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Abstract

This paper deals with error estimates for the finite element approximation of Neumann boundary

control problems in polyhedral domains. Special emphasis is put on singularities contained in the

solution as the computational domain has edges and corners. Thus, we use tailored regularity results

in weighted Sobolev spaces which allow to derive sharp convergence results for locally refined meshes.

The first main result is an optimal error estimate for linear finite element approximations on the

boundary in the L2
(�)-norm for both quasi-uniform and isotropically refined meshes. Later, the

approximations of Neumann control problems using the postprocessing approach are investigated,

that is, first a fully discrete solution with piecewise linear state and co-state, and piecewise constant

controls, is computed and afterwards, an improved control by a pointwise evaluation of the discrete

optimality condition is obtained. It is shown that quadratic convergence up to logarithmic factors

is achieved for this control approximation if either the singularities are weak enough or the sequence

of meshes is refined appropriately.
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1 Introduction

Throughout the paper, ⌦ ⇢ R3 denotes a bounded domain having a polyhedral boundary �. For a given
desired state yd 2 L2(⌦) and some regularization parameter ↵ > 0 the control constrained Neumann
boundary control problem under consideration reads

J(y, u) :=
1

2
ky � ydk2L2

(⌦)

+
↵

2
kuk2L2

(�)

! min! (1)

subject to
(

��y + y = 0 in ⌦,

@ny = u on �,
(2)
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u 2 Uad := {v 2 L2(�) : ua  v  ub a. e. on �}. (3)

We assume that the control bounds ua, ub 2 R are constant. It is already well-known that the pair (y, u)
is optimal if and only if some adjoint state p exists satisfying the adjoint problem

��p+ p = y � yd in ⌦,

@np = 0 on �,
(4)

and the projection formula

u = ⇧ad

✓

� 1

↵
p

◆

, [⇧adv](x) := max{ua,min{ub, v(x)}}. (5)

The present paper deals with error estimates for some computable approximation uh of the optimal
control u. Special emphasis is put on computational domains that are polyhedral. In this case we have
in general reduced regularity due to edge and corner singularities contained in the solution and hence,
if the singularities are too strong, a reduced convergence rate for finite element approximations. The
primal goal of this paper is to restore the convergence rates we would expect on smooth domains. As the
circumstances require the meshes have to be refined locally towards the singular points, and of interest
are refinement conditions that guarantee optimal convergence.

An intermediate result required to prove estimates for the optimal control problem is an error
estimate for the trace of the finite element approximation to the solution of the boundary value problem.
While classical techniques like the Aubin-Nitsche method or trace theorems lead at best to a convergence
rate of 3/2, the technique developed for planar problems by Apel/Pfe↵erer/Rösch [2] allows for almost
quadratic convergence for quasi-uniform/appropriately refined meshes depending on the singularities.
Therein, the proof extends an idea of Schatz/Wahlbin [18], more precisely, a dyadic decomposition
around the singular corner is introduced and within each subset the sequence of meshes is quasi-uniform
which allows the use of local results. We transferred this idea in our former paper [3] to the three-
dimensional case where the estimate

ky � yhkL2
(�)

 ch2| lnh|3/2

is shown for the linear finite element approximation yh of y. However, as we used a dyadic decomposition
to all singular points, namely the skeleton of edges, the refinement criterion used for the singular corners
is not sharp. In the present paper we show the necessary modifications in order to obtain sharp bounds
for the refinement parameters. This basically relies on an additional dyadic decomposition towards the
corners. In addition, regularity results in weighted Sobolev spaces are exploited which contain weight
functions in their norms that allow to acquire singularities more accurately.

The second goal of this paper is to derive error estimates of the form

ku� uhkL2
(�)

 ch� ,

for certain approximations uh of the optimal control u solving (1)–(3). Let us briefly summarize some
important milestones on discretization strategies for optimal control problems. The most obvious idea
is a full discretization of the optimality system meaning that state, adjoint state and control are sought
in some finite-dimensional function space. For a finite element approximation using continuous and
piecewise linear functions for the state variables, and piecewise constant functions for the control the
convergence rate � = 1 can be expected [9, 24] for arbitrary polyhedral domains as the control belongs
always toH1(�). However, away from the transition between active and inactive set the control possesses
higher regularity. Hence, one might come up with the idea to use also piecewise linear functions for
the control variable, but for control constrained problems this would lead to a convergence rate of at
most � = 3/2 [17] under some structural assumption that we use later on in a similar way as well.
Thus, advanced approaches are of interest which might even lead to quadratic convergence and this is
indeed possible by taking the projection formula (5) into account so that kinks at the transition between
active and inactive set are resolved also in the discretization. One of these approaches is the variational
discretization introduced by Hinze [11] where the control is not discretized explicitly, but implicitly by
means of the projection formula uh = ⇧ad(�↵�1ph) with ph the piecewise linear approximation of the
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adjoint state. We have already investigated error estimates for this approach in our former paper [3]
and proved that the convergence rate � = 2, up to logarithmic factors, can be always achieved when
the computational meshes are refined if necessary. With the results of the present paper we can relax
the refinement condition used for singular corners.

Another approach on which we will focus in this paper is the postprocessing approach based on an
idea of Meyer and Rösch [14] who applied the projection formula (5) to the discrete adjoint states of
the fully discrete solution with piecewise constant control approximation, to construct piecewise linear
controls that can converge quadratically. In a contribution of Mateos and Rösch [12] these results have
been extended to Neumann control problems in polygonal domains using quasi-uniform meshes, but the
error estimates derived therein are not sharp when the computational domain has corners with interior
angle between 90� and 180�. This gap was closed by Apel, Pfe↵erer and Rösch [2] who made use of
sharp finite element error estimates in L2(�) whose proof can be also found in this reference. Moreover,
they investigate local mesh refinement towards singular corners and derived a refinement criterion which
guarantees optimal convergence of the discrete control variable. The present paper extends the results
for the postprocessing concept from [2] to the three-dimensional case. In addition to the finite element
error estimate in L2(�), we have to show a superconvergence result for the midpoint interpolant. As in
all contributions on the postprocessing approach this relies on a structural assumption on the active set.
For planar problems, this assumption is for instance fulfilled if the number of points where the control
switches between the active and inactive set is finite. For three-dimensional problems the control is
defined on a two-dimensional manifold and the transition between active and inactive set consists in
general of closed curves. Here, we assume that these curves have finite length. A straight-forward
application of the techniques used in the two-dimensional case could lead to a suboptimal refinement
criterion.

2 Weighted Sobolev spaces and regularity results

In this section we recall some regularity results for the weak solutions of the state and adjoint equations
(2) and (4), respectively, which have the form

Find y 2 H1(⌦) : a(y, v) = hf, vi
⌦

+ hg, vi
�

8v 2 H1(⌦) (6)

with

a : H1(⌦)⇥H1(⌦) ! R a(u, v) :=

Z

⌦

(ru ·rv + uv) ,

and the dual parings

h·, ·i
⌦

: [H1(⌦)]⇤ ⇥H1(⌦) ! R, h·, ·i
�

: H�1/2(�)⇥H1/2(�) ! R.

Throughout this paper, ⌦ ⇢ R3 is a polyhedral domain having corner points cj , j 2 C := {1, . . . , d0}
and edges ek, k 2 E := {1, . . . , d}.

The solution of (6) possesses singularities in the vicinity of edges and corners. It is known [10] that
edge singularities of the form

r�
e

cos(�e') if �e :=
⇡

!e
6= Z,

r�
e

(ln r cos(�e') + ' sin(�e')) if �e :=
⇡

!e
2 Z,

occur, where !e is the interior angle at the edge e and (r,', z) are cylindrical coordinates chosen in
such a way that ' = 0 and ' = ! correspond to the two faces meeting in e. The number �e is called
singular exponent. In the vicinity of a corner c the solution contains singularities of the form

%�
c

F c(',#),

where (%,',#) are spherical coordinates around the corner c. Here, the singular exponent is �c = �1/2+
p

1/2 + µc and (µc, F c) denote the second-smallest eigenvalue and its corresponding eigenfunction of
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the Laplace-Beltrami operator on the surface S
1

(c) \ ⌦, see [10]. If S
1

(c) contains other corners, the
domain has to be rescaled appropriately. The eigenvalue µc can in general be computed approximately
only [16, 23].

The mesh refinement conditions we are going to derive merely depend on the strongest singularity
and hence, we define the number

� := min
k2E,j2C

{�ek , 1/2 + �cj} (7)

that characterizes the global regularity of the solution of (6). For the equations considered in this paper
there holds �e > 1/2 and �c > 0 and hence, � > 1/2.

In the following we will define weighted Sobolev spaces. The weights used in these spaces are the
distance functions towards the singular points defined by

rk(x) := inf
y2ek

|x� y|, ⇢j(x) := |x� cj |, r(x) := min
k2E

rk(x).

Let {Uj}j2C be an open covering of ⌦ such that Uj contains only the corner cj but no other ones. For

a non-negative integer ` 2 N
0

, a real number p 2 [1,1] and vectors ~� 2 Rd0
, ~� 2 Rd the space W `,p

~�,~�
(⌦)

is defined as the closure of C1(⌦̄\{c
1

, . . . , cd0}) with respect to the norm

kvkW `,p
~�,~�

(⌦)

:=

0

B

@

X

|↵|`

X

j2C

Z

⌦\Uj

⇢j(x)
p(�j�`+|↵|)

Y

k2Xj

✓

rk
⇢j

(x)

◆p�k

|D↵v(x)|p
1

C

A

1
p

, (8)

if p 2 [1,1), and

kvkW `,1
~�,~�

(⌦)

:=
X

|↵|`

max
j2C

ess sup
x2⌦\Uj

⇢j(x)
�j�`+|↵|

Y

k2Xj

✓

rk
⇢j

(x)

◆�k

|D↵v(x)|.

Here, we used the multi-index notation, i. e. ↵ = (↵
1

,↵
2

,↵
3

), which allows us to define generalized
partial derivatives by D↵ = @↵1

x @↵2
y @↵3

z . Moreover, we write |↵| := ↵
1

+ ↵
2

+ ↵
3

. The set Xj ⇢ E
contains the indices of those edges ek having an endpoint in the corner cj .

When taking the first sum in (8) over all |↵| = ` only we obtain a semi-norm | · |W `,p
�,�(⌦)

.

In the following we will frequently use these spaces in some subset G ⇢ ⌦. In this case the weights
used in the norm definition (8) are still related to the edges and corners of ⌦.

Regularity results for the solution of (6) in weighted Sobolev spaces, are proven e. g. in [1, 7, 13, 25].
We recall a result that we have already adapted to our situation in [3]:

Theorem 1. a) Let f 2 L2(⌦) and g 2 H1/2(�). Assume that the edge and corner weights ~� 2 Rd
+

and ~� 2 Rd0

+

satisfy

1� �ek < �k < 1 8k 2 E , 1/2� �cj < �j < 3/2 8j 2 C.

Then, the solution of (6) satisfies D↵y 2 W 1,2
~�,~�

(⌦) for all |↵| = 1.

b) Let f 2 C0,�(⌦) with some � 2 (0, 1) and g ⌘ 0. Assume that the weights ~� 2 Rd
+

and ~� 2 Rd0

+

satisfy

2� �ek < �k < 2 8k 2 E , 2� �cj < �j 8j 2 C.

Then, the solution of (6) satisfies D↵y 2 W 1,1
~�,~�

(⌦) for all |↵| = 1.
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3 Error estimates for the state equation

This section is devoted to error estimates for the finite element approximation of the solution of (6).
We assume that the input data satisfy at least f 2 [H1(⌦)]⇤ and g 2 H�1/2(�), but we will demand
more regularity later to obtain the desired error estimates. Let {Th}h>0

denote a family of conforming
tetrahedral triangulations of the domain ⌦. The induced triangulation of the boundary � is denoted by
@Th. We seek an approximation of (6) in the space of continuous and piecewise linear functions

Yh := {vh 2 C(⌦) : vh|T 2 P
1

8T 2 Th}. (9)

The approximate solution yh 2 Yh is then defined via

a(yh, vh) = hf, vhi
⌦

+ hg, vhi
�

8vh 2 Yh. (10)

Due to the occurring singularities in the vicinity of edges and corners we demand additionally that the
mesh is refined locally towards the singular points. Therefore, let

rk,T := inf
x2T

inf
y2ek

|x� y|, ⇢j,T := inf
x2T

|x� cj |, rT := min
k=1,...,d

rk,T

denote the distance between the set T ⇢ ⌦, which will be either an element or a patch containing an
element of Th, and the singular points of ⌦. Each element T 2 Th is assumed to satisfy

hT ⇠
(

h1/µ, if rT = 0,

hr1�µ
T , if rT > 0,

(11)

where µ 2 (1/3, 1] is the refinement parameter. The lower bound is required to ensure that the number
of nodes is of order N ⇠ h�3 [4]. For the choice µ = 1 the sequence of meshes is quasi-uniform, and
the smaller this parameter is the stronger the mesh is refined locally. Thus, we are interested in upper
bounds for this parameter such that each choice below this bound leads to optimal convergence of the
finite element solutions.

First, we recall a result from our foregoing paper [3].

Theorem 2. Let f 2 L2(⌦) and g 2 H1/2(�). Assume that the family of triangulations {Th}h>0

is
refined according to (11) with refinement parameter 1/3 < µ < �. Then, the error estimate

ky � yhkH`
(⌦)

 ch2�`|y|W 2,2

~↵,~�
(⌦)

 ch2�`
�kfkL2

(⌦)

+ kgkH1/2
(�)

�

holds for ` 2 {0, 1} with weights ↵j = max{0, 1/2 � �cj + "}, j 2 C, and �k = max{0, 1 � �ek + "},
k 2 E, and su�ciently small " > 0.

To derive discretization error estimates for the optimal control problem we need a finite element
error estimate in the norm L2(�) as the adjoint control-to-state operator maps into this space. We
already proved such an estimate in [3] but the refinement criterion derived therein is not sharp with
respect to the singular corners. However, the proof requires rigorous modifications.

First, we recall some notation used already in [3]. We define the sets

⌦R := {x 2 ⌦ : 0  r(x)  R}, �R := @⌦R \ �, (12)

where the corner and edge singularities have influence on the regularity of the solution. The remaining
set, where the distance to the corners and edges is larger than R, is denoted by �̃R := �\�R. Without
loss of generality we will set R = 1 in the following, because the domain ⌦ can be be rescaled as the
circumstances require.

Furthermore, we introduce a dyadic decomposition of ⌦R, more precisely, we bound the distance to
the singular bounds by the quantities di := 2�i, i = 0, . . . , I and dI+1

= 0. Let cI � 1 be a constant
independent of h such that dI = cI h1/µ holds. This implies the property I ⇠ | lnh|. We will fix the
constant cI at the end of the proof of Theorem 7 as the result proved there holds only for su�ciently
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large cI . In some steps of our proof, when the constant is unimportant, we will hide it in the generic
constant c. The dyadic decomposition of ⌦R we will use in the sequel is defined by

⌦R =
I
[

i=0

⌦i with ⌦i := {x 2 ⌦R : di+1

< r(x) < di} for i = 0, . . . , I.

This induces a decomposition of the boundary part �R as well,

�R =
I
[

i=0

�i with �i := @⌦i \ �, for i = 0, . . . , I. (13)

We will further need the patches of ⌦i with its adjacent sets defined by

⌦(m)

i := int
�

⌦̄
max{0,i�m} [ . . . [ ⌦̄i [ . . . [ ⌦̄

min{I,i+m}
�

, m 2 N,

and we use the abbreviations ⌦0
i := ⌦(1)

i , ⌦00
i := ⌦(2)

i .
In order to separate the parts of ⌦i where only edge singularities and where both corner and edge

singularities are present we introduce a further decomposition of ⌦i. To each edge ek we associate a
Cartesian coordinate system (xk, yk, zk) so that cj = (0, 0, 0) and cj0 = (0, 0, Lek) are the endpoints of
ek. The minimal angle between two edges meeting in a corner cj is denoted by ↵j := mink,`2Xj ↵k,`,
where ↵k,` := ^(ek, el). We cut o↵ a set with measure d3i at each corner that we denote by

⌦c
i :=

[

k2Xj

{x 2 ⌦i : zk(x) < (2 +A)di} , �c
i := @⌦c

i \ �,

with A := 2minj2C cot
↵j

2

⇠ 1, see also Figure 1a). By construction we have |�c
i | ⇠ d2i .

The remaining parts of �i are defined as follows. For each edge e := ek and i = 0, . . . , I we introduce

⌦e
i := {x 2 ⌦i : zk(x) 2 ((2 +A) di, Le � (2 +A) di)} .

The boundary parts are denoted by �e
i := @⌦e

i \ �. We observe that the boundary part �i is covered
completely by the sets defined above, i. e.

�i = int

0

@

[

j2C
�
cj

i [
[

k2M
�ek
i

1

A (14)

It remains to define appropriate patches

⌦c,(m)

i :=
[

k2Xj

n

x 2 ⌦(m)

i : zk(x) < (2 +m+A)di
o

,

⌦e,(m)

i :=
n

x 2 ⌦(m)

i : zk(x) 2 ((2�m+A)di, Le � (2�m+A)di)
o

,

for m 2 {1, 2}. We use again the abbreviations

⌦c
i
0 := ⌦c,(1)

i , ⌦c
i
00 := ⌦c,(2)

i , ⌦e
i
0 := ⌦e,(1)

i , ⌦e
i
00 := ⌦e,(2)

i .

The essential property that we exploit in the following is

dist (@⌦e
i
0 \ �, @⌦e

i \ �) ⇠ di, dist (@⌦c
i
0 \ �, @⌦c

i \ �) ⇠ di.

Moreover, we require a dyadic decomposition of ⌦e
i and its patches ⌦e,(m)

i in order to carve out the
influence of the corner singularity. This additional decomposition has not been used in our former paper
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αk,ℓ/2

di

di

2di
Adi

·

Γci

Γei

(a) Definition of ⌦e
i and ⌦c

i

e
Γei ,j

Ωei ,j

Ωei ,j
′

Γi+1

Γi

Γi−1

di

di ,j

(b) Definition of ⌦e
i,j and its patch

Figure 1: Illustration of the domains ⌦c
i and ⌦e

i,j .

[3] which is the reason why the refinement condition derived therein which is necessary to compensate
the corner singularity is too strong. For j = 0, . . . , i and m 2 {0, 1, 2} we define

⌦e,+,(m)

i,j :=
n

x 2 ⌦e,(m)

i : zk(x) 2 ((1 +A+ 2j �m)di,

(1 +A+ 2j+1 +m)di)
o

,

⌦e,�,(m)

i,j :=
n

x 2 ⌦e,(m)

i : zk(x) 2 (Le � (1 +A+ 2j+1 +m)di,

Le � (1 +A+ 2j �m)di)
o

,

⌦̃e,(m)

i :=
n

x 2 ⌦e,(m)

i : zk(x) 2 ((1 +A+ 2i+1 �m)di,

Le � (1 +A+ 2i+1 �m)di)
o

,

and we observe that

⌦e,(m)

i = int

0

@

i
[

j=0

⌦e,±,(m)

i,j [ ⌦̃e,(m)

i

1

A .

As usual, the boundary parts are denoted by

�e,±
i,j := @⌦e,±

i,j \ �, �̃e
i := @⌦̃e

i \ �.

One easily confirms that the properties

|⌦e,±,(m)

i,j | ⇠ d2i di,j , |⌦̃e,(m)

i | ⇠ d2i ,

|�e,±,(m)

i,j | ⇠ didi,j , |�̃e,(m)

i | ⇠ di,
(15)

hold for i = 0, . . . , I and j = 0, . . . , i, with

di,j := 2jdi = 2j�i  1.

In the next lemma we will derive interpolation error estimates on the sets ⌦c
i and ⌦e

i . The proof
of this result relies on local estimates for a quasi-interpolation operator Zh : W 1,1(⌦) ! Yh exploiting
regularity in weighted Sobolev spaces. For an accurate definition of this interpolant we refer to [20]. In
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this paper the definition is not explicitly needed. In [3, Lemma 4.4] the following result is proven. Let
T 2 Th and j 2 C such that T ⇢ Uj . Then there holds

|u� Zhu|H`
(T )

(16)

 ch2�`
T |T | 12� 1

p |u|W 2,p
~�,~�

(ST )

·

8

>

>

<

>

>

:

h
��j

T , if ⇢j,ST = 0,

h��k
T ⇢

�k��j

j,T , if rk,ST = 0, ⇢j,ST > 0,

⇢
��j

j,T

Q

k2Xj

⇣

rk,T

⇢j,T

⌘��k
, if rk,ST > 0 8k 2 Xj ,

for ` 2 {0, 1}, p 2 (6/5,1], ~� 2 [0, 5/2 � 3/p)d
0
, ~� 2 [0, 5/3 � 2/p)d. Here, ST denotes the union of T

and its adjacent elements. We will frequently use the simplified version [3, Lemma 4.4]

|u� Zhu|H`
(T )

 ch2�`
T |T | 12� 1

p |u|W 2,p
~�,~�

(ST )

·
(

h
�j

T , if rST = 0,

r
�j

T , if rST > 0,
(17)

instead, where j := max{�j ,maxk2Xj �k}.

Lemma 3. Let some function u 2 H1(⌦(m+1)

i ), m 2 {0, 1}, be given and assume that the property

D↵u 2 W 1,p

~↵,~�
(⌦(m+1)

i ) holds for all |↵| = 1 with p 2 [2,1] and weights ~↵ 2 [0, 5/2 � 3/p)d
0
, ~� 2

[0, 5/3 � 2/p)d. Let e := ek, k 2 E, and c := cj, j 2 C, be an arbitrary edge and corner, respectively.
Moreover, define the numbers j := max{↵j ,maxk2Xj �k}, ↵̃k := max{↵j ,↵j0} where j 6= j0 are the
corner indices such that k 2 Xj \Xj0 , sk := 1/2� 1/p+ �k � ↵̃k, and ⇥` := (7/2� `� 3/p)(1� µ). It
is assumed that sk 6= 0 for all k 2 E.
a) For i = 0, . . . , I � 2�m there hold the estimates

|u� Zhu|H`
(⌦

c,(m)
i )

 ch2�`d
(2�`)(1�µ)+3/2�3/p�j

i |u|
W 2,p

~↵,~�
(⌦

c,(m+1)
i )

,

|u� Zhu|H`
(⌦

e,(m)
i )

 ch2�`d(2�`)(1�µ)+1�2/p��k+[sk]�
i |u|

W 2,p

~↵,~�
(⌦

e,(m+1)
i )

.

b) For i = I � 1�m, . . . , I there hold the estimates

|u� Zhu|H`
(⌦

c,(m)
i )

 cc
[⇥`�j ]++3/2�3/p
I h(7/2�3/p�`�j)/µ|u|

W 2,p

~↵,~�
(⌦

c,(m+1)
i )

,

|u� Zhu|H`
(⌦

e,(m)
i )

 cc[⇥`��k]++1�2/p
I h(3�2/p�`��k+[sk]�)/µ|u|

W 2,p

~↵,~�
(⌦

e,(m+1)
i )

,

where [a]
+

:= max{0, a} and [a]� := min{0, a} for a 2 R.

Proof. We only prove the result for m = 0 as the case m = 1 follows from exactly the same arguments.
First, we show the estimate on ⌦c

i by insertion of local interpolation error estimates into the discrete
Hölder inequality

|u� Zhu|2H`
(⌦

c
i )


0

@

X

T\⌦

c
i 6=;

1

1

A

1�2/p0

@

X

T\⌦

c
i 6=;

|u� Zhu|pH`
(T )

1

A

2/p

. (18)

For the case i = 0, . . . , I � 2, the number of elements intersecting ⌦c
i can be estimated by

X

T\⌦

c
i 6=;

1  c max
T\⌦

c
i 6=;

|⌦c
i |

|T |  c max
T\⌦

c
i 6=;

d3i
|T | . (19)

For all T \ ⌦c
i 6= ; we obtain with the local estimate (17) and the property rT ⇠ di the estimate

|u� Zhu|H`
(T )

 ch2�`
T |T |1/2�1/pd

�j

i |u|W 2,p

~↵,~�
(ST )

. (20)

8



Postprocessing for Neumann boundary control

Insertion of (19) into (18) yields for i = 0, . . . , I � 2

|u� Zhu|H`
(⌦

c
i )

 ch2�`d
(2�`)(1�µ)+3(1/2�1/p)�j

i |u|W 2,p

~↵,~�
(⌦

c
i
0
)

. (21)

In order to derive the estimate on ⌦e
i we can basically use the same technique. However, we have

to decompose the domain ⌦e
i into the subsets defined in (15) first. For all elements T ⇢ Ul intersecting

⌦e,±
i,j or ⌦̃e

i we get from (16) and the property ⇢l,T ⇠ di,j the local estimates

|u� Zhu|H`
(T )

 ch2�`d(2�`)(1�µ)��k
i d�k�↵̃k

i,j |T |1/2�1/p|u|W 2,p

~↵,~�
(ST )

, if T \ ⌦e,±
i,j 6= ;,

|u� Zhu|H`
(T )

 ch2�`d(2�`)(1�µ)��k
i |T |1/2�1/p|u|W 2,p

~↵,~�
(ST )

, if T \ ⌦̃e
i 6= ;.

(22)

The number of elements which intersect ⌦e,±
i,j and ⌦̃e

i is of order

X

T\⌦

e,±
i,j 6=;

1  c max
T\⌦

e,±
i,j 6=;

d2i di,j
|T | and

X

T\˜

⌦

e
i 6=;

1  c max
T\˜

⌦

e
i 6=;

d2i
|T | ,

respectively, compare also (19). From the Hölder inequality similar to (18) we then obtain

|u� Zhu|H`
(⌦

e
i )

 ch2�`d(2�`)(1�µ)+1�2/p��k
i

⇥
0

@

i
X

j=0

d(1/2�1/p+�k�↵̃k)p
0

i,j

1

A

1/p0

|u|W 2,p

~↵,~�
(⌦

e
i
0
)

, (23)

where p�1 + p0�1 = 1. The limit value of the geometric series yields

i
X

j=0

dskp
0

i,j = dskp
0

i

i
X

j=0

2jskp
0  cdskp

0

i (2(i+1)skp
0 � 1)  c(2skp

0
+ dskp

0

i )  cd[sk]�p0

i , (24)

and we conclude from (23) the desired estimate on ⌦e
i for i = 0, . . . , I � 2.

Let us now consider the case i = I � 1, I. We start with an estimate on ⌦c
i , where c = cj for some

j 2 C. The number of elements intersecting ⌦c
i is bounded by

X

T\⌦

c
i 6=;

1  cd3i |Tmin|�1  cc3I , (25)

as d3i ⇠ c3I |Tmin|. Again, we insert the local estimates (17) which depend on the position of the patch

of elements ST . If rST > 0 we get with |T |  ch3r3(1�µ)
T and

rtT  cdtI  cctIh
t/µ if t � 0, rtT  cht/µ if t < 0, (26)

as well as the choice t := (7/2� `� 3/p)(1� µ)� j and |Tmin| = h3/µ

|u� Zhu|H`
(T )

 cc
[⇥`�j ]+

I h(2�`�j)/µ|Tmin|1/2�1/p|u|W 2,p

~↵,~�
(ST )

. (27)

The same estimate holds for rST = 0 even without the factor c
[⇥`�j ]+

I due to (16) and c � %j,T � h1/µ

in case of %j,T > 0. From (18) we conclude with (25)

|u� Zhu|H`
(⌦

c
i )

 cc
[⇥`�j ]++3/2�3/p
I h(7/2�`�3/p�j)/µ|u|W 2,p

~↵,~�
(⌦

0
i)
. (28)

With a similar technique we can show an estimate on ⌦e,±
i,j for i = I � 1, I and j = 0, . . . , i. For all

T \ ⌦e,±
i,j 6= ; with rST > 0 we conclude from (16) the estimate

|u� Zhu|H`
(T )

 cc[⇥`��k]+
I h(2�`��k)/µ|Tmin|1/2�1/pd�k�↵̃k

i,j |u|W 2,p

~↵,~�
(ST )

. (29)

9
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We easily confirm that this estimate holds also in case of rST = 0. The number of elements which
intersect ⌦e,±

i,j is of order

X

T\⌦

e
i,j 6=;

1  cd2i di,j |Tmin|�1  c2Ih
2/µdi,j |Tmin|�1.

Consequently, we get from (29) and the Hölder inequality as in (18)

|u� Zhu|H`
(⌦

e,±
i,j )

 cc[⇥`��k]++1�2/p
I h(3�2/p�`��k)/µd1/2�1/p+�k�↵̃k

i,j |u|W 2,p

~↵,~�
(⌦

e,±
i,j

0
)

.

Summing up over all ⌦e,±
i,j for j = 0, . . . , i yields

0

@

i
X

j=0

|u� Zhu|2H`
(⌦

e,±
i,j )

1

A

1/2

 cc[⇥`��k]++1�2/p
I h(3�2/p�`��k)/µ

0

@

i
X

j=0

dskp
0

i,j

1

A

1/p0

|u|W 2,p

~↵,~�
(⌦

0
i)

 cc[⇥`��k]++1�2/p
I h(3�2/p�`��k+[sk]�)/µ|u|W 2,p

~↵,~�
(⌦

0
i)
, (30)

where we used the estimate (24) and the fact that c[sk]�I  1 (cI � 1) in the last step.

For all T \ ⌦̃e
i 6= ; there holds ⇢j,ST ⇠ 1 and as the number of these elements is of order

X

T\˜

⌦

e
i 6=;

1  cd2i |Tmin|�1  c2Ih
2/µ|Tmin|�1,

we get

|u� Zhu|H`
(

˜

⌦

e
i )

 cc[⇥`��k]++1�2/p
I h(3�2/p�`��k)/µ|u|W 2,p

~↵,~�
(⌦

e
i
0
)

. (31)

Finally, from the decomposition (15) and the estimates (30) and (31) we conclude the estimate on ⌦e
i

for i = I � 1, I.

Furthermore, we need some interpolation error estimates in the L1(⌦)-norm on the subsets ⌦i,
and here, we use the nodal interpolant Ih : C(⌦) ! Yh due to its stability in the L1(⌦)-norm. In the
following result we will hide the parameter cI in the generic constant c as it is not needed for the terms
to which we apply these estimates.

Lemma 4. Let some function u 2 L1(⌦(m+1)

i ), m 2 {0, 1}, be given satisfying the following properties:

• D↵u 2 W 1,1
~�,~%

(⌦(m+1)

i ) for all |↵| = 1 with ~� 2 [0, 2)d
0
and ~% 2 [0, 5/3)d,

• u ⌘ 0 on ⌦ \ ⌦R.

Define j = max{�j ,maxk2Xj %k} and �̃k := max{�j : j 2 C such that k 2 Xj}. Then, for all corners
c := cj, j 2 C, and edges e := ek, k 2 E, the following estimates hold:

a) For i = 0, 1, . . . , I � 2�m there hold the estimates

ku� IhukL1
(⌦

c,(m)
i )

 ch2d
2(1�µ)�j

i |u|
W 2,1

~�,~%
(⌦

c,(m+1)
i )

,

ku� IhukL1
(⌦

e,±,(m)
i,j )

 ch2d2(1�µ)�%k

i d%k�˜�k
i,j |u|

W 2,1
~�,~%

(⌦

e,±,(m+1)
i,j )

, j = 0, . . . , i,

ku� IhukL1
(

˜

⌦

e,(m)
i )

 ch2d2(1�µ)�%k

i |u|
W 2,1

~�,~%
(

˜

⌦

e,(m+1)
i )

.

10
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b) For i = I � 1�m, . . . , I there hold the estimates

ku� IhukL1
(⌦

c,(m)
i )

 ch(2�j)/µ|u|
W 2,1

~�,~%
(⌦

c,(m+1)
i )

,

ku� IhukL1
(⌦

e,±,(m)
i,j )

 ch(2�%k)/µd%k�˜�k
i,j |u|

W 2,1
~�,~%

(⌦

e,±,(m+1)
i,j )

, j = 0, . . . , i

ku� IhukL1
(

˜

⌦

e,(m)
i )

 ch(2�%k)/µ|u|
W 2,1

~�,~%
(

˜

⌦

e,(m+1)
i )

.

Proof. We prove the assertion merely for m = 0 since the extension to m = 1 is simple. Let T 2 Th
be an arbitrary element. The index j is chosen such that T ⇢ Uj , where {Uj} is the covering used in
definition (8). The result then follows from the local estimates

ku� IhukL1
(T )

 ch2

T ⇢
��k

j,T

Y

k2Xj

✓

rk,T
⇢j,T

◆�%k

|u|W 2,1
~�,~%

(T )

, if rT > 0, (32)

ku� IhukL1
(T )

 ch2�%k

T ⇢
%k��j

j,T |u|W 2,1
~�,~%

(T )

if rk,T = 0, ⇢j,T > 0 (33)

ku� IhukL1
(T )

 ch
2��j

T |u|W 2,1
~�,~%

(T )

, if ⇢j,T = 0, (34)

which have been derived in the proof of [3, Lemma 4.8]. We have to distinguish among certain situations
of how T is located such that the distances rk,T and ⇢j,T can be estimated against the constants di and
di,j .

We start with an estimate on ⌦c
i for i = 0, . . . , I � 2. Let T \ ⌦c

i 6= ; be the element where the
maximum of |u(x)� Ihu(x)| is attained. We apply (32) and the simplification

⇢��k

j,T

Y

k2Xj

✓

rk,T
⇢j,T

◆�%k

 r
�j

T (35)

shown in the proof of [3, Lemma 4.4] to arrive at

ku� IhukL1
(T )

 ch2r
2(1�µ)�j

T |u|W 2,1
~�,~%

(T )

(36)

and conclude the result using rT ⇠ di.
To obtain the desired estimates for i = I � 1, I we distinguish among the cases that T touches the

singular points or not. For elements with rT = 0 we take (33) or (34) and insert h�%k

T ⇢
%k��j

j,T  h
�j

T (this

follows from ⇢j,T > 0 ) ⇢j,T � chT ). For elements with rT > 0, we use (36) as well as rT  cdI ⇠ ch1/µ

instead. Both arguments lead to the estimate

ku� IhukL1
(T )

 ch(2�j)/µ|u|W 2,1
~�,~%

(T )

. (37)

This implies the assertion for the domains ⌦c
i .

Next, we show the estimate on ⌦e,±
i,j in case of i = 0, . . . , I � 2. Let cj1 and cj2 , j1, j2 2 C, denote

the endpoints of the edge e. For T ⇢ Ujp , p 2 {1, 2} we apply the local estimate

ku� IhukL1
(T )

 ch2r2(1�µ)�%k

k,T ⇢
%k��jp

jp,T
|u|W 2,1

~�,~%
(T )

,

that we conclude from (32), see also [3, Equation (4.34)], and exploit that rk,T ⇠ di for T \ ⌦e,±
i,j 6= ;,

and ⇢j1,T ⇠ di,j if T \ ⌦e,+
i,j 6= ;, and ⇢j2,T ⇠ di,j if T \ ⌦e,�

i,j 6= ;. This leads to the local estimate

ku� IhukL1
(T )

 ch2d2(1�µ)�%k

i d%k�˜�k
i,j |u|W 2,1

~�,~%
(T )

(38)

from which we conclude the assertion for i = 0, . . . , I � 2. For i = I � 1, I we distinguish among the
cases rT > 0 and rT = 0. To show an estimate for rT > 0 we insert the property di ⇠ h1/µ into (38).

11
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In case of rT = 0 and T ⇢ Ujp , p 2 {1, 2}, we insert ⇢jp,T ⇠ di,j into the local estimate (33). In both
cases we obtain

ku� IhukL1
(T )

 ch(2�%k)/µd
%k��jp

i,j |u|W 2,1
~�,~%

(T )

,

which yields the assertion as T ⇢ ⌦e,±
i,j

0. The estimates on ⌦̃e
i follow from the same strategy exploiting

that ⇢jp,T ⇠ 1, p 2 {1, 2}, for all T \ ⌦̃e
i 6= ;.

Next, we define the function ỹ := !y, where ! 2 C1(⌦) is a smooth cut-o↵ function satisfying

!|
⌦R/2

⌘ 1 and supp! ⇢ ⌦R. (39)

Note that this function coincides with y near the singular points. In the next steps we show some error
estimates for a certain Ritz-projection of this local solution that we denote by

ỹh 2 Yh(⌦R) := {vh 2 C(⌦R) : vh = wh|⌦R for some wh 2 Yh},
and this function is defined by

a
⌦R(ỹ � ỹh, vh) :=

Z

⌦R

(r(ỹ � ỹh) ·rvh + (ỹ � ỹh)vh) = 0 8vh 2 Yh(⌦R). (40)

First, we show error estimates for this this solution in the norms H1(⌦R) and L2(⌦R).

Lemma 5. Assume that D↵y 2 W 1,2

~↵,~�
(⌦) for |↵| = 1 with weights ~↵ 2 [0, 1)d

0
and ~� 2 [0, 2/3)d that

fulfill
1

2
� �cj < ↵j  1� µ, j 2 C, 1� �ek < �k  1� µ, k 2 E .

For the functions ỹ := !y with ! from (39) and ỹh from (40) the error estimates

kỹ � ỹhkH`
(⌦R)

 ch2�`

✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

◆

hold for ` 2 {0, 1}.
Proof. We denote by ⌦R,h := [{T : T 2 Th, T \ ⌦R 6= ;} the union of all elements that intersect
⌦R. Next, we introduce the Calderon extension which extends ỹ : ⌦R ! R smoothly to some function
y̆ : ⌦R,h ! R that coincides with ỹ on ⌦R.

The continuity of this extension operator in classical Sobolev spaces is proved in [15, §2.2] from which
we deduce ky̆kH2

(⌦R,h\⌦R/2)
 ckỹkH2

(⌦0)
. As the weights are bounded by a constant within ⌦R,h\⌦R/2

we concludeD↵y̆ 2 W 1,2

~↵,~�
(⌦R,h) for |↵| = 1. For y̆ we can define the Scott-Zhang interpolant in Yh(⌦R,h)

(which is not possible on ⌦R as the mesh does not resolve the boundary of ⌦R). From the Céa-Lemma
and the local interpolation error estimates from (17) we conclude using the assumptions on µ

kỹ � ỹhkH1
(⌦R)

 c inf
�2Yh(⌦R)

kỹ � �kH1
(⌦R)

 cky̆ � Zhy̆kH1
(⌦R,h)

 ch|y̆|W 2,2

~↵,~�
(⌦R,h)

 ch

✓

|y̆|W 2,2

~↵,~�
(⌦R/2)

+ |y̆|H2
(⌦R,h\⌦R/2)

◆

 ch

✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH2
(⌦0)

◆

. (41)

Here, we exploited the fact that the weights are of order one within ⌦ \⌦R/2 and the continuity of the
Calderon extension. Moreover, we confirm the estimate

kỹkH2
(⌦0)

 c

✓

kỹkH1
(⌦0)

+ |ỹ|W 2,2

~↵,~�
(⌦0)

◆

which implies together with (41) the assertion for ` = 1.
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x (j) Mk

Mk ′
Γci

Γ
e,+
i ,0

Γ
e,+
i ,0,0

Γ
e,+
i ,1

Γ
e,+
i ,1,0 Γ

e,+
i ,1,1

Γ
e,+
i ,2

Γ
e,+
i ,2,0 Γ

e,+
i ,2,1 Γ

e,+
i ,2,2 Γ

e,+
i ,2,3

Figure 2: Illustration of the sets introduced in (47).

The estimate in L2(⌦R) is a consequence of the Aubin-Nitsche method using the dual problem

��w + w = ỹ � ỹh in ⌦R, @nw = 0 on @⌦R.

The estimate (41) is applicable for the error w � wh, with the Ritz-projection wh 2 Yh(⌦R) of w, as
well, and the weighted regularity result from Theorem 1 provides the estimate

|w|W 2,2

~↵,~�
(⌦R)

 ckỹ � ỹhkL2
(⌦R)

.

The next step is to show an initial error estimate on a single boundary strip �i. Afterwards we will
combine this result to a global estimate.

Lemma 6. Let y 2 H1(⌦)\L1(⌦), ỹ := !y with ! from (39), and ỹh 2 Yh(⌦R) as in (40). Then, for
arbitrary i 2 {1, . . . , I} there holds the local estimate

kỹ � ỹhkL2
(�i)

 c

 

| lnh|2
X

e:=ek
k2E

0

@

i
X

j=0

didi,jkỹ � Ihỹk2L1
(⌦

e,±
i,j

0
)

+ dikỹ � Ihỹk2L1
(

˜

⌦

e
i
0
)

1

A

+ | lnh|2
X

c:=cj
j2C

d2i kỹ � Ihỹk2L1
(⌦

c
i
0
)

+ d�1

i kỹ � ỹhk2L2
(⌦

0
i)

!

1/2

. (42)

Proof. Let us first discuss the estimate in case of i = 1, . . . , I � 2. To obtain the desired result on
the boundary part �c

i we apply the Hölder inequality with |�c
i | ⇠ d2i , and a trace theorem (note that

ỹ � ỹh 2 C(⌦)). This leads to

kỹ � ỹhkL2
(�

c
i )

 dikỹ � ỹhkL1
(�

c
i )

 dikỹ � ỹhkL1
(⌦

c
i )
. (43)

Now we can apply the local maximum norm estimate from Theorem 10.1 and Example 10.1 in [22],
which reads in our situation

kỹ � ỹhkL1
(⌦

c
i )

 c
⇣

| lnh|kỹ � IhỹkL1
(⌦

c
i
0
)

+ d�3/2kỹ � ỹhkL2
(⌦

0
i)

⌘

, (44)

with d := dist(@⌦c
i
0 \ �, @⌦c

i \ �). Due to our construction we find that d ⇠ di. Inserting (44) into (43)
yields (42) for i = 1, . . . , I � 2 with �c

i instead of �i on the left-hand side.
To show the estimate on the part �e

i we cannot apply this technique directly as the measure of �e
i is

only of order di. We would then obtain a worse estimate. One can apply a coordinate transformation
with the aim that the edge e coincides with the z-axis, and that z = 0 and z = L correspond to the

13
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endpoints of e. We introduce a further decomposition, namely

⌦e,+,(m)

i,j,k :=
n

x 2 ⌦e,+,(m)

i,j : z(x) 2 � (1 +A+ 2j + k �m)di,

(2 +A+ 2j + k +m)di
�

o

,

⌦e,�,(m)

i,j,k :=
n

x 2 ⌦e,�,(m)

i,j : z(x) 2 �L� (2 +A+ 2j + k +m)di,

L� (1 +A+ 2j + k �m)di
�

o

,

(45)

for k = 0, . . . , 2j � 1 and m 2 {0, 1}. To shorten the notation we write

⌦e,±
i,j,k := ⌦e,±,(0)

i,j,k and ⌦e,±
i,j,k

0 := ⌦e,±,(1)
i,j,k .

The sets {⌦e,±,(m)

i,j,k }2j�1

k=0

form a decomposition of ⌦e,±,(m)

i,j . Analogously we introduce a decomposition

of ⌦̃e,(m)

i , namely

⌦̃e,(m)

i,k :=
n

x 2 ⌦̃e,(m)

i : z(x) 2 � (1 +A+ 2i+1 + k �m)di,

(2 +A+ 2i+1 + k +m)di
�

o (46)

for k = 0, . . . ,K with some K ⇠ d�1

i and m 2 {0, 1}. Again, we denote the boundary parts by

�e,±
i,j,k := @⌦e,±

i,j,k \ �, �̃e
i,k := @⌦̃e

i,k \ �, (47)

which are illustrated in Figure 2, and confirm the desired properties

|�e,±
i,j,k| ⇠ d2i , |�̃e

i,k| ⇠ d2i . (48)

Due to this construction we moreover have the properties

dist(@⌦e,±
i,j,k

0 \ �, @⌦e,±
i,j,k \ �) ⇠ di and dist(@⌦̃e

i,k
0 \ �, @⌦̃e

i,k \ �) ⇠ di, (49)

which play a role in the local maximum norm estimate (44). Exploiting the decompositions (45) and
(46), the Hölder inequality with (48) and a trace theorem leads to

kỹ � ỹhk2L2
(�

e
i )

=
i
X

j=0

2

j�1

X

k=0

kỹ � ỹhk2L2
(�

e,±
i,j,k)

+
K
X

k=0

kỹ � ỹhk2L2
(

˜

�

e
i,k)

 cd2i

 

i
X

j=0

2

j�1

X

k=0

kỹ � ỹhk2L1
(⌦

e,±
i,j,k)

+
K
X

k=0

kỹ � ỹhk2L1
(

˜

⌦

e
i,k)

!

.

Several applications of the local maximum norm estimate (44) with the properties (49) yield

kỹ � ỹhk2L2
(�

e
i )

 cd2i

 

i
X

j=0

2

j�1

X

k=0

⇣

| lnh|2kỹ � Ihỹk2L1
(⌦

e,±
i,j,k

0
)

+ d�3

i kỹ � ỹhk2L2
(⌦

e,±
i,j,k

0
)

⌘

+
K
X

k=0

⇣

| lnh|2kỹ � Ihỹk2L1
(

˜

⌦

e
i,k

0
)

+ d�3

i kỹ � ỹhk2L2
(

˜

⌦

e
i,k

0
)

⌘

!

 c

 

i
X

j=0

didi,j | lnh|2kỹ � Ihỹk2L1
(⌦

e,±
i,j

0
)

+ di| lnh|2kỹ � Ihỹk2L1
(

˜

⌦

e
i
0
)

+ d�1

i kỹ � ỹhk2L2
(⌦

0
i)

!

.
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In the last step we exploited that K ⇠ d�1

i and that di2j = di,j . From this we obtain the estimate (42)
on the subset �e

i .
It remains to show the desired estimates also for i = I � 1, I which cannot be shown with the same

technique, since the local maximum norm estimate (44) is not applicable if ⌦c
i
0 and ⌦e

i
0 contain the

singular points. Therefore, we insert Ihỹ as intermediate function and apply the triangle inequality
which leads to

kỹ � ỹhkL2
(�

c
i )

 c
�kỹ � IhỹkL2

(�

c
i )
+ kIhỹ � ỹhkL2

(�

c
i )

�

. (50)

The Hölder inequality with |�c
i | ⇠ d2i , and a trace theorem imply

kỹ � IhỹkL2
(�

c
i )

 cdikỹ � IhỹkL1
(⌦

c
i )
. (51)

To estimate the second part of (50) we consider an arbitrary boundary element E 2 @Th intersecting
⌦c

i and its corresponding tetrahedron T 2 Th, and apply a trace theorem as well as norm equivalences
on a reference setting. Thus,

kIhỹ � ỹhkL2
(E)

 ch�1/2
T kIhỹ � ỹhkL2

(T )

. (52)

and due to h�1

T  h�1/µ ⇠ d�1

i for all T \ ⌦c
i
0 6= ;, as well as |⌦c

i | ⇠ d3i , we get

kIhỹ � ỹhkL2
(�

c
i )

 cd�1/2
i kIhỹ � ỹhkL2

(⌦

c
i
0
)

 c
⇣

dikỹ � IhỹkL1
(⌦

c
i
0
)

+ d�1/2
i kỹ � ỹhkL2

(⌦

c
i
0
)

⌘

.

This estimate together with (51) and (50) yields (42) on �c
i for i = I � 1, I.

On �e
i we use again the decomposition (15), the triangle inequality, and the Hölder inequality with

(15) to arrive at

kỹ � ỹhk2L2
(�

e
i )


i
X

j=0

⇣

kỹ � Ihỹk2L2
(�

e,±
i,j )

+ kIhỹ � ỹhk2L2
(�

e,±
i,j )

⌘

+ kỹ � Ihỹk2L2
(

˜

�

e
i )

+ kIhỹ � ỹhk2L2
(

˜

�

e
i )


i
X

j=0

⇣

didi,jkỹ � Ihỹk2L1
(⌦

e,±
i,j

0
)

+ kIhỹ � ỹhk2L2
(�

e,±
i,j )

⌘

+ dikỹ � Ihỹk2L1
(

˜

⌦

e
i
0
)

+ kIhỹ � ỹhk2L2
(

˜

�

e
i )
. (53)

From (52) and |⌦e,±
i,j

0| ⇠ d2i di,j we obtain

kIhỹ � ỹhkL2
(�

e,±
i,j )

 d�1/2
i kIhỹ � ỹhkL2

(⌦

e,±
i,j

0
)

 d1/2i d1/2i,j kỹ � IhỹkL1
(⌦

e,±
i,j

0
)

+ d�1/2
i kỹ � ỹhkL2

(⌦

e,±
i,j

0
)

,

and with the same arguments using |⌦̃e
i
0| ⇠ d2i

kIhỹ � ỹhkL2
(

˜

�

e
i )

 d1/2i kỹ � IhỹkL1
(

˜

⌦

e
i
0
)

+ d�1/2
i kỹ � ỹhkL2

(

˜

⌦

e
i
0
)

.

From these estimates and (53) we finally conclude (42) in case of i = I � 1, I.

The next step of the proof is to derive a finite element error estimate on the boundary part �R/2

defined in (12) which is under influence of corner and edge singularities.

Theorem 7. Let ỹ := !y 2 H1(⌦R) with ! defined as in (39). Assume that D↵y 2 W 1,2

~↵,~�
(⌦)\W 1,1

~�,~%
(⌦)

for |↵| = 1 with weight vectors ~↵ 2 [0, 1)d
0
, ~� 2 [0, 2), ~� 2 [0, 2/3)d, ~% 2 [0, 5/3)d. The refinement

parameter µ satisfies the inequalities

↵j  1� µ, �j  3� 2µ, 8j 2 C,
�k  1� µ, %k  5

2
� 2µ, 8k 2 E .

(54)
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Then, the Ritz projection ỹh 2 Yh(⌦R) from (40) fulfills the estimate

kỹ � ỹhkL2
(�R/2)

 ch2| lnh|3/2
✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

+ |ỹ|W 2,1
~�,~%

(⌦R)

◆

.

Proof. We consider the decomposition of the boundary �R/2 = �
1

[. . .[�I into the segments introduced
in (13) and estimate the terms on the right-hand side of the estimate from Lemma 6. First, the terms
involving the interpolation error, more precisely

Ei :=
X

e:=ek
k2E

0

@

i
X

j=0

didi,jkỹ � Ihỹk2L1
(⌦

e,±
i,j

0
)

+ dikỹ � Ihỹk2L1
(

˜

⌦

e
i
0
)

1

A

+
X

c:=cj
j2C

d2i kỹ � Ihỹk2L1
(⌦

c
i
0
)

are discussed. Inserting the local estimates from Lemma 4 yields for i = 1, . . . , I � 3

Ei  ch4

 

X

e:=ek
k2E

d2(5/2�2µ�%k)

i

0

@

i
X

j=0

d2(1/2+%k�˜�k)

i,j |ỹ|2
W 2,1

~�,~%
(⌦

e,±
i,j

00
)

+ |ỹ|2
W 2,1

~�,~%
(

˜

⌦

e
i
00
)

1

A

+
X

c:=cj
j2C

d
2(3�2µ�j)

i |ỹ|2
W 2,1

~�,~%
(⌦

c
i
00
)

!

 ch4|ỹ|2
W 2,1

~�,~%
(⌦

00
i )
, (55)

where we used the refinement condition (54) as well as (24) with sk = 1/2+ %k � �̃k in the last step. In
case of i = I � 2, . . . , I we obtain with Lemma 4

Ei  c

0

B

@

X

e:=ek
k2E

h2(5/2�%k+[1/2+%k�˜�k]�)/µ|ỹ|2
W 2,1

~�,~%
(⌦

e
i
00
)

+
X

c:=cj
j2C

h2(3�j)/µ|ỹ|2
W 2,1

~�,~%
(⌦

c
i
00
)

1

C

A

 ch4|ỹ|W 2,1
~�,~%

(⌦

00
i )
.

(56)

Inserting the estimates (55) and (56) into (42) and summing up over all �i for i = 1, . . . , I yields with
I ⇠ | lnh| the estimate

kỹ � ỹhk2L2
(�R/2)

 c

✓

| lnh|3h4|ỹ|2
W 2,1

~�,~%
(⌦R)

+ k��1/2(ỹ � ỹh)k2L2
(⌦R)

◆

, (57)

where �(x) := dI + r(x). Note, that there holds �(x) � di = 2di�1

if x 2 ⌦i.
In the remainder of the proof we will discuss the second term on the right-hand side of (57) which

requires an estimate for a weighted L2(⌦R)-error. Therefore, we adopt the technique that was applied
in the proof of Lemma 6.2 in [19] where a duality argument was used. First we decompose the error
into

k��1/2(ỹ � ỹh)kL2
(⌦R)

 k��1/2(ỹ � ỹh)kL2
(⌦R/4)

+ k��1/2(ỹ � ỹh)kL2
(⌦0[⌦1)

. (58)

On the outermost subdomain ⌦
0

[⌦
1

we exploit that � ⇠ 1 and can directly use the global finite element
error estimate from Lemma 5. As a consequence we get

k��1/2(ỹ � ỹh)kL2
(⌦0[⌦1)

 ckỹ � ỹhkL2
(⌦R)

 ch2

✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

◆

. (59)

For the innermost rings we apply the representation

k��1/2(ỹ � ỹh)kL2
(⌦R/4)

= sup
g2C1

0 (⌦R/4)

kgk
L2(⌦R/4)

=1

(��1/2(ỹ � ỹh), g) (60)
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Postprocessing for Neumann boundary control

and consider the auxiliary problem

��w + w = ��1/2g in ⌦R, @nw = 0 on @⌦R. (61)

From the weak formulation of (61) we can deduce

(��1/2(ỹ � ỹh), g) = (ỹ � ỹh, �
�1/2g) = a

⌦R(ỹ � ỹh, w), (62)

Analogous to Lemma 5 we define the Scott-Zhang interpolant of the Calerdon extension of w, namely
[Zhw̆]|⌦R 2 Yh(⌦R) and obtain

a
⌦R(ỹ � ỹh, w) = a

⌦R(ỹ � ỹh, w � Zhw̆)

 c
I
X

i=0

 

X

c:=cj
j2C

kỹ � ỹhkH1
(⌦

c
i )
kw � Zhw̆kH1

(⌦

c
i )

+
X

e:=ek
k2E

kỹ � ỹhkH1
(⌦

e
i )
kw � Zhw̆kH1

(⌦

e
i )

!

. (63)

First, we insert the local finite element error estimate from Corollary 9.1 in [22], which reads in our
situation

kỹ � ỹhkH1
(⌦

c
i )

 c
�|ỹ � Zhỹ|H1

(⌦

c
i
0
)

+ d�1

i kỹ � ZhỹkL2
(⌦

c
i
0
)

+ d�1

i kỹ � ỹhkL2
(⌦

c
i
0
)

�

. (64)

The estimate remains true when replacing c by e.
In order to derive estimates for the terms on the right-hand side of (63) we consider the cases

i = 3, . . . , I � 3 and i = I � 2, . . . , I as well as i = 0, 1, 2 separately.
In case of i = 3, . . . , I � 3, we obtain with the local estimates from Lemma 3 and (64)

kỹ � ỹhkH1
(⌦

c
i )

 c

✓

hd
5/2�µ�j

i |ỹ|W 2,1
~�,~%

(⌦

00
i )

+ d�1

i kỹ � ỹhkL2
(⌦

0
i)

◆

,

kw � Zhw̆kH1
(⌦

c
i )

 chd1/2�µ
i |w|W 2,2

~1/2,~1/2
(⌦

0
i)
,

where we also exploited hd�µ
i  hd�µ

I = c�µ
I  1 to simplify the interpolation error estimate in L2(⌦c

i ).
Combining both estimates yields for i = 3, . . . , I � 3

kỹ � ỹhkH1
(⌦

c
i )
kw � Zhw̆kH1

(⌦

c
i )

 c

✓

h2d
3�2µ�j

i |ỹ|W 2,1
~�,~%

(⌦

00
i )

+ hd�1/2�µ
i kỹ � ỹhkL2

(⌦

0
i)

◆

|w|W 2,2
~1/2,~1/2

(⌦

0
i)

 c

✓

h2|ỹ|W 2,1
~�,~%

(⌦

00
i )

+ c�µ
I k��1/2(ỹ � ỹh)kL2

(⌦

0
i)

◆

|w|W 2,2
~1/2,~1/2

(⌦

0
i)
. (65)

The last step is a consequence of the assumption upon µ and the definition of the domains ⌦i, more
precisely we exploited d�µ

i  d�µ
I  c�µ

I h�1.
In case of i = I � 2, . . . , I we get analogously

kỹ � ỹhkH1
(⌦

c
i )

 c

✓

h(5/2�j)/µ|ỹ|W 2,1
~�,~%

(⌦

00
i )

+ d�1

i kỹ � ỹhkL2
(⌦

0
i)

◆

,

kw � Zhw̆kH1
(⌦

c
i )

 cc[1/2�µ]+
I h1/(2µ)|w|W 2,2

~1/2,~1/2
(⌦

0
i)
.

Combining both estimates leads to

kỹ � ỹhkH1
(⌦

c
i )
kw � Zhw̆kH1

(⌦

c
i )

 c

✓

h(3�j)/µ|ỹ|W 2,1
~�,~%

(⌦

00
i )

+ c[1/2�µ]+
I h1/(2µ)d�1

I kỹ � ỹhkL2
(⌦

0
i)

◆

|w|W 2,2
~1/2,~1/2

(⌦

0
i)

 c

✓

h2|ỹ|W 2,1
~�,~%

(⌦

00
i )

+ cmax{�1/2,�µ}
I k��1/2(ỹ � ỹh)kL2

(⌦

0
i)

◆

|w|W 2,2
~1/2,~1/2

(⌦

0
i)
. (66)
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The last step follows from the assumption upon µ and the fact that dI = cIh1/µ. For i = 0, 1, 2 we
can insert the global finite element error estimate from Lemma 5 and the interpolation error estimate
from Lemma 3 taking into account that the factors d

0

, d
1

and d
2

are of order one. With the continuity
property of the Calderon extension w̆ we get

kỹ � ỹhkH1
(⌦

c
1
0
)

kw � Zhw̆kH1
(⌦

c
1
0
)

 ch2

✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

◆

|w̆|H2
(⌦

00
1 [(⌦R,h\⌦R/2))

 ch2

✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

◆✓

|w|W 2,2
~1/2,~1/2

(⌦R)

+ kwkH1
(⌦0)

◆

.

(67)

We can repeat the same strategy to show the appropriate estimates on ⌦e
i , and apply Lemma 3 with

sk = 1/2 + %k � �̃k, as well as (64) with c replaced by e. Moreover, we have to exploit the refinement
condition

2µ  5/2� %k + [sk]� =

(

5/2� %k, if sk � 0,

3� �̃k, if sk < 0,

which follows from (54). Consequently, we arrive at

kỹ � ỹhkH1
(⌦

e
i )
kw � Zhw̆kH1

(⌦

e
i )

 c

✓

h2|ỹ|W 2,1
~�,~%

(⌦

00
i )

+ cmax{�1/2,�µ}
I k��1/2(ỹ � ỹh)kL2

(⌦

0
i)

◆

|w|W 2,2
1/2,1/2

(⌦

0
i)
, (68)

for i = 3, . . . , I. Finally, we easily confirm that the estimate (67) remains true when replacing c by e,
and we have covered also the cases i = 0, 1, 2.

We may now insert the estimates (65), (66), (67) and (68) into (63) which implies

a
⌦R(ỹ � ỹh, w)

 c
I
X

i=3

✓

h2|ỹ|W 2,1
~�,~%

(⌦

00
i )

+ cmax{�1/2,�µ}
I k��1/2(ỹ � ỹh)kL2

(⌦

0
i)

◆

|w|W 2,2
~1/2,~1/2

(⌦

0
i)

+ ch2

✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

+ |ỹ|W 2,1
~�,~%

(⌦R)

◆✓

|w|W 2,2
~1/2,~1/2

(⌦R)

+ kwkH1
(⌦0)

◆

 ch2| lnh|1/2
✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

+ |ỹ|W 2,1
~�,~%

(⌦R)

◆

+ ccmax{�1/2,�µ}
I k��1/2(ỹ � ỹh)kL2

(⌦R/4)
. (69)

In the last step we used I ⇠ | lnh| und inserted the a-priori estimate

|w|W 2,2
~1/2,~1/2

(⌦R)

+ kwkH1
(⌦R)

 ckgkL2
(⌦R)

= c

shown already in [3, Theorem 4.8].
Inserting now (69) into (62) yields together with (60)

k��1/2(ỹ � ỹh)kL2
(⌦R/4)

 ch2| lnh|1/2
✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

+ |ỹ|W 2,1
~�,~%

(⌦R)

◆

+ ccmax{�1/2,�µ}
I k��1/2(ỹ � ỹh)kL2

(⌦R/4)
. (70)

The desired result follows from a kick-back argument. Therefore, we choose cI su�ciently large such

that ccmax{�1/2,�µ}
I  1/2, and hence, the second term on the right-hand side of (70) can be neglected.

Finally, we insert (70) together with (59) into (58), insert the resulting estimate into (57), and arrive at
the assertion.

Now we are able to prove the main result of this section.
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Theorem 8. Let y denote the weak solution of (6) and yh its finite element approximation (10), with
input data satisfying f 2 C0,�(⌦) for some � 2 (0, 1), and g ⌘ 0. Assume that {Th}h>0

is a family of

locally refined triangulations according to condition (11). Moreover, let be given weights ~↵, ~� 2 Rd0

+

and
~�, ~% 2 Rd

+

satisfying

1

2
� �cj < ↵j  1� µ, 2� �cj < �j  3� 2µ, 8j 2 C,

1� �ek < �k  1� µ, 2� �ek < %k  5

2
� 2µ, 8k 2 E .

(71)

Then, some c > 0 exists such that

ky � yhkL2
(�)

 ch2| lnh|3/2
0

@

X

|↵|=1

✓

kD↵ykW 1,2

~↵,~�
(⌦)

+ kD↵ykW 1,1
~�,~%

(⌦)

◆

+ kykL1
(⌦)

1

A . (72)

Proof. Let ! be the cut-o↵ function defined in (39). In order to apply Theorem 7 we insert the inter-
mediate function ỹh from (40) and exploit that ỹ := !y coincides with y in ⌦R/2. This leads to

ky � yhkL2
(�R/4)

 c
⇣

kỹ � ỹhkL2
(�R/2)

+ kỹh � yhkL2
(�R/4)

⌘

. (73)

For the first part we may now apply the result of Theorem 7 and obtain

kỹ � ỹhkL2
(�R/2)

 ch2| lnh|3/2
✓

|ỹ|W 2,2

~↵,~�
(⌦R)

+ kỹkH1
(⌦0)

+ |ỹ|W 2,1
~�,~%

(⌦R)

◆

. (74)

Note that it is possible to construct a cut-o↵ function ! satisfying (39) and

kD↵!kL1
(⌦R)

 2|↵|  c = c(|↵|) 8↵ 2 N3

0

.

Using the Leibniz rule we then get

|ỹ|W 2,2

~↵,~�
(⌦R)

= |!y|W 2,2

~↵,~�
(⌦R)

 c

✓

|y|W 2,2

~↵,~�
(⌦R)

+ kykW 1,2
(⌦\⌦R/2)

◆

 c

0

@

X

|↵|=1

kD↵ykW 1,2

~↵,~�
(⌦)

+ kykL2
(⌦)

1

A , (75)

and analogously

|ỹ|W 2,1
~�,~%

(⌦R)

 c

0

@

X

|↵|=1

kD↵ykW 1,1
~�,~%

(⌦)

+ kykL1
(⌦)

1

A . (76)

Let us discuss the second part of (73). The function ỹh � yh is discrete harmonic on ⌦R/2. Hence, the
discrete Caccioppoli estimate from Lemma 3.3 in [8] yields

kỹh � yhkH1
(⌦R/4)

 cd�1kỹh � yhkL2
(⌦R/2)

, d := dist(@⌦R/2\�, @⌦R/4\�), (77)

and with our construction we have d = 1/4. With a trace theorem and (77) we then obtain

kỹh � yhkL2
(�R/4)

 ckỹh � yhkH1
(⌦R/4)

 ckỹh � yhkL2
(⌦R/2)

 c
�kỹ � ỹhkL2

(⌦R)

+ ky � yhkL2
(⌦)

�

,

where the last step holds due to y = ỹ on ⌦R/2. Then, Lemma 5 and Theorem 2 imply

kỹh � yhkL2
(�R/4)

 ch2

0

@

X

|↵|=1

kD↵ykW 1,2

~↵,~�
(⌦)

+ kykL2
(⌦)

1

A , (78)
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where we also applied the estimate (75). Consequently we get from (73) the estimate

ky � yhkL2
(�R/4)

 ch2| lnh|3/2
0

@

X

|↵|=1

✓

kD↵ykW 1,2

~↵,~�
(⌦)

+ kD↵ykW 1,1
~�,~%

(⌦)

◆

+ kykL1
(⌦)

1

A . (79)

In the interior of the boundary we directly apply the trace theorem in the L1-norm and use the local
estimate (44) to arrive at

ky � yhkL2
(�\�R/4)

 cky � yhkL1
(�\�R/4)

 cky � yhkL1
(⌦\⌦R/4)

 c
⇣

| lnh|ky � IhykL1
(⌦\⌦R/8)

+ ky � yhkL2
(⌦\⌦R/8)

⌘

 c

✓

| lnh|h2|y|W 2,1
(⌦\⌦R/16)

+ h2|y|W 2,2

~↵,~�
(⌦)

◆

, (80)

where the last step is a consequence of a standard interpolation error estimate and the global finite
element error estimate from Theorem 2. From (79) and (80) we finally conclude the desired estimate.

Remark 9. The assumption (71) is always true for the choice 1/3 < µ < 1/4 + �/2 with � defined in
(7), as it is always possible to find weights satisfying the inequalities. A possible choice would be

↵j = max{0, 1/2� �cj + "}, �j = max{0, 2� �cj + "},
�k = max{0, 1� �ek + "}, %k = max{0, 2� �ek + "},

with su�ciently small " > 0.

4 Error estimates for the optimal control problem

4.1 Optimality conditions and regularity results

Let us recall the optimal control problem (1)–(3). The state equation is linear and uniquely solvable
which allows us to introduce the linear and bounded operator S : L2(�) ! L2(⌦) as the mapping
u 7! Su := y, where y is the solution of (2). The optimization problem is then equivalent to

j(u) := J(Su, u) ! min! s. t. u 2 Uad. (81)

It is already well-known [21] that this problem possesses a unique solution u 2 Uad which satisfies the
following optimality system:

Lemma 10. Let (y, u) 2 H1(⌦) ⇥ L2(�) denote the unique solution of the optimal control problem
(1)–(3). Then there exists a function p 2 H1(⌦) which fulfils the system

��y + y = 0 ��p+ p = y � yd in ⌦,

@ny = u @np = 0 on �,

(p+ ↵u,w � u)
�

� 0 8w 2 Uad. (82)

The variational inequality is equivalent to the projection formula

u = ⇧ad

✓

� 1

↵
p|

�

◆

, (83)

where the operator ⇧ad : L2(�) ! Uad denotes the L2(�)-projection onto Uad.
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Due to the convexity of the optimization problem this is also a su�cient optimality condition. Using
the solution operator P : L2(⌦) ! H1(⌦) of the adjoint equation we may write p = P (y�yd). It is easy
to confirm that the adjoint of the control-to-state operator can be represented as S⇤ := ⌧ � P (where ⌧
is the trace operator), which implies p|

�

= S⇤(y � yd).
The optimality system presented in Lemma 10 can be solved by a finite element approximation.

While the state and the adjoint state are discretized by piecewise linear finite elements, see (9), the
control is sought in the space

Uh := {wh 2 L1(�) : wh|E 2 P
0

8E 2 @Th}. (84)

The fully discrete optimality system reads
Find (yh, uh, ph) 2 Yh ⇥ (Uh \ Uad)⇥ Yh:

8

<

:

a(yh, vh) = (uh, vh)� 8vh 2 Yh,
a(vh, ph) = (yh � yd, vh)⌦ 8vh 2 Yh,

(ph + ↵uh, wh � uh)� � 0 8wh 2 Uh \ Uad.
(85)

The discrete control-to-state operator Sh : L2(�) ! Yh is the solution operator of the first equation in
(85).

Due to the polynomial degree used for the control approximation the convergence rate is limited by
one [9], i. e., with some constant c > 0 there holds

ku� uhkL2
(�)

 ch.

In [24, Theorem 4.2.1] it has been shown that this convergence rate is achieved for arbitrary polyhedral
domains as u 2 H1(�). However, we will see later that the control is even more regular, meaning in
some weighted H2(�) space, except in the vicinity of those points where the control transitions into the
active set. This motivates the use of a linear control approximation which can be simply realized in a
postprocessing step without additional computational e↵ort by an application of the projection formula

u⇤
h := ⇧ad

✓

� 1

↵
ph

◆

. (86)

Note that u⇤
h is piecewise linear but in general not in the trace space of Yh. In the remainder of this

section we show that u⇤
h is an approximation of the optimal control which converges with rate 2 (up

to logarithmic factors) if either the singularities are weak enough or the sequence of meshes is refined
appropriately.

The challenging part is the proof of an error estimate for the discrete state in the L2(⌦)-norm.
Once such a result is established an estimate for the control follows from boundedness properties of the
solution operators for the state and adjoint equation, Lipschitz properties of the projection formula,
and the finite element error estimates shown in the previous section. We basically follow the idea of
Meyer/Rösch [14] who propose a decomposition of the discretization error of the state variable by means
of

kSu� ShuhkL2
(⌦)

 k(S � Sh)ukL2
(⌦)

+ kSh(u�Rhu)kL2
(⌦)

+ kSh(Rhu� uh)kL2
(⌦)

, (87)

where Rh : C(�) ! Uh denotes the midpoint interpolant defined by [Rhu]|E = u(xE) for all E 2 @Th,
when xE 2 E is the barycenter of E 2 @Th. The first term can be bounded by using Theorem 2. The
latter two terms on the right-hand side are discussed in the following. However, in order to obtain
optimal error estimates for these terms a structural assumption upon the active set is necessary:

Assumption 1. Let A� := {x 2 � : u(x) = ua}, A+ := {x 2 � : u(x) = ub}, and I := {x 2 � : u(x) 2
(ua, ub)}. It is assumed that the set g := (A+ [ A�) \ I consists of a finite number of curves having
finite length.

In all contributions of which we are aware about estimates for the state in L2(⌦) when a full
discretization is used, similar assumptions are demanded. To achieve the convergence rate two in the
second term of (87) H2(�)-regularity of the control is required (in the sense of weighted spaces). In the
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vicinity of g this is, as a rule, not the case as the control could have a kink along g. Hence, only linear
convergence can be shown at elements intersecting these lines, but Assumption 1 allows us to retain
global quadratic convergence as well. Therefore, in [2, 12, 14] the assumption |[{E 2 @Th : E\g}|  ch
is demanded which would directly follow from our assumption. However, our assumption allows us to
conclude even a sharper relation in the subsets where the mesh is refined locally.

In the following we decompose the boundary triangulation @Th into two sets

K
1

:= [{E 2 @Th : E \ g 6= ;}, K
2

:= � \ K
1

.

Finally, we can show the following regularity result as consequence of some applications of Theorem 1
in a bootstrapping fashion.

Theorem 11. Assume that yd 2 C0,�(⌦) with some � 2 (0, 1). Let " > 0 be a su�ciently small real

number, and let ~↵, ~�,~� 2 Rd0
and ~�, ~%,~⌧ 2 Rd be weight vectors defined by

↵j := max{0, 1
2
� �cj + "}, �k := max{0, 1� �ek + "},

�j := max{0, 2� �cj + "}, %k := max{0, 2� �ek + "},
�j := max{0, 1� �cj + "}, ⌧k := max{0, 3

2
� �ek + "},

for all j 2 C and k 2 E. Then, the solution (y, u, p) of the optimality system from Lemma 10 satisfy

D↵y 2 W 1,2

~↵,~�
(⌦),

D↵p 2 W 1,2

~↵,~�
(⌦) \W 1,1

~�,~%
(⌦) \W 1,2

~�,~⌧ (�),

D↵u 2 W 0,1
~�,~�

(K
1

) \W 1,2
~�,~⌧ (K2

),

for all |↵| = 1.

Proof. With bootstrapping arguments taking regularity results in classical function spaces as well as
trace and embedding theorems into account we obtain

p 2 H3/2+"(⌦) ) p 2 H1(�) ) u 2 H1(�) ) y 2 H3/2+"(⌦) ,! C0,�(⌦),

with some � 2 (0, "). From Theorem 1 we then conclude

D↵y 2 W 1,2

~↵,~�
(⌦), D↵p 2 W 1,2

~↵,~�
(⌦) \W 1,1

~�,~%
(⌦), 8|↵| = 1.

A trace theorem and the embeddings from [13, Lemma 8.1.1] imply

D↵p 2 W 1,1
~�,~%

(�) ,! W 1,2
~�,~⌧ (�) \W 0,1

~�,~�
(�).

Note, that in order to get the validity of the embeddings one has to take into account that " > 0 can
be chosen arbitrarily but small. Due to (83) we moreover have

u =

8

>

<

>

:

�↵�1p, on I,
ua, on A�,

ub, on A+,

Consequently, away from the set g the control u inherits the regularity of the adjoint state p and the
control bounds ua and ub.

4.2 Error estimates for the midpoint interpolant

First we derive some local estimates for the midpoint interpolant exploiting regularity in weighted
Sobolev spaces.
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Lemma 12. Let E 2 @Th be an arbitrary boundary element with E ⇢ Uj \ � for some j 2 C (recall the
covering {Uj} used in (8)). We define the number j := max{�j ,maxk2Xj �k}. The following assertions
hold:

a) If |u|W 2,2
~�,~�

(E)

 c with ~� 2 [0, 3/2)d
0
and ~� 2 [0, 1)d, there holds

�

�

�

�

Z

E

(u(x)�Rhu)dsx

�

�

�

�

 ch2

E |E|1/2|u|W 2,2
~�,~�

(E)

·
(

r
�j

E , if rE > 0,

h
�j

E , if rE = 0.
(88)

b) If |u|W 1,1
~�,~�

(E)

 c with ~� 2 [0, 1)d
0
and ~� 2 [0, 1/2)d, there holds

ku�RhukL1
(E)

 chE |u|W 1,1
~�,~�

(E)

·
(

r
�j

E , if rE > 0,

h
�j

E , if rE = 0.
(89)

Proof. We adapt the proof of similar results from [12, 2] for the two-dimensional case to the three-
dimensional one. Our technique di↵ers slightly as regularity results in weighted Sobolev spaces for
polyhedral domains have to be exploited.
a) First, we apply the transformation to the reference triangle Ê and introduce a polynomial ŵ. Note
that the property

R

ˆE
ŵ =

R

ˆE
R̂hŵ holds for arbitrary first-order polynomials ŵ 2 P

1

. Together with a

stability estimate for the midpoint interpolant, the embedding W 2,1+"(Ê) ,! L1(Ê) which holds for
arbitrary " > 0, and the Bramble-Hilbert Lemma we arrive at

�

�

�

�

Z

E

(u(x)�Rhu)dsx

�

�

�

�

 c|E|
�

�

�

�

Z

ˆE

(û(x̂)� R̂hû)dsx̂

�

�

�

�

 c|E|
✓

�

�

�

�

Z

ˆE

(û(x̂)� ŵ(x̂))dsx̂

�

�

�

�

+

�

�

�

�

Z

ˆE

R̂h(û� ŵ)dsx̂

�

�

�

�

◆

 c|E|kû� ŵkL1
(

ˆE)

 c|E|kû� ŵkW 2,1+"
(

ˆE)

 c|E||û|W 2,1+"
(

ˆE)

. (90)

If rE > 0 we use the trivial embedding L2(Ê) ,! L1+"(Ê) (note that we can chose " 2 (0, 1)), apply the
transformation back to E and introduce the weights which yields

|û|W 2,1+"
(

ˆE)

 ch2

E |E|�1/2|u|H2
(E)

 ch2

E |E|�1/2⇢
��j

j,E

Y

k2Xj

✓

rk,E
⇢j,E

◆��k

|u|W 2,2
~�,~�

(E)

. (91)

Using this and property (35) we conclude the desired estimate for the case rE > 0 from (90) and (91).
If rE = 0 we have reduced regularity and apply embeddings into appropriate weighted Sobolev

spaces. The weighted Sobolev spaces used on the reference element are defined analogous to (8), with
the modification that ⇢̂(x̂) = |x̂| and r̂(x̂) = x̂

1

are the corner and edge weight, respectively. Here we
assume without loss of generality that elements in @Th have at most one edge which is contained in
an edge of �, and we define the reference transformation FE : Ê ! E in such a way that the edge ê
of Ê having endpoints ĉ := (0, 0) and (0, 1) is mapped to the singular edge of E. The extension to
the case that two edges of E are contained in edges of � is obvious and is hence not explained further.
Let us derive some relations between the weights in Ê and E. One quickly realizes that the way in
which the element E touches an edge ek of � has e↵ects on the role the weight functions play. Note
that the following results hold due to the assumed shape-regularity of Th. Consider the case illustrated
in Figure 3b where an edge of E is completely contained in the edge ek. We define the quantities
y := argminv2ek

|v � x| and ŷ = argminv̂2ê |v̂ � x̂|. From the assumed shape-regularity we get the
relation

rk(x) = |x� y| ⇠ hE |x̂� F�1

E (y)| ⇠ hE |x̂� ŷ| = hE r̂(x̂). (92)
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x̂ŷ
F−1

E
(y)

ê

x̂1

x̂2

E

ĉ

(a) Reference element

x

e1

e2

c

E
r1(x)

ρ(x)

y

(b) Element touch-
ing an edge and a
corner

x

e

E

r(x)
y

FE(ĉ)

(c) Element touching an
edge in a single point

Figure 3: The reference element Ê and the di↵erent positions of the original element E.

In contrast to this, if E touches the edge ek only in a single point, see Figure 3c, we get

rk(x) = |x� y| ⇠ |x� FE(ĉ)| ⇠ hE |x̂� ĉ| = hE ⇢̂(x̂). (93)

Moreover, if E touches a corner c of � there holds

⇢(x) = |x� c| ⇠ hE |x̂� ĉ| = hE ⇢̂(x̂). (94)

In the following we will make use of the embedding W 2,2
�j ,�k

(Ê) ,! W 2,1+"(Ê) [13, Lemma 8.1.1] which

holds if �j < 3/2, �k < 1, provided that " > 0 is su�ciently small.
We continue estimating the right-hand side of (90) and discuss four possible situations separately.

If one edge of E is contained in the edge ek and E is away from the corners we use the property (92),
and the fact that ⇢j,E > 0, to estimate

|û|W 2,1+"
(

ˆE)

 c|û|W 2,2
�k,�k

(

ˆE)

 ch2��k
E |E|�1/2⇢

�k��j

j,E |u|W 2,2
~�,~�

(E)

.

If E touches the edge only in a single point we apply (93) instead of (92) and get

|û|W 2,1+"
(

ˆE)

 c|û|W 2,2
�k,0(

ˆE)

 ch2��k
E |E|�1/2⇢

�k��j

j,E |u|W 2,2
~�,~�

(E)

.

If E touches additionally the corner cj and has an edge contained in ek, we get with (92) and (94)

|û|W 2,1+"
(

ˆE)

 c|û|W 2,2
�j ,�k

(

ˆE)

 ch
2��j

E |E|�1/2|u|W 2,2
~�,~�

(E)

.

If E touches the corner cj , but the edges ek, k 2 Xj , only in cj , the property (94) yields

|û|W 2,1+"
(

ˆE)

 c|û|W 2,2
�j ,0

(

ˆE)

 ch
2��j

E |E|�1/2|u|W 2,2
~�,~�

(E)

.

Moreover, as ⇢j,E � chE if %j,E > 0 (neighboring elements have equivalent diameter), we conclude the
simplifications

h��k
E ⇢

�k��j

j,E  h
�max{�k,�j}
E  h�

E , h
��j

E  h
�j

E , (95)

and get from all four cases discussed above that

|û|W 2,1+"
(

ˆE)

 ch
2�j

E |E|�1/2|u|W 2,2
~�,~�

(E)

.

Together with (90) the estimate (88) follows for rE = 0.
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b) To show the estimate in the L1(E)-norm we use again the transformation to a reference element,
insert a polynomial ŵ 2 P

0

, and apply an embedding as well as the Bramble-Hilbert Lemma to obtain

ku�RhukL1
(E)

 ckû� ŵkL1
(

ˆE)

 c|û|W 1,2+"
(E)

. (96)

The case rE > 0 is easy since u 2 W 1,1(E). Transforming back to E and inserting the weights yields

|û|W 1,2+"
(

ˆE)

 chE |u|W 1,1
(E)

 chE⇢
��j

j,E

Y

k2Xj

✓

rk,E
⇢j,E

◆��k

|u|W 1,1
~�,~�

(E)

 chEr
�j

E |u|W 1,1
~�,~�

(E)

, (97)

where the latter step is an application of (35).
If rE = 0 we proceed as in the proof of part a), and derive the estimate

|û|W 1,2+"
(

ˆE)

 chE |u|W 1,1
~�,~�

(E)

·
(

h��k
E ⇢

�k��j

j,E , if ⇢j,E > 0,

h
��j

E , if ⇢j,E = 0.
(98)

where we used, depending on the way in which E touches the edge, one of the embeddings

W 0,1
�k,�k

(Ê) ,! W 0,2+"(Ê), W 0,1
�k,0

(Ê) ,! W 0,2+"(Ê),

W 0,1
�j ,�k

(Ê) ,! W 0,2+"(Ê), W 0,1
�j ,0

(Ê) ,! W 0,2+"(Ê)

which hold under the assumptions ~� 2 [0, 1)d
0
and ~� 2 [0, 1/2)d. Inserting (98) into (96) and applying

the simplification (95) leads to the desired estimate in case of rE = 0.

These local estimates allow us to prove an estimate for the second term on the right-hand side of
(87).

Lemma 13. Let yd 2 C0,�(⌦) with some � 2 (0, 1), and let Assumption 1 be satisfied. The refinement
parameter is chosen such that µ < 1

4

+ �
2

holds. Then the estimate

kSh(u�Rhu)kL2
(⌦)

 ch2| lnh|⌘, (99)

holds with
⌘ := |u|H1

(�)

+ kukL1
(�)

+ |u|W 2,2
~�,~⌧ (K2)

+ |u|W 1,1
~�,~�

(K1)

and weight vectors defined as in Theorem 11 with " > 0 su�ciently small.

Proof. We introduce the functions zh := Sh(u � Rhu) and v = Pzh which implies v|
�

= S⇤zh. Then
the term under consideration can be written as

kzhk2L2
(⌦)

= kSh(u�Rhu)k2L2
(⌦)

= (u�Rhu, (S
⇤
h � S⇤)zh)� + (u�Rhu, v)�. (100)

With the trace theorem from [6, Theorem 1.6.6] an the finite element error estimates from Theorem 2
(note that µ < 1/4 + �/2 < �) we conclude for the first term

(u�Rhu, (S
⇤
h � S⇤)zh)�  ku�RhukL2

(�)

k(S⇤
h � S⇤)zhk1/2L2

(⌦)

k(S⇤
h � S⇤)zhk1/2H1

(⌦)

 ch3/2ku�RhukL2
(�)

kzhkL2
(⌦)

. (101)

On K
1

we get an estimate for the midpoint interpolant using Assumption 1 and stability of Rh, hence

ku�RhukL2
(K1)

 cku�RhukL1
(K1)

|K
1

|1/2  ch1/2kukL1
(�)

. (102)

On the remaining set K
2

we apply a standard estimate for the L2(�)-projection and obtain

ku�RhukL2
(K2)

 ku�QhukL2
(K2)

+ kQhu�RhukL2
(K2)

 ch1/2
⇣

|u|H1/2
(�)

+ |u|W 2,2
~�,~⌧ (K2)

⌘

. (103)
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The estimate used for the term kQhu � RhkL2
(K2)

will be shown later in (113) where even a higher
approximation order is proved. Inserting (102) and (103) into (101) leads to an estimate for the first
term in (100), namely

(u�Rhu, (S
⇤
h � S⇤)zh)�  ch2⌘kzhkL2

(⌦)

. (104)

For the second term on the right-hand side of (100) we introduce the L2(�)-projection onto Uh as
intermediate function and obtain with orthogonality properties and standard estimates for Qh

(u�Rhu, v)� = (u�Qhu, v �Qhv)� + (Qhu�Rhu, v)�

 ch2|u|H1
(�)

kzhkL2
(⌦)

+ (Qhu�Rhu, v)�, (105)

where we applied the a-priori estimate

kvkH1
(�)

+ kvkL1
(�)

 ckvkH3/2+"
(⌦)

 ckzhkL2
(⌦)

, (106)

which follows for some su�ciently small " > 0 from trace and embedding theorems, and elliptic regularity
results. The estimate (106) for the L1(�)- and L2(�)-norm of v will be used later.

For the second term in (105) we distinguish between boundary elements E ⇢ K
1

and E ⇢ K
2

. On
K

2

the solution possesses the regularity D↵u 2 W 1,2
~�,~⌧ (K2

) for all |↵| = 1, as stated in Theorem 11, where
the largest weight is defined by

 := max
j2C,k2E

{�j , ⌧k} = max
j2C,k2E

{0, 1� �cj + ", 3/2� �ek + "} = max{0, 3/2� �+ "}. (107)

Using the element-wise definition of the L2(�)-projection and the fact that Rhu is constant on each
element we get

kQhu�Rhuk2L2
(K2)

=
X

E⇢K2

Z

E

✓

|E|�1

Z

E

u(y)dsy � [Rhu]|E
◆

2

dsx

=
X

E⇢K2

|E|�1

✓

Z

E

(u(y)� [Rhu]|E)dsy
◆

2

. (108)

Now the local estimates from Lemma 12 can be inserted. In case of rE > 0 the estimate (88) yields
together with the refinement condition

|E|�1

✓

Z

E

(u(y)� [Rhu]|E)dsy
◆

2

 c
⇣

h2r2(1�µ)�
E |u|W 2,2

~�,~⌧ (E)

⌘

2

, (109)

and in case of rE = 0 we get with hE = h1/µ

|E|�1

✓

Z

E

(u(y)� [Rhu]|E)dsy
◆

2

 c
⇣

h(2�)/µ|u|W 2,2
~�,~⌧ (E)

⌘

2

. (110)

Moreover, the assumption µ < 1/4 + �/2 implies µ  1� /2, since

1� /2 = 1� 1

2
max{0, 3/2� �+ "} = min{1, 1/4 + �/2� "} � µ, (111)

where the last step is valid when " is chosen su�ciently small. Hence, (109) and (110) become

|E|�1

✓

Z

E

(u(y)� [Rhu]|E)dsy
◆

2

 c
⇣

h2|u|W 2,2
~�,~⌧ (E)

⌘

2

(112)

for arbitrary E 2 Eh, E ⇢ K
2

. Inserting this into (108) yields

kQhu�RhukL2
(K2)

 ch2|u|W 2,2
~�,~⌧ (K2)

(113)
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and with the Cauchy-Schwarz inequality and (106) we finally arrive at

(Qhu�Rhu, v)L2
(K2)

 ch2|u|W 2,2
~�,~⌧ (K2)

kzhkL2
(⌦)

. (114)

On the set K
1

the solution satisfies only D↵u 2 W 0,1
~�,~�

(K
1

) for all |↵| = 1. We denote the largest

weight by
1 := max

j2C,k2E
{�j , �k} = max

j2C,k2E
{0, 1� �cj + ", 1� �ek + "}. (115)

With the element-wise definition of Qh we obtain

(Qhu�Rhu, v)L2
(K1)

=
X

E⇢K1

Z

E

(Qhu�Rhu)|Ev(x)dsx

 kvkL1
(�)

X

E⇢K1

Z

E

�

�

�

�

|E|�1

Z

E

u(y)dsy � [Rhu]|E
�

�

�

�

dsx

 kvkL1
(�)

X

E⇢K1

�

�

�

�

Z

E

(u(y)� [Rhu]|E) dsy
�

�

�

�

 kvkL1
(�)

X

E⇢K1

ku�RhukL1
(E)

|E|. (116)

To obtain a sharp error estimate, we recall the decomposition (13)

�R/n := {x 2 � : r(x) < R/n}, �̃R/n := � \ �R/n,

with su�ciently small R > 0 that we set without loss of generality equal to one, and use the dyadic
decomposition

�i :=

(

{x 2 � : di+1

< r(x) < di}, for i = 0, . . . , I � 1,

{x 2 � : 0 < r(x) < dI}, for i = I,
with di = 2�i. (117)

The inner-most domain has radius dI = ch1/µ with a mesh-independent constant c > 1 which results in
I ⇠ | lnh|. The patch with the neighboring sets is denoted by

�0
i := int

�

�
max{0,i�1} [ �i [ �

min{I,i+1}
�

.

Within the set �i, i = 0, . . . , I, all elements E have diameter hE ⇠ hd1�µ
i . Assumption 1 then implies

that
X

E⇢K1
E\�̃R/2 6=;

|E|  ch,
X

E⇢K1
E\�i 6=;

|E|  chd1�µ
i , i = 0, . . . , I. (118)

With (117) we obtain

X

E⇢K1
E\�R/2 6=;

ku�RhukL1
(E)

|E| 
I
X

i=1

X

E⇢K1
E\�i 6=;

ku�RhukL1
(E)

|E|. (119)

From Lemma 12 we conclude the local estimate

ku�RhukL1
(E)

|E|  chd1�µ�1
i |E||u|W 1,1

~�,~�
(E)

8E ⇢ K
1

, E \ �i 6= ;, (120)

for all i = 1, . . . , I, where we used the properties hE ⇠ hd1�µ
i , and in particular if rE = 0

h1�1
E = h1+(1�µ�1)/µ  chd1�µ�1

I .
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Inserting (118) and (120) into (119) yields

X

E⇢K1
E\�R/2 6=;

ku�RhukL1
(E)

|E|  ch2

I
X

i=1

d2(1�µ)�1
i |u|W 1,1

~�,~�
(�

0
i\K1)

. (121)

Next, we confirm that the condition µ  1�1/2 holds. Taking (115) and the assumption upon µ into
account yields for su�ciently small " > 0

1� 1
2

= 1� 1

2
max

j2C,k2E
{0, 1� �ek + ", 1� �cj + "} � min{1, 1/4 + �/2� "} � µ.

As a consequence, (121) leads together with I ⇠ | lnh| to
X

E⇢K1
E\�R/2 6=;

ku�RhukL1
(E)

|E|  ch2| lnh||u|W 1,1
~�,~�

(K1)
. (122)

The extension to elements contained in or intersecting �̃R/2 is easy as these elements satisfy rE ⇠ c and
hE ⇠ h. Exploiting also (118) yields

X

E⇢K1
E\�̃R/2 6=;

ku�RhukL1
(E)

|E|  ch|u|W 1,1
~�,~�

(K1)

X

E⇢K1
E\�̃R/2 6=;

|E|  ch2|u|W 1,1
~�,~�

(K1)
. (123)

Consequently, we deduce from (122) and (123) that

X

E⇢K1

ku�RhukL1
(E)

|E|  ch2| lnh||u|W 1,1
~�,~�

(K1)
. (124)

Inserting (124) into (116) yields together with (106)

(Qhu�Rhu, v)L2
(K1)

 ch2| lnh||u|W 1,1
~�,~�

(K1)
kzhkL2

(⌦)

. (125)

Combining the estimates (100), (104), (105), (114) and (125), and dividing by the term kzhkL2
(⌦)

leads
to the desired result (99).

4.3 Supercloseness of the midpoint interpolant

It remains to derive an estimate for the third term on the right-hand side of (87), and we exploit
a principle which is called supercloseness in the literature. This principle relies on the fact that the
interpolant of the continuous solution u is closer to the discrete solution uh than u itself.

Lemma 14. Assume that yd 2 C0,�(⌦) with some � 2 (0, 1), and let Assumption 1 be satisfied. If
µ < 1

4

+ �
2

, then there holds

kSh(Rhu� uh)kL2
(⌦)

 ch2| lnh|3/2⌘, (126)

where

⌘ := |u|H1
(�)

+ |u|W 2,2
~�,~⌧ (K2)

+ |u|W 1,1
~�,~�

(K1)
+ |y|W 2,2

~↵,~�
(⌦)

+ |p|W 2,2
~�,~⌧ (E)

+
X

|↵|=1

kD↵pkW 1,2

~↵,~�
(⌦)

+
X

|↵|=1

kD↵pkW 1,1
~�,~%

(⌦)

+ kpkL1
(⌦)

with the weight vectors defined in Theorem 11 and " > 0 chosen su�ciently small.
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Proof. Firstly, one confirms that the variational inequality (82) holds also pointwise and hence

(↵Rhu+Rhp, uh �Rhu)� � 0,

where we used uh as test function. Secondly, if we test the discrete variational inequality (85) with Rhu
we get

(↵uh + ph, Rhu� uh)� � 0.

Summing up both inequalities yields

↵kuh �Rhuk2L2
(�)

 (Rhp� ph, uh �Rhu)�.

Once we have shown an estimate for the right-hand side the assertion follows as Sh is bounded, i. e.
kShvkL2

(⌦)

 ckvkL2
(�)

for all v 2 L2(�). Introducing the intermediate functions p and S⇤
h(ShRhu�yd)

leads to

↵kuh �Rhuk2L2
(�)

 (Rhp� p, uh �Rhu)�

+ (p� S⇤
h(ShRhu� yd), uh �Rhu)�

+ (S⇤
h(ShRhu� yd)� ph, uh �Rhu)�, (127)

and it remains to discuss the three terms on the right-hand side. Up to here, the proof coincides with
the proof of [12, Proposition 4.5].

Taking into account the decomposition Eh of � and exploiting that uh and Rhu are constant on each
boundary element E 2 Eh leads to

(Rhp� p, uh �Rhu)� =
X

E2Eh

Z

E

([Rhp]|E � p(x))(uh �Rhu)|Edsx

=
X

E2Eh

(uh �Rhu)|E
Z

E

([Rhp]|E � p(x))dsx. (128)

For the adjoint state we have shown in Theorem 11 that D↵p 2 W 1,2
~�,~⌧ (�) for all |↵| = 1. We insert the

local estimate (88) from Lemma 12 to arrive at

Z

E

([Rhp]|E � p(x))dsx  c|E|1/2|p|W 2,2
~�,~⌧ (E)

(

h2r2(1�µ)�
E , if rE > 0,

h(2�)/µ, if rE = 0,
(129)

with  from (107). Inserting the assumption µ  1� /2, see (111), yields
Z

E

([Rhp]E � p(x))dsx  ch2|E|1/2|p|W 2,2
~�,~⌧ (E)

8E 2 Eh.

The estimate (128) then becomes

(Rhp� p, uh �Rhu)�  c
X

E2Eh

|(uh �Rhu)|E |h2|E|1/2|p|W 2,2
~�,~⌧ (E)

 c
X

E2Eh

h2|p|W 2,2
~�,~⌧ (E)

kuh �RhukL2
(E)

 ch2|p|W 2,2
~�,~⌧ (�)

kuh �RhukL2
(�)

. (130)

For the second term in (127) we insert the representation p|
�

= S⇤(Su � yd) and with appropriate
intermediate functions we get

kp� S⇤
h(ShRhu� yd)kL2

(�)

= k(S⇤ � S⇤
h)(y � yd)kL2

(�)

+ kS⇤
h(S � Sh)ukL2

(�)

+ kS⇤
hSh(u�Rhu)kL2

(�)

 ch2| lnh|3/2⌘.
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In the last step we inserted the finite element error estimate from Theorem 8 for the first term, the
stability of S⇤

h as operator from L2(⌦) to L2(�) and the estimate of Theorem 2 for the second term,
and the result of Lemma 13 for the third term. With an application of the Cauchy-Schwarz inequality
we then obtain

(p� S⇤
h(ShRhu� yd), uh �Rhu)�  ch2| lnh|3/2⌘kuh �RhukL2

(�)

. (131)

For the third term in (127) we insert the representation of the discrete adjoint state, namely ph|� =
S⇤
h(Shuh � yd), and observe that it is non-positive by

(S⇤
h(ShRhu� yd)� ph, uh �Rhu)� = (Sh(Rhu� uh), Sh(uh �Rhu))  0.

Hence, we can neglect this term. From the estimates (127), (130) and (131) we conclude the estimate
(126).

4.4 Error estimates for the postprocessing approach

Inserting now the results of the Lemmas 13 and 14 into (87) yields an estimate for the state. From this
we can conclude an estimate for the adjoint state and the control as well.

Theorem 15. Let Assumption 1 be satisfied, and assume that yd 2 C0,�(⌦) with some � 2 (0, 1).
Moreover, the refinement parameter is chosen such that 1

3

< µ < 1

4

+ �
2

holds. Then, the estimate

ku� u⇤
hkL2

(�)

+ ky � yhkL2
(⌦)

+ kp� phkL2
(�)

 ch2| lnh|3/2⌘, (132)

is fulfilled, where

⌘ := |u|H1
(�)

+ kukL1
(�)

+ |u|W 2,2
~�,~⌧ (K2)

+ |u|W 1,1
~�,~�

(K1)
+ |y|W 2,2

~↵,~�
(⌦)

+ |p|W 2,2
~�,~⌧ (�)

+
X

|↵|=1

kD↵pkW 1,2

~↵,~�
(⌦)

+
X

|↵|=1

kD↵pkW 1,1
~�,~%

(⌦)

+ kpkL1
(⌦)

,

with the weight vectors defined in Theorem 11 and " > 0 chosen su�ciently small.

Proof. The estimate for the state variable follows from the decomposition (87), Theorem 2 and the
Lemmata 13 and 14.

From the representations p|
�

= S⇤(y� yd) and ph|� = S⇤
h(yh � yd), as well as the triangle inequality

we get an estimate for the adjoint state

kp� phkL2
(�)

 k(S⇤ � S⇤
h)(y � yd)kL2

(�)

+ kS⇤
h(y � yh)kL2

(�)

.

It remains to insert the error estimate on the boundary from Theorem 8, the stability of S⇤
h from L2(⌦)

to L2(�), and the estimate already derived for the state.
Inserting the projection formula (86) and exploiting the non-expansivity of the projection operator

⇧ad, see e. g. [26, Proposition 46.5], leads to

ku� u⇤
hkL2

(�)

= k⇧ad

✓

� 1

↵
p

◆

�⇧ad

✓

� 1

↵
ph

◆

kL2
(�)

 c↵�1kp� phkL2
(�)

.

The assertion then directly follows from the error estimate for the adjoint state.

5 Numerical experiments

In order to confirm the convergence rate predicted in Theorem 15 we computed the experimental con-
vergence rates for the numerical approximation of the slightly modified problem

J(y, u) :=
1

2
ky � ydk2L2

(⌦)

+
↵

2
kuk2L2

(�)

+ (g
2

, y)
�

! min!
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subject to
��y + y = f in ⌦,

@ny = u+ g
1

on �,

u 2 Uad := {v 2 L2(�) : ua < v a. e. on �},
where g

1

, g
2

2 L2(�) are correction terms that are used to construct an exact solution for this problem.
The corresponding adjoint equation then reads

��p+ p = y � yd in ⌦,

@np = g
2

on �.

The projection formula (83) holds as usual.
The problem is solved in a Fichera domain ⌦ := (�1, 1)3 \ [0, 1]3 and the control bound is set to

ua := �120. Moreover, the regularization parameter ↵ = 10�2 is chosen. The exact solution is given by

ȳ = p̄ :=

8

<

:

⇢�
c
⇣

r
⇢

⌘�e

, if x
3

> 0,

⇢�
c

, if x
3

 0,

where ⇢(x) := |x| and r(x) :=
p

x2

1

+ x2

2

. Moreover, we choose �c = 0.84 and �e = 2/3 so that this
solution possesses the regularity one would expect in general cases for the domain ⌦. To be more
specifically, the solution is the singular function at the corner (0, 0, 0) and the edge (0, 0, x

3

), x
3

> 0.
The input data f, yd, g1 and g

2

can be computed by means of the optimality system. Note that the
integration of the force vectors involving f and yd requires special caution. The source terms are in this
example very irregular as we omitted the terms depending on the angels. This makes the construction
of a benchmark problem easier but the solution is not harmonic. To achieve an appropriate accuracy
for the force vector one must use adaptive integration schemes (up to 6 recursive steps). The discretized
optimality system is then solved with a primal-dual active set strategy and a GMRES method is applied
to the unconstrained auxiliary problems. We refined the mesh locally with a red-green-blue refinement
strategy proposed by Bey [5] until the refinement criterion (11) is satisfied. To show that the refinement
criterion and the convergence rates are sharp we computed the numerical solution on a sequence of
locally refined meshes with refinement parameters µ 2 {1, 0.777, 0.666, 0.5}.

In Figure 4 it can be seen that the refinement parameter µ = 0.5 which satisfies our refinement
criterion used in Theorem 15 (µ = 0.5 < 1/4 + �/2 = 7/12) guarantees quadratic convergence (up to
logarithmic influences). On quasi-uniform meshes we observe the convergence rate 1/2 + � ⇡ 1.1667
and this is exactly the rate which is proved in [24, Theorem 4.2.6]. The choice µ = 0.6666 which would
guarantee optimal convergence of a finite element approximation in H1(⌦) and L2(⌦) (see Theorem 2)
is obviously not su�cient for optimal convergence of the discrete control variable.
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