(p)vi,

gkt

with Rji(p) = r(p"; ¢4, ¢x). To get the discrete equations of the variational problem
we assemble

=a(¢;,¢:), Bl =0bi(¢i, 1), and (f); = F}' (1),

where FJ'(¢:) == (flv) r2(py¢ and flis a piecewise linear or quadratic, contin-

uous interpolation of the function f;. Since wl and o fulfill the homogeneous

Dirichlet boundary conditions, it holds w/ Zk(wl)k¢k §) = D per(Wi)ror(§) and
= ker(Vi)kdr (&), where I denotes the set of non-Dirichlet boundary nodes.

T hen for d = 2, the FEM discretization of the state equation in matrix-vector form

reads as

pArr(wi)r + R(p)rr(wi); — Bryp = (f1)1 — pAreups — R(p)reup:
(7.1) pArr(wa)r + R(p)rr(wW2)1 — Biep = (f2)r — pAreups — R(p)reups
(B}.)T (wi)r + (B%.)T (Wa)r = — (BI)T up; — (Bz)T up2

For a given p, these equations define a unique solution for u" = w" + u% and p"
we fix one degree of freedom of the pressure p”.

7.2. H?(D)-norm. In this section we discuss how we realize the H?-norm on
uniform meshes based on the Sobolev-Slobodeckij norm, see the discussion in Section 6
and [40, 28]. There are also other possibilities to realize (norms that are equivalent to)
fractional order Sobolev norms, e.g. working with inverse estimates on a hierarchy
of nested subspaces [22] or fractional powers of the stiffness matrix (for DG finite
elements obtained by a discontinuous Galerkin discretization of the Laplacian) [11, 9,
37, 29, 43].

The problem in the numerical realization is the non-locality of the H?(D)-norm,
which makes it hard to compute. To assemble the matrix corresponding to the H?-
seminorm | - |, », consider the symmetric bilinear form

ag(p1,p2) = /D,Oi('f)/)z(f)df'i‘ (01, P2) k05
with

12 g = [ [ ORI =00 0 iy

When we consider the discretized functions pf(€) = 3,(p,)i®i(€), £ € {1,2}, we
obtain (p{, p§)s,s = Zi,j(pl)iMJ (p2); with

M; ;= (@95, 1) + (1, 2:%5)) — (D5, i) — (P4, D)

for i # j, where

(73) p17 P2 / / Hx — y||d+20' (1'7 y)dy dx
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Figure 7.1: Local stencil for | - |, », between the orange lines  attains values in (0,1)

for all p1,ps € H°(D) and k defined by (6.5). Using symmetry of x we obtain
(7.4) M; j = 2(®i®;, 1) — 2(®i, ;).
If ®; and ®; have disjoint interior supports, this further simiplifies to

M;j = =2(®s; ®5)).

In order to minimize the computational effort, we consider ¢ = O(h) in (6.5), which
yields local, h-dependent equivalent norms of the non-local H?-norm. Keeping the
motivation in Section 6 in mind, this is justified if (1 — 20) = o(h9+27).

For simplicity, we consider uniform rectangular meshes, which is, e.g., obtained
for uniform triangular meshes if we choose - for piecewise constant finite elements - the
degrees of freedom of two neighboring elements forming a rectangle equally. Moreover,
we coose § = 2v/2h in the definition of x such that in all neighboring elements the
weighting is constantly 1. Figure 7.1 illustrates the local stencil. Due to symmetry
arguments and the k-term 13 integrals have to be determined. However, when using
quadrature rules for determining the integrals, one has to take care that singularities
appear for @ and @ The k-term is different from being constantly 1 or 0 on the

cells (4) - @ Let f be defined as in (6.5) and

1 if [z -yl <2v2,
2= .
(7.5) Ra,y) = SO0 i e -yl € (2v2,5V2),
0 else.
Let d = 2, and
1 1 pidl pjtl
I ;= —2h2_2‘7/ / / / lz —yl| =22 & (2, y)dyzdy; drodry,
o Jo Ji j
17
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Figure 7.2: Classification of elements near the boundary of the rectangular domain
D.

where © = (z1,22)" and y = (y1,y2) . We obtain the integrals over functions with
singularities and & = 1

2)=1I_10, ()=1_1_1,

and, with &-term not constantly equal to 1,

W =1Ly, G)=hLi ()=l ()=I5o, ()=I,
(9) = I3, 113,3, 69114,07 69114,17 @114,2-

Since (7.2) is zero for p; = ®; and p2 = 1, we obtain for elements that are sufficiently
far away from the boundary such that all neighboring elements of the local stencil
exist

O=0-40-4®-4O-8-1© 4@
—8()—8(9)—4(10) - 4(11) - 8(12) — 8(13).
Hence, M;; = (1) + [, ®:(€)®4(€)d¢, for all elements i sufficiently far away from the
boundary.

7.2.1. Modification of local stencil near boundary. For elements ¢ close to
the boundary we obtain M, ; = @+ Jp ®i(€)®;(€)dE, where * denotes the classifica-

tion of the element i and the modified formulas near the boundary are given according
to Figure 7.2.

7.2.2. Computation of the entries of the local stencil. From the local
stencil, the global matrix M can be assembled such that

as(p1,p3) = p{ Mp,.
18
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To compute the integrals (2) and (3) we use the procedure described in [24].
Therefore, we first transform the integrals appropriately such that we integrate over
the 2d-hypercube and the singularity is isolated in the first coordinate direction. In
order to compute @ we have to evaluate

1 1 0 1
L[] [ e dvdpdeae,
o Jo J-1Jo
1,1 1 p1
= / / / / ((z1 + yl)2 + (z2 — 92)2)7170dy2dy1dx2dx1
o Jo Jo Jo
1 1 1 T2
= / / / / ((Z‘l + yl)2 + 22)7170d2d.132dy1d$1
o Jo Jo Jas—1
1 1 1 min(1+4z,1)
= / / / / ((z1 + yl)2 + 22)7170dx2dzdy1dx1
0 Jo J—1Jmax(0,z)
1 1 1 g1
= / / / / ((x1 +y1)? + 22) " 9 daodzdy, day
o Jo Jo Jz
1 1 0 pltz
+ / / / / (1 + y1)2 + 22)717”dx2dzdy1dx1
o Jo J-1Jo

1 1,1 pl
= 2/ / / / (1—=2)((x1 + y1)2 + 22)_1_”dx2dzdy1dx1
o Jo Jo Jo

1 1 1
= 2/ / h2(x17y1az)dZdy1dml
0 0 0

with ho(z1,y1,2) := (1 — 2)((w1 +y1)? + 2%) 7179, where we did formal computations
assuming that Fubini’s theorem is applicable. This integral is singular if (21,91, 2) =
0. This singularity of radial type located in the corner of the integration domain
[0,1]3 is isolated in a single variable by partitioning [0, 1]* into pyramids and applying
a high-dimensional Duffy transformation in each pyramid, which parametrizes each
pyramid by the hypercube, see [24, Figure 2, Section 3.5]:

1 .1 1
2/ / / (1—=2)((x1 + y1)2 + 22)*1*”dzdy1dx1
o Jo Jo

1 1 1
= 2/0 /O /0 (ha(s, s€1, 8€9) + ho(s€1, s, 862) + ha(séy, s&, 5))s2dE1dEqds

1 1 1
= 2/0 3_20d3(/0 /o (ha(1,&1,&) + ha(&1,1,&) + ha(&1, €2, 1))dE1dE)

1 1 1
+2/0 51*2"ds(/0 /0 (ha(1,&1,&) + ha(€1,1, ) + ho(€1, Ea,1))dE1dE)

2
1—20

1 1
/0 / (ha(1,61,62) + Fia(€1,1,0) + ho(Er, €0, 1)) dérdes

2

11 R A
2_20/0 /0 (ho(1,&1, &) + ha(&1,1,&2) + ha(&r,&2,1))dEdEs

711 with ha(61,62,83) = ((§14+&)2+€3) 7177 and ha(61, 6, 8) = —&((G+&)2+&) 717
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712 For o = =, we obtain with MATLAB

16’
1 1 _ 5 B
713 / / (ha(1,61,6) + ha(€1,1,60) + ho (&1, €2, 1)) dErdEs
0 0
714 ~2-3.0959 - 107! +4.2072 - 107! =1.0399 - 10°,
1 1
715 / / (ha(1,&1,&) + ha(&1,1,62) + ha(&1,62,1))dé1dEs
0 0
716 ~2-(—-1.3763-107") —4.2072- 107" = —6.9598 - 10"

718 For @ we have

1 1 0 40
719 / / / / |z — yl| > %7 dyodyr dzaday
o Jo Jo1Ja
1,1 1l
720 =/ / / / ha(z1, T2, Y1, y2)dyedyidzadr,
721 o Jo Jo Jo

722 with hz(z1,z2,y1,y2) = ((x1 +y1)? + (22 + v2)?)7177 and thus, using again [24,
23 Section 3.5],

1 1 1 1
724 ////h3(1‘1,Z‘Q,yl,yg)dygd:lﬂdxgdﬂh
0 0 0 0
1 1 1 1
- :////sl—%(hs(l,sl,g%gg)+h3(51,1,527£3)

726 + hs (1,82, 1,83) + h3(&1, 2,83, 1))dE1dEadEzds
727 =t [ ] w6 e g,
728 — 40
729 For o = 16, we obtain with MATLAB

1 1 1
730 / / / hg(l, 51, 62, fg)dfldfgdfg ~ 2.1065 - 1071.
731 0 0 0
732 Hence,
733 @)~ —2h2*2"(il 0399100 — — > 6.9508 - 1071)

1-— ’ 2—20 ’

734 (3)~ —2r*7%7( 55521065107 h).
735
736 For o = %, we obtain the approximations for the integrals @ — @ with MATLAB:
737 (D~ —20"7271.6422-107", (o)~ —2h*7276.9627 - 107,
738 (5)~ —2h*7271.1512- 107", ~ —2h%7292.1142 - 1074,
739 (6) ~ —2h*7274.8272 - 1072, @ ~ —2h27299.2385 - 1074,
740 (7))~ —2h*7273.5498 - 1072, @ ~ —2h%>72793.7609 - 1074,
. —~ 2-20 -2 ~ 2-2¢0 -5
741 r —2h772725427-1072, (13)~ —2h* 72711380 - 1077,
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7.3. Objective Function. We consider the objective function

: n
3(p) == J(p, S(p)) +7Tp(p) + §H|p”|§{0(D)7
with

J:H°(D) x H'(D)? — R,

J(p,u):%/Dcv(p)u-udﬁ—i—%/DVU:Vudf—/Df~ud£7

compare (1.2)—(1.6). Using the bilinear forms, the linear and the nonlinear form
defined in section 7.1, J can be written as

d

J(p,u) = Z (;T(p; gy u;) + %a(ui,ui) — Fz(ul)) )

i=1

The discrete version of the objective function is the following;:

T ) s= T (" u") + 9L, (") + Sas (o p"),

1
1) = 3 (Griatsotd) + fatut ) = P )

d
= Z <u'TR(p)uz + guTAuz f;“i) )
and, for p = 2,
1 1 .
) =5 S max(0.p = 1F [ @)+ 5 Y min(0,p,+ 17 [ o)
4 4

7.4. Lagrangian and Adjoint Equation. Let \! =", (A\;)x¢r € H'(D) for
i€{l,...,d} and v" =3, v, € LE(D). The discretized Lagrangian is given by

M=

= J(p" w" +up) + Y (paw] +uh, AT) +r(p" wl + ulp, AT

“r <.
Il
—

— bi(AL, ") + bi(w] + up, ™) — F(AD).

To compute the gradient of the reduced objective function we need the solution of the
adjoint equation. The discrete adjoint state is defined by the following equations:

(o L ol) = (o + uly, of) 4 palwl + w0l — Fl(v)
+,ua(v A ("ol A b0l v = 0,
d h
<d]7L Zb )\1,(1
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790

791

792
793

794

795

796

797

798

for all v € S% i € {1,...,d} and ¢" € Sh. Written in a matrix-vector form, for
d = 2, the adjoint equation is

R(p)rr(M)1 + pArr(M)1 — Blv = (£1)1 — (1Are + R(p)1e) (W1 + upy)
(7.6)  R(P)rr(X)r + pArr(Ae); — Bi,v = (f2)1 — (1A1e + R(p)1e) (W2 + up2)
(BL) " ()r+ (BL) (Aa)r =0.

For fixed p", u" and p", the adjoint state (A\*,v") is the unique solution of these
equations if we fix one degree of freedom for the pressure.

7.5. Derivative of the Reduced Objective Function. Since it holds

J(p) = J(p,ulp)) = L(p,u(p),p(p), A\, v) V(A\,v) € H'(D)? x L§(D)

we choose (A, v) as the solution of the adjoint equation such that we get for the
derivative of the reduced objective function

7o) = dipup, u(p), p(p) A ).

Thus, the discrete derivative of the reduced objective function is

d n,d
2 Wr(ph;wf+u%i,wf+u%i),dh> + §<waa(PhaPh)vdh>
d L d
G ")+ D (ol + s A, )
=1

d 1
= > i+ upi) (RO 5w+ upi) 4 A9)) dpT A

+

7 30 max(0,py = 1) + min(0. e+ 1)ds [ @i(e)a.

Y4

The derivative of the nonlinear term r w.r.t. p" can be derived as follows: First, the
derivative of of R;;(p) w.r.t. p, is

0

5 (p) = /D o/ (pe) Do €)64(€) b5 (€) .

Thus, it holds
(R'(p)d),; = / o' (pg)de®e()i(€);(£)dE
¢ D

and

(R(pyw),d). =53 /D o/ (py)de®1(€)34(€)w by (€) e,

L g
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We define
swha = [ @00 (L wis©) ) ac.

Then, with @’(p) denoting the vector with the components o'(p,), we can write
(R(p)w),d = S(w) Ding(a (p))d

where Diag generates a diagonal matrix from a vector. Hence,

(7.7)
d
(G (). %) = 2w ) TS (w4 wpy) + Ao) Dl () + o M
+ ’YZ(maX(O,pg —1) + min(0, p, + 1))de/ Dy (&)dE.
- D

To compute the derivative (57)(p") one has to determine the solution of the forward

problem (7.1) for the p corresponding to the given p" to get wi, wo and p. Having
these solutions at hand, the adjoint equations (7.6) have to be solved to get A1, A2
and v. Finally, the derivative (5")'(p") can be determined by inserting the computed
values into (7.7).

7.6. Choice of initial value. As already discussed in Remark 5.3, a good initial
point for the optimization has an impact on the quality of the solution since many local
minima exist and gradient based optimization algorithms typically only yield local
solutions. To compute a starting point, we further relax the problem, ignore the simple
bound constraint, and reformulate the sphere constraint as inequality constraint such
that we have a convex feasible set. Under suitable assumptions, the existence of an
optimal solution p € Y of the optimization problem

(7.8) Iprg;l}(p) = j(p) + gllpH%, s.t. g(p) <0, /D(Ipl2 —1)d¢ <0

can be shown similarly to Section 3. For linear g, p is identified with a feasible
point of (1.1) by using the following procedure. First determine py, the L?-projection
of 0 onto the hyperplane H := {p : g(p) = g(p)}. Then define the initial point
po = po + t(p — po), where t > 1 is chosen such that [, (|po|* —1)d¢ = 0. Since py is
the projection of 0 onto H, fD po(p — po)d€é = 0. Hence,

0= [ di—1de= [ (po-+tlp—)? - 106

:/Dﬁﬁdéﬂz(/jj(ﬁ*ﬁo)?d&)*/Dldé

with

Jp 1dé — [}, p3ds
fD(ﬁ - ﬁ0)2d£ ’
23
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7.7. Solving the discretized optimization problem using IPOPT. As
many other existing implementations of optimization methods, IPOPT [53] assumes
that the problem is posed in the Euclidean space. Therefore, directly solving the
discretized optimization problem with IPOPT leads to a loss of information since it
is no longer taken into account that the control is the discretization of a function
with a certain regularity (here H?-regularity). The correct discrete inner product for

functions p1 (&) = >, (p1)i®i(§) and p2 = . (p,)iPi(x) is given by
(p17p2)H°‘(D) = (P17P2)L2(D) + <P17,02>m,a = as(p1,p2) = P1TMP2

instead of p] p,. In order to include this information during the optimization, we
work on the space of transformed coordinates

p=Mp,

where M is chosen such that M T M = M. This is, e.g., obtained for M= M3 (which
is impracticable if the size of M is large) or by a (sparse) Cholesky decomposition,
see e.g. [38, Section 5.3.3]. There are other works that use this approach, e.g. [17].
Alternatively, one can also use optimization methods that directly work with the
correct inner product, e.g., in the context of the BFGS method, [41, 48].

8. Numerical results. To test our approach numerically, we consider the dou-
ble pipe example presented in [15, Section 4.5]. The task is to minimize the dissipated
power in the fluid, which is modeled by the Stokes equations, for a given inflow and
outflow profile. Additionally, we have the constraint that only % of the given volume
should be filled with fluid. The domain D = (0, 1.5) x (0, 1.0) is a rectangle in R? with
length 1.5 and heigth 1.0. Two inlets with center points (0, %)T, (0, %)T and width
(= % are located on the left boundary of the domain, and two outlets with center
points (1.5, %)T, (1.5, %)T and width ¢ = é are located on the opposite boundary.
On each of the four the parabolic flow profile g(t) = g(1 — 2(y — ¢,)?) is imposed as
Dirichlet boundary condition on the fluid velocity, where g = 1 and ¢, denotes the
y-coordinate of the center of the corresponding in- or outlet. On the rest of the bound-
ary no-slip conditions are imposed. As in [15] we choose = 1 and & = 25000. We
discretize the domain uniformly with 60 x 40 (150 x 100) rectangular cells, i.e. 61 x 41
(151 x 101) vertices for the uniform triangular mesh. Hence, h = 0.025 (h = 0.01).

We implemented the setting described in Lemma 6.4 in MATLAB for o = %
and with a suitable regularization parameter n = 10. We have seen in our numerical
experiments that a too large or too small choice of the regularization parameter can
result in convergence to a different local optimum. Table 8.1 (Table 8.2) gives the
number of iterations, the optimal objective function value j, the number of objective
function evaluations and the number of gradient evaluations until IPOPT converges
with an overall NLP error smaller than 10~%. The initial optimization problem relaxes
the sphere constraint to a ball constraint. The solution of this problem is moved
onto the sphere as described in Subsection 7.6 in order to obtain an initial guess.
Since directly solving with a very large v yields an ill-conditioned problem, we solve
the optimization problems for an increasing sequence of penalty parameters. The
solution of the previous optimization problem serves as starting point for the next
optimization problem. First, we choose v = 1000 and then we increase it twice by
a factor 5 (that the last value for v is 25000 and corresponds to the choice of & is
coincidence). Figure 8.1 (Figure 8.2) shows the solution of the optimization problems.
In the top row one can see the top view of the plots that are presented in the bottom
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(a) v =0 on ball (b) v = 1000 (c) v = 5000 (d) v = 25000

Figure 8.1: Optimal solution for a discretization with 60 x 40 cells

row. The obtained results are virtually identical the results presented in [15]. Also
with respect to the iteration numbers our algorithm seems to compare well to the
results reported in [15] (which needs 236 iterations). As expected and forced by the
penalization term, the smallest and largest values converge to —1 and +1. In addition,
due to the sphere constraint, the number of cells with values in (—1,41) decreases.
Moreover, as expected for penalty methods, the optimal objective function value j
increases for increasing ~.

The choice of the inner product in this example is crucial for obtaining con-
vergence. While using CG1 FEM with H'-regularization shows good convergence
behaviour for computing the initial value (where the sphere constraint is relaxed to
a ball constraint and v = 0), it shows poor convergence properties with the sphere
constraint and v > 0. Remark 7.1 discusses a possible reason for this and motivates
to consider DGO FEM. Using L2-regularization shows poor convergence behavior and
oscillatory iterates. H'-regularization is not available for DGO FEM since jumps along
hypersurfaces are prohibited for H!'-functions. These observations motivate the use
of H?-regularization.

The approximation of the H?-norm is mesh-dependent. We have to keep the
considerations in Section 6 in mind if we refine the mesh. Nevertheless, besides
the computation of the initial value the iteration numbers of IPOPT seem to be
comparable for the presented refinement. This initial guess can also be computed using
CG1 FEM on triangles with H'-regularization and a performing a post-processing step
applying a projection onto DGO FEM on rectangles. The corresponding results are
shown in Table 8.3, Table 8.4, Figure 8.3, and Figure 8.4.

Moreover, the approach of finding a good initial point and also the strategy for
increaseing the penalization parameter v presented in this work are heuristics. Even
though it works well for the presented example, more sophisticated methods are de-
sirable. Since one is only interested in a good starting point for performing the
optimization on the sphere, the optimization on the ball can, e.g., be terminated with
a higher tolerance.

9. Conclusion and Outlook. Based on ideas of classical topology optimization
and phase field approaches, we presented a novel relaxation of a topology optimization
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(a) v =0 on ball (b) v = 1000 (c) v = 5000 (d) v = 25000

Figure 8.2: Optimal solution for a discretization with 150 x 100 cells

opt. obj. val. j | # obj. eval. | # grad. eval.
75

v =0 on ball 47 86.79

48
~v = 1000 43 33.00 7 44
~v = 5000 50 38.00 111 51
~ = 25000 157 44.04 518 158

Table 8.1: Optimization with IPOPT using a discretzation with 60 x 40 cells

# iterations | opt. obj. val. j | # obj. eval. | # grad. eval.
395

v = 0 on ball 153 50.16

154
~v = 1000 52 31.86 88 93
~v = 5000 60 36.19 161 61
~v = 25000 122 43.20 333 123

Table 8.2: Optimization with IPOPT using a discretization with 150 x 100 cells

# iterations | opt. obj. val. j | # obj. eval. | # grad. eval.

~v =0 on ball 39 114.75 63 40
~v = 1000 40 33.00 69 41
~v = 5000 o1 38.00 125 52
~v = 25000 154 44.04 484 155

Table 8.3: Optimization with IPOPT using a discretization with 60 x 40 cells using
CG1 FEM and H!-regularization for the initial problem on the ball

917 problem for fluid flows. We showed existence of solutions and differentiability results,
918  which allow for the application of gradient based optimization methods. We motivated
919 that it is reasonable to discretize the control with DGO finite elements. Connections
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(a) v =0 on ball (b) v = 1000 (c) v = 5000 (d) v = 25000

Figure 8.3: Optimal solution for a discretization with 60 x 40 cells using CG1 FEM
and H'-regularization for the initial problem on the ball

(a) v =0 on ball (b) v = 1000 (c) v = 5000 (d) v = 25000

Figure 8.4: Optimal solution for a discretization with 150 x 100 cells using CG1 FEM
and H!-regularization for the initial problem on the ball

# iterations | opt. obj. val. j | # obj. eval. | # grad. eval.
224

~ = 0 on ball 88 115.30 89
~ = 1000 54 31.86 103 55
~ = 5000 58 36.19 189 59
~v = 25000 123 43.20 367 124

Table 8.4: Optimization with IPOPT using a discretization with 150 x 100 cells using
CG1 FEM and H'-regularization for the initial problem on the ball

920 between the H?- and BV-norm justify the use of a localized H7-regularization if
921 o is adapted to the mesh size. Numerical results show the viability of the proposed
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method. Even though we focus in the discussion and numerical realization on a steady
state Stokes flow and a specific choice of the objective, the conceptual algorithm can be
applied also to other state equations and cost functions. Our results provide encour-
agement to expect that also in other settings it can perform well and be underpinned
by an analysis in the spirit developed here. Moreover, examining (adaptive) refine-
ment techniques numerically, and improving the heuristics for the initial guess and
the adaption of the penalization parameter are left for future research. It might also
be worth investigation to use different optimization algorithms such as optimization
on manifolds or augmented Lagrange methods.
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