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The practice of compressive sensing suffers importantly in terms of the efficiency/accuracy trade-off

when acquiring noisy signals prior to measurement. It is rather common to find results treating the

noise affecting the measurements, avoiding in this way to face the so-called noise-folding phenomenon,

related to the noise in the signal, eventually amplified by the measurement procedure. In this paper we

present a new decoding procedure, combining ℓ1-minimization followed by a selective least p-powers,

which not only is able to reduce this component of the original noise, but also has enhanced properties

in terms of support identification with respect to the sole ℓ1-minimization. We prove such features,

providing relatively simple and precise theoretical guarantees. We additionally confirm and support the

theoretical estimates by extensive numerical simulations, which give a statistics of the robustness of the

new decoding procedure with respect to more classical ℓ1-minimization.
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1. Introduction

Compressive sensing focuses on the robust recovery of nearly sparse vectors from the

minimal amount of measurements obtained by a linear process. So far, a vast literature

appeared considering problems where deterministic or random noise is added after the

measurement process, while it is not strictly related to the signal. One typically considers

model problems of the type

y = Ax+w (1.1)

c© The author 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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where x ∈R
N is a nearly sparse vector, A∈R

m×N is the linear measurement matrix, y∈R
m

is the result of the measurement, and w is a white noise vector affecting the measurements.

However, in practice it is very uncommon to have a signal detected by a certain device,

totally free from some external noise. Therefore, it is reasonable to consider the more

realistic model

y = A(x+n)+w,

instead of (1.1) where n ∈ R
N is the noise on the original signal.

The recent work [1] shows how the measurement process actually causes the noise-

folding phenomenon, which implies that the variance of the noise on the original signal is

amplified by a factor of N
m

, additionally contributing to the measurement noise, playing to

our disadvantage in the recovery phase. Indeed this phenomenon may significantly reduce

in practice the potential advantages of compressed sensing in terms of the trade-off between

robustness and efficient compression, with respect to other more traditional subsampling

encoding methods [9]. To control this effect, as proposed in [1], one may tune the linear

measurement process in order to a priori filter the noise. However, this strategy requires to

have a precise knowledge of the noise statistics and to design proper filters. In this paper

we shall follow a blind-to-statistics approach, which does not modify the measurements. In

particular, we propose a new decoding procedure, combining ℓ1-minimization and selec-

tive least p-powers, to reduce the noise component affecting the signal, but also to enhance

the support identification. In fact, for certain applications, such as radar [15], the support

recovery can be even more relevant than an accurate estimate of the signal values.

The paper is organized as follows. In the next section, we concisely recall the per-

tinent features of the theory of compressive sensing. In Section 3, we shall describe the

limitations of ℓ1-minimization when noise on the signal is present. Afterwards, as an

alternative, we propose the linearly constrained minimization of the selective p-potential

functional, and show that, under certain conditions, it performs significantly better than

ℓ1-minimization. Section 4 recalls the main properties of a very robust and efficient algo-

rithm to perform selective least p-powers. Finally, in Section 5, we report the results of

extensive numerical experiments, which we made to illustrate and support our theoretical

guarantees.

2. Compressive sensing

We are able to uniquely and robustly identify the solution x ∈ R
N of the linear system

Ax = y for an arbitrary given measurement vector y ∈ R
m, if A ∈ R

m×N has rank m, and

m = N. However, in many applications, we either are not able to take enough measure-

ments, or we are interested in taking much fewer measurements to save costs or time, i.e.,

m ≪ N. The theory of compressive sensing studies this scenario under some restrictions,

and assumes that the original signal x is nearly sparse. In this section we recall concisely

terms and principles of this theory, and we refer to some of the known tutorials for more

details [3, 5, 11, 13].

In compressive sensing, we call the matrix A the encoder which transforms the N-
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dimensional signal x into to the measurement vector y ∈R
m of dimension m ≪ N. Further,

we assume A to have rank m from now on in this article. In practice we do not know x and

wonder if it is possible to recover it somehow robustly by an efficient nonlinear decoder

∆ : Rm → R
N . As already mentioned, the theory only works if we assume the signal x to

be sparse or at least compressible.

DEFINITION 2.1 (k-sparse vector) Let k ∈ N
+, k 6 N. We call the vector x ∈ R

N k-sparse

if

x ∈ Σk :=
{

z ∈ R
N |#supp(z)6 k

}

where supp(z) := {i ∈ {1, . . . ,N}|zi 6= 0} denotes the support of z.

In applications, signals are often not exactly sparse but at least compressible. We refer

to [16] for more details. We define compressibility in terms of the best k-term approxima-

tion error with respect to the ℓp-norm, given by

‖x‖ℓp
=

(

N

∑
i=1

|xi|p
)1/p

, 1 6 p < ∞.

DEFINITION 2.2 (Best k-term approximation) Let x be an arbitrary vector in R
N . We

denote the best k-term approximation of x by

x[k] := argmin
z∈Σk

‖x− z‖ℓp
, 1 6 p < ∞,

and the respective best k-term approximation error of x by

σk(x)ℓp
:= min

z∈Σk

‖x− z‖ℓp
=
∥

∥x− x[k]
∥

∥

ℓp
.

REMARK 2.1 The best k-term approximation error is the minimal distance of x to a k-

sparse vector. Vectors having a relatively small best k-term approximation error are con-

sidered to be compressible.

REMARK 2.2 If we define the nonincreasing rearrangement of x by

r(x) = (|xi1 |, . . . , |xiN |)T , and |xi j
|> |xi j+1

|, j = 1, . . . ,N −1,

then

σk(x)ℓp
=

(

N

∑
j=k+1

r j(x)
p

)
1
p

, 1 6 p < ∞.
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Alternatively, we can describe the best-k-term approximation error by

σk(x)ℓp
=

(

∑
j∈Λ c

|x j|p
)

1
p

,

where Λ := supp(x[k]), and Λ c is its complement in {1, . . . ,N}.

A desirable property of an encoder/decoder pair (A,∆) is given by the following sta-

bility estimate, called instance optimality

‖x−∆(Ax)‖ℓp
6Cσk(x)ℓp

, (2.1)

for all x ∈ R
N , with a positive constant C independent of x, and k the closest possible to m

[7]. This would in particular imply that we are able to recover a k-sparse signal exactly.

It turns out that the existence of such a pair restricts the range of k to be maximally of the

order of m
log m

N +1
. We refer to [4, 7, 10] for more details.

Actually, the above mentioned condition (2.1) can be realized in practice, at least for

p = 1, by pairing the ℓ1-minimization as the decoder with the choice of an encoder which

has the so-called Null Space Property with optimal order k. (For realizations of the instance

optimality in other ℓp-norms, for instance for p = 2, one needs more restrictive require-

ments, see [21]. For the analysis within this paper, we shall use (2.1) just for p = 1.)

DEFINITION 2.3 (Null Space Property) A matrix A ∈ R
m×N has the Null Space Property

of order k and for positive constant γk > 0 if

‖z|Λ‖ℓ1
6 γk ‖z|Λ c‖ℓ1

,

for all z ∈ kerA and all Λ ⊂ {1, . . . ,N} such that #Λ 6 k. We abbreviate this property with

the writing (γk,k)-NSP.

The Null Space Property states that the kernel of the encoding matrix A contains no

vectors where some entries have a significantly larger magnitude with respect to the oth-

ers. In particular, no compressible vector is contained in the kernel. This is a natural

requirement since otherwise no decoder would be able to distinguish a sparse vector from

zero.

LEMMA 2.1 Let A ∈ R
m×N have the (γk,k)-NSP, with γk < 1, and define

F(y) := {z ∈ R
N |Az = y},
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the set of feasible vectors for the measurement vector y ∈ R
m. Then the decoder

∆1(y) := argmin
z∈F(y)

‖z‖ℓ1
, (2.2)

which we call ℓ1-minimization, performs

‖x−∆1(y)‖ℓ1
6Cσk(x)ℓ1

, (2.3)

for all x ∈ F(y) and the constant C := 2(1+γk)
1−γk

.

Although the result we stated here is by now well-known, we report its short proof

for the sake of completeness, and for comparison with the enhanced guarantees given in

Theorem 3.4 below.

Proof. Let us denote x∗ = ∆1(y) and z = x∗− x. Then z ∈ kerA and

‖x∗‖ℓ1
6 ‖x‖ℓ1

,

because x∗ is a solution of the ℓ1-minimization problem (2.2). Let Λ be the set of the

k-largest entries of x in absolute value. One has

‖x∗|Λ‖ℓ1
+‖x∗|Λ c‖ℓ1

6 ‖x|Λ‖ℓ1
+‖x|Λ c‖ℓ1

.

It follows immediately from the triangle inequality that

‖x|Λ‖ℓ1
−‖z|Λ‖ℓ1

+‖z|Λ c‖ℓ1
−‖x|Λ c‖ℓ1

6 ‖x|Λ‖ℓ1
+‖x|Λ c‖ℓ1

.

Hence,

‖z|Λ c‖ℓ1
6 ‖z|Λ‖ℓ1

+2‖x|Λ c‖ℓ1
6 γk‖z|Λ c‖ℓ1

+2σk(x)ℓ1
,

or, equivalently,

‖z|Λ c‖ℓ1
6

2

1− γk

σk(x)ℓ1
. (2.4)

Finally,

‖x− x∗‖ℓ1
= ‖z|Λ‖ℓ1

+‖z|Λ c‖ℓ1
6 (γk +1)‖z|Λ c‖ℓ1

6
2(1+ γk)

1− γk

σk(x)ℓ1
,

and the proof is completed. �

Unfortunately, the NSP is hard to verify in practice. Therefore one can introduce

another property which is called the Restricted Isometry Property and implies the NSP.
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Being a spectral concentration property, the Restricted Isometry Property is particularly

suited to be verified with high probability by certain random matrices; we mention some

instances of such classes of matrices below.

DEFINITION 2.4 (Restricted Isometry Property) A matrix A ∈ R
m×N has the Restricted

Isometry Property (RIP) of order K with constant 0 < δK < 1 if

(1−δK)‖z‖ℓ2
6 ‖Az‖ℓ2

6 (1+δK)‖z‖ℓ2
,

for all z ∈ ΣK . We refer to this property by (δK ,K)-RIP.

LEMMA 2.2 Let k,h ∈ N
+ and K = k+h. Assume that A ∈ R

m×N has (δK ,K)-RIP. Then

A has (γk,k)-NSP, where

γk :=

√

k

h

1+δK

1−δK

.

The proof of this result can be found, for instance, in [11], and not being of specific

relevance for this paper we do not include it here. Encoders which have the RIP with opti-

mal constants, i.e., with k in the order of m
log m

N +1
exist, but, so far, as mentioned above, can

be realized exclusively by randomization. By now, classical examples of such stochastic

encoders are i.i.d. Gaussian matrices [10] or discrete Fourier matrices with randomly cho-

sen rows [6]. Further details and generalizations are provided in [13, 20]. In the rest of the

paper we will use as prototypical cases mainly such stochastic encoders.

What we recalled up to this point of the theory of compressive sensing tells us that we

are able to recover by ℓ1-minimization compressible vectors within a certain accuracy (2.3).

If we re-interpret compressible vectors as sparse vectors which are corrupted by noise, we

immediately see that the accuracy of the recovered solution is basically driven by the noise

level affecting the vector. Nevertheless, neither inequality (2.3) tells us immediately if

the recovered support of the k largest entries of the decoded vector is the same as the

one of the original signal nor are we able to identify the large entries exceeding a given

threshold. Section 3 addresses these issues in detail and investigates the limitations of

ℓ1-minimization. Furthermore, a new decoder is proposed which is able to outperform ℓ1-

minimization in terms of the ability of simultaneously identifying the exact position of the

large entries and reducing the noise level on the signal.

3. Support identification

We have seen in Lemma 2.1 that sparse vectors can be recovered exactly by the ℓ1-minimization

decoder ∆1 if the matrix has the NSP. Moreover, a sparse signal which is disturbed by noise

is recovered within a certain accuracy depending on the best k-term approximation error.

In this section, we investigate in detail the noise level we can tolerate without loosing the

ability of ℓ1-minimization to recover the support of the undisturbed sparse signal. Let

us stress that many other decoders can be used, for instance orthogonal matching pursuit

[18, 19] or CoSaMP [17], but the evidence is that such greedy methods tend to be less

robust in presence of noise on the signal. Hence, we focus on ℓ1-minimization.
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3.1 The ℓ1-minimization result

For later use, let us denote, for 1 6 p 6 2 and q such that 1
p
+ 1

q
= 1,

κp := κp(N,k) :=















1, p = 1,

q
√

N − k, 1 < p 6 2.

(3.1)

The following proposition shows how we can exactly identify the support of the original

signal if we know the ℓ1-minimizer. It turns out that the large entries of the original signal

in absolute value need to exceed a certain threshold, which depends on the noise level.

THEOREM 3.1 Let x ∈ R
N be a noisy signal with k relevant entries and the noise level

η ∈ R, η > 0, i.e., for Λ = supp(x[k]),

∑
j∈Λ c

|x j|p 6 η p, (3.2)

for a fixed 1 6 p 6 2. Consider further an encoder A ∈ R
m×N which has the (k,γk)-NSP,

with γk < 1, the respective measurement vector y = Ax ∈ R
m, and the ℓ1-minimizer

x∗ := argmin
z∈F(y)

‖z‖ℓ1
.

If the i-th component of the original signal x is such that

|xi|>
2(1+ γk)

1− γk

κp η ,

then i ∈ supp(x∗).

Proof. We know by (2.3) that

‖x∗− x‖ℓ1
6

2(1+ γk)

1− γk

σk(x)ℓ1
. (3.3)

Thus, by Hölder’s inequality and assumption (3.2), we obtain the estimate

‖x∗− x‖ℓ1
6

2(1+ γk)

1− γk

σk(x)ℓ1
6

2(1+ γk)

1− γk

κp η . (3.4)
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We now choose a component i ∈ {1, . . . ,N} such that

|xi|>
2(1+ γk)

1− γk

κp η ,

and assume i /∈ supp(x∗). This leads to the contradiction:

|xi|= |xi − x∗i |6 ‖x− x∗‖ℓ1
6

2(1+ γk)

1− γk

κp η < |xi|. (3.5)

Hence, necessarily i ∈ supp(x∗). �

The noise level substantially influences the ability of support identification. Here, the

noisy signal must have the k largest entries in absolute value above

rp :=
2(1+ γk)

1− γk

κp η .

In the following, we shall introduce a certain class of vectors for which a smaller threshold

is required for support identification.

3.2 A class of sparse vectors affected by bounded noise

Inspired by the observations of the previous section, we define the class of sparse vectors

affected by bounded noise,

S p
η ,k,r :=

{

x ∈ R
N
∣

∣#Sr(x)6 k and ∑
i∈(Sr(x))c

|xi|p 6 η p

}

, 1 6 p 6 2, (3.6)

where Sr(x) := {i ∈ {1, . . . ,N}| |xi|> r}, 0 6 η < r, and 1 6 k 6 m. It contains all vectors

for which at most k large entries exceed the threshold r in absolute value, while the p-norm

of the other entries stays below a certain noise level. In Figure 1 we visually exemplify, how

vectors in the introduced class are distinguished from compressible vectors. Compressible

vectors exhibit a fast decay of the nonincreasing rearrangement. Sparse vectors which are

affected by bounded noise have a gap between the relevant entries and the small ones,

which represent the noise.

We take two elements of this class and assume that they have the same measurements, i.e.,

they are both in F(y) for y ∈ R
m. In the following result, we provide a precise stability

estimate of the discrepancy between the supports of the respective large entries.

THEOREM 3.2 Let A ∈ R
m×N which has the (γ2k,2k)-NSP, for γ2k < 1, 1 6 p 6 2, and
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FIG. 1. Comparison of compressible vector and sparse vector affected by noise.

x,x′ ∈ S p
η ,k,r such that Ax = Ax′. Then

#(Sr(x)∆Sr(x
′))6

(2γ2kκpη)p

(r−η)p
. (3.7)

(Here we denote by “∆” the set symmetric difference, not to be confused with the symbol

of a generic decoder.) If additionally

r > η(1+2γ2kκp) =: rS, (3.8)

then Sr(x) = Sr(x
′), i.e., we have unique identification of the large entries in absolute value.

Proof. As Ax = Ax′, the difference (x− x′) ∈ ker(A). By the (γ2k,2k)-NSP, Hölder’s

inequality, and the triangle inequality we have

∥

∥(x− x′)|Sr(x)∪Sr(x′)
∥

∥

ℓp
6
∥

∥(x− x′)|Sr(x)∪Sr(x′)
∥

∥

ℓ1

6 γ2k

∥

∥(x− x′)|(Sr(x)∪Sr(x′))c

∥

∥

ℓ1

6 γ2kκp

∥

∥(x− x′)|(Sr(x)∪Sr(x′))c

∥

∥

ℓp

6 2γ2kκpη . (3.9)

Further, we investigate the symmetric difference of the supports of the large entries of x
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and x′ in absolute value. If i ∈ Sr(x)∆Sr(x
′), then either |xi| > r and |x′i| 6 η or |xi| 6 η

and |x′i|> r. This implies that |x′i − xi|> (r−η). Thus we have

∥

∥(x− x′)|Sr(x)∆Sr(x′)
∥

∥

p

ℓp
>
(

#(Sr(x)∆Sr(x
′))
)

(r−η)p.

Together with equation (3.9) and the non-negativity of
∥

∥(x− x′)|Sr(x)∩Sr(x′)
∥

∥

ℓp
, we obtain

the chain of inequalities

(2γ2kκpη)p
>
∥

∥(x− x′)|Sr(x)∪Sr(x′)
∥

∥

p

ℓp

>
∥

∥(x− x′)|Sr(x)∩Sr(x′)
∥

∥

p

ℓp
+
∥

∥(x− x′)|Sr(x)∆Sr(x′)
∥

∥

p

ℓp

>
(

#(Sr(x)∆Sr(x
′))
)

(r−η)p,

and therefore

#(Sr(x)∆Sr(x
′))6

(2γ2kκpη)p

(r−η)p
. (3.10)

For unique support identification, we want the symmetric difference between the sets Sr(x)
and Sr(x

′) to be empty. Thus the left-hand side of inequality (3.10) has to be zero. Since

#(Sr(x)∆Sr(x
′)) ∈ N, it is sufficient to require that the right-hand side be strictly less than

one, and this is equivalent to condition (3.8). �

REMARK 3.1 The gap between the two thresholds r1,rS is given by

r1 − rS =

(

2

(

1+ γk

1− γk

− γ2k

)

κp(N,k)−1

)

η .

As γ2k < 1 < 1+γk
1−γk

and κp(N,k) is very large for N ≫ k, this positive gap is actually very

large, for N ≫ 1. Unfortunately, this discrepancy cannot be amended because the ℓ1-

minimization decoder ∆1 has not in general the property

x ∈ S p
η ,k,r ⇒ x∗ = ∆1(Ax) ∈ S p

η ,k,r,

hence, it allows us neither to say that also the ℓ1-minimizer has a bounded noise component

∑
i∈(Sr(x∗))c

|x∗i |p 6 η p,

nor to apply Theorem 3.2 to obtain support stability. We present several examples in Sec-

tion 5, showing these ineliminable limitations of ∆1.
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3.3 The selective p-potential functional and its properties

To overcome the shortcoming of ℓ1-minimization in 1. damping the noise-folding and con-

sequently in 2. having a stable support recovery, in this section we design a new decoding

procedure which allows us to have both these very desirable properties.

Let us first introduce the following functional.

DEFINITION 3.3 (Selective p-potential) We define the truncated p-power function W
p

r : R→
R
+
0 ,

W p
r (t) = min{t p,rp}, r > 0, 1 6 p 6 2, (3.11)

We call the functional SP p
r : RN → R

+
0 ,

SP p
r (x) =

N

∑
j=1

W p
r (x j), r > 0, 1 6 p 6 2, (3.12)

the selective p-potential (SP) functional.

On the one hand, the SP functional is neither convex nor differentiable. These two

properties may cause the problem of designing an appropriate optimization algorithm for

computing a linearly constrained global minimizer. Nevertheless, we address and over-

come this difficulty below in Section 4, where we illustrate an efficient and robust algo-

rithm. On the other hand, this potential drawback is additionally compensated by the fact

that its minimization has the features of noise-folding damping and support stability which

we are seeking.

THEOREM 3.4 Let A ∈ R
m×N have the (γ2k,2k)−NSP, with γ2k < 1, and 1 6 p 6 2.

Furthermore, we assume x ∈ S p
η ,k,r, 0 < η < r, with the property of having the minimal

#Sr(x) within F(y), where y = Ax is its associated measurement vector, i.e.,

#Sr(x)6 #Sr(z) for all z ∈ F(y). (3.13)

If x∗ is obtained by the decoder, which we call the selective least p-powers (SLP),

x∗ = ∆SP(y) := argmin
z∈F(y)

SP p
r (z),

then also x∗ ∈ S p
η ,k,r, implying noise-folding damping. Moreover, we have the support

stability property

#(Sr(x)∆Sr(x
∗))6

(2γ2kκpη)p

(r−η)p
. (3.14)
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Proof. Notice that we can equally describe the SP functional by

SP p
r (z) = rp#Sr(z)+ ∑

i∈(Sr(z))
c

|zi|p.

By minimality of x∗, i.e.,

SP p
r (x

∗)6 SP p
r (x), (3.15)

and the assumption x ∈ S p
η ,k,r, we have

rp#Sr(x
∗)6 SP p

r (x
∗)6 SP p

r (x) = rp#Sr(x)+ ∑
i∈(Sr(x))

c

|xi|p

6 rp#Sr(x)+η p, (3.16)

and thus,

#Sr(x
∗)6

(η

r

)p

+#Sr(x).

As
η
r
< 1 by hypothesis, the minimality property (3.13) yields immediately

#Sr(x
∗) = #Sr(x)6 k. (3.17)

This latter equivalence and

rp#Sr(x
∗)+ ∑

i∈(Sr(x∗))c

|x∗i |p 6 rp#Sr(x)+ ∑
i∈(Sr(x))

c

|xi|p, or

∑
i∈(Sr(x∗))c

|x∗i |p 6 ∑
i∈(Sr(x))

c

|xi|p 6 η p,

imply x∗ ∈ S p
η ,k,r. By an application of Theorem 3.2, we obtain (3.14). �

REMARK 3.2 Notice that it is actually not necessary that x∗ is the global minimizer of

SP p
r over F(y) to guarantee x∗ ∈ S p

η ,k,r. In fact, a careful reading of the previous proof

makes clear that actually condition (3.15) and x∗ ∈F(y) are sufficient to imply x∗ ∈ S p
η ,k,r.

4. Minimization of the selective p-potential functional

In the last section, we introduced the SP functional, which is nonconvex and nonsmooth.

Unluckily, this makes its linearly constrained minimization also nontrivial. Here, we recall

a novel and very robust algorithm for linearly constrained nonconvex and nonsmooth min-

imization, introduced and analyzed first in [2]. The algorithm is particularly suited for our

purpose, by introducing a very small C1-regularization of the functional. This distinguishes
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it from other well-known methods such as SQP and Newton methods, which require a more

restrictive C2-regularity. All notions and results written in this section are collected more

in general in [2]. Nevertheless we consider it as straightforward to report them adapted to

our specific case in order to have a simplified and more immediate formulation.

4.1 A mild regularization

First, we show how the functional SP := SP p
r can be approximated by the smooth func-

tional SPε , which possesses the regularity that is necessary to apply the method cited

above. The smoothing is introduced on the truncated p-power function W
p

r , defined in

(3.11), in order to obtain a C1 function. We shall then substitute in (3.12) the term W
p

r (t)
by the function

W p,ε
r (t) =























t p 0 6 t < r− ε,

πp(t) r− ε 6 t 6 r+ ε,

rp t > r+ ε,

t > 0, (4.1)

where 0 < ε < r, and πp(t) is the third degree interpolating polynomial

πp(t) := A(t − s2)
3 +B(t − s2)

2 +C,

with






















C = γ3,

B = γ1
s2−s1

− 3(γ3−γ2)
(s2−s1)2 ,

A = γ1

3(s2−s1)2 +
2B

3(s2−s1)
.

(4.2)

The parameters which appeared in the definition of the interpolating function are defined

as: s1 = (r− ε), s2 = (r+ ε), γ1 = p(r− ε)p−1, γ2 = (r− ε)p, and γ3 = rp. For example,

for the relevant case p = 2, this function has the analytic form:

π2(t) :=
[t +(r− ε)][ε(r+ t)− (r− t)2]

4ε
.

The newly smoothed selective p-power function has been defined so far only for t > 0.

We define it for t < 0 as W
p,ε

r (t) =W
p,ε

r (−t). Thanks to this definition, we can explicitly

write the new decoder:

∆ ε
SP(y) = argmin

Az=y

(

SP p,ε(z) :=
m

∑
i=1

W p,ε
r (zi)

)

. (4.3)



14 of 27 M. ARTINA, M. FORNASIER AND S. PETER

−2 −1.4 −1 −0.6 0 0.6 1 1.4 2
−0.5

0

1.5

FIG. 2. Truncated quadratic potential W
p

r and its regularization W
p,ε

r , for p = 2, r = 1, and ε = 0.4.

As shown in [2, Corollary 3.7]

∆SP(y) = lim
ε→0

∆ ε
SP(y),

hence we will be content with finding an appropriate algorithm to perform (4.3).

REMARK 4.1 For the sake of the analysis below, let us note that the functional SP p,ε is

semi-convex, that means that there exists a constant ω > 0 such that SP p,ε(·)+ω ‖·‖2
is

convex.

4.2 The algorithm

In this section we present the algorithm to perfom (4.3). Before describing it, it is necessary

to introduce the concept of ν-convexity, which plays a key-role in the minimization pro-

cess. In fact, to achieve the minimization of the functional SP p,ε , we use a Bregman-like

inner loop, which requires this property to converge.

DEFINITION 4.1 (ν-convexity) A convex function f : RN → R is ν-convex if there exists

a constant ν > 0 such that for all x,x′ ∈ R
N and φ ∈ ∂ f (x),ψ ∈ ∂ f (x′)

〈φ −ψ,x− x′〉> ν
∥

∥x− x′
∥

∥

2

ℓ2
, (4.4)

where ∂ f is the subdifferential of the function f .

The starting values x0 = x(0,0) ∈ R
N and q(0,0) ∈ R

m are taken arbitrarily. For a fixed

scaling parameter λ > 0 and an adaptively chosen sequence of integers (Lℓ)ℓ∈N, we set

Algorithm 4.2
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while ‖xℓ−1 − xℓ‖ℓ2
6 TOL do

x(ℓ,0) = xℓ−1 := x(ℓ−1,Lℓ−1)

q(ℓ,0) = qℓ−1 := q(ℓ−1,Lℓ−1)

for k = 1, . . . ,Lℓ do

x(ℓ,k) = argminx∈RN

(

SP p,ε
ω,xℓ−1

(x)−〈q(ℓ,k−1),Ax〉+λ ‖Ax− y‖2
ℓ2

)

q(ℓ,k) = q(ℓ,k−1)+2λ (y−Ax(ℓ,k))
end for

end while

The reader can notice that the functional SP p,ε
ω,xℓ−1

, which appears in the algorithm, has

not been yet introduced. Indeed, a further modification to the original functional SP must

be introduced in order to have ν−convexity, which is necessary for the convergence of the

algorithm. It is defined as

SP p,ε
ω,x′(x) := SP p,ε(x)+ω

∥

∥x− x′
∥

∥

2

ℓ2
,

where ω is chosen such that the new functional has the ν−convexity, which we require.

The finite adaptively chosen number of inner loop iterates Lℓ is defined by the condition

(1+‖qℓ−1‖ℓ2
)
∥

∥Ax(ℓ,Lℓ)− y
∥

∥

ℓ2
6

1

ℓα
,

for a given parameter α , which in our numerical experiments will be set α = 1.1. We refer

to [2, Section 2.2] for details on the finiteness of Lℓ and for the proof of convergence of

Algorithm 4.2 to critical points of SP p,ε in F(y). According to Remark 3.2, and as we

will empirically show in Section 5, this algorithm can find critical points (likely close to

a global minimizer) with the desired properties illustrated in Theorem 3.4, as soon as we

select the starting point x0 by an appropriate warm-up procedure.

Algorithm 4.2 does not yet specify how to minimize the convex functional

(

SP p,ε
ω,xℓ−1

(x)−〈q(ℓ,k−1),Ax〉+λ ‖Ax− y‖2
ℓ2

)

,

in the inner loop. For that we can use an iterative thresholding algorithm introduced in [2,

Section 3.7], inspired by the previous work [12] for the corresponding unconstrained opti-

mization of selective p-potentials. This method ensures the convergence to a minimizer

and is extremely agile to be implemented, as it is based on matrix-vector multiplications

and very simple componentwise nonlinear thresholdings.

By the iterative thresholding algorithm we actually equivalently minimize the func-

tional

SP p,ε
ω,x′(x,q) = SP p,ε

ω,x′(x)+λ ‖Ax− (y+q)‖2
ℓ2
,
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where we set λ = 1
2

only for simplicity. The thresholding functions S
µ
p we use are defined

in [2, Lemma 3.15] and, for the relevant case p = 2, it has the analytic form

S
µ
2 (ξ ) :=



























































ξ

1+µ
|ξ |< (r̄− ε)(1+µ),

4ε

3µ

(

1+
µ

4ε
(2ε + r̄)−

√

Γ (ξ )

4

)

(r̄− ε)(1+µ)6 |ξ |6 r+ ε,

ξ |ξ |> r̄+ ε,

(4.5)

where

Γ (ξ ) := 4

(

1+
( µ

4ε

)2

(2r̄+ ε)2 +
µ

2ε
(2ε + r̄)− 3µ

2ε
ξ

)

.

Note that in case p 6= 2 the only part that varies is the one for |ξ | < (r̄ − ε)(1+ µ)
because the remaining ones do not depend on p. We show in Figure 3 the typical shapes of

these thresholding functions for different choices of p ∈ {1,3/2,2}. With the help of these

thresholding functions, the algorithm is given by the componentwise fixed point iteration,

for n > 0,

xn+1
i = S

µ
p

({

1

2

[

(I − 1

2
A∗A)+(1−ω)I

]

xn +
1

2
A∗(y+q)+ωx′

}

i

)

,

i = 1, . . . ,N. (4.6)

We refer to [2, Theorem 3.17] for the convergence properties of this algorithm.

To summarize, Algorithm 4.2 can be realized in practice by nesting three loops. One

external loop makes vanishing the quadratic convexification, the second external loop

updates the Lagrange multipliers q(ℓ,k) for a fixed quadratic convexification, and the final

inner loop implements (4.6).

5. Numerical results

The following numerical simulations provide empirical confirmation that, as predicted by

Theorem 3.4, the decoder ∆SP recovers a signal in the class S p
η ,k,r, defined in (3.6). For

the sake of simplicity, we perform our numerical experiments only for the case p = 2.

We shall show that the selective least p-powers (SLP-minimization), equipped with a

proper starting point, has much better support identification properties than ℓ1-minimization

because the signal is in the same compressibility class of the original signal, and so we

know a priori that all the entries of x∗ larger than r are part of the support of the large entries
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FIG. 3. The Lipschitz continuous thresholding functions S
µ
1 , S

µ
3/2

, and S
µ
2 , with parameters p = 1,3/2, and 2,

respectively, and r = 1.5, µ = 5, ε = 0.3.

of the original signal and that ∑i∈(Sr(x∗))c |x∗i |2 6 η2. This fact is of particular importance

when we do not know how many large entries the original vector has.

We start the discussion of the results with a comparison between the ℓ1-minimization

and the SLP-minimization reported in Figure 4. Although the setting of the two minimiza-

tions is the same, the results are very different: SLP-minimization can recover the signal

with a very good approximation of its large entries in absolute value and a significant

reduction of the noise level, while ℓ1-minimization not only approximates the signal in a

bad way, but also looses some information for some entries, due to an amplification of the

noise. It is evident that in Subfigure 4(a) |xℓ1
(13)| < |xℓ1

(24)| gives a wrong information

about the location of the relevant entries.

In Section 4 we mentioned that the algorithm, which minimizes the functional SP p
r ,

finds only a critical point, so the condition SP2
r (x

∗) 6 SP2
r (x) (3.15) used in the proof

of Theorem 3.4 may not be always valid. In order to enhance the chance of validity of

this condition, the choice of an appropriate starting point is crucial. As we know that the
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FIG. 4. The results of the minimization processes ℓ1 and SLP are shown in Subfigure 4(a) and 4(b) respec-

tively. The two decoders are intended to recover the original signal (o), starting from the measurement of the

noisy signal (·). The output of the two processes is represented by (+). In this case the starting value for both

minimizations is x0 = 0.

ℓ1-minimization converges to its global minimizer with at least some guarantees given by

Theorem 3.1, we use the result of this minimization process as a warm up to select the

starting point of Algorithm 4.2.

In Figure 5 we illustrate the robust effect of this relevant combination (ℓ1 ⇒ SLP).

The bottom subfigure of Figure 5(a) shows the result obtained with the SLP-minimization

starting from the value x0 = 0; the algorithm converged to a feasible critical point, but it

is quite evident that the decoding process failed. If we look at the ℓ1-minimization result,

as shown on the upper subfigure of Figure 5(a), the minimization process brings us close

to the solution, but the result is still quite bad: for instance, the entry around position 80
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FIG. 5. The figure reports the results of four different decoding processes (+) of the same problem where the

circles (o) represent the original signal and the points (·) represent the original signal corrupted by the noise.
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is not much smaller than the one around position 25, but the first is part of the noise and

the second is the signal. If we then apply on the result of the ℓ1-minimization the SLP-

minimization, as shown on the upper subfigure of Figure 5(b), we obtain as a result a good

approximation of the original signal and we get a significant correction and an improved

recovery; all the relevant entries are approximated better and the noise is confined within

a very small stripe around zero, whose amplitude is even less than the one of the original

noise! The last subfigure represents another result obtained by the ℓ1-minimization to

which we have substituted the equality constraint Ax = y with another inequality constraint

that take into account the noise level, folded from the noise on the signal though; thus

‖Ax− y‖ℓ2
6 ‖An‖ℓ2

.

We can see that in this case the small entries are closer to zero with respect to the other

ℓ1-minimization, but the price to pay for this reduction is high: the relevant entries are

approximated much worse and it is easier to confuse them with some noise. For exam-

ple, notice that the entries 80 and 25, which were already mentioned before, are now even

closer and it is very hard to decide which of those represents part of the noise or the signal.

These specific examples in support of our new decoding strategy are actually typical. In

order to support this work with even more impressive and convincing evidences, we present

some statistical data obtained by solving series of problems. We decided to fix most of the

parameters in order to have the most coherent data to be analyzed; in particular, we set

N = 100, m = 40, r = 1, k = 1, . . . ,7, and η = 0.7. The vector n is composed of random

entries with normal distribution and then it is rescaled in order to have ‖n‖ℓ2
= η . Fig-

ures 6, 7, and 8 report the results obtained considering 30 different i.i.d.Gaussian encoding

matrices while Figures 9, 10, and 11 used 30 random subsampled Fourier encoding matri-

ces. For a more immediate notation, we will call the results of the different minimization

processes with the following intuitive notation: x∗ℓ1
, x∗ℓ1+SP , x∗

SP
p
r
, and x∗ℓ1ineq. In case

where we will use x∗, we will not refer to a specific minimization technique.

Figure 6 reports the first part of the statistics which we have collected for the Gaussian

matrices. We start commenting the subfigures clockwise. The first subfigure, on the upper-

left, represents the mean value of the error between the exact signal and the decoded one

‖x− x∗‖ℓ2
. The second column refers to the SLP-minimization result using as the start-

ing value x∗ℓ1
. In most of the experiments the statistics is independent of the number of

large entries. Moreover, it often produces the smallest error we had in the signal recovery.

The second subfigure is the mean value of the noise level and we can see exactly what

we inferred looking at Figure 5: x∗ℓ1
has a larger noise level with respect to x∗ℓ1+SP , and

x∗ℓ1ineq has the best noise reduction property. The third is the mean computational times for

the four methods. The algorithm minimizing the SLP functional takes longer with respect

to CVX, a package for specifying and solving convex programs [8, 14], which we used

to perform the ℓ1-minimization. However, a good starting point for SLP can also give an

advantage in terms of computational time. The fourth plot reports the mean value of the

separation between noise level and the large entries of the signal. We see that the second
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FIG. 6. The blue column refers to the solution x∗ obtained with ℓ1-minimization with x0 = 0, the cyan the one

given by the SLP that used the ℓ1 solution as starting point, the yellow refers to the SLP-minimizer with x0 = 0,

and the brown column reports the data related to the ℓ1-minimization with the inequality constraint. In the noise

error subfigure the white column in the background represents the noise level. On the x-axis the different values

of k are displayed and each column is the mean of the results given by 30 trials.

column is always larger than the others: the SLP minimizer can better discriminate the

signal from the noise.

In Figure 7 we report the histogram of the mean-value of the errors on the relevant

entries: the quantities on the left are 1
ntr ∑

ntr
i=1

∥

∥

∥
x[k],i − x∗[k],i

∥

∥

∥

ℓ2

where k is supposed to be

known and ntr is the number of the problems which we solved, in our case ntr = 30; the

right ones are 1
ntr ∑

ntr
i=1

∥

∥

∥
xi|Sr(x∗i )

− x∗i |Sr(x∗i )

∥

∥

∥

ℓ2

in which we only consider the entries larger

than r in the decoded signal. We see that the SLP combined with the ℓ1-starting point

has always the smallest error while, as predicted, the largest error is computed by x∗ℓ1ineq.

Notice that the difference between x∗ℓ1
and x∗ℓ1+SP is relevant for large k.



22 of 27 M. ARTINA, M. FORNASIER AND S. PETER

 

 

 

 

 

 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Relevant entries Error

 

 

l1 l1+SLP SLP l1mag

 

 

 

 

(a)

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Relevant entries Error

 

 

l1 l1+SLP SLP l1ineq

 

 

(b)

FIG. 7. The subfigures represent the error on the relevant entries. For more details on the displayed data we refer

to the caption of Figure 6.
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FIG. 8. Support identification statistics. For more details on the displayed data we refer to the caption of Figure

6.

Figure 8 reports the analysis of the capability of the different methods to detect the sup-

port. The left subfigure shows the percentage of support recovery in case that k is known.

There are practically no differences between the three methods, while SLP, with a bad

starting vector, is not so efficient, showing us that this minimization really depends on the

choice of the starting point. More important is the subfigure on the right: it represents the

percentage of support identification on 30 trials assuming that we do not know the quantity

of the relevant entries. We attribute a positive match in case Sr(x
∗) = Sr(x) so that the

relevant entries of x∗ coincide with the ones of the original signal. Thanks to Theorem 3.2

and Theorem 3.4 we expect that the method which combines ℓ1 with SLP-minimization

has better results than x∗ℓ1ineq. Actually this is confirmed by the experiments: if we know

nothing related to the original signal, and we only take the entries located in the position j

such that |x∗j |> r, then ℓ1 combined with SLP-minimization does a very accurate recovery,
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as it gives us almost always 100% of the correct result while the other percentages are

significantly lower.

Figures 9, 10, and 11 represent the same statistical data reported respectively in the

Figures 6, 7, and 8 but using random subsampled Fourier encoding matrices. Without

describing the result in detail, we state that they are very similar for these problems as

well. The x∗ℓ1+SP definitively approximates better the original signal than the other three

methods.
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FIG. 9. The subfigures represent the errors, the speed of convergence, and the separation of the component. For

more details on the displayed data we refer to the caption of Figure 6.

In Figure 12 we present phase transition diagrams of success rates in support recovery

for ℓ1 and ℓ1+SLP in presence of nearly maximally allowed noise, i.e., 0.8 = r > δ = 0.75.

In this test we varied the dimension of the measurement vector m = 1, . . . ,N with N = 100,

and solved 20 different problems for all the admissible k = #Sr(x) = 1, . . . ,m. The graph

on the left hand side reports the results obtained by ℓ1-minimization, while the one on

the right hand side refers to ℓ1+SLP-minimization. We colored black all the points (m,k),
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FIG. 10. The subfigures represent the error on the relevant entries. For more details on the displayed data we refer

to the caption of Figure 6.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Support identification (%)

 

 

l1 l1+SLP SLP l1ineq

(a)

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Support identification (%)

 

 

l1 l1+SLP SLP l1ineq

(b)

FIG. 11. Support identification statistics. For more details on the displayed data we refer to the caption of Figure 6.

with k 6m, which reported 100% of correct support identification, and gradually we reduce

the tone up to white for the 0% result. A visual comparison of the corresponding phase

transitions confirms our previous expectations. In particular, ℓ1+SLP very significantly

outperforms ℓ1 in terms of correct support recovery.
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FIG. 12. Phase transition diagrams. The black area represents the couple (m,k) for which we had 100% of support

recovery. The graph on the left hand side reports the results of ℓ1-minimization and on the right hand side it is

displayed the ones of ℓ1+SLP. Note that the area for k > m is not admissible.
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[15] HÜGEL, M., RAUHUT, H. & STROHMER, T. (2012) Remote sensing via ℓ1-

minimization. Preprint.

[16] MALLAT, S. (2008) A Wavelet Tour of Signal Processing: The Sparse Way. Academic

Press, 3rd edn.

[17] NEEDELL, D. & TROPP, J. A. (2008) CoSaMP: Iterative signal recovery from incom-

plete and inaccurate samples. Appl. Comput. Harmon. Anal., 26(3), 301–321.

[18] NEEDELL, D. & VERSHYNIN, R. (2009) Uniform uncertainty principle and signal

recovery via regularized orthogonal matching pursuit. Found. Comput. Math., 9(3),

317–334.

[19] NEEDELL, D. & VERSHYNIN, R. (2010) Signal recovery from incomplete and inac-

curate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Topics

Sig. Process., 4(2), 310 – 316.

[20] RAUHUT, H. (2010) Compressive sensing and structured random matrices. in The-

oretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. For-

nasier, vol. 9 of Radon Series Comp. Appl. Math., pp. 1–92. deGruyter.

[21] WOJTASZCZYK, P. (2010) Stability and instance optimality for Gaussian measure-

ments in compressed sensing. Found. Comput. Math., 10(1), 1–13.



LIST OF FIGURES 27 of 27

List of Figures

1 Comparison of compressible vector and sparse vector affected by noise. . 9

2 Truncated quadratic potential W
p

r and its regularization W
p,ε

r , for p = 2,

r = 1, and ε = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Lipschitz continuous thresholding functions S
µ
1 , S

µ
3/2

, and S
µ
2 , with

parameters p = 1,3/2, and 2, respectively, and r = 1.5, µ = 5, ε = 0.3. . 17

4 The results of the minimization processes ℓ1 and SLP are shown in Subfig-

ure 4(a) and 4(b) respectively. The two decoders are intended to recover the

original signal (o), starting from the measurement of the noisy signal (·).
The output of the two processes is represented by (+). In this case the

starting value for both minimizations is x0 = 0. . . . . . . . . . . . . . . 18

5 The figure reports the results of four different decoding processes (+) of

the same problem where the circles (o) represent the original signal and

the points (·) represent the original signal corrupted by the noise. . . . . . 19

6 The blue column refers to the solution x∗ obtained with ℓ1-minimization

with x0 = 0, the cyan the one given by the SLP that used the ℓ1 solution

as starting point, the yellow refers to the SLP-minimizer with x0 = 0, and

the brown column reports the data related to the ℓ1-minimization with the

inequality constraint. In the noise error subfigure the white column in the

background represents the noise level. On the x-axis the different values

of k are displayed and each column is the mean of the results given by 30

trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 The subfigures represent the error on the relevant entries. For more details

on the displayed data we refer to the caption of Figure 6. . . . . . . . . . 22

8 Support identification statistics. For more details on the displayed data we

refer to the caption of Figure 6. . . . . . . . . . . . . . . . . . . . . . . 22

9 The subfigures represent the errors, the speed of convergence, and the sep-

aration of the component. For more details on the displayed data we refer

to the caption of Figure 6. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 The subfigures represent the error on the relevant entries. For more details

on the displayed data we refer to the caption of Figure 6. . . . . . . . . . 24

11 Support identification statistics. For more details on the displayed data we

refer to the caption of Figure 6. . . . . . . . . . . . . . . . . . . . . . . . 24

12 Phase transition diagrams. The black area represents the couple (m,k)
for which we had 100% of support recovery. The graph on the left hand

side reports the results of ℓ1-minimization and on the right hand side it is

displayed the ones of ℓ1+SLP. Note that the area for k > m is not admissible. 25


