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Abstract. Seismic tomography is a technique to determine the material properties of the Earth’s
subsurface based on the observation of seismograms. This can be stated as a PDE-constrained op-
timization problem governed by the elastic wave equation. We present a semismooth Newton-PCG
method with a trust-region globalization for full-waveform seismic inversion that uses a Moreau-
Yosida regularization to handle additional constraints on the material parameters. We establish
results on the differentiability of the parameter-to-state operator and analyze the proposed opti-
mization method in a function space setting. The elastic wave equation is discretized by a high-order
continuous Galerkin method in space and an explicit Newmark time-stepping scheme. The matrix-
free implementation relies on the adjoint-based computation of the gradient and Hessian-vector
products and on an MPI-based parallelization. Numerical results are shown for an application in
geophysical exploration on reservoir-scale.
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1. Introduction. When earthquakes occur, seismic waves are emitted and can
be measured in form of seismograms at receiver locations far away from the source.
The velocity of the travelling waves depends on the material and reflections occur
at the transition of different layers of rock. Seismic tomography means to infer the
material structure of the Earth’s subsurface based on the observation of seismic waves
that spread through the Earth. This poses a challenging inverse problem since data
observations are usually only available for a small part of the domain.

There are many applications requiring an accurate knowledge of the Earth’s in-
terior. For instance, new insights from seismic tomography can be used to explain
geodynamic processes, to identify potential geologic hazards (e.g. landslides or volca-
noes) and to support the search for natural resources.

Seismic tomography can be stated as an optimization problem with PDE con-
straints where the unknown material parameters are assumed to be spatially hetero-
geneous and constant in time. Depending on whether the medium is solid or fluid, the
governing equation for the propagation of seismic waves is given either by the elastic
or the acoustic wave equation, respectively.

A general overview on seismic tomography can be found in [39, 48]. Iterative
inversion methods based on first-order information have been applied to 2d and 3d
datasets on both regional and continental scale [14, 15, 43]. A Newton-CG method
for the unconstrained parameter identification problem was presented in [10]. Alter-
native approaches work in the frequency domain and involve the Helmholtz equation
[34, 37]. To the best of our knowledge, few attention has been paid to the analysis
of the infinite-dimensional problem. Recently, results on the differentiability of the
parameter-to-solution operator have been established independently in [3] and [27] for
the acoustic wave equation.
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Most approaches in full waveform tomography do not include additional con-
straints on the material parameters in the formulation of the inverse problem. How-
ever, there naturally exist physical bounds, for instance, the non-negativity of wave
velocities or the coercivity of the elliptic operator. Moreover, constraints can be used
to address the ill-posedness of the problem by incorporating additional prior knowl-
edge into the problem formulation. This is particularly interesting for the case of the
joint inversion for both Lamé coefficients λ and µ or, likewise, for the velocities of
compressional and shear waves. This is known to be a challenging problem [38] and
our approach allows to control the deviation of both parameter fields by imposing
bounds on the Poisson’s ratio.

We apply the Moreau-Yosida regularization to handle the constraints on the ma-
terial parameters. This penalty method leads to an optimality system involving a
semismooth operator equation and requires appropriate optimization methods. To
this end, we propose a semismooth Newton-CG method and a trust-region global-
ization strategy. Semismooth Newton-type methods for optimization problems in
function spaces have been studied extensively in [19, 44, 45] and have been applied
to various types of applications, see, for instance, [30] for an optimal control prob-
lem governed by the wave equation and [18, 20, 21, 22] for problems involving the
Moreau-Yosida regularization.

Efficient inversion methods rely on a scalable code for the simulation of the elastic
wave equation. Our parallel implementation utilizes MPI-communication and works
matrix-free. Moreover, it is not required to solve a linear system during the simulation,
since an explicit Newmark time-stepping scheme [26] and a diagonal mass matrix
are used. Forward and adjoint simulations are carried out to efficiently compute
the reduced gradient and reduced Hessian-vector products that are required by the
Newton-CG method.

This paper is organized as follows. In section 2 we analyze the governing equa-
tions and establish continuity and differentiability of the parameter-to-state operator.
Based on these results we prove the existence of a solution to the regularized inverse
problem and present the semismooth Newton method in section 3. Furthermore, we
establish estimates for the constraint violation of the Moreau-Yosida regularized so-
lution. We continue with the discretization of the problem in section 4 and conclude
with numerical examples on reservoir scale problems in 2d and 3d in section 5.

2. Analysis of the elastic wave equation.

2.1. Parameterization of the material coefficients. We consider a bounded
domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary and denote the time interval
by I := (0, T ), T > 0. Furthermore, we assume a heterogeneous density ρ and a
linear elastic rheology and let f denote the seismic source function. The elastic wave
equation is then given by ρutt −∇ · (Ψ : ε(u)) = f on Ω× I,

u(0) = 0, ut(0) = 0 on Ω,
(Ψ : ε(u)) · ~n = 0 on ∂Ω× I.

(2.1)

Here, u denotes the displacement field, ε(u) = 1
2

(
∇u+∇uT

)
is the strain tensor of

u and Ψ = (Ψijkl) is a fourth-order elastic tensor. We write Ψ : ε(u) for the matrix
with entries

(Ψ : ε(u))ij =

d∑
k,l=1

1

2
Ψijkl ε(u)kl =

d∑
k,l=1

1

2
Ψijkl

(
[ul]xk + [uk]xl

)
.
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Remark 2.1. The tensor Ψ of elastic moduli has the symmetry properties Ψijkl =
Ψjikl = Ψklij , which yields at most 21 independent components for d = 3. This
general form allows the treatment of anisotropic material. An important special case,
however, is a perfectly elastic, isotropic medium. Here, the tensor simplifies to

Ψijkl = λδijδkl + µ(δikδjl + δilδjk), (2.2)

with the Lamé parameters λ and µ. In this case we have the relation

vp =
√

(λ+ 2µ)/ρ, vs =
√
µ/ρ, (2.3)

where vp and vs denote the speed of compressional and shear waves [35]. The isotropic
elastic wave equation is thus given by: ρutt −∇ · (2µε(u) + λ(∇ · u)I) = f on Ω× I,

u(0) = 0, ut(0) = 0 on Ω,
(2µε(u) + λ(∇ · u)I) · ~n = 0 on ∂Ω× I.

(2.4)

Before we continue with the analysis of the state equation, we have to establish
a suitable function space setting for the material parameters. Due to the interdepen-
dencies of ρ and Ψ, we keep the density fixed and invert for Ψ only. Depending on
the parameterization of the governing equations, the unknown material parameters
can be the Lamé parameters, the velocity of compressional and shear waves, further
elasticity parameters like the bulk modulus or variables that characterize anisotropy.
In either case, the unknown parameter field is heterogeneous in space and does not
depend on time. The number of its components is denoted by n. We then split the
parameterization of the material into two parts. On the one hand, we use a ref-
erence model Ψ ∈ L∞(Ω)d

4

that is based on prior knowledge and captures major
discontinuities of the material. On the other hand, we consider smooth variations m
from that reference model, which we seek to determine by solving the inverse prob-
lem. We assume a stronger regularity of the variations with m ∈ M := Mn

1 and a
Hilbert space M1 ↪→↪→ L∞(Ω) that is compactly embedded in L∞(Ω). The complete
parameterization is now given by

Ψ(m) = Ψ + Φm, (2.5)

with a linear function Φ : Rn → Rd4 that maps m to the full elastic tensor.
Remark 2.2. Note that we rely on the strong assumption of the compact embed-

ding M ↪→↪→ L∞(Ω)n in order to show the existence of a solution to the regularized
inverse problem, see Theorem 3.2. It is a common approach in geophysics to param-
eterize for smooth variations from a reference model [13, 41, 48] which often only
varies in depth. On the other hand, we allow for less regular material in the reference
model. For problems in global seismology, a suitable reference model based on a priori
knowledge is available, e.g., the Preliminary Reference Earth Model (PREM) [9].

Now, we introduce additional constraints on the set of feasible parameters. Let
ma,mb ∈ M with ma ≤ 0 < mb. Furthermore, let p ∈ N, ga, gb ∈ Mp

1 with ga ≤ 0 <
gb and B ∈ Rp×n. We consider pointwise constraints on the parameters given by

ma ≤ m ≤ mb and gai ≤
n∑
j=1

bijmj ≤ gbi , i = 1, . . . , p. (2.6)
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In order to facilitate the notation, we set nc := n + p, Mc := Mnc
1 , ψa := (ma, ga)T ,

ψb := (mb, gb)T and compactly write the set defined by (2.6) with the help of a linear
operator S ∈ L(M,Mc) as

M∞ad :=
{
m ∈ L∞(Ω)n : ψa ≤ Sm ≤ ψb

}
. (2.7)

By construction, the set M∞ad is a convex, closed and bounded set. Furthermore, it is
nonempty since 0 ∈M∞ad . The admissible set is now given by Mad = M ∩M∞ad .

Remark 2.3. We do not necessarily require that 0 ∈M∞ad and could in principle
allow for more general bounds ma < mb and ga < gb. However, from an application
point of view, it seems reasonable to assume a feasible reference model, i.e., zero
should be a feasible parameter variation. On a different note, we could also extend
the analysis to a more general superposition operator Φ, but restrict the presentation
to the linear case. Moreover, it is possible to work with different spaces Mi for every
component of the parameters as long as they are compactly embedded into L∞(Ω).

From the definition of the feasible set, it is obvious that simple box constraints
can be imposed by choosing B = 0. We conclude this subsection with an example for
the set M∞ad that imposes additional restrictions on the Poisson’s ratio of the material.

Example 2.4. For isotropic material, the Poisson’s ratio ν can be expressed in
terms of the Lamé coefficients as ν(x) = λ(x)/(2(λ(x) + µ(x))) [35]. Since λ and µ
are positive, lower and upper bounds in the form νa ≤ ν(x) ≤ νb can be rewritten as
2νaµ+ (2νa−1)λ ≤ 0 and −2νbµ+ (1−2νb)λ ≤ 0. If we jointly invert for both Lamé
coefficients, we can define λ(m) = λ̄+m1 and µ(m) = µ̄+m2 with a reference model
(λ̄, µ̄). Let ν̄ denote the Poisson’s ratio of the reference model. Then the inequalities
can be rearranged to

(2νa − 1)m1 + 2νam2 ≤ λ̄ (1− νa

ν̄
), (1− 2νb)m1 − 2νbm2 ≤ λ̄(

νb

ν̄
− 1). (2.8)

Thus, we set p = 2 and

B =

(
(2νa − 1) 2νa

(1− 2νb) −2νb

)
, gb =

(
λ̄ (1− νa

ν̄ )

λ̄(ν
b

ν̄ − 1)

)
. (2.9)

Assuming that the reference model has a strictly feasible Poisson’s ratio, we obtain
gb > 0. Note that we only have upper bounds in (2.8), but using the fact that
ν ∈ (0, 1

2 ], we could easily add an (artificial) lower bound by setting ga = ((2νa −
1)mb

1 + 2νama
2 , (1− 2νb)ma

1 − 2νbmb
2)T .

2.2. Existence, uniqueness and regularity of solutions. Now we turn to
the discussion of the elastic wave equation and analyze the existence and regularity
of solutions. We set V = H1(Ω)d and H = L2(Ω)d such that V ↪→ H = H∗ ↪→ V is a
Gelfand triple. For fixed m ∈M we define the elliptic operator A(m) ∈ L(V, V ∗) by

〈A(m)v, w〉V ∗,V = (Ψ(m) : ε(v), ε(w))L2(Ω)d×d ∀ v, w ∈ V. (2.10)

In the case of isotropic material, (2.10) can be simplified to: ∀ v, w ∈ V :

〈A(m)v, w〉V ∗,V = (λ(m)∇ · v,∇ · w)L2(Ω) + 2 (µ(m) ε(v), ε(w))L2(Ω)d×d . (2.11)

The elastic wave equation can then compactly be written as

E(u,m) = ρutt +A(m)u, u(0) = 0, ut(0) = 0. (2.12)
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The variational form of (2.12) reads as follows: For all v ∈ V and a.a. t ∈ I:

〈ρutt(t), v〉V ∗,V + 〈A(m)u(t), v〉V ∗,V = 〈f(t), v〉V ∗,V . (2.13)

For the rest of the paper we require the following assumptions on the material and
the parameterization:

Assumption 1.
(A1.1) The density ρ : Ω → R is sufficiently smooth such that ρv ∈ H1(Ω) for all

v ∈ H1(Ω). Furthermore, ρ satisfies 0 < ρa ≤ ρ(x) ≤ ρb a.e. on Ω with some
bounds ρa, ρb ∈ R.

(A1.2) There exists a convex, open and bounded set G∞ ⊂ L∞(Ω)n with M∞ad ⊂ G∞
and β1, β2 > 0, independent of m, such that

〈A(m)v, v〉V ∗,V + β1 ‖v‖2H ≥ β2 ‖v‖2V ∀ v ∈ V, ∀ m ∈ G∞. (2.14)

Remark 2.5. For d = 2 or d = 3, Assumption (A1.1) is satisfied, for instance,
if ρ ∈ W 1,3(Ω) ∩ L∞(Ω). In this case, we have ∇(ρv) = v∇ρ + ρ∇v ∈ L2(Ω) by the
embedding H1(Ω) ↪→ L6(Ω) and the generalized Hölder inequality with 1

p + 1
q = 1

2
and p = 6, q = 3 or, resp., p =∞, q = 2.

In the case of perfectly elastic, isotropic material, Assumption (A1.2) is satisfied,
for instance, if there exist positive lower bounds on both Lamé coefficients.

Lemma 2.6. Consider the isotropic elastic wave equation (2.11) and let the set
M∞ad , the reference model (λ̄, µ̄) and scalars λmin, µmin > 0 be given, such that for all
m ∈ M∞ad there holds λ(m) ≥ λmin and µ(m) ≥ µmin a.e. in Ω. Then Assumption
(A1.2) is satisfied.

Proof. By construction, there exists an open and bounded neighborhood G∞ of
M∞ad such that λ(m) ≥ λmin/2 > 0, µ(m) ≥ µmin/2 > 0 a.e. in Ω for all m ∈ G∞.
Furthermore, by Korn’s inequality (cf. [25]), there exists a constant C > 0 such that

(ε(v), ε(v))L2(Ω)d×d + ‖v‖2L2(Ω)d ≥ C ‖v‖
2
H1(Ω)d ∀ v ∈ V. (2.15)

Hence, we obtain for all m ∈ G∞ and all v ∈ V :

〈A(m)v, v〉V ∗,V = (λ(m)∇ · v,∇ · v)L2(Ω) + (2µ(m)ε(v), ε(v))L2(Ω)d×d

≥ 1

2
λmin (∇ · v,∇ · v)L2(Ω) + µmin (ε(v), ε(v))L2(Ω)d×d

≥ µmin

(
C ‖v‖2V − ‖v‖

2
H

)
.

In order to validate (2.14) in the anisotropic case, further physical properties of
the elastic tensor have to be exploited that could be incorporated into the definition
of the set M∞ad . For a proof we refer to [7]. The following analysis is restricted to the
set G∞, because a unique solution to the elastic wave equation does not necessarily
exist outside of this set.

Theorem 2.7. Let m ∈ G∞. Then the elastic wave equation (2.12) possesses a
unique solution in the following settings:

(i) For every f ∈ L2(I;H) there exists a unique solution (u, ut) ∈ C(Ī;V ) ×
C(Ī;H) and the mapping L2(I;H) → C(Ī;V ) × C(Ī;H), f 7→ (u, ut) is
linear and bounded.

(ii) For every f ∈ L2(I;V ∗) there exists a unique solution (u, ut) ∈ C(Ī;H) ×
C(Ī;V ∗) and the mapping L2(I;V ∗) → C(Ī;H) × C(Ī;V ∗), f 7→ (u, ut) is
linear and bounded.
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Proof. Since m ∈ G∞, A(m) is uniformly coercive by Assumption (A1.2). Fur-
thermore, Assumption (A1.1) ensures the applicability of general results for hyperbolic
equations. In fact, (A1.1) yields (ρv, v)H ≥ ρa‖v‖2H for all v ∈ V and the usual energy
estimates can be used. Hence, the existence and regularity of a unique solution as
well as the dependence on the right-hand side f follows by standard arguments (cf.
Chapter 3, Theorem 8.1, 8.2 and, respectively, Theorem 9.3, 9.4 in [32]).

Note that in order to achieve continuity of the solution in time, a modification
on a set of measure zero might be necessary. The regularity of the solution can be
improved by exploiting a higher temporal regularity of the seismic source.

Theorem 2.8. Let m ∈ G∞ and f ∈ L2(I;V ∗) with f = 0 near t = 0 and,
additionally, ft ∈ L2(I;V ∗). Then there exists a unique solution u to the elastic wave
equation (2.12) satisfying u ∈ C(Ī;V ), ut ∈ C(Ī;H), utt ∈ C(Ī;V ∗) and the mapping

H1(I;V ∗)→ C(Ī;V )× C(Ī;H)× C(Ī;V ∗), f 7→ (u, ut, utt) (2.16)

is linear and bounded. For fixed f , the set of solutions u(m) ∈ C(Ī;V ) ∩ C1(Ī;H) is
uniformly bounded for all m ∈ G∞.

Proof. The proof follows the lines of the proof of Chapter 3, Theorem 9.3 for the
existence of very weak solutions in [32]. However, the crucial difference is the improved
regularity in space that is obtained by utilizing the higher temporal regularity of the
right-hand side. We consider

fk ∈ H1(I;H) with fk → f in H1(I;V ∗), (2.17)

and the problem

ρ(uk)tt(t) +A(m)uk(t) = fk(t), uk(0) = 0, (uk)t(0) = 0. (2.18)

By formally differentiating with respect to t and substituting (uk)t by wk, we obtain

ρ(wk)tt(t) +A(m)wk(t) = (fk)t(t), wk(0) = 0, (wk)t(0) = 0. (2.19)

Here, we used that f is zero near t = 0. Since (fk)t ∈ L2(I;H), there exists a unique
solution wk ∈ C(Ī;V ) ∩ C1(Ī;H) to (2.19) by Theorem 2.7. We define the auxiliary

function vk(t) :=
∫ t

0
wk(τ) dτ and obtain

vk ∈ C1(Ī;V ), (vk)t = wk ∈ C(Ī;V ), (vk)tt = (wk)t ∈ C(Ī;H). (2.20)

Integrating (2.19) in time and inserting the homogeneous initial data yields

0 =

t∫
0

ρ(wk)tt(τ)+A(m)wk(τ)− (fk)t(τ) dτ = ρ(vk)tt(t)+A(m)vk(t)−fk(t). (2.21)

By subtracting the original equation (2.18) from (2.21), we obtain

ρ(vk−uk)tt(t)+A(m)(vk−uk)(t) = 0, (vk−uk)(0) = 0, (vk−uk)t(0) = 0. (2.22)

Hence, by the uniqueness of the solution due to Theorem 2.7, we obtain uk = vk and
(uk)t = wk in [0, T ]. Thus, we have shown that vk is the unique solution to (2.18).
The improved regularity in space remains to be shown. In [32], Chapter 3, proof of
Theorem 9.3, the energy estimates

‖(uk)t(t)‖2H + ‖(uk)tt(t)‖2V ∗ ≤ C ‖(fk)t‖2L2(I;V ∗) , (2.23)

‖(uk)(t)‖2H + ‖(uk)t(t)‖2V ∗ ≤ C ‖(fk)‖2L2(I;V ∗) (2.24)
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are derived for a.a. t ∈ I. Using (2.14) and Assumption 1, we deduce

β2 ‖uk(t)‖2V ≤ 〈A(m)uk(t), uk(t)〉V ∗,V + β1 ‖uk(t)‖2H
= 〈fk(t)− ρ(uk)tt(t), uk(t)〉V ∗,V + β1 ‖uk(t)‖2H (2.25)

≤ (‖fk(t)‖V ∗ + Cρ ‖(uk)tt(t)‖V ∗) ‖uk(t)‖V + β1 ‖uk(t)‖2H
≤
(
‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)
‖uk(t)‖V + c2 ‖(fk)‖2L2(I;V ∗) ,

where we used (2.23) and (2.24) in the last inequality. Next, we use Young’s inequality
to obtain (

‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)
‖uk(t)‖V ≤

1

2β2

(
‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)2

+
β2

2
‖uk(t)‖2V .

(2.26)

Hence,

β2

2
‖uk(t)‖2V ≤

1

2β2

(
‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)2

+ c2 ‖(fk)‖2L2(I;V ∗) . (2.27)

Now, we can estimate ‖fk(t)‖V ∗ ≤ ‖fk‖C(Ī;V ∗) ≤ c ‖fk‖H1(I;V ∗) by the embedding

H1(I;V ∗) ↪→ C(Ī;V ∗) and finally obtain by combining (2.23) and (2.27):

sup
0≤t≤T

(
‖uk(t)‖2V + ‖(uk)t(t)‖2H + ‖(uk)tt(t)‖2V ∗

)
≤ C ‖fk‖2H1(I;V ∗) . (2.28)

Thus, uk (resp. (uk)t, (uk)tt) remain in a bounded set of L2(I;V ) (resp. L2(I;H),
L2(I;V ∗)). We can therefore extract a weakly convergent subsequence uκ ⇀ ũ in
L2(I;V ) as well as uκ ⇀ ũ in H1(I;H) and uκ ⇀ ũ in H2(I;V ∗). By the embeddings
H1(I;H) ↪→↪→ C(Ī;H) and H2(I;V ∗) ↪→↪→ C1(Ī;V ∗), we obtain uκ → ũ in C(Ī;H)
and (uκ)t → ũt in C(Ī;V ∗). Therefore, 0 = uκ(0) → ũ(0) in H, i.e., ũ(0) = 0, and
0 = (uκ)t(0)→ ũt(0) in V ∗, i.e., ũt(0) = 0. Hence, by passing to the limits in (2.18)
we find that ũ is a solution to the elastic wave equation.

The continuous dependence in (2.16) follows from (2.28), cf. Chapter 3, Remark
9.11 in [32]. By Assumption (A1.2), all constants are independent of m. Thus, the set
of unique solutions u(m) ∈ C(Ī;V ) ∩ C1(Ī;H) is uniformly bounded for all m ∈ G∞
and fixed f ∈ H1(I;V ∗).

Corollary 2.9. Let F k = Hk(I;V ∗), k ≥ 1, and F k0 ⊂ F k denote the subset of
source functions with f = 0 near t = 0. Then, for every f ∈ F k0 and fixed m ∈ G∞,
there exists a unique solution u ∈ Ck−1(Ī;V ) ∩Ck(Ī;H) ∩Ck+1(Ī;V ∗) to the elastic
wave equation (2.12). The mapping

F k0 → Ck−1(Ī;V ) ∩ Ck(Ī;H) ∩ Ck+1(Ī;V ∗), f 7→ u (2.29)

is linear and bounded and for fixed f ∈ F k0 , the set of solutions u(m) ∈ Ck−1(Ī;V ) ∩
Ck(Ī;H) is uniformly bounded for all m ∈ G∞.

Proof. The proof follows by induction and Theorem 2.8 which gives the case
k = 1. Now, assume the statement is true for k ∈ N and let f ∈ F k+1

0 . Similar as in
the proof of Theorem 2.8 we consider

ρ(w)tt +A(m)w = ft, w(0) = 0, wt(0) = 0. (2.30)
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By the induction hypothesis there exists a unique solution w ∈ Ck−1(Ī;V )∩Ck(Ī;H)∩
Ck+1(Ī;V ∗) to (2.30). Using the auxiliary function v ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H) ∩
Ck+2(Ī;V ∗) defined by v(t) =

∫ t
0
w(τ) dτ and integrating (2.30) in time, we find that

v is the unique solution to

ρvtt +A(m)v = f, v(0) = 0, vt(0) = 0. (2.31)

which concludes the induction step.
Remark 2.10. Usually, second-order hyperbolic equations require stronger com-

patibility conditions on the initial values and the right-hand side (cf. §7.2 Theorem
6 in [11]) to establish similar results as in Theorem 2.8 and Corollary 2.9. Since we
work with homogeneous initial data, these requirements are implicitly given by f = 0
near t = 0. Moreover, in this case also the solution to the elastic wave equation is
zero near t = 0, which we will frequently use in the following.

In the next step, we establish continuity and Fréchet differentiability of the
parameter-to-state operator by utilizing a higher temporal regularity of the source.

Theorem 2.11. For all m ∈ G∞ and f ∈ F k+1
0 , k ≥ 1, the elastic wave

equation defined in (2.12) possesses a unique solution u(m) ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H)
and m 7→ u(m) is Lipschitz continuous as a map from G∞ to Ck−1(Ī;V )∩Ck(Ī;H).

Proof. By Corollary 2.9, there exists a unique solution u(m) ∈ Ck(Ī;V ) ∩
Ck+1(Ī;H) to (2.12). Let s ∈ L∞(Ω)n satisfy m + s ∈ G∞. Then, again by Corol-
lary 2.9, there exists a unique solution û(s) := u(m + s) ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H)
to E(û(s),m + s) = f and ‖û(s)‖Ck(Ī;V ) ≤ C uniformly for all s ∈ L∞(Ω)n with
m+ s ∈ G∞. We denote the difference by h := û(s)− u(m) and obtain:

0 = E(û(s),m+ s)− E(u(m),m) = ρ(ûtt(s)− utt(m)) +A(m+ s)û(s)−A(m)u(m)

= ρhtt +A(m)h−A(m)û(s) +A(m+ s)û(s).

Using the notation A∆(s) ∈ L(V, V ∗) for the operator defined by

〈A∆(s)v, w〉V ∗,V = ((Φs) : ε(v), ε(w))L2(Ω)d×d ∀ v, w ∈ V, (2.32)

we obtain A∆(s) = A(m+s)−A(m) and find that h satisfies an elastic wave equation

E(h,m) = −A∆(s)û(s), h(0) = 0, ht(0) = 0. (2.33)

Since û(s) ∈ Ck(Ī;V )∩Ck+1(Ī;H), we obtain −A∆(s)û(s) ∈ Ck(Ī;V ∗) ⊂ Hk(I;V ∗)
and, furthermore, −A∆(s)û(s) ∈ F k0 , due to f ∈ F k+1

0 and the homogeneous initial
conditions. Hence, we can apply Corollary 2.9 and obtain

‖h‖Ck−1(Ī;V ) + ‖ht‖Ck−1(Ī;H) ≤ C1 ‖A∆(s)û(s)‖Hk(I;V ∗)

≤ C2 ‖s‖L∞(Ω)n ‖û(s)‖Ck(Ī;V ) ≤ C3 ‖s‖L∞(Ω)n .
(2.34)

Remark 2.12. Note that it is necessary to exploit a higher temporal regularity
of the source term in order to show the continuity (and differentiability) of the state
u(m) with respect to m. In fact, consider f ∈ L2(I;H) and h := û(s) − u(m) as in
the proof of Theorem 2.11. We obtain that h satisfies

E(h,m) = −A∆(s)û(s), h(0) = 0, ht(0) = 0, (2.35)
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and ‖A∆(s)û(s)‖L2(I;V ∗) ≤ C‖s‖L∞(Ω)n . Thus, from the estimate for very weak
solutions (cf. Theorem 2.7) we would only get that m 7→ u(m) is continuous as a map
from G∞ to C(Ī;H) ∩ C1(Ī;V ∗), although u(m) is bounded in the stronger space
C(Ī;V ) ∩ C1(Ī;H). For f ∈ L2(I;V ∗) the situation is even more critical, because in
this case we have û(s) ∈ C(Ī;H), but A∆(s) ∈ L(V, V ∗).

Theorem 2.13. Let k ≥ 1 and f ∈ F k+2
0 . Then the solution operator G∞ →

Ck−1(Ī;V ) ∩ Ck(Ī;H), m 7→ u(m) is Fréchet differentiable.

Proof. Let m ∈ G∞ and s ∈ L∞(Ω)n with m + s ∈ G∞. Similar as in the proof
of Theorem 2.11, we define û(s) as the solution to E(û(s),m + s) = f . In order to
show the Fréchet differentiability of the parameter-to-state operator we consider the
solution to the linearized state equation d(m, s)

Eu(u(m),m))d(m, s) = −Em(u(m),m) s, (2.36)

i.e., d(m, s) satisfies

ρ dtt(m, s) +A(m)d(m, s) = −A∆(s)u(m), d(m, s)(0) = 0, dt(m, s)(0) = 0, (2.37)

where A∆(s) is defined as in (2.32). In particular, s ∈ L∞(Ω)n 7→ d(m, s) ∈ Ck(Ī;V )∩
Ck+1(Ī;H) is linear and bounded by Corollary 2.9.

Let r := û(s)−u(m)−d(m, s) denote the remainder term of the Fréchet derivative.
By combining the elastic wave equations for û(s), u(m) and d(m, s), we deduce

0 = ρ rtt +A(m+ s)û(s)−A(m)(u(m) + d(m, s))−A∆(s)u(m)

= ρ rtt +A(m)r +A∆(s)(û(s)− u(m)).
(2.38)

Hence, r satisfies an elastic wave equation E(r,m) = −A∆(s)(û(s) − u(m)) with
homogeneous initial data. With h := û(s) − u(m), we obtain h ∈ Ck+1(Ī;V ) ∩
Ck+2(Ī;H) and −A∆(s)h ∈ F k+1

0 . Furthermore, by the Lipschitz continuity of the
solution operator as a map from G∞ to Ck(Ī;V ) ∩ Ck+1(Ī;H) (cf. Theorem 2.11),
we have ‖h‖Ck(Ī;V ) ≤ C‖s‖L∞(Ω)n . Thus, applying Corollary 2.9 yields the estimate

‖r‖Ck−1(Ī;V ) + ‖rt‖Ck−1(Ī;H) ≤ C1 ‖A∆(s)h‖Hk(I;V ∗)

≤ C2 ‖s‖L∞(Ω)n ‖h‖Ck(Ī;V ) ≤ C3 ‖s‖2L∞(Ω)n .
(2.39)

In particular, the remainder term r satisfies

‖r‖Ck−1(Ī;V ) + ‖rt‖Ck−1(Ī;H) = o
(
‖s‖L∞(Ω)n

)
for ‖s‖L∞(Ω)n → 0. (2.40)

By further pursuing this technique, we can also establish higher-order Fréchet
differentiability of the solution operator under suitable assumptions on the seismic
source. Here, we will require the following notation. Let s = (s1, . . . , si) be a tuple
of length i with sj ∈ L∞(Ω)n, j = 1, . . . , i. Furthermore, for 1 ≤ j ≤ i, we denote by
s−j := (s1, . . . , sj−1, sj+1, . . . , si) the (i− 1)-tuple of elements of s except sj .

Theorem 2.14. Let k ≥ 1 and f ∈ F k+2
0 . Then the solution operator G∞ →

C(Ī;V )∩C1(Ī;H), m 7→ u(m) is k-times Lipschitz continuously Fréchet differentiable
on G∞. Furthermore, let s = (s1, . . . , si) with sj ∈ L∞(Ω)n and m + sj ∈ G∞,
j = 1, . . . , i. Then the i-th derivative applied to s is recursively defined as the unique
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solution di := di(m, s) to

E(d1,m) = −A∆(s1)u(m), d1(0) = 0, d1
t (0) = 0 (i = 1), (2.41)

E(di,m) = −
i∑

j=1

A∆(sj) d
i−1(m, s−j), di(0) = 0, dit(0) = 0 (2 ≤ i ≤ k). (2.42)

Proof. For the sake of brevity and since the same techniques as in the proof of
Theorem 2.13 can be applied, we only provide a sketch of the proof.

First, it can be shown inductively that di ∈ Ck−i+1(Ī;V ) ∩ Ck−i+2(Ī;H) is
uniquely determined by (2.41), (2.42) and satisfies

∥∥di∥∥
Ck−i+1(Ī;V )

+
∥∥dit∥∥Ck−i+1(Ī;H)

≤ C
i∏

j=1

‖sj‖L∞(Ω)n , 1 ≤ i ≤ k, (2.43)

with a constant C > 0 that depends linearly on f and can be chosen uniformly on
G∞. Here, Theorem 2.13 gives the induction basis for i = 1 and the induction step is
obtained by applying Corollary 2.9 to the elastic wave equation defined in (2.42).

In a second step, we consider hi(m, si+1, s) := di(m+si+1, s)−di(m, s) with si+1 ∈
L∞(Ω)n and m + si+1 ∈ G∞. With h0(m, s1, ∅) := h0(m, s1) := u(m + s1) − u(m),
we deduce from (2.41), (2.42) that hi = hi(m, si+1, s) satisfies:

E(hi,m) = −
i∑

j=1

A∆(sj)h
i−1(m, si+1, s−j)−A∆(si+1)di(m+ si+1, s), (2.44)

and hi(0) = 0, hit(0) = 0. Again, we can show inductively that hi ∈ Ck−i(Ī;V ) ∩
Ck−i+1(Ī;H) is uniquely determined by (2.44) and satisfies

∥∥hi∥∥
Ck−i(Ī;V )

+
∥∥hit∥∥Ck−i(Ī;H)

≤ C
i+1∏
j=1

‖sj‖L∞(Ω)n , 0 ≤ i ≤ k, (2.45)

where the constant C > 0 depends linearly on f and can be chosen uniformly on
G∞. In this case, (2.34) gives the induction basis for i = 0 and the induction step
is obtained by applying Corollary 2.9 to the elastic wave equation defined in (2.44).
This shows the Lipschitz continuity of di.

As the final step, we have to provide an estimate for the remainder term of the
i-th Fréchet derivative. To this end, we set ri(m, s) := hi−1(m, si, s−i)− di(m, s). By
combining (2.42) and (2.44) we obtain the recursive formula for ri = ri(m, s):

E(ri,m) = −
i−1∑
j=1

A∆(sj)r
i−1(m, s−j)−A∆(si)h

i−1(m, si, s−i), (2.46)

and ri(0) = 0, rit(0) = 0. Now, a third induction shows the estimate

∥∥ri∥∥
Ck−i(Ī;V )

+
∥∥rit∥∥Ck−i(Ī;H)

≤ o
(
‖si‖L∞(Ω)n

) i−1∏
j=1

‖sj‖L∞(Ω)n , (2.47)

for ‖s‖L∞(Ω)n → 0. Here, (2.40) gives the induction basis and subsequently applying

Corollary 2.9 to (2.46) yields the induction step.
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There are two immediate generalizations of Theorem 2.14:
Corollary 2.15. Let k ≥ 1, l ≥ 0 and f ∈ F k+l+2

0 . Then on a neighborhood
G∞ of M∞ad it holds:

1. The solution operator m 7→ u(m) is k-times Lipschitz continuously Fréchet
differentiable as a map from G∞ to Cl(Ī;V ).

2. The solution operator m 7→ u(m) is (k + 1)-times Lipschitz continuously
Fréchet differentiable as a map from G∞ to Cl(Ī;H).

We conclude this section with two remarks.
Remark 2.16. It is a valid assumption for problems in seismic tomography

to have homogeneous initial conditions and a force term that is zero near t = 0,
which means that the simulation starts with the system at rest. In addition, the
excitations at the hypocenter usually last only for a limited time which is significantly
shorter than the traveltimes to the receiver locations in the far field. An extension to
inhomogeneous initial data is possible, but beyond the scope of this paper. Moreover,
the assumption of a higher temporal regularity of the right-hand side can be validated
since wavelets are most commonly used to model the time evolution of the seismic
source. Furthermore, we consider point sources in space which require only a slight
smoothing in V ∗ = (H1(Ω)d)∗. The specific setup will be given in Example 3.4.

Remark 2.17. The results of this section can be carried over to the acoustic
wave equation that describes the propagation of seismic waves in an inviscid fluid
medium. Here, the unknown material parameter is given by the squared velocity of
compressional waves. Similar results on the Fréchet differentiability of the parameter-
to-state operator have been established in [3] and [27]. However, both work with
stronger assumptions on the right-hand sides, namely f in Hk(I;H) or even Ck(Ī , H)
instead of Hk(I;V ∗), which is advantageous for modeling point sources.

3. Semismooth Newton method.

3.1. Analysis of the seismic inverse problem. Having established the con-
tinuity and the differentiability of the parameter-to-state operator, we now turn to
the formulation of the inverse problem. In seismic tomography, data is usually taken
from several seismic events. We denote the number of seismic sources by ns and as-
sume to have a set of source functions fi, i = 1, . . . , ns. Specific assumptions on the
regularity of fi will be made later in this section. Furthermore, for every event we
assume to have observations on a subdomain Ωδi × I, Ωδi ⊂ Ω and denote the data by
uδi ∈ L2(I;L2(Ωδi )

d) ∩H2(I; (H1(Ωδi )
d)∗). The seismic inverse problem is given by:

min
u∈U,m∈Mad

J(u,m)

s.t. E(ui,m) = fi, ui(0) = 0, (ui)t = 0, i = 1, . . . , ns.
(3.1)

Here, u = (u1, . . . , uns)
T ∈ U = Uns is a vector of displacement fields and we set

U := L2(I;V ) ∩H1(I;H) ∩H2(I;V ∗). (3.2)

Remark 3.1. Following the analysis of the elastic wave equation in the previous
section, we recall that for a source f ∈ F l+1

0 (I;V ∗) with some l ≥ 0, we obtain
u ∈ Cl(Ī;V ) ∩Cl+1(Ī;H) ∩Cl+2(Ī;V ∗) ⊂ U , i.e., the initial conditions make sense.

The cost functional J : U×M → R has the special structure

J(u,m) =

ns∑
i=1

Jfit(ui, u
δ
i ) +

α

2
‖m‖2M , (3.3)
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that consists of the accumulated misfit from all seismic sources and a Tikhonov-type
regularization term with parameter α > 0. The existence of a solution to the seismic
inverse problem can be proven in the following setting.

Assumption 2. In addition to Assumption 1, we require:
(A2.1) M is a Hilbert space with compact embedding M ↪→↪→ L∞(Ω)n.
(A2.2) Jfit ≥ 0, convex and, with l ≥ 0, there holds for i = 1, . . . , ns:

• either fi ∈ F l0(I;V ∗) and ui ∈ Cl(Ī;H) 7→ Jfit(ui, u
δ
i ) is continuous,

• or fi ∈ F l+1
0 (I;V ∗) and ui ∈ Cl(Ī;V ) 7→ Jfit(ui, u

δ
i ) is continuous.

Theorem 3.2. Let Assumption 2 hold. Then the seismic inverse problem (3.1)
possesses a solution.

Proof. The proof follows by standard arguments, cf. Theorem 1.45 in [24]. The
compact embedding M ↪→↪→ L∞(Ω)n is required to show that the elastic wave equa-
tion is weakly sequentially continuous.

Due to the unique solvability of the elastic wave equation for fixed m, we replace
(3.1) by the reduced problem:

min
m∈Mad

J(u(m),m) (P)

where the displacements u(m) = (u1(m), . . . , uns(m))
T

solve

E(ui,m) = fi, ui(0) = 0, (ui)t(0) = 0, i = 1, . . . , ns. (3.4)

The reduced cost functional j is defined by

j : G→ R, m 7→
ns∑
i=1

Jfit(ui(m), uδi ) +
α

2
‖m‖2M , (3.5)

where G := M∩G∞. The restriction to G is required, because ui(m) is not necessarily
well-defined on the whole space M . We will outline a strategy to circumvent this
difficulty in Remark 3.13.

By Theorem 3.2, also the reduced seismic inverse problem (P) admits a solution.
Fréchet differentiability of the reduced cost functional can be established under the
following assumptions. Note that in this case the embedding M ↪→ L∞(Ω)n is not
required to be compact.

Assumption 3. In addition to Assumption 1, we require with k ≥ 1:
(A3.1) M is a Hilbert space with continuous embedding M ↪→ L∞(Ω)n.
(A3.2) With l ≥ 0, there holds for i = 1, . . . , ns:

• either fi ∈ F k+l+1
0 (I;V ∗) and ui ∈ Cl(Ī;H) 7→ Jfit(ui, u

δ
i ) is k-times

continuously Fréchet differentiable,
• or fi ∈ F k+l+2

0 (I;V ∗) and ui ∈ Cl(Ī;V ) 7→ Jfit(ui, u
δ
i ) is k-times contin-

uously Fréchet differentiable.
Theorem 3.3. Let Assumption 3 be satisfied for given k ≥ 1. Then the reduced

cost functional j defined in (3.5) is k-times continuously Fréchet differentiable on G.
Proof. Assumption 3 ensures the applicability of Corollary 2.9 and Corollary 2.15

that provide the unique solvability of the elastic wave equation and the differentiability
of the parameter-to-state operator from G∞ to Cl(Ī;V ) or, respectively, Cl(Ī;H).
Thus, due to the embedding M ↪→ L∞(Ω)n, the differentiability properties of Jfit and
the regularization term can be carried over to j.

Next, we give a specific example for a typical problem setup and verify Assumption
2 and Assumption 3 for it.
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Example 3.4. Let M1 = H2(Ω) ∩ H1
0 (Ω), i.e., we have M1 ↪→↪→ L∞(Ω) for

d = 2, 3. We assume homogeneous boundary data, since the material at the surface
is known and we do not want to update the material parameters at the artificial
boundaries of the computational domain (cf. section 5). For notational simplicity, we
consider only one seismic event with a source given by

f(x, t) := s(t)F (x), (3.6)

where the time evolution is modeled by the Ricker wavelet s(t) centered at t0 and
with dominant source frequency ω. We assume a point source located at xs ∈ Ω and
model the geometry of the source by a time-invariant moment tensor applied to a
smoothed Dirac measure in V ∗, cf. [33]. The corresponding force vector is denoted
by F ∈ V ∗. In order to ensure that f is zero near t = 0, more precisely, that f ∈ F 3

0 ,
we smoothly connect s to zero for |t − t0| larger than a threshold. Data is observed
around receiver locations xr1 , . . . , xrp and we set Ωδ =

⋃p
j=1Brj where Brj is a small

ball with center xrj . The misfit function is given by

Jfit(u, u
δ) =

1

2

∫ T

0

g(t)‖u(t)− uδ(t)‖2L2(Ωδ)d dt. (3.7)

Here, g : [0, T ]→ R is a smooth weighting function that ensures g(τ) = g(T − τ) = 0
for τ ∈ [0, ε) and some small ε, i.e. the misfit is only computed in a subinterval of I.
With this choice of f and Jfit, Assumption 2 and Assumption 3 are clearly satisfied
with k = 2 and l = 0.

Remark 3.5. The proper choice of the misfit functional is crucial for the success
of the inversion. The L2-misfit is widely used, cf. [10, 34], and suitable for synthetic
data with a small amount of amount of Gaussian noise. We emphasize, however,
that there exist more sophisticated misfit criteria separating phase and amplitude
information of the seismograms, see, for instance, [13, 29, 46]. Note that different
criteria can easily be incorporated into the inversion framework, as long as they are
sufficiently smooth, cf. Assumption (A3.2).

3.2. Adjoint-based representation of the derivatives. Having established
the differentiability of the reduced cost functional, we can use the adjoint approach to
efficiently compute the first and second derivatives with respect to m. Note that the
displacement fields for different seismic events can be separated completely in (3.1).
Likewise, the adjoint states can be computed independently. Due to the symmetry of
A and by carefully integrating by parts, we obtain that the adjoint states pi = pi(m)
are (very) weak solutions of the adjoint equations


ρ(pi)tt −∇ · (Ψ(m) : ε(pi)) = −g (ui(m)− uδi )1Ωδi

on Ω× I,
pi(T ) = 0, (pi)t(T ) = 0 on Ω,

(Ψ(m) : ε(pi)) · n = 0 on ∂Ω× I.
(3.8)

The adjoint equation (3.8) can be interpreted as an elastic wave equation backwards
in time with a different right-hand side. Thus, we can apply the results from section 2
to establish existence, uniqueness and regularity of the adjoint states. For the adjoint-
based representation of j′, we note that Em(u(m),m) s = A∆(s)u(m) and introduce
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the form D : L2(I;V )× L2(I;V )→M∗ defined by

D(v, w)(s) =

∫ T

0

〈A∆(s)v(t), w(t)〉V ∗,V dt

=

T∫
0

∫
Ω

(ε(v)(x, t)⊗ ε(w)(x, t)) :: ((Φs)(x)) dx dt ∀ s ∈M.

(3.9)

Here, we used the notation (a ⊗ b)ijkl = aijbkl and A :: B =
∑
ijklAijklBijkl for

tensor products. Then the first derivative of j at a given m ∈ G can be expressed by

〈j′(m), s〉M∗,M = α(m, s)M +

ns∑
i=1

D(ui(m), pi(m))(s) ∀ s ∈M, (3.10)

where we used the Riesz representation in the first term.
Lemma 3.6. Let m ∈ G, uδi ∈ L2(I;L2(Ωδi )

d)×H2(I; (H1(Ωδi )
d)∗) and fi ∈ F 3

0 ,
i = 1, . . . , ns. Then there exists a unique adjoint state pi(m) ∈ C1(Ī;V ) ∩ C2(Ī;H)
and pi(m) ∈ C1(Ī;V ) ∩ C2(Ī;H) is uniformly bounded for all m ∈ G. Moreover, for
any subset G′ ⊆ G that is bounded in M , j′(m) ∈M∗ is uniformly bounded on G′.

Proof. We use a time transformation τ := T − t in order to work with initial time
conditions and drop the index i. By Corollary 2.9, we obtain (u − uδ) ∈ H2(I;V ∗)
and the weighting g ensures that the adjoint right-hand side is in F 2

0 . and we de-
duce the existence of a unique adjoint state p(m) ∈ C1(Ī;V ) ∩ C2(Ī;H). Further-
more, since u(m) ∈ U is uniformly bounded on G, the adjoint right-hand side is
uniformly bounded in H2(I;V ∗) and hence, also p(m) ∈ C1(Ī;V ) ∩ C2(Ī;H) is uni-
formly bounded on G. Moreover, for every m in G we obtain for arbitrary s ∈M

|〈j′(m), s〉M∗,M | ≤ α‖m‖M‖s‖M +

ns∑
i=1

c‖ui(m)‖L2(I;V )‖pi(m)‖L2(I;V )‖s‖L∞(Ω)n

≤ (α‖m‖M + C)‖s‖M .
(3.11)

Thus, j′(m) ∈M∗ is uniformly bounded on any bounded subset G′ ⊆ G .
We can also employ the adjoint approach to compute operator-vector products

j′′(m)s for a given perturbation s ∈ M . This can be carried out at the cost of two
additional simulations per seismic event and requires the following steps:

For every i = 1, . . . , ns:
1. Compute a perturbed forward wavefield δsui by solving

E(δsui,m) = −A∆(s)ui(m), δsui(0) = 0, (δsui)t(0) = 0. (3.12)

2. Compute a perturbed adjoint wavefield δspi by solving

E(δspi,m) = −g δsui −A∆(s)pi(m), δspi(T ) = 0, (δspi)t(T ) = 0. (3.13)

Then j′′(m)s is given by: ∀ v ∈M

〈j′′(m)s, v〉M∗,M = α(s, v)M +

ns∑
i=1

D(δsui, pi(m))(v) +D(ui(m), δspi)(v). (3.14)

Note that the results from section 2 and Lemma 3.6 can be applied to deduce that
δsui and δspi are uniquely determined and bounded in U .
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3.3. Moreau-Yosida regularization. Now we turn to the discussion of the
optimization method and continue to work with the setting of Example 3.4. The
constraints induced by M∞ad are handled by the Moreau-Yosida regularization. This
method is commonly used for state-constrained problems, see e.g. [18, 20, 21]. For
fixed γ ∈ (0,∞) we define the penalized problem

min
m∈G

jγ(m) := j(m) + γφ(m), (Pγ)

with the penalty function

φ(m) :=
1

2

(
‖[Sm− ψb]+‖2L2(Ω)nc + ‖[ψa − Sm]+‖2L2(Ω)nc

)
. (3.15)

Here, [.]+ is a vector defined pointwise by ([v(x)]+)i = max{vi(x), 0}, i = 1, . . . , nc.
The first-order optimality conditions for (Pγ) are given by:

j′(m̄) + γS∗
(
[Sm̄− ψb]+ − [ψa − Sm̄]+

)
= 0 in M∗. (3.16)

Equivalently, we obtain in variational form

〈j′(m̄), v〉M∗,M + γ
(
[Sm̄− ψb]+ − [ψa − Sm̄]+, Sv

)
L2(Ω)nc

= 0 ∀ v ∈M. (3.17)

Lemma 3.7. Let Assumption 3 hold with k ≥ 2. Then the optimality condition
(3.16) defines a semismooth operator equation with generalized derivative j′′(m̄) +
γS∗∂D(m̄)S, where ∂D(m̄) is the set of all operators of the form L∞(Ω)nc 3 v 7→
(gi vi)1≤i≤nc with gi ∈ L∞(Ω), i = 1, . . . , nc, and

gi(x)

 = 0 if ψai (x) < (Sm̄)i(x) < ψbi (x),
= 1 if (Sm̄)i(x) < ψai (x) or (Sm̄)i(x) > ψbi (x),
∈ [0, 1] if (Sm̄)i(x) = ψai (x) or (Sm̄)i(x) = ψbi (x).

(3.18)

Proof. We only have to consider the second part since j′(m̄) is smooth. By
definition, we have S : M → Mc ↪→ L∞(Ω)nc . Furthermore, [.]+ is semismooth from
Lq(Ω)nc to L2(Ω)nc for any q > 2 with a generalized derivative given by (gi)1≤i≤nc
(cf. Proposition 4.1 in [19] with a straightforward extension to nc > 1). Since S∗ ∈
L(Mc

∗,M∗) and L2(Ω)nc ↪→Mc
∗, we deduce that (3.16) is semismooth.

We require the following additional assumption on the constraints.
Assumption 4.

(A4.1) Either, M1 ↪→W 1,q′(Ω) holds for some q′ > d,
or M1 ↪→ C0,β(Ω̄) with 0 < β ≤ 2 and m = 0 on ∂Ω for all m ∈M .

(A4.2) There exist ψ̄ ∈ R and m̂ ∈M such that ψai (x) ≤ 0 < ψ̄ ≤ (Sm̂)i(x) < ψbi (x)
a.e. in Ω for all i = 1, . . . , nc.

Theorem 3.8. Let Assumption 2 and Assumption 3 hold with k ≥ 2 and, addi-
tionally, let Assumption (A4.1) be satisfied. Furthermore, let C∞ ⊂ G∞ be a closed,
convex set containing a neighborhood of M∞ad . Then, there exists γ0 > 0 such that
the Moreau-Yosida regularized problem (Pγ) has a solution mγ for all γ > γ0. Fur-
thermore, (mγ)γ≥γ0 is bounded in M and all weak limit points of (mγ)γ≥γ0 solve the
seismic inverse problem (P).

Proof. First, we show that there exists γ0 > 0 and a closed and convex set C ⊂ G
that is bounded in M with 0 ∈ C and such that for all γ ≥ γ0:

jγ(m) ≥ jγ0(m) > jγ0(0) = j(0) = jγ(0) ∀ m ∈ G \ C.
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This will guarantee the existence of a solution mγ ∈ C to (Pγ) in for all γ ≥ γ0 as
well as the boundedness of (mγ)γ≥γ0 in M . Since 0 ∈M∞ad , we have

jγ(0) =
1

2

ns∑
i=1

Jfit(ui(0), uδi ) =: J0 ≥ 0, (3.19)

and with ε :=
√

2J0/α and Bε(0) := {m ∈M : ‖m‖M ≤ ε}, we set C := C∞ ∩Bε(0).
Next, we prove that there exists γ0 > 0 such that jγ0(m) > jγ0(0) = J0 for all
m ∈ G \ C. If this does not hold, then there exist sequences (γk)k∈N with γk → ∞
and (mk)k∈N ⊂ Bε(0) \ C∞ with

α

2
‖mk‖2M + γkφ(mk) ≤ jγk(mk) ≤ J0 ∀ k ∈ N, (3.20)

where we already used the fact that jγk(m) ≥ α
2 ‖m‖

2
M > J0 for m /∈ Bε(0). Thus,

(mk)k∈N is bounded in M . Furthermore, (3.20) yields φ(mk) → 0 and for v+
k :=

[Smk − ψb]+ + [ψa − Smk]+, we deduce
∥∥v+
k

∥∥
L2(Ω)nc

→ 0. Moreover, (Smk)k∈N is

bounded in Mc and by Assumption (A4.1) also bounded in W 1,q′(Ω)nc with q′ > d or,
respectively, bounded in C0,β(Ω̄)nc with 0 < β ≤ 2. Hence, v+

k is either bounded in

W 1,q′(Ω)nc or in C0,β(Ω̄)nc . Now, an interpolation inequality between L2(Ω) and ei-
ther W 1,q′(Ω) (cf. Theorem 5.10 in [1]) or C0,β(Ω̄) (cf. Proposition 2.11 in [23]) yields∥∥v+
k

∥∥
L∞(Ω)nc

→ 0. Thus, mk ∈ C∞ for k sufficiently large. This is a contradiction.

Hence, we can restrict the analysis to the set C ⊂ G and γ ≥ γ0 sufficiently
large. By construction, A(m) is uniformly coercive for all m ∈ C. φ is convex and
continuous, hence, jγ is weakly lower semi-continuous and the existence of a solution
mγ ∈ C to the regularized problem (Pγ) follows again by standard arguments. Now,
let m̄ be a solution to the seismic inverse problem (P). By the optimality of mγ for
(Pγ), we obtain:

α

2
‖mγ‖2M ≤ j(mγ) ≤ j(mγ) + γφ(mγ) = jγ(mγ) ≤ jγ(m̄) = j(m̄). (3.21)

Since (mγ)γ≥γ0 is bounded in M , there exist weak limit points. Moreover, (3.21)
yields that γφ(mγ) is uniformly bounded for all γ > 0 and, hence, φ(mγ) → 0 for
γ →∞. Now, consider a weak limit point m∗ and a sequence (γk)k∈N with mγk ⇀m∗.
Due to the compact embedding M ↪→↪→ L∞(Ω)n, we have mγk → m∗ in L∞(Ω)n

(and also strong convergence in L2(Ω)n). Since φ(mγk) → 0, we obtain again by an
interpolation inequality

∥∥v+
k

∥∥
L∞(Ω)nc

→ 0, i.e., m∗ is feasible for (P). It remains to

be shown, that m∗ is a solution to (P). The sequence of optimal function values of
the penalized problem is monotonically increasing, since

jγk(mγk) ≤ jγk(mγk+1
) ≤ jγk+1

(mγk+1
). (3.22)

Together with (3.21) this implies that (jγk(mγk))k∈N converges. By the lower semi-
continuity of j, we obtain

j(m∗) ≤ lim inf
k→∞

j(mγk) ≤ lim inf
k→∞

jγk(mγk) = lim
k→∞

jγk(mγk) ≤ j(m̄). (3.23)

Due to the optimality of m̄, all inequalities above are satisfied with equality. Hence,
j(m∗) = j(m̄) and m∗ solves (P).

We continue to use the notation v+
γ = [Smγ −ψb]+ + [ψa − Smγ ]+ and state the

following result concerning the rate of convergence.
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Theorem 3.9. Let Assumption 2 and Assumption 3 hold with k ≥ 2, and let
Assumption (A4.1) be satisfied with the embedding M1 ↪→ W 1,q′(Ω). Furthermore,
let (mγk)k∈N be a weakly convergent subsequence with mγk ⇀ m∗ ∈ M . Then the
infeasibility of solutions mγ to (Pγ) is bounded by

‖v+
γk
‖L2(Ω)nc = o

(
γk
− 1

2

)
(γk →∞) and (3.24)

‖v+
γk
‖L∞(Ω)nc = o

(
γ−ηk

)
with η =

q′ − d
q′d+ 2(q′ − d)

. (3.25)

Proof. From (3.21) we obtain

jγk(mγk) = j(mγk) +
γk
2
‖v+
γk
‖2L2(Ω)nc ≤ j(m̄), (3.26)

where m̄ solves (P). Hence,

‖v+
γk
‖2L2(Ω)nc ≤

2

γk
(j(m̄)− j(mγk)) . (3.27)

By Theorem 3.8, m∗ solves (P), hence, j(mγk)→ j(m̄) which shows

‖v+
γk
‖L2(Ω)nc = o

(
γk
− 1

2

)
. (3.28)

Since (mγk)k∈N is bounded in M , (Smγk)k∈N is bounded in Mc and by Assumption

(A4.1) also bounded in W 1,q′(Ω)nc . Thus, an interpolation inequality yields the L∞-
estimate similar to Lemma 8.26 in [45].

Example 3.10. We consider M1 = H2(Ω) ∩ H1
0 (Ω). Then we have M1 ↪→↪→

L∞(Ω) and M1 ↪→ W 1,q′(Ω) for all q′ with 1 ≤ q′ ≤ 6 (d = 2, 3). Thus, for d = 3 we
obtain the estimate

‖v+
γk
‖L∞(Ω)nc = o

(
γ
− 1

8

k

)
. (3.29)

Following the derivation in [23] we obtain alternative estimates using interpolation
between L1(Ω) and C0,β(Ω̄).

Theorem 3.11. Let Assumption 2 and Assumption 3 hold with k ≥ 2. Addi-
tionally, let Assumption 4 be satisfied with the embedding M1 ↪→ C0,β(Ω̄) and m = 0
on ∂Ω for all m ∈ M . Consider a weakly convergent subsequence (mγk)k∈N with
mγk ⇀m∗ ∈M . Then we obtain the following estimate on the constraint violation:

‖v+
γk
‖L∞(Ω)nc ≤ Cγ−ηk with η =

β

β + d
. (3.30)

Proof. The proof follows from [23], Corollary 2.6, but requires that γkv
+
γk

is

uniformly bounded in L1(Ω)nc for γk → ∞. In order to show this, we use ψ̄ and m̂
from Assumption (A4.2) and define w := mγk− 1

2m̂. Now we observe for i = 1, . . . , nc:

(Smγk)i(x) ≥ ψbi (x) ⇒ 2

ψ̄
(Sw)i(x) =

2(Smγk)i(x)− (Sm̂)i(x)

ψ̄
>

(Sm̂)i(x)

ψ̄
≥ 1,
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and

(Smγk)i(x) ≤ ψai (x) ⇒ 2

ψ̄
(Sw)i(x) ≤ − (Sm̂)i(x)

ψ̄
≤ −1,

where we used ψa ≤ 0 in the second part. By testing (3.16) with w we obtain from
(3.17):

‖γkv+
γk
‖L1(Ω)nc ≤

2

ψ̄

nc∑
i=1

∫
Ω

γk
(
([Smγk − ψb]+)i − ([ψa − Smγk ]+)i

)
(Sw)i dx

=
2

ψ̄

(
[Smγk − ψb]+ − [ψa − Smγk ]+, Sw

)
L2(Ω)nc

= − 2

ψ̄
〈j′(mγk), w〉M∗,M .

Now, for γk sufficiently large, we have mγk ∈ C with C ⊂ G as defined in the proof
of Theorem 3.8. Hence, j′(mγk) is uniformly bounded on C by Lemma 3.6, and we
conclude∣∣∣∣− 2

ψ̄
〈j′(mγk), w〉M∗,M

∣∣∣∣ ≤ c‖w‖M ≤ c(‖mγk‖M +
1

2
‖m̂‖M

)
≤ C. (3.31)

The rest of the proof follows from Corollary 2.6 in [23].
Example 3.12. Again, we consider M1 = H2(Ω) ∩H1

0 (Ω). Hence, we have the
embedding M1 ↪→ C0,β(Ω̄) with β = 1

2 for d = 2, 3 and for d = 3 we get the estimate

‖v+
γk
‖L∞(Ω)n ≤ Cγ

− 1
7

k . (3.32)

Algorithm 1 Penalty Method

1: Choose γ0 > 0, an initial model minit and ε > 0.
2: for k = 0, 1, 2, . . . do
3: Solve (Pγ) to a specified tolerance and obtain solution mγk .

4: if
∥∥v+
γk

∥∥2

L2(Ω)nc
< ε then

5: Stop with m̄ = mγk .
6: else
7: Choose γk+1 > γk and set initial model minit = mγk .
8: end if
9: end for

In order to solve (3.1), we have to compute solutions to a sequence of penalized
problems (Pγ) with increasing penalty parameter γ, which is described in Algorithm
1. It should be emphasized that due to the non-convexity of the problem, we cannot
expect to attain global solutions of (Pγ). Here, we rely on a good starting point in
the vicinity and a suitable regularization parameter.

Note that in our numerical experiments, we update the penalty parameter quite
aggressively instead of solving (Pγ) for a fixed γ to a high accuracy. In particular,
γ is increased when the current iterate is infeasible and when the last step provided
a good progress towards optimality of (Pγ). To this end, we choose a reduction of
the norm of the gradient by half an order of magnitude as criterion. This works well
for the type of constrained problems we are dealing with in section 5. We emphasize,
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however, that more sophisticated strategies on updating γ exist [20]. This would be
an interesting field for future research.

Remark 3.13. The Moreau-Yosida regularization does not ensure that m stays
within the set G during the optimization process. This can yield an operator A(m)
that is not uniformly coercive, in which case u(m) is not well-defined. To overcome
this difficulty, we can replace Φ in (2.5) by a nonlinear superposition operator that
utilizes a smooth cutoff function to guarantee that the parameters always remain
within a certain range and allows us to choose G = M . For details we refer to [4].

3.4. Trust-region Newton-CG method. In the next step, we turn to the
discussion of solving the problem (Pγ) for a fixed penalty parameter γ. We apply a
trust-region Newton-CG method to solve (Pγ), i.e., we iteratively compute approxi-
mate solutions to the trust-region subproblem

min
s∈M

qi(s) :=
〈
j′γ(mi), s

〉
M∗,M

+ 1
2

〈
(j′′(mi) + γS∗HiS)s, s

〉
M∗,M

s.t. ‖s‖M ≤ ∆i.
(3.33)

Here mi denotes the current iterate and ∆i the trust-region radius in iteration i and q
is a quadratic model function with Hi ∈ ∂D(mi) and ∂D(mi) as defined in Lemma 3.7.
The first derivatives j′(mi) and operator-vector products j′′(mi)s are computed using
adjoint-based techniques as outlined above. Instead of the exact second derivatives
in (3.33), approximations of the Hessian, e.g. by a Quasi-Newton method, can also
be used. We compute an approximate solution to (3.33) by the Steihaug conjugate
gradient method [40]. Here, the inner product induced by the norm of M is used
as preconditioner. The CG iterations are early terminated if one of the following
stopping criteria is met: a direction of negative curvature is encountered, the trust
region radius is exceeded by the current iterate, the relative residual is smaller than
a threshold, or a maximum number of CG iterations is reached.

Under a standard regularity condition on Hi in (3.33), local superlinear conver-
gence of the semismooth Newton method can be established, provided that the initial
model m0 is chosen sufficiently close to a solution m̄, cf. Theorem 2.12 in [24]. The
superlinear rate of convergence can be maintained if the generalized Newton system
is solved inexactly, cf. Algorithm 3.16 and Theorem 3.18 in [45]. To this end, we
require the Dennis-Moré conditions [8], see also Assumption 3.14 in [45]. The regu-
larity condition that is required to ensure fast local convergence is hard to verify in
practice, but we will investigate the rate of convergence in section 5.

4. Discretization. In this section, we outline the discretization of the inverse
problem. We apply a continuous high-order finite element method for the spatial
discretization of the state and an explicit time-stepping scheme, see section 4.1 and
4.2. This approach is commonly used in seismic applications, cf. [12, 42]. A high-order
discontinuous Galerkin method is described in [49]. Furthermore, we use different
spatial meshes for the state and the material parameters. This is motivated by the
fact that the information on the material properties is limited, thus a coarser mesh in
the parameter space prevents an over-parameterization. Additionally, the parameter
mesh might be adaptively refined based on goal-oriented error estimates [4] or prior
knowledge to address the varying amount of information in the data in different
regions of the domain. Using different grids for the state and the parameters requires
to interpolate the parameter values onto the finer state mesh in every iteration.

4.1. Spatial discretization of the state space. We consider two- or three-
dimensional shape-regular meshes consisting of quadrilateral or hexahedral cells K
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that cover the computational domain Ω. Th = {K} denotes the finite element mesh
and h the discretization parameter. Let Qs denote the space of polynomials of degree
s in each variable xi, i = 1, . . . , d, on the reference cell Kref = [−1, 1]d. We use the
Lagrange polynomials of degree s with the collocation points of the Gauss-Lobatto-
Legendre (GLL) quadrature rule [26] as basis of Qs. This yields a nodal basis for
the numerical representation of the elements of Qs. Let ξi, i = 0, . . . , s, denote the
collocation points of the GLL rule on the interval [−1, 1]. Furthermore, let li denote
the Lagrange polynomials associated with the points ξi. We obtain the polynomial
basis on the reference cell by tensorization of the 1d bases, i.e, for a multi-index
ι ∈ {0, . . . , s}d we define

ϕι : Kref → R, ϕι(x) :=

d∏
i=1

lιi(xi). (4.1)

By definition, the Lagrange polynomials vanish at all but one of the collocation points.
Integrals over the reference cell are approximated by the GLL quadrature rule, which
is exact for integrands in Q2s−1. Now, we introduce the finite element subspaces
V sh ⊂ V by

V sh =
{
vh ∈ C(Ω̄)d

∣∣ vh|K ∈ Q̂s(K)d ∀ K ∈ Th
}
, (4.2)

where Q̂s is obtained by bi- or trilinear transformations of the nodal basis defined on
the reference cell in every component. All numerical tests presented in this paper use
s = 4. Detailed derivations of the spatial discretization of the elastic wave equation
using this particular choice of test functions and quadrature rule can be found multiple
times in the literature, see, for instance, [6, 13, 28, 42]. Therefore, we just summarize
the outcome. By replacing V by V sh in (2.13), we obtain the Galerkin approximation
for the polynomial basis and compute the integrals with the GLL quadrature rule.
With N := dim(V sh ) and a time-dependent coefficient vector u(t) ∈ C2(Ī)N , the
spatially semi-discrete formulation of the wave equation is a system of linear ODEs
which can be written in the following form:

M̄utt(t) + K̄u(t) = F̄(t), (4.3)

Here, M̄ ∈ RN×N denotes the mass matrix (modified to include ρ), K̄ ∈ RN×N is the
stiffness matrix and F̄(t) ∈ RN is the semi-discrete force vector. Most importantly,
the quadrature rule in combination with the interpolation nodes of the Lagrange
polynomials yields a diagonal matrix M̄, which allows for an explicit time-stepping
scheme. On the other hand, this introduces an integration error, because the GLL
quadrature rule is only exact for polynomials up to degree 2s− 1.

4.2. Time discretization. Now, we turn to the temporal discretization of the
state equation. Similar to [36], we apply an explicit Newmark time-stepping scheme
to solve (4.3). Let

0 = t0 < t1 < . . . < tnt = T

be a partition of the interval Ī with constant time increment ∆t = tk − tk−1, k =
1, . . . , nt. For the Newmark time-stepping scheme we introduce a set of indepen-
dent variables uk,0,uk,1,uk,2 to approximate u(tk),ut(tk) and utt(tk), respectively.
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Furthermore, let Fk denote the time-discrete version of F(tk). The fully discrete
Newmark system is then given by the update formulas (cf. [6, 26]):

uk+1,2 = −M−1 (Kuk+1,0 − Fk+1) ,

uk+1,0 = uk,0 + ∆tuk,1 +
1

2
∆t2 uk,2,

uk+1,1 = uk,1 +
1

2
∆t (uk,2 + uk+1,2) .

(4.4)

This scheme is second-order accurate and conditionally stable, see [26], Chapter 9.
Note that M̄ and K̄ are time-invariant since the material parameters do not depend on
time and we do not change the state mesh during the simulation. While M̄ is diagonal
and can easily be hold in memory, matrix-vector products K̄uk+1,0 are computed on
the fly without assembling the matrix K̄.

The explicit Newmark time stepping scheme is widely used for the numerical
simulation of seismic wave propagation [6, 13, 28]. Note, however, that other (explicit)
time stepping schemes can be used as well. For instance, a five-stage fourth-order low-
storage Runge-Kutta method is applied in [49]. We also refer to [31], where the elastic
wave equation is discretized by the Crank-Nicolson scheme. A severe drawback of
explicit time-stepping schemes is the limitation of the step-size by the CFL condition.
However, due to the diagonal mass matrix, parallelization can be carried out much
easier as we do not have to solve a linear system in every time step.

4.3. Spatial discretization of the parameter space. As outlined above,
we completely separate the discretization of state and parameter meshes. For the
parameter mesh, we also use a continuous Galerkin finite element discretization and
introduce the finite element subspace

Ms
h =

{
mh ∈ C(Ω̄)n

∣∣mh|K ∈ Q̂s(K)n ∀ K ∈ TMh
}
. (4.5)

Here, TMh denotes the decomposition of Ω̄ for the parameter space. TMh will generally
consists of larger cells than Th. In all numerical tests, we will use a polynomial degree
of s = 1, i.e., bi- or trilinear elements. We recall the assumption M ↪→↪→ L∞(Ω)
that we required to prove the existence of a solution to the inverse problem in the
infinite-dimensional case. In order to justify the choice of bi- or trilinear elements, we
point out the regularizing effect of the discretization and the equivalence of all norms
for the finite dimensional problem. This motivates that a discrete H1-type norm
suffices in our discrete setting. In all numerical examples, we choose the regularization
term as the weighted sum of the L2-norm and the H1-seminorm, i.e., the discrete
representation of

α1‖mi‖2L2(Ω) + α2‖∇mi‖2L2(Ω)d , i = 1, . . . , n.

We use the same ratio α1/α2 to compute the ‖.‖M-norm of discrete coefficient vectors.
Typically, α2 is a few magnitudes larger than α1 as the L2-regularization would often
yield oscillating reconstructions. It is important to note that the costs of computing
M−1v for the preconditioner as well as the Riesz representation of the derivative
with respect to the M-inner product are negligible compared to solving a single wave
equation. Furthermore, the numerical results neither show oscillating solutions nor
undesirable artifacts in the reconstruction, which justifies our choice of discretization
for the parameter space.
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5. Numerical examples. In this section, we discuss some aspects of the parallel
implementation and present numerical results for inverse problems in 2d and 3d. In
order to prevent artificial reflections from the boundaries of the computational domain,
we impose the following absorbing boundary conditions at all boundaries except the
free surface, cf. [10],

(Ψ(m) : ε(u)) · ~n = vpρ (ut · ~n)~n+ vsρ (ut − (ut · ~n)~n) . (5.1)

Here, ~n denotes the normal vector pointing outwards of the domain. Depending on
the parameterization, vp and vs can, for instance, be computed using (2.3).

5.1. Implementation. The wave propagation code as well as the optimization
routines are implemented in C++. Due to the similarities in the discretization, the im-
plementation is inspired by the SPECFEM code [36]. There are, however, significant
differences in the computation of the discrete gradient and Hessian-vector products.
We make use of the Epetra data structures of the Trilinos library [17] and utilize the
therein provided MPI-communication. Parallelization is carried out in two stages.
Trivially, different seismic events can be simulated in parallel and communication is
only required during a post-processing step to add up the individual contributions to
the cost functional and its derivatives. Moreover, the implementation allows to solve
a single event on multiple cores using a spatial partitioning of the computational
domain and communication with MPI.

Table 5.1 and Table 5.2 present statistics for strong and weak parallel scaling of
a forward simulation of the elastic wave equation in 3d. Here, we consider the same
problem setup as in section 5.3. The computations are carried out on a Cray XC30
supercomputer based on Intel R© Xeon R© E5 processors. Both tables indicate a good
parallel performance.

Table 5.1
Strong scaling statistic for a simulation of the elastic wave equation in 3d. Discretization: 8,000

elements in total with 4th-order shape functions, 531,441 degrees of freedom, 4,000 time steps.

#cores 1 2 4 8 16 32 64

#elements / core 8,000 4,000 2,000 1,000 500 250 125
#dofs / core 531,441 269,001 136,161 68,921 35,301 18,081 9,261
total time (s) 458.7 233.4 122.6 67.6 33.4 16.7 8.29
par. efficiency 1.0 0.982 0.935 0.848 0.859 0.859 0.865

Table 5.2
Weak scaling statistic for a simulation of the elastic wave equation in 3d. Discretization: 1,000

elements per core with 4th order shape functions, 68,921 degrees of freedom per core, 1,000 time
steps (for all configurations). “Scaling efficiency” of N cores is defined as the ratio of the total
run-time on 8 cores and the total run-time on N cores.

#cores 8 64 512 4096

#elements 8,000 64,000 512,000 4,096,000
#elements / core 1,000 1,000 1,000 1,000

total time (s) 16.7 17.0 17.3 17.9
scaling efficiency 1.0 0.979 0.963 0.935

5.2. Joint inversion for both Lamé coefficients. In this example, we invert
for both Lamé coefficients, λ and µ, simultaneously. Here, we use additional con-
straints on the Poisson’s ratio of the material to relate both parameter fields to each



SEMISMOOTH NEWTON METHOD FOR SEISMIC TOMOGRAPHY 23

other and to ensure that this quantity remains within reasonable bounds. We refer
to Example 2.4 for a representation of the constraints.

For the test setup, we consider a time interval of 2.5s and a 2d domain of 4km ×
4km with a single source in the center. There are 360 receivers on a sphere in 1.2km
distance from the source. The reference material has a P-wave velocity of 2500m/s
and a constant Poisson’s ratio of 0.25. There are four block perturbations of the
material with a P-wave velocity of either 2750m/s or 2250m/s. These perturbations
are created by modifying either λ or µ, but not both (see first column of Figure 5.1(a)).
Thereby, the Poisson’s ratio varies from 0.15 to 0.31. Data is generated by a simulation
with this material model and adding 2% Gaussian noise. The source is modeled by
a Ricker wavelet with a dominant frequency of 10Hz. The discretized problem has
103,041 spatial grid points for the parameter and state mesh and 3,000 time steps.
Note, however, that the material is parameterized with bilinear shape functions while
the state uses 4th-order polynomials. The initial model is homogeneous with a P-wave
velocity of 2500m/s and a constant Poisson’s ratio of 0.25. We impose constraints on
the Poisson’s ratio for the inverse problem and restrict ν to [0.15, 0.31].

The reconstruction is shown in the second column of Figure 5.1. Here, we show
vp and vs computed from the reconstructed λ and µ. The right column in Figure 5.1
compares shotgathers of all receivers for the true and reconstructed material. Here,
the amplitude of the signal is visualized as a function of receiver’s location (on the
horizontal axis) and time (on the vertical axis). The order of the receivers’ locations
is clock-wise. The first arrival around 0.6s shows the P-wave and the second arrival
at roughly 1s is the S-wave. The wavefronts arrive delayed or premature due to the
heterogeneities of the material. In particular, the P-wave arrival time is affected by
all four block perturbations, while the S-wave arrival time is only sensitive to the first
two. We observe a good match between synthetic and observed data. In particular,
the misfit has been reduced by 95% compared to the initial material. Note that the
constraints never become active during the inversion, hence γ is not increased and
j and jγ coincide for every iterate. We terminate the Steihaug-CG algorithm if the
relative residual is less than

εk = 0.01 ·min{1, ‖∇jγ(mi)‖/‖∇jγ(m0)‖},

where mi denotes the i-th Newton iterate. Note that we do not impose a fixed limit
on the number of CG iterations in this example. After 22 iterations the norm of
the gradient has been reduced by more than 12 orders of magnitude and we observe
a superlinear rate of convergence, see Figure 5.2(b). However, the number of CG
iterations increases significantly for the last 7 iterations, see Figure 5.2(a). Therefore,
we test different strategies regarding the maximum number of CG iterations and
define the stopping tolerance as a reduction of the norm of the gradient by 6 orders
of magnitude, which is sufficiently accurate for inverse problems. The computational
effort is summarized in Table 5.3. With a maximum number of 20 CG iterations, 37
Newton iterations are required and the total number of simulations is higher than in
the previous case. Limiting the number of CG iterations to 40 provides a good tradeoff.
Here, only two additional Newton iterations are required compared to the unlimited
case and the total number of PDEs is about 10% less. However, a superlinear rate
of convergence cannot be observed for these two configurations, see Figure 5.2(b).
Nevertheless, simulating the elastic wave equation dominates the computational costs,
thus, the limit of 40 CG iterations gives the best result in terms of computing time.

In order to analyze the effect of constraints in more detail, we modify the prob-
lem formulation and restrict ν to values in [0.225, 0.275]. Hence, the true material is
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Fig. 5.1. Joint inversion for both Lamé coefficients. (a) First column: true P-wave velocity
(generated by modifying λ on the left half and µ on the right) and true S-wave velocity (changes only
due to µ). Second column: reconstruction of P-wave velocity (top) and S-wave velocity (bottom).
All images show the deviation from the reference material. (b) depicts shotgathers of the vertical
component of all receivers for the true material (top row) and the reconstruction (bottom row).
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Fig. 5.2. (a) shows the number of CG steps per iteration for different configurations of the
Steihaug-CG solver. (b) depicts the relative norm of the gradient in every iteration. Superlinear
convergence can be observed if we do not impose a limit on the number of CG iterations.

Table 5.3
Comparison of the computational effort for different configurations of the Steihaug-CG method.

Column 2-4 indicate the number of Newton iterations, the average number of CG iterations per
Newton iteration and the total number of PDEs that have to be solved. While the number of Newton
iterations decreases when more CG steps are allowed, the second configuration achieves the best
results in terms of PDE simulations.

max cg it Newton avg. cg it # PDEs

20 37 15.9 1370
40 23 20.4 1060
∞ 21 25.4 1162
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Fig. 5.3. Joint inversion for both Lamé coefficients with unattainable true material model. The
left and middle image depict the reconstructed P-wave (left) and S-wave velocity (middle). The
image on the right indicates the Poisson’s ratio along the diagonal line depicted in the left image.
The plot shows the true material in black, the previous reconstruction in green and the reconstruction
with “hard constraints” in red. Both, lower and upper bounds are active in parts of the domain.

infeasible and the test setup is rather of academic nature. We use the previous recon-
struction as initial model and restart the inversion, which required 6 iterations and
included 2 updates of the penalty parameter. Since the true model is unattainable,
the bounds on the Poisson’s ratio become active in the reconstruction and the result
is slightly worse. This is shown in Figure 5.3. The final misfit is 0.0378 compared
to 0.0329 in the first case. Interestingly, however, the reconstructed P- and S-wave
velocities still look very similar with a maximum pointwise difference of 29m/s for vp
and 41m/s for vs. This shows that constraints can be used to add prior knowledge
to the formulation of the inverse problem in order to restrict physical quantities that
cannot be resolved by the measurements. The Poisson’s ratio for the true material
and both reconstructions is shown in the right image of Figure 5.3.

5.3. Borehole Tomography in 3D. In this example, we consider a domain
of 4km × 4km × 4km and a time interval of 6s. There is one seismic source with
a dominant source frequency of 2.5Hz located in the lateral and longitudinal center
at 3.75km depth. There are four boreholes near the corners of the domain equipped
with receivers that measure data every 200m. In addition, there is an array of 441
stations near the surface with 21 receivers each in lateral and longitudinal directions
and a 175m spacing. Similar as in the previous example, the “true” material has
a homogeneous P-wave velocity of 2500m/s with two ball-shaped perturbations of
either 2700m/s or 2250m/s. The material model as well as the locations of sources
and receivers are shown in Figure 5.4. Here, we assume a constant Poisson’s ratio of
0.25 and invert only for λ. Again, the initial model is homogeneous with a P-wave
velocity of 2500m/s. We use the lower and upper bounds of the true material as
constraints on the absolute value of λ, which gives λ ∈ [3.375, 5.042] · 109.

For the spatial discretization of the elastic wave equation, we use 531,441 grid
points and 4,000 time steps. The parameter mesh has approximately 68,921 degrees
of freedom and is discretized by 41 × 41 × 41 grid points. Figure 5.4 shows the re-
construction on the right-hand side. Only 6 Newton iterations with a maximum of 40
CG steps are required to solve the problem to a relative tolerance of 10−6. Here, the
misfit has been reduced by more than 99%. Table 5.4 shows the iteration tableau.
Note that this inverse problem is considerably easier to solve than the previous exam-
ple. On the one hand, there is only one parameter field to determine instead of both
Lamé coefficients. On the other hand, there is a good coverage of the domain by the
receivers at the surface and inside the boreholes.
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Fig. 5.4. Borehole Tomography. The test setup is shown on the left with black dots representing
the receivers’ locations and the red dot indicating the position of the seismic source. Furthermore,
the two perturbations of the true material are visualized and projected to the bottom for a better
visibility. The right image shows the reconstruction which captures the two perturbations very well.

Table 5.4
Iteration tableau for the borehole example. The second column shows the relative decrease of the

objective function and the third column indicates the relative reduction of the optimality criterion.
All iterates are feasible.

it rel. obj. rel. optim. cg it

0 1.00 1.00
1 3.95e-01 7.09e-01 9
2 4.54e-02 6.04e-02 19
3 2.25e-02 2.57e-02 40
4 2.21e-02 5.66e-04 34
5 2.21e-02 9.34e-06 40
6 2.21e-02 3.83e-07 40

5.4. 2d elastic inversion with the Marmousi model. The last example is
based on the Marmousi data set provided by the Institut Français du Pétrole Énergies
Nouvelles [47]. It consists of a rectangular domain of 9,216m × 3,072m. The wave
velocities are highly heterogeneous and the material contains a series of normal faults
and resulting tilted blocks. Note that the original data set is an acoustic model,
however, we generate an elastic model by using the P-wave velocities of the acoustic
model and assuming a constant Poisson’s ratio of 0.25. This gives the relation λ = µ
and we invert for parameter λ only. Due to the constant Poisson’s ratio the S-wave
velocity is given by vs = (1/

√
3)vp. The P-wave velocity profile is depicted in the top

row of Figure 5.5. Here, we only consider the upper part of the domain with up to
1km depth, as the reconstruction becomes less accurate for deeper structures.

In our test setup, we place 191 seismic sources at 36m depth and use a Ricker
wavelet with a dominant frequency of 5Hz as source time function. 384 receivers that
are placed equidistantly on a horizontal line at 100m depth record the signal (with 1%
Gaussian noise added). This setup mimics a marine seismic exploration with sources
located in a water layer and geophones measuring data at the seafloor. Note, however,
that we do not explicitly model the fluid layer. For the discretized problem we use a
uniformly refined parameter mesh with 49,665 degrees of freedom. The state equation
is discretized with 197,633 degrees of freedom and 6,000 time-steps.
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The large number of seismic events makes it computationally very expensive to
consider every seismic source independently. A promising approach is to exploit the
linearity of the elastic wave operator with respect to the displacement field and to
trigger the sources simultaneously by building the weighted sum of the individual
right-hand sides [16]. In particular, we choose weights wk ∈ Rns , k = 1, . . . ,K, and
compute uk = u(m,wk) by solving the following elastic wave equation for every k:

E(uk,m) =

ns∑
i=1

wki fi, uk(0) = 0, ukt (0) = 0. (5.2)

The misfit term in the cost functional compares now the seismograms generated by
uk with the weighted sum of the observed data, i.e.,

Jfit

(
u(m,wk),

ns∑
i=1

wki u
δ
i

)
, k = 1, . . . ,K. (5.3)

Hence, we only have to consider K (super)-sources instead of ns. In this example,
we choose K = 8 and weights wki as i.i.d. samples of Rademacher’s distribution, i.e.,
wk ∈ {−1, 1}ns with P (wki = 1) = P (wki = −1) = 0.5, as has been suggested in [2].

We start the inversion using a reference model that varies only in depth and uses
the average of the true material model in the horizontal plane, see middle row of
Figure 5.5. The reconstructed material is shown in the bottom row of Figure 5.5.
Here, the misfit has been reduced by 91%. As stopping criterion we use a relative
reduction of the norm of the gradient by either 10−3 or 10−6. The CG iterations
are terminated after at most 40 iterations or if the relative residual is less than 0.01.
Table 5.5 summarizes the optimization process for the different tolerances.
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Fig. 5.5. P-wave velocity profile of the Marmousi model. Top row: true material, middle row:
initial model, bottom row: reconstruction.

In a second step, we additionally enforce lower bounds on the P-wave velocity.
In particular, we impose λ ≥ 1.4 · 109 in the whole domain. Due to the constant
Poisson’s ratio, this is equivalent (with minor rounding) to vp ≥ 1450[m/s]. This
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Table 5.5
Computational effort to solve the Marmousi test problem with and without additional con-

straints. The first column indicates the relative tolerance for the stopping criterion.

tol
unconstrained constrained

it Newton avg. cg it # PDEs it Newton avg. cg it # PDEs

10−3 24 17.0 7120 25 17.9 7800
10−6 30 21.6 11104 33 23.3 13112

Table 5.6
Iteration tableau for the Marmousi test case with constraints for increasing penalty parameter γ.

γ it Newton avg. cg it # PDEs

1 7 2.4 456
10 3 7.0 416
102 2 8.0 304
103 6 19.2 1992
104 15 39.9 9944

bound is only relevant near the surface as the velocities increase with depth and
the true Marmousi model is feasible with respect to this bound. There is a slight
improvement of the reconstruction in shallow depths up to 100m compared to the
unconstrained case. Here, the maximum relative error is reduced from 0.22094 to
0.22068. The solutions coincide for deeper structures. The number of iterations for
an increasing penalty parameter is indicated in Table 5.6. γ is updated as outlined at
the end of section 3.3. Summing up, this test shows a nice application of additional
constraints, where the solution can be slightly improved by adding prior knowledge
to the problem formulation. More importantly, the computational effort for solving
the constrained problem does not increase significantly as Table 5.5 indicates.

6. Conclusion. In this paper, we proposed a semismooth Newton method for
solving problems in full-waveform seismic tomography with additional constraints on
the material parameters. We established the continuity and Fréchet differentiability
of the parameter-to-state operator for the elastic wave equation in a suitable func-
tion space setting. Constraints on the parameters are treated by the Moreau-Yosida
regularization, which results in a penalized problem, where the first order optimality
conditions are given by a semismooth operator equation. The numerical results un-
derline the applicability of the proposed semismooth Newton-PCG method to solve
seismic inverse problems in 2d and 3d. A superlinear rate of convergence can be
observed with a suitable stopping tolerance on the CG iterations.

Since the computational costs are vastly dominated by repeatedly solving the
elastic wave equation, strategies to reduce the required number of simulations are
highly desirable and an interesting field for future research. For instance, only a subset
of the seismic sources can be used to compute Hessian-vector products. Alternatively,
an initial phase using L-BFGS [5] approximations could be incorporated requiring
only 2ns simulations per iterations. Moreover, a preconditioner for the misfit term
can be constructed using the L-BFGS approximation, cf. [10].
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