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Abstract. A new method for performing density based topology optimization for Stokes flow is5
presented, which differs from previous approaches in the way the underlying mixed integer problem6
is relaxed. It is theoretically justified by a thorough theoretical investigation regarding existence7
of solutions and differentiability. Based on these results a numerical realization is presented which8
applies an Hs-regularization for the control.9

1. Introduction. Shape and topology optimization denotes a family of opti-10
mization problems aiming to find the optimal shape with respect to a given objective11
function on a set of admissible shapes Oad. Shape optimization problems are given12
by13

min
Ω∈Oad

j̃(Ω),14

where j̃ : Oad → R denotes a shape functional [26, Def. 4.3.1] and Oad denotes a set15
of admissible shapes. There are many different applications in fluid mechanics and16
structural optimization such as weight reduction or airplane optimization, see [44, 13].17
In [1], shape optimization is utilized in a biomedical engineering setting to analyze18
blood flow.19

In order to have well-definedness in a classical sense, and to develop optimization20
theory and methods, a metric structure has to be imposed. This can be realized in21
various ways leading to different concepts. One possibility is given via transforma-22
tions, which leads to the concept of shape derivatives, e.g. [49], and the method of23
mappings, e.g. [45]. Another way is the imposition of a metric via characteristic24
functions, or, equivalently, via functions that attain values in {−1, 1}, on a domain25
D ⊂ Rd. The latter, which is the focus of this work, is abstractly given by26

min
χ
j(χ), s.t. g(χ) ≤ 0, χ ∈ {−1, 1} a.e. ,27

where g represents constraints, e.g. the volume constraints, and j(χΩ) := j̃(Ω) for28

every characteristic function χΩ, Ω ∈ Oad, defined by χΩ =
{

1 for x ∈ Ω,
−1 for x ∈ D \ Ω.

29

It naturally allows for shapes with different topologies and is, therefore, referred to as30
topology optimization. However, due to its infinite dimensional mixed integer nature,31
this optimization problem is hard to solve. On that account, different relaxation32
techniques were introduced to handle this problem. In this paper, we examine a33
relaxation that is different from existing approaches.34

While topology optimization was initially introduced and studied for structure35
mechanical problems (e.g. [12, 50, 4]), [15] was the pioneering work in applying36
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this method to the fluid mechanical setting based on the Stokes equations. The37
theoretical analysis was complemented [31] and extended to the steady state Navier-38
Stokes equations [32, 30]. For a survey on applications of topology optimization in39
fluid mechanical problems, see, e.g., [8, 44]. Here, we consider topology optimization40
for the Stokes problem, using the setting proposed in [15].41

Problems in shape and topology optimization are highly complex and have to be42
treated carefully. Numerical methods typically rely on relaxation techniques [15, 33],43
however, one still has to deal with the nonlinear nature of the problems which typically44
leads to many local minima. The approach in [15] is restricted to a specific objective45
function. [33] can deal with more general objective functions and is based on the46
reformulation of the {−1, 1}-constraint47

min
ρ
j(ρ), s.t. g(ρ) ≤ 0,

∫
D

(ρ2 − 1)dξ = 0, −1 ≤ ρ ≤ 1 a.e.48

and the relaxation49

min
ρ∈Y

j(ρ) + γ

∫
D

(ρ2 − 1)dξ + η

2‖ρ‖
2
Y , s.t. g(ρ) ≤ 0, −1 ≤ ρ ≤ 1 a.e.50

for Y = H1(D). Here, the sphere constraint
∫
D

(ρ2 − 1)dξ = 0 is penalized in the51
objective function value and intermediate values between −1 and 1 are allowed. Since52
an interfacial layer is included, it is called phase field approach. For numerical investi-53
gations, in [34] the problem is further relaxed by penalizing the constraint −1 ≤ ρ ≤ 154
using55

Υ(ρ) : = 1
2‖max(0, ρ− 1)‖2L2(D) + 1

2‖min(0, ρ+ 1)‖2L2(D)56

= 1
2‖max(0, ρ− 1)2‖L1(D) + 1

2‖max(0,−ρ− 1)2‖L1(D).57
58

Moreover, this approach was also applied for problems that are governed by the steady59
Navier-Stokes flow, see, e.g., [36, 35].60

A similar formulation that—to the best of the authors’ knowledge—has not been61
investigated so far and is worth examination is given by62

min
ρ∈Y

j̄(ρ) := j(ρ) + γΥp(ρ) + η

2‖ρ‖
2
Y , s.t. g(ρ) ≤ 0,

∫
D

(|ρ|q − 1)dξ = 0(1.1)63
64

for p, q > 1. In contrast to previous approaches, the sphere constraint and the penal-65
ization66

Υp(ρ) : = 1
p
‖max(0, ρ− 1)p‖L1(D) + 1

p
‖max(0,−ρ− 1)p‖L1(D).(1.2)67

68

are generalized (basically in order to be able to work with BV -spaces). In addition, the69
sphere constraint is kept as an equality constraint. In this paper, we consider (1.1)70
for minimizing the total potential power in the Stokes flow on a Lipschitz domain71
D ⊂ Rd, d ∈ {2, 3} with outer unit normal n. More precisely, we investigate the PDE72
constrained optimization problem73

j(ρ) := J(ρ, S(ρ)),(1.3)7475
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with S : ρ 7→ u being the solution operator of the generalized Stokes equations,76
compare [15],77

α(ρ)u− µ∆u+∇p = f on D,

div(u) = 0 on D,

u = uD on ∂D,

(1.4)78

79

where f ∈ H−1(D)d denotes a source term and uD ∈ H
1
2 (∂D)d denotes Dirichlet80

boundary conditions. Moreover, ã : R → R is chosen such that ã ≥ 0, ã(x) = 0 for81
x ≥ 1 and ã(x)� 1 for x ≤ −1, and the Nemytskii operator α is defined by82

α : ρ 7→ α(ρ), α(ρ)(ξ) := ã(ρ(ξ))(1.5)8384

for a.e. ξ ∈ D. Hence, where ρ(ξ) ≥ 1, the standard Stokes equations are solved,85
whereas for ρ(ξ) ≤ −1 the α(ρ)u term dominates and forces u to be small. The cost86
functional that we consider is the total potential power function defined by87

J(ρ, u) := 1
2(α(ρ)u, u)D + µ

2 (∇u,∇u)D − (f, u)D,(1.6)88
89

compare [15]. Here, (u, v)D :=
∫
D
u · vdξ denotes the L2-inner product on D. We will90

pose the volume constraint91

g(ρ) := 1
2

∫
D

(ρ(ξ) + 1)dξ − V ≤ 0,(1.7)92
93

which upper bounds the volume of the fluid domain by a constant V > 0.94
In Section 2 we consider the solution operator for the generalized Stokes equations.95

We extend the results in [34] to less restrictive choices of α and prove a differentiabil-96
ity result. Section 3 presents a continuity and differentiability result for superposition97
operators that will be used to show differentiability of Υp, and later also for showing98
a differentiability result for α. These results are used to show existence of solutions99
and, in Section 4, differentiability of the reduced objective under assumptions on the100
Banach space Y . Section 5 considers the limit behavior for increasing penalization pa-101
rameter γ. Section 6 motivates different settings, that fulfill all requirements that are102
needed for the theoretical analysis. In Section 7 we discuss the numerical realization.103
Section 8 presents the results.104

2. On the solution operator for the generalized Stokes equations. Let105
d ∈ {2, 3}, X be a Banach space and106

U :={u ∈ H1(D)d : u = uD on ∂D, div(u) = 0},107

V :={v ∈ H1
0 (D)d : div(v) = 0}.108109

The weak formulation of (1.4) is given by: find u ∈ U such that110

E(ρ, u)(v) := (α(ρ)u, v)D + µ(∇u,∇v)D = 〈f, v〉H−1(D)d,H1(D)d(2.1)111112

for all v ∈ V , see e.g. [39, Remark 5.1]. In this section, we show well-definedness113
(Lemma 2.1), continuity (Lemma 2.2) and Fréchet differentiability (Lemma 2.3) of114
the solution operator S : X → U ⊂ H1(D)d, ρ 7→ u of (2.1) under general assumptions115
on the superposition operator α.116
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Lemma 2.1 (Well-definedness of the solution operator). Let D ⊂ Rd be a bounded117
Lipschitz domain, uD ∈ H

1
2 (∂D)d with

∫
∂D

uD ·nds = 0 and f ∈ H−1(D)d. Moreover,118
assume that for every ρ ∈ X, α : X → Ls(D), defined by (1.5), with s > 1 for d = 2119
and s ≥ 3

2 for d = 3, is bounded on an open neighborhood around ρ, i.e. there exists120
an open subset X̃ ⊂ X with ρ ∈ X̃, and a constant C > 0 depending on ρ such121
that ‖α(ρ̃)‖Ls(D) ≤ C for all ρ̃ ∈ X̃. Then, for every ρ̃ ∈ X̃, there exists a unique122
u = u(ρ̃) ∈ U such that (1.4) is fulfilled and a constant c > 0 (that depends on ρ)123
such that124

‖u‖H1(D)d ≤ c(‖f‖H−1(D)d + ‖uD‖
H

1
2 (∂D)d

).125
126

127

Proof. The proof is based on [39, Lemma 5.1] and Lax–Milgram’s theorem. First,128
we reduce the variational equation (2.1) to a homogenous problem. By [39, Lemma129
4.1], there exists a continuous extension operator ext : {g̃ ∈ H 1

2 (∂D)d :
∫
∂D

g̃ ·nds =130
0} → {u ∈ H1(D)d : div(u) = 0}, g̃ 7→ ext(g̃) such that ext(g̃)|∂D = g̃. Let131
w := ext(uD), i.e., there exists a constant C such that ‖w‖H1(D)d ≤ C‖uD‖

H
1
2 (∂D)d

132

and w|∂D = uD. Hence, u ∈ U solves (2.1) if and only if u0 := u− w ∈ V solves133

a(u0, v) : = (α(ρ)u0, v)D + µ(∇u0,∇v)D
= 〈f, v〉H−1(D)d,H1(D)d − (α(ρ)w, v)D − µ(∇w,∇v)D
=: 〈f̄ , v〉H−1(D)d,H1(D)d .

(2.2)134

135

Let ρ ∈ X and ρ̃ ∈ X̃ = X̃(ρ). Since α(ρ̃) ≥ 0, with Poincaré’s inequality, we136
obtain coercivity of the bilinear form a : V × V → R. By H1(D) ↪→ L

2s
s−1 (D), the137

assumptions on α, and Hölder’s inequality there exists a constant C > 0 such that138

(α(ρ̃)u, v)D ≤ C‖α(ρ)‖Ls(D)‖u‖H1(D)d‖v‖H1(D)d .(2.3)139140

The properties of α yield a constant C depending on ρ such that141

(α(ρ̃)u, v)D ≤ C‖u‖H1(D)d .‖v‖H1(D)d(2.4)142143

This implies continuity of a : V × V → R, and in combination with continuity of ext144

‖f̄‖H−1(D)d ≤ C(‖f‖H−1(D)d + ‖α(ρ̃)‖Ls(D)‖w‖H1(D)d + ‖w‖H1(D)d)
≤ C(‖f‖H−1(D)d + ‖uD‖

H
1
2 (D)d

)(2.5)145
146

with a generic constant C > 0 depending on ρ. Applying Lax–Milgram’s theorem147
yields a unique solution u0 ∈ V that fulfills (2.2) and there exists a constant C such148
that149

‖u0‖H1(D)d ≤ C(‖f‖H−1(D)d + ‖uD‖
H

1
2 (D)d

).(2.6)150
151

Hence, u = u0 + w is a solution of (2.1) and, with (2.6), continuity of ext and the152
triangle inequality, there exists a constant C > 0 depending on ρ such that153

‖u‖H1(D)d = ‖u0 + w‖H1(D)d ≤ ‖u0‖H1(D)d + ‖w‖H1(D)d154

≤ C(‖f‖H−1(D)d + ‖uD‖
H

1
2 (D)d

).155
156
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Lemma 2.1 gives bijectivity of E(ρ, u) as a mapping X × H1(D)d → H−1(D)d and157
thus the well-definedness of the solution operator S : X → H1(D)d, ρ 7→ u, where158
(u, p) is the solution to the partial differential equation (1.4).159

Lemma 2.2 (Continuity of the solution operator). Let D ⊂ Rd be a bounded160
Lipschitz domain, uD ∈ H

1
2 (∂D)d with

∫
∂D

uD ·nds = 0 and f ∈ H−1(D)d. Moreover,161
assume that α : X → Ls(D), defined by (1.5), with s > 1 for d = 2 and s ≥ 3

2 for162
d = 3, is continuous. Then, S : X → H1(D)d, ρ 7→ u is continuous.163

Proof. Let ρ1, ρ2 ∈ X. By Lemma 2.1 we know that there exist unique u1, u2 ∈ U164
such that165

(α(ρ1)u1, v)D + µ(∇u1,∇v)D = (f, v)D,166

(α(ρ2)u2, v)D + µ(∇u2,∇v)D = (f, v)D,167168

for all v ∈ V . Substracting the two equations gives169

(α(ρ1)(u2 − u1), v)D + µ(∇(u2 − u1),∇v)D = −((α(ρ2)− α(ρ1))u2, v)D.(2.7)170171

Testing with v = u2 − u1, using α(ρ1) ≥ 0, the Poincaré inequality, and (2.3) yields172

‖u2 − u1‖H1(D)d ≤ C‖α(ρ2)− α(ρ1)‖Ls(D)‖u2‖H1(D)d(2.8)173174

for a constant C > 0. Continuity of α implies boundedness on an open neighborhood175
around ρ1. Hence, by Lemma 2.1, there exists a constant Cρ1 > 0 and δ > 0 such176
that ‖u2‖H1(D)d ≤ Cρ1 for all ρ2 ∈ Bδ(ρ1). Thus (2.8) and the continuity of α yield177
continuity of S.178

Lemma 2.3 (Fréchet differentiability of the solution operator). Let D ⊂ Rd be a179
bounded Lipschitz domain, uD ∈ H

1
2 (∂D)d with

∫
∂D

uD · nds = 0 and f ∈ H−1(D)d.180
Moreover, assume that α : X → Ls(D), defined by (1.5), with s > 1 for d = 2 and181
s ≥ 3

2 for d = 3, is continuously differentiable. Let ρ0 ∈ X. Then, S : X → H1(D)d182
is Fréchet differentiable in an open neighborhood of ρ0.183

Proof. By Lemma 2.1, for u0 = S(ρ0) it holds that E(ρ0, u0) = 0. Using Hölder’s184
inequality it can be verified that (w, u) 7→ w · u is continuously differentiable as a185

mapping Ls(D)×H1(D)d → Lr(D)d, with r = 2s
s+1 , and since H1(D)d ↪→ L

1
1− 1

r (D)d186
it is also Fréchet differentiable as a mapping Ls(D)×H1(D)d → H−1(D)d. Linearity187
of u 7→ ∇u as a mapping H1(D)d → L2(D)d×d, continuous differentiability of α and188
the chain rule, therefore, yield continuous differentiability of (ρ, u) → E(ρ, u) as a189
mapping X × H1(D)d → H−1(D)d. By linearity of u 7→ E(ρ, u) and Lemma 2.1,190
Eu(ρ0, u0) ∈ L(U,H−1(D)d) is bijective, i.e. continuously invertible. The implicit191
function theorem thus yields Fréchet differentiability of S in an open neighborhood192
of ρ0.193

3. Existence of solutions of the relaxed problem. This section gives an ex-194
istence result for the relaxed problem if Y is reflexive (Theorem 3.9) or Y = BV (D)195
(Theorem 3.10). For deriving these results, continuity results for j (Lemma 3.6,196
Lemma 3.7, Lemma 3.8) and Υp (Corollary 3.2) are needed. We also show differen-197
tiability (see Section 4) in the following lemma, from which continuity and differen-198
tiability of Υp follow (Corollary 3.2).199

Lemma 3.1. Let D ⊂ Rd be a measurable, bounded subset of Rd, p ≥ r ≥ 1 and200
z ∈ {−1, 1}. Then the mapping h : R → R, h(x) := 1

r max(0, zx − 1)r is convex,201

5
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non-negative and continuous. Furthermore, the associated superposition operator202

Th : Lp(D)→ L1(D), Th(ρ)(ξ) = 1
r

max(0, zρ(ξ)− 1)r(3.1)203
204

is convex and continuous. Assume that p ≥ r > 1, then h is continuously differentiable205
and Th defined in (3.1) is Fréchet differentiable with derivative206

T ′h(ρ) ∈ L(Lp(D), L1(D)), [T ′h(ρ)w](ξ) = zmax(0, zρ(ξ)− 1)r−1w(ξ).207208

Moreover, Th is continuously differentiable.209

Proof. Let h1(·) := z · −1 and h2(·) := max(0, ·)r. Then the mapping

x 7→ h(x) = h2(h1(x))

for all x ∈ R is convex, since h1 is affine linear and h2 is convex for r ≥ 1. Moreover,
it is continuous and, for r > 1, continuously differentiable with h′(x) = zmax(0, zx−
1)r−1. Convexity of Th is inherited from the convexity of h. Since |Th(ρ)(ξ)| ≤
|z|
r |ρ(ξ)|r, [51, Section 4.3.3] implies continuity of Th : Lp(D)→ L1(D) for p = r, and,

since D is bounded, for p ≥ r. The superposition operator Th′ associated to h′ and
given by

Th′(ρ)(ξ) := zmax(0, zρ(ξ)− 1)r−1

fulfills the growth condition210

|Th′(ρ)(ξ)| ≤ C(1 + |ρ(ξ)|r−1)(3.2)211212

for a constant C > 0. Hence, Th′ : Lp(D)→ Ls(D) with 1 ≤ s ≤ p
r−1 and, therefore,213

in particular, for s = p
p−1 since p ≥ r > 1. By [51, Section 4.3.3], this implies Fréchet214

differentiability of Th : Lp(D)→ L1(D) with derivative215

T ′h(ρ) ∈ L(Lp(D), L1(D)), [T ′h(ρ)w](ξ) = Th′(ρ)(ξ)w(ξ).216217

Since h′ is continuous and, therefore, fulfills the Carathéodory condition, and the218
growth condition (3.2) holds, Th′ : Lp(D) → L

p
p−1 (D) is well-defined and thus con-219

tinuous by [51, Section 4.3.3], [10, Theorem 3.1]. Hence, Th is continuously (Fréchet)220
differentiable.221

With this lemma continuity and differentiability of Υp follow directly.222

Corollary 3.2. Let D ⊂ Rd be a measurable, bounded subset of Rd, and p > 1.223
Then the mapping Υp is convex, continuous as a mapping Lp(D) → R and continu-224
ously differentiable with derivative225

Υ′p(ρ) ∈ L(Lp(D),R),226

Υ′p(ρ)w =
∫
D

(max(0, ρ(ξ)− 1)p−1 −max(0,−ρ(ξ)− 1)p−1)w(ξ)dξ.227
228

Moreover, Υp : Lp(D)→ R is weakly lower semicontinuous.229

Proof. Follows from Lemma 3.1 and the fact that continuity and convexity imply230
weak lower semicontinuity [21, Corollary 3.9].231

Lemma 3.3. Let d ∈ {2, 3}, D ⊂ Rd be a bounded Lipschitz domain. Let Y232
be a reflexive Banach space such that Y embeds compactly in a Banach space X,233
Y ↪→ Lp(D) for p > 1. Let (yk)k∈N be a bounded sequence in Y . Then there exists a234
subsequence (yk)k∈K , K ⊂ N, and ȳ ∈ Y such that ym ⇀ ȳ in Y , ym → ȳ in X, and235
ym ⇀ ȳ in Lp(D) for m→∞.236

6
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Proof. Since (yk)k∈N is bounded in Y , there exists a Y -weakly convergent sub-237
sequence (yk)k∈K , K ⊂ N, that converges to a ȳ ∈ Y [21, Theorem 3.17]. Since238
Y ↪→ Lp(D), this subsequence also converges weakly in Lp(D) to the same limit. [5,239
Lemma 10.2(1)] concludes the proof.240

Lemma 3.4. Let d ∈ {2, 3}, D ⊂ Rd be a bounded Lipschitz domain, Y = BV (D),241
p ∈ (1, d

d−1 ], q ∈ [1, d
d−1 ), X = Lq(D) and (yk)k∈N be a bounded sequence in Y . Then242

there exists a subsequence (yk)k∈K, K ⊂ N and ȳ ∈ Y such that yk ⇀∗ ȳ in Y , yk → ȳ243
in X, and yk ⇀ ȳ in Lp(D) for K 3 k →∞.244

Proof. By [20, Lemma 6.108], BV (D) embeds continuously into L
d
d−1 (D) and245

compactly into Lq(D) for q ∈ [1, d
d−1 ). Since BV (D) is compactly embedded into246

Lq(D), there exists ȳ ∈ Lq(D) and a subsequence (yk)k∈K1 , K1 ⊂ N that converges247
Lq(D)-strongly to ȳ. Since D is bounded, Lq(D) is continously embedded into L1(D)248
and, therefore, (yk)k∈K1 converges L1-strongly to ȳ.249
Since (yk)k∈K1 is bounded in BV (D) and converges L1-strongly to ȳ, (yk)k∈K1 con-250
verges BV -weakly* to ȳ [7, Proposition 3.13].251
By the continuous embedding of BV (D) into Lp(D), (yk)k∈K1 is bounded in Lp(D).252
Thus, there exists a limit point x̄ and a weakly convergent subsequence (yk)k∈K2 ,253
K2 ⊂ K1, that converges Lp-weakly to x̄. Since weak convergence in Lp implies weak254
convergence in L1 for bounded D, (yk)k∈K2 converges weakly to x̄. Since (yk)k∈K1255
converges strongly to ȳ in L1(D), it also converges L1-weakly to ȳ, which implies256
x̄ = ȳ.257

Lemma 3.5 (Continuity and boundedness from below of J). Let d ∈ {2, 3}, D ⊂258
Rd be a bounded Lipschitz domain. Let X be a Banach space. Assume that α : X →259
Ls(D), defined by (1.5), with s > 1 for d = 2 and s ≥ 3

2 for d = 3, is continuous.260
Then J : X ×H1(D)d → R is continuous. Moreover, J is bounded from below.261

Proof. Recall that J is defined in (1.6). We exemplarily show continuity of262
the first summand of J(ρ, u) given by (α(ρ)u, u)D. Consider the multilinear form263
m(w1, w2, w3) := (w1w2, w3)D. By Hölder’s inequality and the continuous embedding264
H1(D)d ↪→ L

2s
s−1 (D)d, there exists a constant C > 0 such that265

|m(w1, w2, w3)| ≤ ‖w1‖Ls(D)‖w2‖
L

2s
s−1 (D)d

‖w3‖
L

2s
s−1 (D)d

≤ C‖w1‖Ls(D)‖w2‖H1(D)d‖w3‖H1(D)d .
(3.3)266

267

Therefore, m : Ls(D) × H1(D)d × H1(D)d → R is well-defined. Due to continuity268
of α, the mapping (ρ, u) 7→ (α(ρ), u, u) is continuous as a mapping X × H1(D)d →269
Ls(D) ×H1(D)d ×H1(D)d. Thus, we obtain continuity of (ρ, u) → m(α(ρ), u, u) =270
(α(ρ)u, u)D. The other terms can be handled analogously.271

It holds that J is bounded from below since by Poincaré’s inequality and Young’s272
inequality there exists a constant C > 0 such that273

1
2(α(ρ)u, u)D + µ

2 (∇u,∇u)D − (f, u)D ≥ C‖u‖H1(D)d − ‖f‖H−1(D)d‖u‖H1(D)d274

≥ C

2 ‖u‖H1(D)d −
1

2C ‖f‖H−1(D)d .275
276

Lemma 3.6 (Continuity and boundedness from below of j). Let d ∈ {2, 3}, D ⊂277
Rd be a bounded Lipschitz domain. Let X be a Banach space. Assume that α : X →278
Ls(D), defined by (1.5), with s > 1 for d = 2 and s ≥ 3

2 for d = 3, is continuous.279
Then j : X → R is continuous. Moreover, j is bounded from below.280

7
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Proof. Follows from Lemma 3.5 and Lemma 2.2.281

Lemma 3.7 (Weak lower semicontinuity of j). Let d ∈ {2, 3}, D ⊂ Rd be a282
bounded Lipschitz domain. Let X be a Banach space, Y be a reflexive Banach space283
such that Y embeds compactly in X, Y ↪→ Lp(D) for p > 1. Assume that α : X →284
Ls(D), defined by (1.5), with s > 1 for d = 2 and s ≥ 3

2 for d = 3, is continuous.285
Then j : Y → R is weakly lower semicontinuous.286

Proof. We proof this statement via contradiction. Assume that j is not weakly287
lower semicontinuous. Then there exists δ > 0 and a sequence (ρk)k∈N with Y -weak288
limit ρ̄ ∈ Y such that j(ρk) ≤ j(ρ̄) − δ for all k ∈ N. Since every weakly convergent289
sequence is bounded, (ρk)k∈N is bounded. By Lemma 3.3 we obtain a subsequence290
(ρk)k∈K , K ⊂ N, that converges X-strongly to ρ̄. Lemma 3.6 implies291

|j(ρk)− j(ρ̄)| → 0292293

for K 3 k →∞. This yields a contradiction.294

Lemma 3.8 (Weak* lower semicontinuity of j). Let d ∈ {2, 3}, D ⊂ Rd be a295
bounded Lipschitz domain, Y = BV (D), p ∈ (1, d

d−1 ], q ∈ (1, d
d−1 ), X = Lq(D).296

Assume that α : X → Ls(D), defined by (1.5), with s > 1 for d = 2 and s ≥ 3
2 for297

d = 3, is continuous. Then j : Y → R is weakly* lower semicontinuous.298

Proof. The proof of Lemma 3.7 can be adapted using Lemma 3.4 instead of299
Lemma 3.3.300

Theorem 3.9. Let d ∈ {2, 3}, D ⊂ Rd be a bounded Lipschitz domain, uD ∈301
H

1
2 (∂D)d with

∫
∂D

uD · nds = 0 and f ∈ H−1(D)d. Moreover, let p, q > 1, X,Z be302
Banach spaces and Y be a reflexive Banach space such that Y is compactly embedded303
into X and X ↪→ Lq(D) and Y ↪→ Lp(D). Assume that α : X → Ls(D), defined304
by (1.5), with s > 1 for d = 2 and s ≥ 3

2 for d = 3, is continuous, g : X → Z is305
continuous and {ρ ∈ Y : g(ρ) ≤ 0,

∫
D

(|ρ|q − 1)dξ = 0} is non-empty. Then, for306
fixed γ, η > 0, the optimization problem defined by (1.1) - (1.6) attains a solution.307

Proof. Due to Lemmas 2.1 and 2.2 we can directly look at the reduced problem308
(1.1). By Lemma 3.6, j(ρ) is bounded from below. Hence, a minimizing sequence309
(ρk)k∈N ⊂ Y can be chosen such that g(ρk) ≤ 0,

∫
D

(|ρk|q−1)dξ = 0 for all k ∈ N, the310
objective function values of the minimizing sequence are monotonically decreasing,311
and312

lim
k→∞

j(ρk) + γΥp(ρk) + η

2‖ρk‖
2
Y = min

ρ∈Y, g(ρ)≤0,
∫
D

(|ρ|q−1)dξ=0
j(ρ) + γΥp(ρ) + η

2‖ρ‖
2
Y .

(3.4)
313

314

Due to the regularization term in the objective function, (‖ρk‖Y )k∈N is bounded and,315
therefore, by Lemma 3.3 there exists ρ̄ ∈ Y and a subsequence (ρk)k∈K , K ⊂ N, such316
that ρk ⇀ ρ̄ in Y and ρk → ρ̄ in X for K 3 k → ∞. Since Y ↪→ Lp(D), ρk ⇀ ρ̄317
in Lp(D). The mapping ρ → Υp(ρ) is weakly lower semicontinuous as mapping318
Lp(D)→ L1(D) by Corollary 3.2. With Y ↪→ Lp(D), the weak lower semicontinuity319
of j (Lemma 3.7), and the weak lower semicontinuity of the norm we hence obtain320

j(ρ̄) + γΥp(ρ̄) + η

2‖ρ̄‖
2
Y ≤ j(ρk) + γΥp(ρk) + η

2‖ρk‖
2
Y(3.5)321

322

for all k ∈ K and due to the monotonicity of the minimizing sequence also for all323
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k ∈ N. What remains to show is the admissibility of ρ̄. Since X embeds into Lq(D),324 ∫
D

(|ρ̄|q − 1)dξ = lim
m→∞

∫
D

(|ρm|q − 1)dξ = 0.325
326

Together with continuity of g : X → Z we know that ρ̄ is admissible, which proves327
that ρ̄ is a minimizer.328

Theorem 3.10. Let d ∈ {2, 3}, D ⊂ Rd be a bounded Lipschitz domain, uD ∈329
H

1
2 (∂D)d with

∫
∂D

uD · nds = 0 and f ∈ H−1(D)d. Moreover, let Y = BV (D),330
p ∈ (1, d

d−1 ], q ∈ (1, d
d−1 ), X = Lq(D), and Z be a Banach space such that g : X → Z331

is continuous. Assume that α : X → Ls(D), defined by (1.5), with s > 1 for d = 2332
and s ≥ 3

2 for d = 3, is continuous, and {ρ ∈ Y : g(ρ) ≤ 0,
∫
D

(|ρ|q − 1)dξ = 0} is333
non-empty. Then, for fixed γ, η > 0, the optimization problem defined by (1.1) - (1.6)334
attains a solution.335

Proof. The adaption of the proof of Theorem 3.9 is straightforward, using that336
the BV -norm is weak* lower semicontinuous [54, Theorem 5.2.1], Lemma 3.4 and337
Lemma 3.8 instead of Lemma 3.3 and Lemma 3.7.338

4. On the differentiability of the reduced objective.339

Lemma 4.1 (Continuous differentiability of J). Let d ∈ {2, 3}, D ⊂ Rd be a340
bounded Lipschitz domain. Let X be a Banach space. Assume that α : X → Ls(D),341
defined by (1.5), with s > 1 for d = 2 and s ≥ 3

2 for d = 3, is continuously differen-342
tiable. Then J : X ×H1(D)d → R is continuously differentiable.343

Proof. The multilinear form m : (w1, w2, w3) 7→ (w1w2, w3)D is well-defined as344
a mapping Ls(D) × H1(D)d × H1(D)d → R by (3.3). Due to continuous differen-345
tiability of α, the mapping (ρ, u) 7→ (α(ρ), u, u) is continuously differentiable as a346
mapping X × H1(D)d → Ls(D) × H1(D)d × H1(D)d. Hence, by the chain rule,347
(ρ, u)→ m(α(ρ), u, u), which corresponds to the first summand of J , is continuously348
differentiable as a mapping X × H1(D)d → R. Continuous differentiability of the349
other terms can be proven analogously.350

Lemma 4.2 (Fréchet differentiability of j). Let d ∈ {2, 3}, D ⊂ Rd be a bounded351
Lipschitz domain. Let X be a Banach space. Assume that α : X → Ls(D), defined by352
(1.5), with s > 1 for d = 2 and s ≥ 3

2 for d = 3, is continuously differentiable. Then353
j is Fréchet differentiable.354

Proof. Follows from Lemma 4.1 and Lemma 2.3 using the chain rule.355

Lemma 4.3 (Fréchet differentiability of j̄). Let d ∈ {2, 3}, D ⊂ Rd be a bounded356
Lipschitz domain, X and Y be Banach spaces such that the requirements of Lemma 3.3357
are fulfilled. Assume that α : X → Ls(D), defined by (1.5), with s > 1 for d = 2358
and s ≥ 3

2 for d = 3, is continuously differentiable and · 7→ ‖ · ‖2Y is continuously359
differentiable as a mapping Y → R. Then j̄ is Fréchet differentiable.360

Proof. Follows from Lemma 4.2, Corollary 3.2 and continuous differentiability of361
the norm.362

Remark 4.4. Due to the non-differentiability of the BV -norm the adaption of363
Lemma 4.3 requires either smoothing techniques, see e.g. [2], or, in convex cases,364
working with nonsmooth optimization approaches [23, 18].365

5. Limit considerations for increasing penalty parameter. We now show366
that, in the limit, ρ attains almost everywhere the values 1 or −1 if the penalty367
parameter γ is sent to infinity.368
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Theorem 5.1. Let Y be a reflexive Banach space. Let (γk)k∈N ⊂ R be a strictly369
monotonically increasing sequence with limk→∞ γk = ∞. Let the prerequisites of370
Theorem 3.9 be fulfilled and (ρk)k∈N ⊂ Y be a sequence of global optimal solutions of371
(1.1) for γ = γk (which exists due to Theorem 3.9). Assume that372

Φad = {ρ ∈ Y : g(ρ) ≤ 0,
∫
D

(|ρ|q − 1)dξ = 0, −1 ≤ ρ ≤ 1 a.e.}(5.1)373
374

is non-empty. Then there exists a subsequence (ρk)k∈K , K ⊂ N, that converges X-375
strongly and Y -weakly to ρ̄ ∈ Y , which is an optimal solution of376

min
ρ∈Φad

j(ρ) + η

2‖ρ‖
2
Y .(5.2)377

378

Proof. The proof is inspired by the proof of [52, Theorem 18.2] and consists of379
several steps. Define Pγk(ρ) := ĵ(ρ) + γk ·Υp(ρ) and ĵ(ρ) := j(ρ) + η

2‖ρ‖
2
Y .380

Step 1: The sequence (Pγk(ρk))k∈N is monotonically increasing.381
Since γk < γk+1, Υp(ρk+1) ≥ 0 and ρk is a global optimal solution of (1.1) for γ = γk382
it holds383

Pγk(ρk) ≤ Pγk(ρk+1) = ĵ(ρk+1) + γkΥp(ρk+1)384

≤ ĵ(ρk+1) + γk+1Υp(ρk+1) = Pγk+1(ρk+1).385386

Step 2: The sequence (Υp(ρk))k∈N is monotonically decreasing.387
We know that Pγk(ρk) ≤ Pγk(ρk+1) and Pγk+1(ρk+1) ≤ Pγk+1(ρk). Adding both388
inequalities leads to the inequality389

γkΥp(ρk) + γk+1Υp(ρk+1) ≤ γkΥp(ρk+1) + γk+1Υp(ρk).390391

This is equivalent to the inequality392

γk(Υp(ρk)−Υp(ρk+1)) ≤ γk+1(Υp(ρk)−Υp(ρk+1)).393394

Since γk < γk+1, we have395

Υp(ρk)−Υp(ρk+1) ≥ 0.396397

Step 3: The sequence (ĵ(ρk))k∈N is monotonically increasing.398
It holds Pγk(ρk) ≤ Pγk(ρk+1), and by step 2, Υp(ρk) ≥ Υp(ρk+1). In combination399
with γk > 0 for all k ∈ N, this leads to the inequality400

0 ≤ Pγk(ρk+1)− Pγk(ρk) = ĵ(ρk+1)− ĵ(ρk) + γk(Υp(ρk+1)−Υp(ρk))401

≤ ĵ(ρk+1)− ĵ(ρk).402403

Step 4: It holds limk→∞Υp(ρk) = 0.404
The set Φad is non-empty, and thus, there exists ρ̂ ∈ Φad and a corresponding û = S(ρ̂)405
such that Υp(ρ̂) = 0. Using optimality of ρk and step 3, we have406

ĵ(ρ̂) = Pγk(ρ̂) ≥ Pγk(ρk) = ĵ(ρk) + γkΥp(ρk) ≥ ĵ(ρ0) + γkΥp(ρk)407408

for all k ∈ N. Therefore, ĵ(ρ0) + γkΥp(ρk) is bounded and for γk
k→∞−−−−→ ∞ we have409

Υp(ρk) k→∞−−−−→ 0.410
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Step 5: There exists a subsequence (ρk)k∈K , K ⊂ N that converges X-strongly and411
Y -weakly to ρ̄ ∈ Y , which is an optimal solution of (5.2).412
Due to continuity of ĵ : Y → R (Lemma 3.6 and continuity of the norm), optimality413
of ρk, Υp(ρk) ≥ 0, and non-emptyness of Φad, (ĵ(ρk))k∈N is bounded since there exists414
ρ̂ ∈ Φad such that415

∞ > ĵ(ρ̂) = Pγk(ρ̂) ≥ Pγk(ρk) = ĵ(ρk) + γkΥp(ρk) ≥ ĵ(ρk) ≥ ĵ(ρ0).416417

Since j is bounded from below (Lemma 3.6), (‖ρk‖Y )k∈N is bounded. Due to the418
compact embedding of Y in X, by Lemma 3.3 there exists a subsequence (ρk)k∈K ,419
K ⊂ N, ρ̄ ∈ Y such that ρk → ρ̄ in X and ρk ⇀ ρ̄ in Y for K 3 k →∞. Step 4 and420
weak lower semicontinuity of Υp : Lp(D)→ R (Corollary 3.2) imply that421

0 ≤ Υp(ρ̄) ≤ lim inf
K3k→∞

Υp(ρk) = 0,422
423

and, therefore, −1 ≤ ρ̄ ≤ 1 a.e. Continuity of g implies g(ρ̄) ≤ 0. Since X ↪→ Lq(D),424
we also know that

∫
D

(|ρ̄|q − 1)dξ = 0. Hence, ρ̄ ∈ Φad.425
For the following inequalities, we use that γkΥp(ρk) ≥ 0 for all k ∈ N and that ρk is426
optimal for Pγk . Since for all ρ ∈ Φad it holds that Υp(ρ) = 0, we have427

ĵ(ρk) ≤ Pγk(ρk) ≤ Pγk(ρ) = ĵ(ρ).428429

In combination with the weak lower semicontinuity of ĵ as a mapping Y → R430
(Lemma 3.7), ρ̄ is an optimal solution of (5.2) since431

ĵ(ρ̄) ≤ lim inf
K3k→∞

ĵ(ρk) ≤ ĵ(ρ) for all ρ ∈ Φad.432
433

Remark 5.2. Theorem 5.1 can also be proven if we replace the reflexivity of Y434
with the requirements of Lemma 3.4.435

Remark 5.3. Theorem 5.1 requires the global optima of the relaxed problems.436
In practice, due to the nonlinear nature of the optimization problems, one typically437
obtains local optima. The quality of these optima typically depends on the intial438
point for the optimization and on appropriate regularization techniques, such as a439
term that corresponds to a penalization of the perimeter of the resulting optimal440
shapes. Another approach is using deflation techniques [46].441

6. Choice of Y , X, Z, g, p, q and α. Summarizing the requirements of the442
previous sections, we obtain the following assumptions.443

Assumption 1. Let Y , X, Z, g, p, q and a superposition operator α defined by444
(1.5), satisfy445

• Y is either reflexive or Y = BV (D),446
• Y embeds compactly in X, with X ↪→ Lq(D) with q > 1,447
• Y ↪→ Lp(D) with p > 1,448
• α is continuously differentiable as a mapping X → Ls(D), defined by (1.5),449

with s > 1 for d = 2 and s ≥ 3
2 for d = 3,450

• Φad, defined in (5.1), contains an element ρ̂ such that j(ρ̂) <∞. In particular,451
Y should allow for jumps of ρ along hypersurfaces,452

• g is continuous as a mapping X → Z.453

The following lemma will be helpful to prove Fréchet differentiability of α.454
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Lemma 6.1. Let p > q > 1 and t > 1 be such that qt ≤ p. Let α be a superposition455

operator defined by (1.5) and ã(x) :=
{
ᾱ|x|t if x < 0,
0 else ,

456

with ᾱ > 0. Then, α : Lp(D)→ Lq(D) is continuously differentiable.457

Proof. Can be shown analogously to Lemma 3.1. It holds ã(x) := max(0, (−x)t),458
which is locally Lipschitz continuous with ã′(x) = tmax(0, (−x)t−1). We consider459
the superposition operator α(ρ)(ξ) := ã(ρ(ξ)), which fulfills the growth condition460
|α(ρ)(ξ)| ≤ ᾱ|ρ(ξ)|t. This implies continuity of α for t = p

q [51, Section 4.3.3]. In461
addition, α′(ρ)(ξ) := ã′(ρ(ξ)) maps ρ ∈ Lp(D) to Lr(D) with r = p

t−1 . Hence α is462
continuously differentiable [51, Section 4.3.3].463

One choice of Y that allows for fulfilling the above requirements is the space BV (D).464
The corresponding total variation (TV) term in the regularization promotes piecewise465
constant behavior of optimal solutions, see e.g. [47, 19].466

Lemma 6.2. The choice d ∈ 2, Y = BV (D), X = Lq(D), p = 2, q ∈ (1, 3
2 ), g467

given by (1.7), Z = R, ã(x) =
{
ᾱ|x|

3
2q if x < 0

0 else
, and α(ρ)(ξ) := ã(ρ(ξ)) for all468

ξ ∈ D, with ᾱ� 1 satisfies Assumption 1.469

Proof. The assumptions on Y are fulfilled due to [7, Proposition 3.13, Definition470
3.11], and [54, Theorem 5.2.1], see also proof of Lemma 3.4. By [20, Lemma 6.108],471

BV (D) embeds continuously into L
d
d−1 (D) and compactly into Lr(D) for r ∈ (1, d

d−1 ).472
The Fréchet differentiability of α follows from Lemma 6.1.473

The total variation is, in general, not accessible for computation. For an indicator
function of a subset Ω ⊂ D it corresponds to the perimeter of Ω, see [7, Section 3.3].
If we consider smoother functions u ∈W 1,1(D), then TV (u) can be computed via∫

D

|∇u|2 dξ,

see [2, Section 2]. However, TV (u) is not differentiable, which is disadvantageous for474
optimization, in particular Lemma 4.3 is not applicable, see also Remark 4.4.475

Another choice for Y is the space Hσ(D), σ < d
2 .476

Lemma 6.3. Let D be a bounded Lipschitz domain. The choice d = 2, Y =477
Hσ(D), σ = 7

8 , X = L8(D), p = 8, q = 2, s = 2, g given by (1.7), Z = R,478

ã(x) =
{
ᾱx4 if x < 0
0 else

, and α(ρ)(ξ) := ã(ρ(ξ)) for all ξ ∈ D, with ᾱ � 1 satisfies479

Assumption 1.480

Proof. It holds that with σ < 1, Hσ(D) ↪→ Lp̃(D) for p̃ = 2d
d−2σ and Hσ(D)481

embeds compactly into Lq(D) for any q ∈ [1, p̃) [6, Theorem 4.4], [3, Theorem 7.34],482
[27, Theorem 6.7]. Hence, we can choose p = 8 and q = 2, which also gives continuity483
and differentiability of α according to Lemma 6.1.484

The Hσ(D)-norm is given as485

‖ · ‖Hσ(D) = (‖ · ‖2L2(D) + | · |2σ) 1
2 ,486

where the Hσ-seminorm is, e.g., given by the Sobolev-Slobodeckij seminorm487

| · |σ = (
∫
D

∫
D

|u(x)− u(y)|2

‖x− y‖d+2σ dy dx) 1
2 .(6.1)488

489
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[28, 40] propose to work with a slightly different norm, which - under assumptions on490
the weighting κ(x, y) - is equivalent to the original Hσ-norm according to [40, Lemma491
2.1]:492

‖| · ‖|Hσ(D) := (‖ · ‖2L2(D) + | · |2κ,σ) 1
2 ,(6.2)493494

where495

| · |κ,σ := (
∫
D

∫
D

|u(x)− u(y)|2

‖x− y‖d+2σ κ(x, y)dy dx) 1
2 ,(6.3)496

497

and κ(x, y) fulfills [40, Assumption 2.1], e.g.498 {
1 if ‖x− y‖ ≤ δ,
0 else,

(6.4)499
500

see [40, Remark 2.2]. For convenience, we work with the continuously differentiable501
approximation502

κ(x, y) =


1 if ‖x− y‖ ≤ δ,
f(‖x−y‖

2−δ2

9
16 δ

2 ) if ‖x− y‖ ∈ (δ, 5
4δ),

0 else,
(6.5)503

504

for f(r) := 2r3 − 3r2 + 1, which also fulfills [40, Assumption 2.1]. Working with505
this definition of the norm reduces the computational effort to assemble the Hσ(D)-506
matrix. However, for fixed δ, the bandwidth of the matrix increases for decreasing507
mesh size. It might be convenient to have a matrix with fixed bandwidth. This508
requires to choose δ = O(h). In the following, we motivate that this is justified in our509
application as long as σ = σ(δ) is adapted correspondingly.510

One is often interested in shapes with bounded total variation, compare Re-511
mark 5.3. When working with Hσ(D), σ < d

2 , it is a priorily not clear if the optimal512
shape has bounded variation. For this reason, we take a closer look into the theory.513
In [16] it is shown that a function u ∈ L1(D) is an element of BV (D) if and only if514

lim inf
σ̃→1

(1− σ̃)
∫
D

∫
D

|u(x)− u(y)|
|x− y|d+σ̃ dydx <∞.515

516

More precisely, if D is a Lipschitz domain, there exists a constant c that depends on517
d such that518

lim
σ̃→1−

(1− σ̃)
∫
D

∫
D

|u(x)− u(y)|
|x− y|d+σ̃ dydx→ c TV (u)(6.6)519

520

for all u ∈ BV (D), where TV (u) denotes the total variation of u [25, 42]. A similar521
result can also obtained for the seminorm (6.3). Let σ = 1

2 σ̃, u ∈ BV (D, {−1, 1})522
and let δ > 0 be chosen arbitrarily. Then, since |u| = 1 a.e., and523 ∫

D

∫
D

|u(x)− u(y)|
|x− y|d+2σ dydx = 1

2

∫
D

∫
D

|u(x)− u(y)|2

|x− y|d+2σ dydx524

= 1
2

∫
D

∫
D

|u(x)− u(y)|2

|x− y|d+2σ κ(x, y)dydx+ 1
2

∫
D

∫
D

|u(x)− u(y)|2

|x− y|d+2σ (1− κ(x, y))dydx.525
526
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Since527

|12(1− 2σ)
∫
D

∫
D

|u(x)− u(y)|2

|x− y|d+2σ (1− κ(x, y))dydx |528

≤ |12(1− 2σ)
∫
D

∫
D\Bδ(x)

|u(x)− u(y)|2

|x− y|d+2σ dydx| ≤ 2|D|2(1− 2σ)δ−d−2σ,529
530

we have531

lim
σ→ 1

2
−

1
2(1− 2σ)

∫
D

∫
D

|u(x)− u(y)|2

|x− y|d+2σ κ(x, y)dydx = cTV (D)532
533

if σ = σ(δ) such that σ → 1
2
− and (1− 2σ)δ−d−2σ → 0 for δ → 0. This motivates to534

consider the following setting.535

Lemma 6.4. Let D be a bounded Lipschitz domain. The choice d ∈ {2, 3}, Y =536
Hσ(D), 3

8 ≤ σ ≤ 1
2 , X = L

15
6 (D), p = 8

3 , q = 2, s = 3
2 , g given by (1.7), Z = R,537

ã(x) =


ᾱ|x| if x < −1,
ᾱ(− 1

16x
4 + 3

8x
2 − 1

2x+ 3
16 ) if − 1 ≤ x < 1,

0 else,
538

and α(ρ)(ξ) := ã(ρ(ξ)) for all ξ ∈ D, with ᾱ� 1 satisfies Assumption 1.539

Proof. Follows as in Lemma 6.3. Since continuous differentiability of α is not540
directly covered by Lemma 6.1, we prove it here. It holds that p > q > 1. Furthermore,541
α is Lipschitz continuous with542

ã′(x) =


−ᾱ for ξ < −1,
ᾱ(− 1

4x
3 + 3

4x−
1
2 ) for − 1 ≤ ξ < 1,

0 else.
543

544

It fulfills the growth condition |α(ρ)(ξ)| ≤ ᾱ(|ρ(ξ)| + 1). Hence, continuity of α :545
Lp(D) → Lq(D) follows with [51, Section 4.3.3]. Since α′(ρ)(ξ) := ã′(ρ(ξ)) maps546
ρ ∈ Lp(D) to L∞(D) and p > q, continuous differentiability follows with [51, Section547
4.3.3].548

Remark 6.5. Our experiments indicate that the 1
2 (α(ρ)u, u)D term in the objec-549

tive function is important for the numerical performance. Moreover, choosing ã(x) > 0550
for x ∈ (−1, 1) shows faster convergence than having a plateau by choosing ã(x) = 0551
for x ∈ (0, 1). This relates to the observations in connection with [34, Figure 7].552

7. Numerical realization. In the scope of the work we realize the setting of553
Lemma 6.4 for the particular choice d = 2, σ = 7

16 . To discretize the states (u, p) we554
use mixed Taylor-Hood finite elements, i.e. piecewise quadratic continuous Lagrange555
finite elements (CG2 FEM) for the velocity u and piecewise linear continuous Lagrange556
finite elements (CG1 FEM) for the pressure p. The design variable ρ is discretized557
with piecewise constant discontinuous Lagrange finite elements (DG0 FEM) in order558
to for the discretized space to be a subset of Y .559

Remark 7.1. The volume constraint prevents ρ from being constantly 1 or −1.560
Using CG1 FEM for ρ enforces an interfacial region with width of at least O(h), in561
which ρ ∈ (−1, 1). Hence, the sphere constraint enforces values of ρh which are bigger562
than 1 or smaller than −1. This, however, leads for a fixed mesh size h to an optimal563
objective function j̄ value that diverges to ∞ for γ →∞.564
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By (ψl) we denote the nodal basis functions of the CG1 FEM space Sh1 ⊂ H1(D),565
by (φk) the nodal basis functions of the CG2 FEM space Sh2 ⊂ H1(D), and by (Φk)566
the nodal basis functions of DG0 FEM space Sh0 ⊂ Hσ(D). Therefore, the discrete567
representations of the velocity u ∈ H1(D)d, the pressure p ∈ L2

0(D) and of the design568
variable ρ ∈ Hσ(D) are the following:569

uhi (ξ) =
∑
k

(ui)kφk(ξ), ph(ξ) =
∑
`

p`ψ`(ξ), ρh(ξ) =
∑
j

ρjΦj(ξ),570

571

for i ∈ {1, . . . , d} with coefficient vectors (ui),p,ρ. Since it is discretized with CG1572
FEM, for ph the entries of p correspond to the nodal values. For ρh, ρ contains the573
values on the cells.574

7.1. State Equation. The pressure solving (1.4) is only unique up to an additive575
constant [14]. Therefore, we choose p to be in the Banach space L2

0(D) = {p ∈576
L2(D) :

∫
D
pdξ = 0}. Thus, the variational problem of the state equation, having a577

unique solution, is:578
Find u ∈ U = {u ∈ H1(D)d : u = uD on ∂D} and p ∈ Π = L2

0(D) s.t.579

µ

∫
D

∇u : ∇vdξ +
∫
D

α(ρ)u · vdξ −
∫
D

p div(v)dξ =
∫
D

f · vdξ,580 ∫
D

q div(u)dξ = 0,581
582

for all v ∈ H1
0 (D)d, q ∈ L2

0(D). We define the bilinear forms583

a : H1(D)×H1(D)→ R, a(u, v) := 〈∇u,∇v〉L2(D),584

bi : H1(D)× L2(D)→ R, bi(v, q) := 〈∂iv, q〉L2(D)585586

and the linear form587

Fi : H1(D)→ R, Fi(v) = 〈fi, v〉L2(D)d .588589

Additionally, we have the nonlinear form590

r : Hσ(D)×H1(D)×H1(D)→ R, r(ρ;u, v) := 〈α(ρ)u, v〉L2(D).591592

Therefore, the variational formulation of the state equation for D ⊂ Rd can be written593
as:594
Find u ∈ U and p ∈ Π s.t.595

〈E(ρ, u, p), (v, q)〉H−1(D)d×Π∗,H1
0 (D)d×Π596

=
d∑
i=1

µa(ui, vi) + r(ρ;ui, vi)− bi(vi, p) + bi(ui, q)−
d∑
i=1

Fi(vi) = 0597
598

for all v ∈ H1
0 (D)d and q ∈ L2

0(D). This variational problem with Dirichlet boundary599
condition can be reduced to a homogeneous problem by choosing a function uD ∈ U600
and setting u = w + uD with (w, p) ∈ H1

0 (D)d × L2
0(D) solving601

d∑
i=1

µa(wi, vi) + r(ρ;wi, vi)− bi(vi, p) + bi(wi, q)602

=
d∑
i=1

Fi(vi)− µa(uDi, vi)− r(ρ;uDi, vi)− bi(uDi, q)603
604
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for all (v, q) ∈ H1
0 (D)d × L2

0(D).605
The discrete version of the nonlinear terms r(ρ;ui, vi), i ∈ {1, . . . , d}, is606

r(ρh;uhi , vhi ) =
∑
j,k,`

α(ρ`)(ui)j(vi)k
∫
D

Φ`(ξ)φj(ξ)φk(ξ)dξ = u>i R(ρ)vi,607

608

with Rjk(ρ) = r(ρh;φj , φk). To get the discrete equations of the variational problem609
we assemble610

Aij = a(φj , φi), B`ij = b`(φi, ψj), and (f`)i = Fh` (φi),611612

where Fh` (φi) := 〈fhi , v〉L2(D)d and fhi is a piecewise linear or quadratic, contin-613
uous interpolation of the function fi. Since whi and vhi fulfill the homogeneous614
Dirichlet boundary conditions, it holds whi =

∑
k(wi)kφk(ξ) =

∑
k∈I(wi)kφk(ξ) and615

vhi =
∑
k∈I(vi)kφk(ξ), where I denotes the set of non-Dirichlet boundary nodes.616

Then for d = 2, the FEM discretization of the state equation in matrix-vector form617
reads as618

µAII(w1)I +R(ρ)II(w1)I −B1
I•p = (f1)I − µAI•uD1 −R(ρ)I•uD1

µAII(w2)I +R(ρ)II(w2)I −B2
I•p = (f2)I − µAI•uD2 −R(ρ)I•uD2(

B1
I•
)> (w1)I +

(
B2
I•
)> (w2)I = −

(
B1)> uD1 −

(
B2)> uD2

(7.1)619

620

For a given ρh, these equations define a unique solution for uh = wh + uhD and ph if621
we fix one degree of freedom of the pressure ph.622

7.2. Hσ(D)-norm. In this section we discuss how we realize the Hσ-norm on623
uniform meshes based on the Sobolev-Slobodeckij norm, see the discussion in Section 6624
and [40, 28]. There are also other possibilities to realize (norms that are equivalent to)625
fractional order Sobolev norms, e.g. working with inverse estimates on a hierarchy626
of nested subspaces [22] or fractional powers of the stiffness matrix (for DG finite627
elements obtained by a discontinuous Galerkin discretization of the Laplacian) [11, 9,628
37, 29, 43].629

The problem in the numerical realization is the non-locality of the Hσ(D)-norm,630
which makes it hard to compute. To assemble the matrix corresponding to the Hσ-631
seminorm | · |κ,σ, consider the symmetric bilinear form632

aσ(ρ1, ρ2) :=
∫
D

ρ1(ξ)ρ2(ξ)dξ + 〈ρ1, ρ2〉κ,σ,633
634

with635

〈ρ1, ρ2〉κ,σ :=
∫
D

∫
D

(ρ1(x)− ρ1(y))(ρ2(x)− ρ2(y))
‖x− y‖d+2σ κ(x, y)dy dx.(7.2)636

637

When we consider the discretized functions ρh` (ξ) =
∑
i(ρ`)iΦi(ξ), ` ∈ {1, 2}, we

obtain 〈ρh1 , ρh2 〉κ,σ =
∑
i,j(ρ1)iMi,j(ρ2)j with

Mi,j = 〈〈ΦiΦj , 1〉〉+ 〈〈1,ΦiΦj〉〉 − 〈〈Φj ,Φi〉〉 − 〈〈Φi,Φj〉〉

for i 6= j, where638

〈〈ρ1, ρ2〉〉 :=
∫
D

∫
D

ρ1(x)ρ2(y)
‖x− y‖d+2σ κ(x, y)dy dx(7.3)639

640
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Figure 7.1: Local stencil for | · |κ,σ, between the orange lines κ attains values in (0, 1)

for all ρ1, ρ2 ∈ Hσ(D) and κ defined by (6.5). Using symmetry of κ we obtain641

Mi,j = 2〈〈ΦiΦj , 1〉〉 − 2〈〈Φi,Φj〉〉.(7.4)642643

If Φi and Φj have disjoint interior supports, this further simiplifies to

Mi,j = −2〈〈Φi,Φj〉〉.

In order to minimize the computational effort, we consider δ = O(h) in (6.5), which644
yields local, h-dependent equivalent norms of the non-local Hσ-norm. Keeping the645
motivation in Section 6 in mind, this is justified if (1− 2σ) = o(hd+2σ).646

For simplicity, we consider uniform rectangular meshes, which is, e.g., obtained647
for uniform triangular meshes if we choose - for piecewise constant finite elements - the648
degrees of freedom of two neighboring elements forming a rectangle equally. Moreover,649
we coose δ = 2

√
2h in the definition of κ such that in all neighboring elements the650

weighting is constantly 1. Figure 7.1 illustrates the local stencil. Due to symmetry651
arguments and the κ-term 13 integrals have to be determined. However, when using652
quadrature rules for determining the integrals, one has to take care that singularities653
appear for 2 and 3 . The κ-term is different from being constantly 1 or 0 on the654

cells 4 - 13 . Let f be defined as in (6.5) and655

κ̃(x, y) =


1 if ‖x− y‖ ≤ 2

√
2,

f(‖x−y‖
2−8

9
2

) if ‖x− y‖ ∈ (2
√

2, 5
2
√

2),
0 else.

(7.5)656

657

Let d = 2, and658

Ii,j := −2h2−2σ
∫ 1

0

∫ 1

0

∫ i+1

i

∫ j+1

j

‖x− y‖−2−2σκ̃(x, y)dy2dy1dx2dx1,659
660
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1o = 1n + 2 + 3 + 5 + 8 + 12

Figure 7.2: Classification of elements near the boundary of the rectangular domain
D.

where x = (x1, x2)> and y = (y1, y2)>. We obtain the integrals over functions with661
singularities and κ̃ ≡ 1662

2 = I−1,0, 3 = I−1,−1,663664

and, with κ̃-term not constantly equal to 1,665

4 = I2,0, 5 = I2,1, 6 = I2,2, 7 = I3,0, 8 = I3,1,666

9 = I3,2, 10 = I3,3, 11 = I4,0, 12 = I4,1, 13 = I4,2.667668

Since (7.2) is zero for ρ1 = Φi and ρ2 ≡ 1, we obtain for elements that are sufficiently669
far away from the boundary such that all neighboring elements of the local stencil670
exist671

1 = 0− 4 2 − 4 3 − 4 4 − 8 5 − 4 6 − 4 7672

− 8 8 − 8 9 − 4 10 − 4 11 − 8 12 − 8 13 .673674

Hence, Mi,i = 1 +
∫
D

Φi(ξ)Φi(ξ)dξ, for all elements i sufficiently far away from the675
boundary.676

7.2.1. Modification of local stencil near boundary. For elements i close to677
the boundary we obtain Mi,i = 1∗ +

∫
D

Φi(ξ)Φi(ξ)dξ, where ∗ denotes the classifica-678

tion of the element i and the modified formulas near the boundary are given according679
to Figure 7.2.680

7.2.2. Computation of the entries of the local stencil. From the local681
stencil, the global matrix M can be assembled such that682

aσ(ρh1 , ρh2 ) = ρ>1 Mρ2.683684
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To compute the integrals 2 and 3 we use the procedure described in [24].685
Therefore, we first transform the integrals appropriately such that we integrate over686
the 2d-hypercube and the singularity is isolated in the first coordinate direction. In687
order to compute 2 we have to evaluate688

∫ 1

0

∫ 1

0

∫ 0

−1

∫ 1

0
‖x− y‖−2−2σdy2dy1dx2dx1689

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
((x1 + y1)2 + (x2 − y2)2)−1−σdy2dy1dx2dx1690

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ x2

x2−1
((x1 + y1)2 + z2)−1−σdzdx2dy1dx1691

=
∫ 1

0

∫ 1

0

∫ 1

−1

∫ min(1+z,1)

max(0,z)
((x1 + y1)2 + z2)−1−σdx2dzdy1dx1692

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

z

((x1 + y1)2 + z2)−1−σdx2dzdy1dx1693

+
∫ 1

0

∫ 1

0

∫ 0

−1

∫ 1+z

0
((x1 + y1)2 + z2)−1−σdx2dzdy1dx1694

= 2
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(1− z)((x1 + y1)2 + z2)−1−σdx2dzdy1dx1695

= 2
∫ 1

0

∫ 1

0

∫ 1

0
h2(x1, y1, z)dzdy1dx1696

697

with h2(x1, y1, z) := (1− z)((x1 + y1)2 + z2)−1−σ, where we did formal computations698
assuming that Fubini’s theorem is applicable. This integral is singular if (x1, y1, z) =699
0. This singularity of radial type located in the corner of the integration domain700
[0, 1]3 is isolated in a single variable by partitioning [0, 1]3 into pyramids and applying701
a high-dimensional Duffy transformation in each pyramid, which parametrizes each702
pyramid by the hypercube, see [24, Figure 2, Section 3.5]:703

2
∫ 1

0

∫ 1

0

∫ 1

0
(1− z)((x1 + y1)2 + z2)−1−σdzdy1dx1704

= 2
∫ 1

0

∫ 1

0

∫ 1

0
(h2(s, sξ1, sξ2) + h2(sξ1, s, sξ2) + h2(sξ1, sξ2, s))s2dξ1dξ2ds705

= 2
∫ 1

0
s−2σds(

∫ 1

0

∫ 1

0
(h̃2(1, ξ1, ξ2) + h̃2(ξ1, 1, ξ2) + h̃2(ξ1, ξ2, 1))dξ1dξ2)706

+ 2
∫ 1

0
s1−2σds(

∫ 1

0

∫ 1

0
(ĥ2(1, ξ1, ξ2) + ĥ2(ξ1, 1, ξ2) + ĥ2(ξ1, ξ2, 1))dξ1dξ2)707

= 2
1− 2σ

∫ 1

0

∫ 1

0
(h̃2(1, ξ1, ξ2) + h̃2(ξ1, 1, ξ2) + h̃2(ξ1, ξ2, 1))dξ1dξ2708

+ 2
2− 2σ

∫ 1

0

∫ 1

0
(ĥ2(1, ξ1, ξ2) + ĥ2(ξ1, 1, ξ2) + ĥ2(ξ1, ξ2, 1))dξ1dξ2709

710

with h̃2(ξ1, ξ2, ξ3) = ((ξ1 +ξ2)2 +ξ2
3)−1−σ and ĥ2(ξ1, ξ2, ξ3) = −ξ3((ξ1 +ξ2)2 +ξ2

3)−1−σ711

19

This manuscript is for review purposes only.



For σ = 7
16 , we obtain with MATLAB712 ∫ 1

0

∫ 1

0
(h̃2(1, ξ1, ξ2) + h̃2(ξ1, 1, ξ2) + h̃2(ξ1, ξ2, 1))dξ1dξ2713

≈ 2 · 3.0959 · 10−1 + 4.2072 · 10−1 = 1.0399 · 100,714 ∫ 1

0

∫ 1

0
(ĥ2(1, ξ1, ξ2) + ĥ2(ξ1, 1, ξ2) + ĥ2(ξ1, ξ2, 1))dξ1dξ2715

≈ 2 · (−1.3763 · 10−1)− 4.2072 · 10−1 = −6.9598 · 10−1.716717

For 3 we have718 ∫ 1

0

∫ 1

0

∫ 0

−1

∫ 0

−1
‖x− y‖−2−2σdy2dy1dx2dx1719

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
h3(x1, x2, y1, y2)dy2dy1dx2dx1720

721

with h3(x1, x2, y1, y2) := ((x1 + y1)2 + (x2 + y2)2)−1−σ and thus, using again [24,722
Section 3.5],723 ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
h3(x1, x2, y1, y2)dy2dy1dx2dx1724

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
s1−2σ(h3(1, ξ1, ξ2, ξ3) + h3(ξ1, 1, ξ2, ξ3)725

+ h3(ξ1, ξ2, 1, ξ3) + h3(ξ1, ξ2, ξ3, 1))dξ1dξ2dξ3ds726

= 4
2− 2σ

∫ 1

0

∫ 1

0

∫ 1

0
h3(1, ξ1, ξ2, ξ3)dξ1dξ2dξ3.727

728

For σ = 7
16 , we obtain with MATLAB729 ∫ 1

0

∫ 1

0

∫ 1

0
h3(1, ξ1, ξ2, ξ3)dξ1dξ2dξ3 ≈ 2.1065 · 10−1.730

731

Hence,732

2 ≈ −2h2−2σ( 2
1− 2σ 1.0399 · 100 − 2

2− 2σ 6.9598 · 10−1),733

3 ≈ −2h2−2σ( 4
2− 2σ 2.1065 · 10−1).734

735

For σ = 7
16 , we obtain the approximations for the integrals 4 − 13 with MATLAB:736

4 ≈ −2h2−2σ1.6422 · 10−1, 9 ≈ −2h2−2σ6.9627 · 10−3,737

5 ≈ −2h2−2σ1.1512 · 10−1, 10 ≈ −2h2−2σ2.1142 · 10−4,738

6 ≈ −2h2−2σ4.8272 · 10−2, 11 ≈ −2h2−2σ9.2385 · 10−4,739

7 ≈ −2h2−2σ3.5498 · 10−2, 12 ≈ −2h2−2σ3.7609 · 10−4,740

8 ≈ −2h2−2σ2.5427 · 10−2, 13 ≈ −2h2−2σ1.1380 · 10−5.741742
20
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7.3. Objective Function. We consider the objective function

j̄(ρ) := J(ρ, S(ρ)) + γΥp(ρ) + η

2‖|ρ‖|
2
Hσ(D),

with743

J : Hσ(D)×H1(D)d → R,744

J(ρ, u) = 1
2

∫
D

α(ρ)u · udξ + µ

2

∫
D

∇u : ∇udξ −
∫
D

f · udξ,745
746

compare (1.2)–(1.6). Using the bilinear forms, the linear and the nonlinear form747
defined in section 7.1, J can be written as748

J(ρ, u) =
d∑
i=1

(
1
2r(ρ;ui, ui) + µ

2 a(ui, ui)− Fi(ui)
)
.749

750

The discrete version of the objective function is the following:751

J̄h(ρh, uh) := Jh(ρh, uh) + γΥp(ρh) + η

2aσ(ρh, ρh),752
753
754

Jh(ρh, uh) =
d∑
i=1

(
1
2r(ρ

h;uhi , uhi ) + µ

2 a(uhi , uhi )− Fhi (ui)
)

755

=
d∑
i=1

(
1
2u>i R(ρ)ui + µ

2 u>i Aui − f>i ui
)
,756

757

and, for p = 2,758

Υp(ρh) = 1
2
∑
`

max(0,ρ` − 1)2
∫
D

Φ`(ξ)dξ + 1
2
∑
`

min(0,ρ` + 1)2
∫
D

Φ`(ξ)dξ.759
760

7.4. Lagrangian and Adjoint Equation. Let λhi =
∑
k(λi)kφk ∈ H1(D) for761

i ∈ {1, . . . , d} and νh =
∑
` ν`ψ` ∈ L2

0(D). The discretized Lagrangian is given by762

Lh(ρh, wh, ph, λh, νh)763

= J̄h(ρh, wh + uhD) +
d∑
i=1

(
µa(whi + uhDi, λ

h
i ) + r(ρh;whi + uhDi, λ

h
i )764

− bi(λhi , ph) + bi(whi + uhDi, ν
h)− Fhi (λhi )

)
.765766

767
To compute the gradient of the reduced objective function we need the solution of the768
adjoint equation. The discrete adjoint state is defined by the following equations:769

〈 d

dwhi
Lh, vhi 〉 = r(ρh;whi + uhDi, v

h
i ) + µa(whi + uhDi, v

h
i )− Fhi (vi)770

+ µa(vhi , λhi ) + r(ρh; vhi , λhi ) + bi(vhi , νh) = 0,771

〈 d
dph

Lh, qh〉 = −
d∑
i=1

bi(λhi , qh) = 0,772
773
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for all vhi ∈ Sh2 , i ∈ {1, . . . , d} and qh ∈ Sh1 . Written in a matrix-vector form, for774
d = 2, the adjoint equation is775

R(ρ)II(λ1)I + µAII(λ1)I −B1
I•ν = (f1)I − (µAI• +R(ρ)I•)(w1 + uD1)

R(ρ)II(λ2)I + µAII(λ2)I −B2
I•ν = (f2)I − (µAI• +R(ρ)I•)(w2 + uD2)(

B1
I•
)> (λ1)I +

(
B2
I•
)> (λ2)I = 0.

(7.6)776

777

For fixed ρh, uh and ph, the adjoint state (λh, νh) is the unique solution of these778
equations if we fix one degree of freedom for the pressure.779

7.5. Derivative of the Reduced Objective Function. Since it holds780

j̄(ρ) = J̄(ρ, u(ρ)) = L(ρ, u(ρ), p(ρ), λ, ν) ∀(λ, ν) ∈ H1(D)d × L2
0(D)781782

we choose (λ, ν) as the solution of the adjoint equation such that we get for the783
derivative of the reduced objective function784

j̄′(ρ) = d

dρ
L(ρ, u(ρ), p(ρ), λ, ν).785

786

Thus, the discrete derivative of the reduced objective function is787

〈(j̄h)′(ρh), dh〉 = 〈 d
dρh

Lh(ρh, wh, ph, λh, νh), dh〉 =788

=
d∑
i=1

1
2 〈

d

dρh
r(ρh;whi + uhDi, w

h
i + uhDi), dh〉+ η

2 〈
d

dρh
aσ(ρh, ρh), dh〉789

+ γ〈 d
dρh

Υp(ρh), dh〉+
d∑
i=1
〈 d
dρh

r(ρh;whi + uhDi, λ
h
i ), dh〉790

=
d∑
i=1

(wi + uDi)>
(
R(ρ)(1

2(wi + uDi) + λi)
)
ρ

d + ηρTMd791

+ γ
∑
`

(max(0,ρ` − 1) + min(0,ρ` + 1))d`
∫
D

Φ`(ξ)dξ.792
793

The derivative of the nonlinear term r w.r.t. ρh can be derived as follows: First, the794
derivative of of Rij(ρ) w.r.t. ρ` is795

∂

∂ρ`
Rij(ρ) =

∫
D

α′(ρ`)Φ`(ξ)φi(ξ)φj(ξ)dξ.796
797

Thus, it holds798

(
R′(ρ)d

)
ij

=
∑
`

∫
D

α′(ρ`)d`Φ`(ξ)φi(ξ)φj(ξ)dξ799
800

and801 (
(R(ρ)w)ρd

)
i

=
∑
`

∑
j

∫
D

α′(ρ`)d`Φ`(ξ)φi(ξ)wjφj(ξ)dξ.802

803
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We define804

S(w)i` =
∫
D

Φ`(ξ)φi(ξ)
(∑

j

wjφj(ξ)
)

dξ.805

806

Then, with α′(ρ) denoting the vector with the components α′(ρ`), we can write807 (
R(ρ)w

)
ρ
d = S(w) Diag(α′(ρ))d808809

where Diag generates a diagonal matrix from a vector. Hence,810

〈(j̄h)′(ρh), dh〉 =
d∑
i=1

(wi + uDi)>S(1
2(wi + uDi) + λi) Diag(α′(ρ))d + ηρ>Md

+ γ
∑
`

(max(0,ρ` − 1) + min(0,ρ` + 1))d`
∫
D

Φ`(ξ)dξ.

(7.7)

811

812

To compute the derivative (jh)′(ρh) one has to determine the solution of the forward813
problem (7.1) for the ρ corresponding to the given ρh to get w1, w2 and p. Having814
these solutions at hand, the adjoint equations (7.6) have to be solved to get λ1, λ2815
and ν. Finally, the derivative (jh)′(ρh) can be determined by inserting the computed816
values into (7.7).817

7.6. Choice of initial value. As already discussed in Remark 5.3, a good initial818
point for the optimization has an impact on the quality of the solution since many local819
minima exist and gradient based optimization algorithms typically only yield local820
solutions. To compute a starting point, we further relax the problem, ignore the simple821
bound constraint, and reformulate the sphere constraint as inequality constraint such822
that we have a convex feasible set. Under suitable assumptions, the existence of an823
optimal solution ρ̄ ∈ Y of the optimization problem824

min
ρ∈Y

j̄(ρ) := j(ρ) + η

2‖ρ‖
2
Y , s.t. g(ρ) ≤ 0,

∫
D

(|ρ|2 − 1)dξ ≤ 0(7.8)825
826

can be shown similarly to Section 3. For linear g, ρ̄ is identified with a feasible827
point of (1.1) by using the following procedure. First determine ρ̄0, the L2-projection828
of 0 onto the hyperplane H̄ := {ρ : g(ρ) = g(ρ̄)}. Then define the initial point829
ρ0 := ρ̄0 + t(ρ̄− ρ̄0), where t ≥ 1 is chosen such that

∫
D

(|ρ0|2 − 1)dξ = 0. Since ρ̄0 is830
the projection of 0 onto H̄,

∫
D
ρ̄0(ρ̄− ρ̄0)dξ = 0. Hence,831

0 =
∫
D

ρ2
0 − 1dξ =

∫
D

(ρ̄0 + t(ρ̄− ρ̄0))2 − 1dξ832

=
∫
D

ρ̄2
0dξ + t2(

∫
D

(ρ̄− ρ̄0)2dξ)−
∫
D

1dξ833
834

with835

t1,2 = ±

√∫
D

1dξ −
∫
D
ρ̄2

0dξ∫
D

(ρ̄− ρ̄0)2dξ
.836
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7.7. Solving the discretized optimization problem using IPOPT. As838
many other existing implementations of optimization methods, IPOPT [53] assumes839
that the problem is posed in the Euclidean space. Therefore, directly solving the840
discretized optimization problem with IPOPT leads to a loss of information since it841
is no longer taken into account that the control is the discretization of a function842
with a certain regularity (here Hσ-regularity). The correct discrete inner product for843
functions ρ1(ξ) =

∑
i(ρ1)iΦi(ξ) and ρ2 =

∑
i(ρ2)iΦi(x) is given by844

(ρ1, ρ2)Hσ(D) = (ρ1, ρ2)L2(D) + 〈ρ1, ρ2〉κ,σ = aσ(ρ1, ρ2) = ρ>1 Mρ2845846

instead of ρ>1 ρ2. In order to include this information during the optimization, we847
work on the space of transformed coordinates848

ρ̌ = M̌ρ,849850

where M̌ is chosen such that M̌>M̌ = M . This is, e.g., obtained for M̌ = M
1
2 (which851

is impracticable if the size of M is large) or by a (sparse) Cholesky decomposition,852
see e.g. [38, Section 5.3.3]. There are other works that use this approach, e.g. [17].853
Alternatively, one can also use optimization methods that directly work with the854
correct inner product, e.g., in the context of the BFGS method, [41, 48].855

8. Numerical results. To test our approach numerically, we consider the dou-856
ble pipe example presented in [15, Section 4.5]. The task is to minimize the dissipated857
power in the fluid, which is modeled by the Stokes equations, for a given inflow and858
outflow profile. Additionally, we have the constraint that only 1

3 of the given volume859
should be filled with fluid. The domain D = (0, 1.5)×(0, 1.0) is a rectangle in R2 with860
length 1.5 and heigth 1.0. Two inlets with center points (0, 1

4 )>, (0, 3
4 )> and width861

` = 1
6 are located on the left boundary of the domain, and two outlets with center862

points (1.5, 1
4 )>, (1.5, 3

4 )> and width ` = 1
6 are located on the opposite boundary.863

On each of the four the parabolic flow profile g(t) = ḡ(1− 2
` (y − cy)2) is imposed as864

Dirichlet boundary condition on the fluid velocity, where ḡ = 1 and cy denotes the865
y-coordinate of the center of the corresponding in- or outlet. On the rest of the bound-866
ary no-slip conditions are imposed. As in [15] we choose µ = 1 and ᾱ = 25000. We867
discretize the domain uniformly with 60×40 (150×100) rectangular cells, i.e. 61×41868
(151× 101) vertices for the uniform triangular mesh. Hence, h = 0.025 (h = 0.01).869

We implemented the setting described in Lemma 6.4 in MATLAB for σ = 7
16870

and with a suitable regularization parameter η = 10. We have seen in our numerical871
experiments that a too large or too small choice of the regularization parameter can872
result in convergence to a different local optimum. Table 8.1 (Table 8.2) gives the873
number of iterations, the optimal objective function value j, the number of objective874
function evaluations and the number of gradient evaluations until IPOPT converges875
with an overall NLP error smaller than 10−4. The initial optimization problem relaxes876
the sphere constraint to a ball constraint. The solution of this problem is moved877
onto the sphere as described in Subsection 7.6 in order to obtain an initial guess.878
Since directly solving with a very large γ yields an ill-conditioned problem, we solve879
the optimization problems for an increasing sequence of penalty parameters. The880
solution of the previous optimization problem serves as starting point for the next881
optimization problem. First, we choose γ = 1000 and then we increase it twice by882
a factor 5 (that the last value for γ is 25000 and corresponds to the choice of ᾱ is883
coincidence). Figure 8.1 (Figure 8.2) shows the solution of the optimization problems.884
In the top row one can see the top view of the plots that are presented in the bottom885
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(a) γ = 0 on ball (b) γ = 1000 (c) γ = 5000 (d) γ = 25000

Figure 8.1: Optimal solution for a discretization with 60× 40 cells

row. The obtained results are virtually identical the results presented in [15]. Also886
with respect to the iteration numbers our algorithm seems to compare well to the887
results reported in [15] (which needs 236 iterations). As expected and forced by the888
penalization term, the smallest and largest values converge to −1 and +1. In addition,889
due to the sphere constraint, the number of cells with values in (−1,+1) decreases.890
Moreover, as expected for penalty methods, the optimal objective function value j891
increases for increasing γ.892

The choice of the inner product in this example is crucial for obtaining con-893
vergence. While using CG1 FEM with H1-regularization shows good convergence894
behaviour for computing the initial value (where the sphere constraint is relaxed to895
a ball constraint and γ = 0), it shows poor convergence properties with the sphere896
constraint and γ > 0. Remark 7.1 discusses a possible reason for this and motivates897
to consider DG0 FEM. Using L2-regularization shows poor convergence behavior and898
oscillatory iterates. H1-regularization is not available for DG0 FEM since jumps along899
hypersurfaces are prohibited for H1-functions. These observations motivate the use900
of Hσ-regularization.901

The approximation of the Hσ-norm is mesh-dependent. We have to keep the902
considerations in Section 6 in mind if we refine the mesh. Nevertheless, besides903
the computation of the initial value the iteration numbers of IPOPT seem to be904
comparable for the presented refinement. This initial guess can also be computed using905
CG1 FEM on triangles withH1-regularization and a performing a post-processing step906
applying a projection onto DG0 FEM on rectangles. The corresponding results are907
shown in Table 8.3, Table 8.4, Figure 8.3, and Figure 8.4.908

Moreover, the approach of finding a good initial point and also the strategy for909
increaseing the penalization parameter γ presented in this work are heuristics. Even910
though it works well for the presented example, more sophisticated methods are de-911
sirable. Since one is only interested in a good starting point for performing the912
optimization on the sphere, the optimization on the ball can, e.g., be terminated with913
a higher tolerance.914

9. Conclusion and Outlook. Based on ideas of classical topology optimization915
and phase field approaches, we presented a novel relaxation of a topology optimization916
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(a) γ = 0 on ball (b) γ = 1000 (c) γ = 5000 (d) γ = 25000

Figure 8.2: Optimal solution for a discretization with 150× 100 cells

# iterations opt. obj. val. j # obj. eval. # grad. eval.
γ = 0 on ball 47 86.79 75 48
γ = 1000 43 33.00 75 44
γ = 5000 50 38.00 111 51
γ = 25000 157 44.04 518 158

Table 8.1: Optimization with IPOPT using a discretzation with 60× 40 cells

# iterations opt. obj. val. j # obj. eval. # grad. eval.
γ = 0 on ball 153 50.16 395 154
γ = 1000 52 31.86 88 53
γ = 5000 60 36.19 161 61
γ = 25000 122 43.20 333 123

Table 8.2: Optimization with IPOPT using a discretization with 150× 100 cells

# iterations opt. obj. val. j # obj. eval. # grad. eval.
γ = 0 on ball 39 114.75 63 40
γ = 1000 40 33.00 69 41
γ = 5000 51 38.00 125 52
γ = 25000 154 44.04 484 155

Table 8.3: Optimization with IPOPT using a discretization with 60 × 40 cells using
CG1 FEM and H1-regularization for the initial problem on the ball

problem for fluid flows. We showed existence of solutions and differentiability results,917
which allow for the application of gradient based optimization methods. We motivated918
that it is reasonable to discretize the control with DG0 finite elements. Connections919
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(a) γ = 0 on ball (b) γ = 1000 (c) γ = 5000 (d) γ = 25000

Figure 8.3: Optimal solution for a discretization with 60 × 40 cells using CG1 FEM
and H1-regularization for the initial problem on the ball

(a) γ = 0 on ball (b) γ = 1000 (c) γ = 5000 (d) γ = 25000

Figure 8.4: Optimal solution for a discretization with 150×100 cells using CG1 FEM
and H1-regularization for the initial problem on the ball

# iterations opt. obj. val. j # obj. eval. # grad. eval.
γ = 0 on ball 88 115.30 224 89
γ = 1000 54 31.86 103 55
γ = 5000 58 36.19 189 59
γ = 25000 123 43.20 367 124

Table 8.4: Optimization with IPOPT using a discretization with 150×100 cells using
CG1 FEM and H1-regularization for the initial problem on the ball

between the Hσ- and BV -norm justify the use of a localized Hσ-regularization if920
σ is adapted to the mesh size. Numerical results show the viability of the proposed921
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method. Even though we focus in the discussion and numerical realization on a steady922
state Stokes flow and a specific choice of the objective, the conceptual algorithm can be923
applied also to other state equations and cost functions. Our results provide encour-924
agement to expect that also in other settings it can perform well and be underpinned925
by an analysis in the spirit developed here. Moreover, examining (adaptive) refine-926
ment techniques numerically, and improving the heuristics for the initial guess and927
the adaption of the penalization parameter are left for future research. It might also928
be worth investigation to use different optimization algorithms such as optimization929
on manifolds or augmented Lagrange methods.930
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