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Abstract

A variational model for image reconstruction is introduced and analyzed in function
space. Specific about the model is the data fidelity which is realized via a basis transforma-
tion with respect to a Riesz basis followed by interval constraints. This setting in particular
covers the task of reconstructing images constrained to data obtained from JPEG or JPEG
2000 compressed files. As image prior, the Total Generalized Variation (TGV) functional
of arbitrary order is employed. The present paper, being the first of two works that deal
with both analytical and numerical aspects of the model, provides a comprehensive anal-
ysis in function space and defines concrete instances for particular applications. A new,
non-coercive existence result and optimality conditions, including a characterization of the
subdifferential of the TGV functional, are obtained in the general setting.
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1 Introduction

The aim of this work is to provide a comprehensive analysis and concrete applications for a
general, regularization based model for image reconstruction. Specific for this model is the data
fidelity which is realized via interval constraints for the coefficients of some basis transformation
of the L2 – space. The original motivation for this type of data constraint comes from JPEG
decompression [47], where we aim at reconstructing an image subject to interval constraints of
the block-cosine transform of the image. As image prior, the Total Generalized Variation (TGV)
[13] functional of arbitrary order is incorporated and the model is formulated for multichannel
images, in particular color images. A formal definition of the variational problem setting can be
given as

min
u

TGVk
α(u) + IUD (u)

where TGVk
α, the TGV functional of order k, generalizes the Total Variation (TV) functional

by incorporating higher order smoothness information, and IUD is the convex indicator function
of the set UD, i.e., IUD (u) = 0 if u ∈ UD and infinity else. The set UD is formally given as

UD = {u | (Au)i ∈ Ji}
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with A a Riesz-basis transformation operator and (Ji)i non-empty closed intervals. In the appli-
cation to JPEG decompression, A is a block-wise cosine transform and, given a JPEG compressed
file, UD is the set of all images that, when compressed at the given rate, result in the same file.

The present paper is the first of two papers that cover both, a detailed analysis and the
numerical realization of the problem setting of interest. This first part provides the analysis
and defines concrete applications in function space, while the second part [12] deals with the
numerical realization in a discrete setting.

Our work is motivated by previous papers on a TV based JPEG decompression model [8] and
on applications of TGV for regularized JPEG decompression [9] and for wavelet based zooming
[10]. The present paper provides, for the first time, a unified framework for all these settings
and significantly extents the previous works both on the analysis and application side. In terms
of analysis, we deal with a general class of problems in function space that incorporate the TGV
functional of any order for regularization and allow for arbitrary Riesz bases to describe the data
constraints. A new, non-coercive existence result is obtained for this setting that allows a large
class of interval constraints on the transform coefficients. Optimality conditions, including a
characterization of the subdifferential of TGV, lay the basis for obtaining information about the
structure of solutions. In terms of applications, we are able to obtain regularized reconstructions
from both JPEG and JPEG 2000 compressed color images, extracting the information required
for data fidelity from the encoded files. As third application, a variational zooming method can
also be derived from the general setting. These applications are realized in the second paper
[12], where we use a unified algorithmic setup that yields globally convergent reconstruction
algorithms in all cases. There, we define duality based stopping criteria for the algorithm that
allow to estimate optimality in terms of the objective functional and an adaptive stepsize strategy
that is needed to obtain a reasonably fast method in the case of JPEG 2000 decompression. For
JPEG decompression, multi-core CPU and GPU implementations are also presented.

As methods to improve standard decompression and zooming techniques are an active field
of research, there exists a variety of works in this direction. In particular the improvement upon
standard JPEG decompression is an active research topic [42, 9, 8, 44, 1, 39, 43, 52]. While,
in contrast to that, variational approaches designed explicitly for JPEG 2000 decompression are
quite rare, the problem of wavelet coefficient inpainting is closely related and has been previously
investigated in [49, 51, 18, 41, 19]. As for zooming techniques, we refer to [38] for an overview
and to [10, 2, 17, 36, 34, 20, 16] for methods that are related to our approach. For a more detailed
discussion of existing techniques for each of the applications of interest, we ask for the reader’s
patience until the corresponding Subsections 4.2, 4.3, 4.4.

In contrast to application oriented approaches, there are, besides the above-mentioned TV
based model of [8], to the best knowledge of the authors, no publications available that explicitly
deal with a similar type of general problem setting in function space as it is done in the present
work.

The present first part of our work is formulated in function space and deals with the analysis
of the model. Its main section is Section 3, where the model is defined and existence as well as
optimality results are obtained. After that, concrete applications such as JPEG and JPEG 2000
decompression as well as variational image zooming are introduced and appropriate frameworks
are defined in function space in Section 4. The second paper considers the discrete setting and
deals with the algorithmic realization of the applications and provides experimental results [12].
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2 Functional-analytic background

The aim of this section is to shortly introduce notation and mathematical concepts that are of
particular relevance for this work, such as functions of bounded variation, the total generalized
variation functional as well as the concept of Riesz basis. By d ≥ 2 and m we always denote
natural numbers, typically the dimension of the domain and the range of functions, respectively.
By Ω ⊂ Rd we denote a bounded Lipschitz domain.

2.1 Total variation and spaces of bounded variation

Definition 2.1. Let B(Ω) be the Borel σ-algebra of sets in Ω. A mapping B(Ω)→ Rm is called
a Rm-valued finite Radon measure on Ω if it is σ-additive and µ(∅) = 0. We denote the variation
of a Rm-valued finite Radon measures µ by |µ| : B(X)→ R, defined as

|µ|(E) = sup

{ ∞∑
i=0

|µ(Ei)|

∣∣∣∣∣ (Ei)i≥0 in B(Ω) pairwise disjoint, E =

∞⋃
i=0

Ei

}
,

and by M(Ω,Rm) the space of all finite Radon measures on Ω.

The following classical result can be found in [3, Theorem 1.54].

Proposition 2.1. The space M(Ω,Rm) equipped with ‖µ‖M := |µ| is a Banach space. Further
it can be identified with the dual of C0(Ω,Rm) with the duality pairing

〈µ, φ〉 =

∫
Ω

φ dµ :=

m∑
i=1

∫
Ω

φi dµi,

for µ = (µ1, . . . , µm) ∈M(Ω,Rm), φ = (φ1, . . . , φm) ∈ C0(Ω,Rm), and the norm ‖ ·‖M coincides
with the dual norm.

Note that by 〈·, ·〉 we always denote a duality pairing.

Definition 2.2. We define the Total Variation (TV) functional TV : L1
loc(Ω,Rm)→ R ∪ {∞},

for u = (u1, . . . , um) ∈ L1
loc(Ω,Rm), as

TV(u) = sup


m∑
i=1

∫
Ω

ui div φi

∣∣∣∣∣∣ φ = (φ1, . . . , φm)T ∈ C1
c (Ω,Rm×d), ‖φ‖∞ ≤ 1

 ,

where ‖φ‖∞ = supx∈Ω

√∑m
j=1 |φj(x)|2 and | · | denotes the Euclidean norm on Rd. We further

define the space of functions of bounded variation

BV(Ω,Rm) = {u ∈ L1(Ω,Rm) | TV(u) <∞}

and
‖u‖BV = ‖u‖L1 + TV(u).

Functions of bounded variation are well known, in particular in the field of mathematical
image processing, and have been extensively studied in the literature. We repeat just some
properties of functions of bounded variation that are most relevant to our work and refer to
[3, 28, 53] for proofs and further information.
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Proposition 2.2. A function u = (u1, . . . , um) ∈ L1(Ω,Rm) belongs to BV(Ω,Rm) if and only
if there exist finite Radon measures Duj = (D1uj , . . . ,Dduj) ∈M(Ω,Rd), 1 ≤ j ≤ m, such that∫

Ω

uj div φ = −
∫
Ω

φ dDuj ∀φ ∈ C∞c (Ω,Rd).

Proposition 2.3. The functional TV is proper, convex and lower semi continuous in L1(Ω,Rm).
Further TV(u) = 0 if and only if there exist constants c1, . . . cm such that u = (c1, . . . , cm).

Proposition 2.4. The embedding

i : BV(Ω,Rm) ↪→ Lp(Ω,Rm)

is continuous for 1 ≤ p ≤ d
d−1 and compact for 1 ≤ p < d

d−1 .

Proposition 2.5. Let u ∈ L1(Ω,Rm). Then u ∈ BV(Ω) if and only if there exists a sequence
(un)n in C∞(Ω,Rm) such that

‖un − u‖L1
→ 0 and TV(un)→ TV(u).

2.2 The total generalized variation functional (TGV)

In this subsection we introduce the total generalized variation functional (TGV) for vector-valued
functions. It will serve as regularization term for the general image reconstruction problem set-
tings in this work. The TGV functional can be considered as generalization of the TV functional
that incorporates higher order smoothness. It still allows for jump discontinuities while, in con-
trast to TV, at the same time being able to employ higher order derivatives in smooth regions,
hence avoiding the well known staircasing effect.

The TGV functional has originally been introduced in [13] and a generalization to the vector-
valued case has been presented in [15]. We refer to [13] for a more detailed motivation and
further properties and to [11] for its analysis in the context of inverse problems.

Definition of the TGV functional requires the notion of spaces of symmetric tensors Symk(Rd)
and of tensor fields, i.e., functions mapping to spaces of symmetric tensors. We again refer to
[13] for an introduction of these spaces in the context of the TGV functional and provide, for the
readers convenience, a short summary in the Appendix. In addition, the Appendix also covers
tuples of symmetric tensors, denoted by Symk(Rd)m, which are required for the definition of the
vectorial TGV functional as follows.

Definition 2.3. We define the vectorial TGV functional of order k ∈ N and with parameters
α = (α0, . . . , αk−1) ∈ (0,∞)k, for u ∈ L1

loc(Ω,Rm), as

TGVk
α(u) = sup

{∫
Ω

udivk ξ dx

∣∣∣∣∣ ξ ∈ Ckc (Ω,Symk(Rd)m),

‖divl ξ‖∞ ≤ αl, l = 0, . . . , k − 1

}
. (1)

The norm ‖ · ‖∞ of the above definition takes the pointwise supremum with respect to a
Frobenius-type tensor norm that results from an inner product and we refer to the Appendix for
further information. Note that we abuse notation by using the same notation as for the classical
TGV functional. Also, when it is clear from the context, we will henceforth not mention the
order k and the parameter vector α.
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Remark 2.1. The above definition of the TGV functional is not the only possible generalization
to vector-valued functions. In fact, the choice of norm on Symk(Rd)m influences this definition.
The current choice has the advantage that we remain in a Hilbert space setting and hence can

identify Symk(Rd)m with
(

Symk(Rd)m
)∗

with the same norm (see also [15]). In the context of

color or hyperspectral image processing, different choices of norms on Symk(Rd)m might further
enhance reconstruction quality and we refer to [30] and [14, Section 6.3] for a discussion of
suitable color norms.

Similar to the scalar case, we define the space BGVk(Ω,Rm) as the set of all L1(Ω,Rm)
functions such that the total generalized variation functional is finite.

Definition 2.4. We define

BGVk(Ω,Rm) =
{
u ∈ L1(Ω,Rm) | TGVk

α(u) <∞
}
,

‖u‖BGVk = ‖u‖1 + TGVk
α(u).

(2)

As one would hope, basic properties of the TGVk
α functional and the space BGVk(Ω) can

easily be transferred to the vectorial TGVk
α functional and the space BGVk(Ω,Rm). The basis

for that is the following observation, which is provided in [15, Proposition 2]:

Proposition 2.6. There exist constants c, C > 0 such that, for any u = (u1, . . . , um) ∈
L1

loc(Ω,Rm),

c

m∑
i=1

TGVk
α(ui) ≤ TGVk

α(u) ≤ C
m∑
i=1

TGVk
α(ui),

We now summarize basic properties of the TGVk
α functional for vector-valued functions.

These assertions can either be shown similar to the scalar case or follow from the equivalence of
Proposition 2.6 (see [13]).

Proposition 2.7. The following statements hold:

1. TGVk
α is a semi-norm on the normed space BGVk(Ω,Rm),

2. TGVk
α and TGVk

α̃ are equivalent for α̃ ∈ (0,∞)k,

3. BGVk(Ω,Rm) is a Banach space,

4. TGVk
α is proper, convex, lower semi-continuous on each Lp(Ω,Rm), 1 ≤ p ≤ ∞,

5. TGVk
α(u) = 0, for u ∈ L1

loc(Ω,Rm), if and only if each ui, i ∈ {1, . . . ,m}, is a polynomial
of degree less that k.

In particular, equivalence of TGVk
α and TGVk

α̃ for different α, α̃ ∈ (0,∞)k justifies the notion
of BGVk(Ω,Rm) independently of α.

Next we want to transfer two important results, shown in [11] for the scalar TGV functional,
to the vector-valued case. These results are the minimum representation for TGVk

α and the
topological equivalence of BGVk to BV. The proof of the minimum representation can be done
almost exactly as in [11], thus we provide only a short sketch:
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Proposition 2.8. For any u ∈ L1(Ω,Rm) we have

TGVk
α(u) = min

vi∈BD(Ω,Symi(Rd)m),
i=1,...,k,
v0=u, vk=0

k∑
i=1

αk−i‖Evi−1 − vi‖M. (3)

where BD(Ω,Symi(Rd)m) = BD(Ω,Symi(Rd))m is the space of m – fold symmetric tensor fields
of bounded deformation, see [7], and Ev denotes the symmetrized derivative of a tensor field v,
see the Appendix.

Sketch of proof. Defining

X = C1
0(Ω,Sym1(Rd)m)× . . .× Ck0 (Ω,Symk(Rd)m),

Y = C1
0(Ω,Sym1(Rd)m)× . . .× Ck−1

0 (Ω,Symk−1(Rd)m),

the linear operator

Λ ∈ L(X,Y ), Λv =

 −v1 − div v2

· · ·
−vk−1 − div vk

 ,

and the proper, convex and lower semi-continuous functionals

F : X → ]−∞,∞], F (v) =

k∑
l=1

I{‖·‖∞≤αk−l}(vl)−
∫
Ω

udiv v1,

G : Y → ]−∞,∞], G(w) = I{(0,...,0)}(w)

it follows that
TGVk

α(u) = sup
v∈X

−F (v)−G(Λv).

Applying [4, Corollary 2.3] we then obtain

TGVk
α(u) = min

w∗∈Y ∗
F ∗(−Λ∗w∗) +G∗(w∗).

Rewriting the right hand side to become (3) and using Proposition A.1 in the Appendix, i.e.,

Ew∗i ∈M(Ω,Symi+1(Rd)m) ⇒ w∗i ∈ L1(Ω,Symi(Rd)m), 1 ≤ i < k,

the assertion follows.

The basic result for topological equivalence follows immediately from the scalar case, as shown
in [11], and Proposition 2.6.

Proposition 2.9. Let Pk−1 : Ld/(d−1)(Ω,Rm) → ker Ek be a linear, continuous and onto pro-
jection. Then, there exists a constant C > 0, only depending on k,m, α,Ω and Pk−1 such that

‖Du‖M ≤ C
(
‖u‖1 + TGVk

α(u)
)

as well as ‖u− Pk−1u‖d/(d−1) ≤ C TGVk
α(u) (4)

for all u ∈ Ld/(d−1)(Ω,Rm).

Topological equivalence and an embedding result now follow trivially.
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Corollary 2.1. There exists a λ > 0 such that, for all u ∈ BV(Ω,Rm),

TV(u) ≤ λ(‖u‖1 + TGVk
α(u)).

In particular, there exist C > c > 0 such that, for all u ∈ BV(Ω,Rm),

c(‖u‖1 + TGVk
α(u)) ≤ ‖u‖1 + TV(u) ≤ C(‖u‖1 + TGVk

α(u)).

Corollary 2.2. For 1 ≤ p ≤ d
d−1 the space BGVk(Ω,Rm) is continuously embedded into

Lp(Ω,Rm). If, moreover, 1 ≤ p < d
d−1 , the embedding is compact.

Thus, since by Corollary 2.1 BV(Ω,Rm) ' BGVk(Ω,Rm) as Banach spaces, we will in the
following only use the notion BV(Ω,Rm).

We will require a smooth approximation of functions in BV(Ω,Rm) and BD(Ω,Symk(Rd)m)
in a suitable topology. As these spaces are large, the topology has to be chosen sufficiently weak
to achieve such approximations. The notion of strict convergence and weak-star convergence
play an important role in this context and we refer to [11, 7] for results in these topologies. The
approximation result needed in this work is the following:

Proposition 2.10. For any l ∈ N, v ∈ BD(Ω,Syml(Rd)m) and w ∈ BD(Ω,Syml+1(Rd)m), there
exists a sequence (φn)n in C∞(Ω,Syml(Rd)m) such that

‖φn − v‖d/(d−1) → 0 and ‖Eφn − w‖M → ‖Ev − w‖M as n→∞.

Proof. A straight forward adaption of [11, Lemma 5.4] to the vector valued case gives a sequence
(ψn)n in C∞(Ω,Syml(Rd)m) ∩ BD(Ω,Syml(Rd)m) such that

‖ψn − v‖1 → 0 and ‖Eψn − w‖M → ‖Ev − w‖M as n→∞.

Now as BD(Ω,Syml(Rd)m) is continuously embedded in Ld/(d−1)(Ω,Syml(Rd)m) (see [7, The-
orem 4.16]), we can transfer Lp–mollification arguments, see [28, Section 4.2] for instance, and
replace the L1 convergence of (ψn)n by Ld/(d−1) convergence. Further, as the φn are in par-
ticular contained in W 1,1(Ω,Symk(Rd)m) and Ω is a bounded Lipschitz domain, we can exploit
standard Sobolev approximation techniques, see [28, Theorem 4.2.3], to approximate each φn by
ψn ∈ C∞(Ω,Symk(Rd)m) with respect to the W 1,1–topology and the result follows.

2.3 The notion of Riesz basis

The concept of a Riesz basis extends the classical notion of an orthonormal basis.

Definition 2.5. Let H be a Hilbert space. We say that a sequence (an)n in H is a Riesz
Basis of H if span({an|n ∈ N}) is dense in H and there exist 0 < A ≤ B such that, for any
c = (ci)i∈N ∈ `2, we have

A
∑
n∈N

c2n ≤
∥∥∑
n∈N

cnan
∥∥2

H
≤ B

∑
n∈N

c2n. (5)

If (an)n is an orthonormal basis, equation (5) holds with A = B = 1. Thus, orthonormal
bases are indeed Riesz bases. An important property of any Riesz basis (an)n is the existence of
a dual sequence (ãn)n that again is a Riesz basis.

Proposition 2.11. Let (an)n be a Riesz basis of a Hilbert space H. Then, there exists a sequence
(ãn)n, the dual Riesz basis, such that also (ãn)n is a Riesz basis of H and

(ai, ãj)H = δi,j =

{
1 if i = j

0 else.
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Proof. See [50, Theorem 1.9].

As can be shown, the notion of Riesz basis is the most general basis concept that ensures a
sequence to be complete and the resulting basis transformation to be continuous and continuously
invertible. Hence Riesz bases fit very well to our data modeling in a general image reconstruction
setting later on. There we mainly deal with component-wise bases, e.g. m possibly different Riesz
bases (ain)n, i = 1, . . . ,m, of L2(Ω), and aim at reconstructing images contained in a set given
as

UD = {u ∈ L2(Ω,Rm) | (ain, u)L2 ∈ J in for all n ∈ N, i = 1, . . . ,m}

with (J in) being closed intervals.
The following remark emphasizes the connection of m component-wise Riesz bases to Riesz

bases in L2(Ω,Rm). In particular, also interval restrictions as above naturally transfer to vector-
valued bases.

Remark 2.2. For i = 1, . . . ,m, let (ain)n be Riesz bases of L2(Ω). Then, (an)n = (a1
n, . . . , a

m
n )n

defined by

ain =

{
aik for i = j + 1 with n− 1 = km+ j, k, j ∈ N0

0 else,

is a Riesz basis of L2(Ω,Rm). Further, given any u = (u1, . . . , um) ∈ L2(Ω,Rm), and intervals
(J in)n, for 1 ≤ i ≤ m, n ∈ N,

(ain, u
i)L2 ∈ J in for all 1 ≤ i ≤ m,n ∈ N

is equivalent to
(an, u)L2 ∈ Jn for all n ∈ N,

where each Jn corresponds to one J in.

3 The general reconstruction model

This is the main section of the work, where we study the general, TGVk
α regularized reconstruc-

tion model. As already mentioned, the original motivation for this model was the application
to artifact-free JPEG decompression. However, due to a general problem statement, it will be
applicable to a broad class of problems in mathematical imaging. We will start with a brief
motivation followed by a definition and analysis of the model in function space setting. Note
that we will, without further comment, make use of the notation introduced in Section 2.

3.1 Problem statement

Before we state the minimization problem and a set of generic assumptions, which make the
problem setting precise, we would like to briefly sketch the original motivation for our consider-
ations; a model for artifact free JPEG decompression [1, 8]. For a detailed introduction to this
topic we ask for the readers patience until Subsection 4.2.

Given an image u, the main step of JPEG compression is a transformation by a blockwise
cosine transformation operator followed by quantization to integer values. As a result, in the
compressed JPEG file, the image u is described by quantized integers of its coefficients for a basis
representation with respect to a blockwise cosine basis. Due to quantization, this data does not
provide enough information to determine a unique source image of the compression process. But
it is possible to define a set of basis coefficient data, whose quantization would coincide with the
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compressed image data. Denoting this set of basis coefficient data D and the blockwise cosine
transformation operator BDCT, we can formally define the (convex) set of possible source images
for any given compressed JPEG file by

UD = {u | BDCT(u) ∈ D}.

Thus, reconstructing an image from a given compressed JPEG file requires to choose one element
of UD as reconstruction. This choice can be motivated by a predefined image model, which is in
our case realized by using the TGV functional as regularization term.

Keeping this application in mind, we now consider the following minimization problem

min
u∈L2(Ω,Rm)

TGVk
α(u) + IUD (u), (6)

where we use the assumptions

(A)



Ω ⊂ R2 is a bounded Lipschitz domain, m ∈ N,
(an)n in L2(Ω,Rm) is a Riesz basis,

(ãn)n, the dual basis of (an)n, is contained in BV(Ω,Rm),

A : L2(Ω,Rm)→ `2, (Au)n := (u, an)L2 ,

(Jn)n is a sequence of non-empty, closed intervals,

D =
{
z ∈ `2 | zn ∈ Jn ∀n ∈ N

}
,

UD = {u ∈ L2(Ω,Rm) |Au ∈ D},
there is a finite index set W ⊂ N such that

Uint := {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn ∀n ∈ N \W} has non-empty interior,

k ∈ N and α = (α0, ..., αk−1) ∈ (0,∞)k.

By IUD we denote the convex indicator function of UD, i.e.,

IUD (u) =

{
0 if u ∈ UD,
∞ else.

Thus, solving the minimization problem (6) amounts to finding a function in UD minimizing
TGVk

α.
Thinking again of JPEG decompression, the operator A in assumption (A) will be the BDCT

operator, while (an)n will be an orthonormal blockwise cosine basis. The dimension of the image
space, m ∈ N, reflects the number of image components, typically m = 3 for color and m = 1 for
grayscale images.

The assumption that Uint has non-empty interior can be seen as a generalization of the
assumption that the data set UD has non-empty interior, which is satisfied in the application
to JPEG decompression, and will be needed for the analysis of the model. The more general
assumption is motivated by the application of the model to zooming problems, where typically
finitely many of the intervals (Jn)n will consist only of a single point.

At last let us emphasize that in particular the assumption of (an)n being a Riesz basis
results in applicability of our framework beyond JPEG decompression, as will be discussed in
more detail in Subsection 4.1. Note also that assumption (A) allows in particular to choose m
different scalar-valued Riesz bases for L2(Ω) and apply all results within assumption (A) to a
corresponding Riesz basis of L2(Ω,Rm) as in Remark 2.2.
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3.2 Existence of a solution

We show existence of a solution to the minimization problem (6) under assumption (A). First
note that properness of the objective function follows easily from Uint having non-empty interior
and (ãn)n in BV(Ω,Rm), but could have also been obtained by the more general assumption
UD ∩ BV(Ω,Rm) 6= ∅.

To obtain existence, we make one additional assumption which controls the number of half-
bounded intervals, i.e., intervals of the form [l,∞) or (−∞, o] with l, o ∈ R. For this purpose, we
define Pk−1(Ω,Rm) to be the set of Rm-valued polynomials of order less than k.

(EXk)


With the definitions of (A), denote by

I = {n ∈ N | Jn is half-bounded and there exists r ∈ Pk−1(Ω,Rm) s.t. (r, an) 6= 0},
and assume that I is a finite set.

Remark 3.1. Note that in case only finitely many Jn are half-bounded, (EXk) is trivially sat-
isfied. In particular (EXk) allows arbitrary many intervals to contain all of R, thus it holds for
any combination of bounded intervals and intervals containing all of R and is also satisfied in
non-trivial settings where the objective functional is not coercive.

As a consequence of [6, Theorem 2.1] it suffices to show the following two assertions for
F := TGVk

α + IUD to obtain existence of a solution to the minimization problem (6).

(H1) For each sequence (xn)n in L2(Ω,Rm) satisfying

‖xn‖L2 →∞, (F (xn))n bounded above and
xn
‖xn‖L2

→ x

we have
F (xn − x) ≤ F (xn) for n sufficiently large

(H2) For any real sequence (tn)n with tn → ∞ and any bounded sequence (xn)n with xn ⇀ x
weakly in L2(Ω,Rm) such that F (tnxn) is bounded above, (xn)n converges strongly to x.

In fact, given (H2) and that F is bounded below, it has been shown in [6] that a slightly weaker
version of (H1) is even necessary and sufficient for existence of a solution. However, since (H1) is
sufficient for our purposes, we stick with the modified version in order to avoid the introduction
of additional notation.

Proposition 3.1. Let (A) and (EXk) be satisfied. Then there exists a solution to (6).

Proof. We first verify (H2). Take the sequences (tn)n and (xn)n as in (H2). Since TGVk
α(tnxn)

is bounded above, choosing Pk−1 : L2(Ω,Rm) → Pk−1(Ω,Rm) to be a linear, continuous onto
projection, we get by Proposition 2.9 that tnxn−Pk−1(tnxn) is bounded. Hence, xn−Pk−1(xn)
converges strongly to zero. Now, weak convergence of (xn)n to x ∈ L2(Ω,Rm) implies strong
convergence of (Pk−1(xn))n to Pk−1(x). Hence we get from xn = xn−Pk−1(xn) +Pk−1(xn) and
uniqueness of the weak limit that xn converges strongly to x = Pk−1(x) and the claim follows.

Now assume there exists (xn)n as in (H1). Again from boundedness of TGVk
α(xn) it follows

that xn − Pk−1(xn) is bounded. Hence x = limn→∞
xn

‖xn‖L2
= limn→∞

Pk−1(xn)
‖xn‖L2

∈ Pk−1(Ω,Rm).

Now fix i ∈ N and note first that, since (xn/‖xn‖L2 , ai)L2 → (x, ai)L2 , we can find εn,i such
that εn,i → 0 as n→∞ and

‖xn‖L2((x, ai)L2 + εn,i) = (xn, ai)L2 ∈ Ji. (7)

Indeed, (xn, ai)L2 ∈ Ji for all i and n since F (xn) is bounded. We consider possible cases for i:
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• If Ji is bounded we can deduce from (7) that (x, ai)L2 = 0.

• If i ∈ I and Ji = [li,∞) with li ∈ R then necessarily (x, ai)L2 ≥ 0 and, if the inequality is
strict, we can find ni such that for all n ≥ ni,

(xn, ai)L2 = ‖xn‖L2((x, ai)L2 + εn,i) ≥ (x, ai)L2 + li.

• If i ∈ I and Ji = (∞, oi] with oi ∈ R then necessarily (x, ai)L2 ≤ 0 and, if the inequality is
strict, we can find ni such that for all n ≥ ni,

(xn, ai)L2 = ‖xn‖L2((x, ai)L2 + εn,i) ≤ (x, ai)L2 + oi.

• In the remaining cases i /∈ I and either (x, ai)L2 = 0 (recall that x ∈ Pk−1(Ω,Rm) and the
definition of I) or Ji = R.

Since I is finite, we can define n0 = max{ni | i ∈ I} and get that

(xn, ai)L2 − (x, ai)L2 ∈ Ji for all i ∈ N, n ≥ n0.

and consequently

TGVk
α(xn − x) + IUD (xn − x) = TGVk

α(xn) + IUD (xn)

for all n ≥ n0 from which (H1) follows.

Remark 3.2. By inspection of its proof, we note that the above existence result still holds for
a weaker version of assumption (A). Indeed, instead of being a Riesz basis, (an)n can be any
sequence in L2(Ω,Rm) (without dual basis) and the assumption that Uint has non-empty interior
was also not needed. However, in order to get existence of a non-trivial minimizer one needs at
least UD ∩ BV(Ω,Rm) 6= ∅. The other assumptions of (A) will be necessary to obtain optimality
conditions for (6).

Remark 3.3. It can also be seen from the proof of Proposition 3.1 that (EXk) was necessary only
to assure (H1). Hence, the weaker version of (H1) presented in [6] is necessary and sufficient
for existence of a solution to (6). However, the question whether (H1) is true or false without
assuming (EXk) remains open.

Remark 3.4. There is another possibility of obtaining existence of a solution to (6) for an

arbitrary number of half-bounded intervals, which only requires mk(k+1)
2 (the dimension of the

Rm-valued polynomials of degree less that k) suitable intervals to be bounded. Both this assump-
tion and (EXk) hold for all applications considered in this work. However, since (EXk) is easier
to check, we do not discuss the alternative existence result here but rather refer to [33].

3.3 Optimality Conditions

Having obtained existence of a solution to (6) for reasonable assumptions we now draw our
attention to the derivation of optimality conditions. For this purpose, we will make use of the
following obvious identity: Given F a function,

u∗ = arg
u

minF (u) ⇔ 0 ∈ ∂F (u∗).

The derivation of an optimality condition will thus be preceded by three main steps:

• Describe ∂TGVk
α, the subdifferential of TGVk

α.

• Describe ∂IUD , the subdifferential of IUD .

• Show additivity of the subdifferential operator under assumption (A).

11



3.3.1 Subdifferential of the TGV functional

As the data fidelity term in our main minimization problem requires a Hilbert setting and
BV(Ω,Rm) continuously embeds in Lp(Ω,Rm) only for p ≤ d/(d− 1), we are bound to the case
d = 2 in the analysis within assumption (A). However, since the subdifferential of the TGV
functional can be analyzed independently and such an analysis is of interest not only for our
specific problem setting, we will for a moment leave the context of assumption (A) and, in this
subsection, always use the following assumptions:

d ≥ 2, p ∈ R with 1 < p ≤ d
d−1 and m ∈ N.

Further, we will denote the conjugate exponent of p by p′ := p
p−1 . Note that the restriction

on p is to maintain a continuous embedding of BV(Ω,Rm) to Lp(Ω,Rm) (see Proposition 2.4).
Also, for this subsection, we always assume TGVk

α to be a functional defined on Lp(Ω,Rm).
A characterization of ∂TGVk

α requires a notion of tensor fields whose divergence up to a given
order k can, in the weak sense, be identified with tensor fields in Lq. The space of such tensor
fields, which we denote by W q(divk; Ω,Symk(Rd)m), is a generalization of the space H(div; Ω),
as described for example in [29, Chapter 1], and also many properties can easily be generalized.

Definition 3.1. Let 1 ≤ q < ∞, g ∈ Lq(Ω,Syml(Rd)m). We say that w = div g in Lq(Ω,
Syml−1(Rd)m) if there exists w ∈ Lq(Ω,Syml−1(Rd)m) such that for all φ ∈ C∞c (Ω,Syml−1

(Rd)m) ∫
Ω

(∇⊗φ) · g = −
∫
Ω

φ · w.

Furthermore, we define

W q(divk; Ω,Symk(Rd)m) =
{
g ∈ Lq(Ω,Symk(Rd)m) |

divl g ∈ Lq(Ω,Syml(Rd)m) for all 1 ≤ l ≤ k
}

with the norm ‖g‖q
W (divk)

:=
∑k
l=0 ‖ divl g‖qLq .

Remark 3.5. Density of C∞c (Ω,Syml−1(Rd)m) in Lq(Ω,Syml−1(Rd)m) implies that, if there
exists w ∈ Lq(Ω,Syml−1(Rd)m) as above, it is unique. By completeness of Lq(Ω,Syml(Rd)m),
for 0 ≤ l ≤ k it follows that W q(divk; Ω,Symk(Rd)m) is a Banach space when equipped with
‖ · ‖W q(divk).

Definition 3.2. We define, again for 1 ≤ q <∞,

W q
0 (divk; Ω,Symk(Rd)m) = C∞c (Ω,Symk(Rd)m)

‖·‖
Wq(divk)

.

We now proceed towards a characterization of ∂TGVk
α by first describing the convex conjugate

(or polar) of the TGVk
α functional.

Proposition 3.2. The convex conjugate of TGVk
α, denoted by

TGVk
α

∗
: Lp

′
(Ω,Rm)→ R,

has the form

TGVk
α

∗
(v) = I

Ckα
(v) =

{
0 if v ∈ Ckα
∞ if v /∈ Ckα

12



where
Ckα :=

{
divk ξ

∣∣∣ ξ ∈ Ckc (Ω,Symk(Rd)m), ‖ divl ξ‖∞ ≤ αl, l = 0, ..., k − 1
}
, (8)

and the closure is taken with respect to the Lp
′

norm.

Proof. This follows easily from convexity and lower semi-continuity of TGVk
α and I

C
k
α

since

TGVk
α(u) = I∗Ckα(u)

and thus (see [27, Propositions 3.2 and 4.1]),

TGVk
α

∗
(v) = I∗∗Ckα(v) = I

Ckα
(v).

A more detailed description of TGVk
α

∗
follows from a study of Ckα:

Proposition 3.3. With Ckα as in Proposition 3.2, we have

Ckα =
{

divk g
∣∣∣ g ∈W p′

0 (divk; Ω,Symk(Rd)m), ‖ divl g‖∞ ≤ αl, l = 0, ..., k − 1
}

:= Kk
α. (9)

Proof. In order to show that Ckα ⊂ Kk
α it is sufficient to show that Kk

α is closed with respect to
‖ · ‖Lp′ . Define

W p′,α
0 (divk) := {g ∈W p′

0 (divk; Ω,Symk(Rd)m)
∣∣ ‖ divl g‖∞ ≤ αl, l = 0, ..., k − 1}.

Now let h ∈ Kk
α. There exists a sequence (gn)n≥0 in W p′,α

0 (divk) such that limn→∞ divk gn = h.

If we can show that there exists g ∈W p′,α
0 (divk) such that divk g = h, closedness of Kk

α follows.

By boundedness of ‖ divl gn‖∞, 0 ≤ l < k, there exist hl ∈ Lp′(Ω,Symk−l(Rd)m) and a set of
increasing indices (ni)i in N such that

divl gni ⇀
Lp′

hl as i→∞, for all 0 ≤ l < k.

Denoting hk = h it follows that, for 0 ≤ l ≤ k − 1 and φ ∈ C∞c (Ω,Symk−1−l(Ω)m),∫
Ω

hl · Eφ = lim
i→∞

∫
Ω

divl gni · Eφ = lim
i→∞

(−1)

∫
Ω

divl+1 gni · φ = (−1)

∫
Ω

hl+1 · φ

which implies g := h0 ∈W p′(divk; Ω,Symk(Rd)m) and divl g = hl, 0 ≤ l ≤ k.

In order to prove that g ∈W p′,α
0 (divk) we note that the set

{
(z,div z, . . . ,divk z)|z ∈W p′,α

0 (divk)
}
⊂ Lp

′
(Ω,

k×
l=0

Symk−l(Rd)m)

is convex and closed – and therefore weakly closed. Since the sequence ((gni ,div gni , . . . ,divk gni))n

is contained in this set and converges weakly to (g,div g, . . . , divk g) it follows that g ∈W p′,α
0 (divk).

Next, we prove Kk
α ⊂ Ckα. To this aim, it suffices to show that, for g ∈W p′,α

0 (divk) arbitrary,
we have ∫

Ω

udivk g ≤ TGVk
α(u) for all u ∈ BV(Ω,Rm),
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since this implies that TGVk
α

∗
(divk g) = 0 and hence divk g ∈ Ckα. In view of the equivalent

characterization of TGVk
α as given in Proposition 2.8, we prove the more general assertion that,

for any l = 1, . . . , k it holds that, for any v ∈ BD(Ω,Symk−l(Rd)m),∣∣∣∣∣∣
∫
Ω

v · divl g

∣∣∣∣∣∣ ≤ inf
vi∈BD(Ω,Symk−l+i(Rd)m),

i=1,...,l,
v0=v, vl=0

l∑
i=1

αl−i‖Evi−1 − vi‖M.

Setting l = k then implies the result. We show this assertion by induction. For l = 1 we get, by
a divergence theorem for tensor fields [13, Proposition 2.1], for φ ∈ C∞(Ω,Symk−1(Rd)m) and
ψ ∈ C∞c (Ω,Symk(Rd)m), ∫

Ω

φ · divψ = −
∫
Ω

Eφ · ψ.

Exploiting density, we can replace ψ by g ∈W p′,α
0 (divk) and estimate∣∣∣∣∣∣

∫
Ω

φ · div g

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

Eφ · g

∣∣∣∣∣∣ ≤ α0‖Eφ‖1.

Now approximating an arbitrary v ∈ BD(Ω,Symk−1(Rd)m) by a sequence (φn)n contained in
C∞(Ω,Symk−1(Rd)m) as in Proposition 2.10, the induction basis follows. For any l ∈ {2, . . . , k}
we take φ ∈ C∞(Ω,Symk−l(Rd)m), apply the divergence theorem and add and subtract v1 ∈
BD(Ω,Symk−l+1(Rd)m) to get∣∣∣∣∣∣

∫
Ω

φ · divl g

∣∣∣∣∣∣ ≤ αl−1‖Eφ− v1‖1 +

∣∣∣∣∣∣
∫
Ω

v1 · divl−1 g

∣∣∣∣∣∣ .
Again using a smooth approximation as in Proposition 2.10 the assertion follows from the induc-
tion hypothesis for l − 1.

Having a sufficient description of TGVk
α

∗
, we can now characterize its subdifferential. The

relation
u∗ ∈ ∂TGVk

α(u) ⇔ TGVk
α(u) + TGVk

α

∗
(u∗) = 〈u, u∗〉.

(see [27], Proposition I.5.1) together with the description of TGVk
α

∗
immediately implies the

following result:

Theorem 3.1. Let u ∈ Lp(Ω,Rm), u∗ ∈ Lp′(Ω,Rm). Then, u∗ ∈ ∂TGVk
α(u) if and only if

u ∈ BV(Ω,Rm) and there exists g ∈ W p′

0 (divk; Ω,Symk(Rd)m) such that ‖ divl g‖∞ ≤ αl,
l = 0, . . . , k − 1, u∗ = divk g and

TGVk
α(u) =

∫
Ω

udivk g.

(10)
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3.3.2 Subdifferential of the data term

In order to describe ∂IUD , first note that we can decompose IUD = ID ◦ A. Since ∂ID can
be described quite easily, we use a chain rule to deduce ∂IUD = ∂(ID ◦ A) = A∗∂ID ◦ A and,
consequently, to characterize ∂IUD .

To this aim, we first summarize the relation between Riesz bases and transformation operators
in the following proposition that can be shown by standard arguments.

Proposition 3.4. Let (an)n and (ãn)n be two Riesz bases in duality in the Hilbert space H.
Then, the operators

A :H → `2

u 7→ ((u, an)H)n

Ã :H → `2

u 7→ ((u, ãn)H)n

are both continuous and possess continuous inverses with

A−1 = Ã∗ Ã−1 = A∗.

Their adjoints are given by

A∗λ =
∑
n∈N

λnan, Ã∗λ =
∑
n∈N

λnãn.

Using in particular bijectivity of A, the subdifferential of IUD can now be characterized as
follows.

Proposition 3.5. Let (A) be satisfied. Then

u∗ ∈ ∂IUD (u) ⇔ u ∈ UD and u∗ = A∗λ

with λ = (λn)n ∈ `2 such that, for every n ∈ N,
λn ≥ 0 if (Au)n = sup(Jn) 6= inf(Jn),

λn ≤ 0 if (Au)n = inf(Jn) 6= sup(Jn),

λn = 0 if (Au)n ∈ int(Jn),

λn ∈ R if (Au)n = inf(Jn) = sup(Jn).

(11)

Proof. At first, since A : L2(Ω,Rm) → `2 is bijective and dom(ID) 6= ∅, we can apply [24,
Corollary 16.42] to obtain

u∗ ∈ ∂IUD (u) ⇔ u∗ = A∗λ

for some λ ∈ ∂ID(Au). By a standard result in convex analysis we have

λ ∈ ∂ID(Au) ⇔ Au = PD(Au+ λ).

where, by a straightforward argument, PD can be reduced to a component-wise projection;

Au = PD(Au+ λ) ⇔ (Au)n = PJn((Au)n + λn) ∀n ∈ N.

From that, the assertion follows by an easy case study.
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3.3.3 Additivity of the subdifferential

At last, we need to show that ∂(TGVk
α + IUD )(u) = ∂TGVk

α(u) + ∂IUD (u). For that, we first
decompose IUD = IUint

+ IUpoint
where, based on assumption (A),

Uint = {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn ∀n ∈ N \W}

and
Upoint = {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn ∀n ∈W}

for a finite index set W ⊂ N such that int(Uint) 6= ∅.

Theorem 3.2. Let (A) be satisfied. Then, for all u ∈ L2(Ω,Rm),

∂(TGVk
α + IUD )(u) = ∂TGVk

α(u) + ∂IUD (u). (12)

Proof. Let u ∈ L2(Ω,Rm). It is sufficient to show ∂(TGVk
α + IUD )(u) ⊂ ∂TGVk

α(u) + ∂IUD (u),
since the other inclusion is always satisfied. Continuity of IUint

in at least one point u ∈
BV(Ω,Rm) ∩ UD allows to apply [27, Proposition I.5.6], and to assure that

∂(TGVk
α + IUpoint

+ IUint
)(u) ⊂ ∂(TGVk

α + IUpoint
)(u) + ∂IUint

(u).

We now want to use [4, Corollary 2.1] to establish

∂(TGVk
α + IUpoint

)(u) ⊂ ∂TGVk
α(u) + ∂IUpoint

(u),

for which it is sufficient to show that dom(TGVk
α)− dom(IUpoint

) = L2(Ω,Rm). But this is true
since, for any w ∈ L2(Ω,Rm), by taking jn ∈ Jn for n ∈W , we can write

w = w1 − w2

where
w1 =

∑
n∈W

((an, w)L2 + jn) ãn ∈ dom(TGVk
α(u))

as (A) assumes that each ãn ∈ BV(Ω,Rm), and

w2 = −
∑

n∈N\W

(an, w)L2 ãn +
∑
n∈W

jnãn ∈ dom(IUpoint
).

Again, since
∂IUpoint(u) + ∂IUint(u) ⊂ ∂(IUpoint + IUint)(u) = ∂IUD (u)

is always satisfied, the assertion is proved.

3.3.4 Optimality system

The previous results now allow to derive an optimality system:

Theorem 3.3. Let (A) and (EXk) be satisfied. Then there exists a solution of

min
u∈L2(Ω,Rm)

(
TGVk

α(u) + IUD (u)
)

and the following are equivalent

16



1. û ∈ arg min
u∈L2(Ω,Rm)

(
TGVk

α(u) + IUD (u)
)

= arg min
u∈UD

TGVk
α(u),

2. û ∈ BV(Ω,Rm) ∩ UD and there exist g ∈ W 2
0 (divk; Ω,Symk(R2)m) and λ = (λn)n in `2

satisfying

(a) ‖divl g‖∞ ≤ αl, l = 0, ..., k − 1,

(b) TGVk
α(û) = −

∫
Ω

ûdivk g,

(c) divk g =
∑
n∈N λnan, where, for all n ∈ N, λn ≥ 0 if (Aû)n = sup(Jn) 6= inf(Jn),

λn ≤ 0 if (Aû)n = inf(Jn) 6= sup(Jn),
λn = 0 if (Aû)n ∈ int(Jn),

(note that, if Jn = {jn}, there is no additional condition on λn),

3. û ∈ BV(Ω,Rm) ∩ UD and there exists g ∈W 2
0 (divk; Ω,Symk(R2)m) satisfying

(a) ‖divl g‖∞ ≤ αl, l = 0, ..., k − 1,

(b) TGVk
α(û) = −

∫
Ω

ûdivk g,

(c) For all n ∈ N,
(divk g, ãn)L2 ≥ 0 if (Aû)n = sup(Jn) 6= inf(Jn)

(divk g, ãn)L2 ≤ 0 if (Aû)n = inf(Jn) 6= sup(Jn)

(divk g, ãn)L2 = 0 if (Aû)n ∈ int(Jn).

Proof. Existence of a solution follows from Proposition 3.1. Equivalence of 2. and 3. follows
from biorthogonality of (an)n and (ãn)n (see Proposition 2.11), so it is left to show equivalence
of 1. and 2. For this purpose, let

û ∈ arg min
u∈L2(Ω,Rm)

(
TGVk

α(u) + IUD (u)
)
.

Thus 0 ∈ ∂(TGVk
α + IUD )(û) and by additivity of the subdifferential for this setting (see

Theorem 3.2) we have 0 ∈ ∂TGVk
α(û) + ∂IUD (û). Hence, there exist z1 ∈ ∂TGVk

α(û) and
z2 ∈ ∂IUD (û) such that 0 = z1 + z2. Now by Theorem 3.1, û ∈ BV(Ω,Rm) and there exists g ∈
W 2

0 (divk; Ω,Symk(R2)m) satisfying 2.(a) such that z1 = −divk g and TGVk
α(û) = −

∫
Ω
ûdivk g.

Clearly, we have divk g = z2. By Proposition 3.5 there exists λ = (λn)n ∈ `2, satisfying the
element-wise conditions in 2.(c), such that divk g = A∗λ =

∑
n∈N λnan, the latter by Propo-

sition 3.4. For the converse implication, observe that conditions 2.(a) and 2.(b) together with
û ∈ BV(Ω,Rm) imply that −divk g ∈ ∂TGVk

α(û) (Theorem 3.1), while 2.(c) together with
û ∈ UD imply that divk g ∈ ∂IUD (û) (Proposition 3.5). Hence 0 ∈ ∂TGVk

α(û) + ∂IUD (û) =
∂(TGVk

α(û) + IUD )(û) and û is a minimizer.
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4 Application to data reconstruction

The purpose of this section is to show how various models related to mathematical imaging
problems are covered by the framework as derived in Section 3. In the first subsection, we
give some remarks about the general class of problem settings to which the theory of Section 3
can be applied. Then, in the succeeding subsections, we will study the specific application to
decompression and zooming problems in detail.

4.1 A general class of problem settings

The aim of this subsection is to describe a class of inverse problems whose TGVk
α regularization

fits into the general framework of Section 3. The basis for such a description is the following
proposition, which replaces the Riesz basis transform in (A) with any bounded linear operator
B : L2(Ω,Rm)→ `2 having closed range and allows for more general interval constraints.

Proposition 4.1. Let B : L2(Ω,Rm) → `2 be a bounded linear operator with closed range and,
with (ei)i∈N , N ⊂ N, a Riesz basis of its range and (Jn)n non-empty, closed intervals, define

UD := {u ∈ L2(Ω,Rm) | (Bu, en)`2 ∈ Jn for all n ∈ N}. (13)

Then there exist non-empty, closed intervals (J̃n)n, and a Riesz basis (an)n of L2(Ω,Rm)
such that, with A : L2(Ω,Rm)→ `2 the basis transformation operator corresponding to (an)n, we
have

UD = {u ∈ L2(Ω,Rm) | (Au)n ∈ J̃n for all n ∈ N}.
Proof. Denote by (ẽi)i∈N the dual Riesz basis to (ei)i∈N and by (zi)i∈N\N an orthonormal basis
of ker(B). With these definitions, we choose sequences (an)n, (ãn)n in L2(Ω,Rm) according to

ai =

{
B∗ei if i ∈ N,
zi if i ∈ N \N,

and

ãi =

{
B−1ẽi if i ∈ N,
zi if i ∈ N \N,

where B−1 : Rg(B)→ ker(B)⊥ denotes the inverse of B : ker(B)⊥ → Rg(B) which is linear and
continuous. We would like to show that (ai)i and (ãi)i are biorthogonal Riesz bases. For this
purpose, according to [50, Theorem 1.9], it suffices to show that (ai)i and (ãi)i both have dense
linear spam, are biorthogonal and that for any f ∈ L2(Ω,Rm) we have∑

n∈N
|(f, an)L2 |2 <∞,

∑
n∈N
|(f, ãn)L2 |2 <∞.

Concerning density, suppose that, for arbitrary w1, w2 ∈ L2(Ω,Rm), (an, w1)L2 = 0 as well as
(ãn, w2)L2 = 0 for all n ∈ N. Given that (zi)i∈N\N is a basis for ker(B), this implies w1, w2 ∈
ker(B)⊥. But 0 = (an, w1)L2 = (en, Bw1)`2 for all n ∈ N implies that Bw1 = 0, thus w1 ∈ ker(B)
and w1 = 0. Similar, 0 = (ãn, w1)L2 = (B−1en, w1)L2 for all n ∈ N implies, by surjectivity of
B−1 : Rg(B)→ ker(B)⊥, that also w2 = 0. Thus both sequences have dense linear spam. Now,
for i, j ∈ N, it follows that

(ai, ãj)L2 =


(B∗ei, B

−1ẽj)L2 if i ∈ N, j ∈ N
(B∗ei, zj)L2 if i ∈ N, j ∈ N \N
(zi, B

−1ej)L2 if i ∈ N \N, j ∈ N
(zi, zj)L2 if i ∈ N \N, j ∈ N \N

 = δi,j ,
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where we used that BB−1ẽj = ẽj and B−1ej ∈ ker(B)⊥ for j ∈ N , Bzj = 0 for j ∈ N \N , and
the fact that (ei)i∈N and (ẽi)i∈N are dual and (zi)i∈N\N is an orthonormal bases. To show the

remaining assertion, take any f = f1 + f2 ∈ ker(B)⊥⊕ker(B) = L2(Ω,Rm). Then, for constants
C1, C2 > 0,∑

n∈N
|(f, an)L2 |2 =

∑
n∈N
|(Bf1, en)`2 |2 +

∑
n∈N\N

|(f2, zn)L2 |2 ≤ C1‖Bf1‖2`2 + ‖f2‖2L2

and ∑
n∈N
|(f, ãn)L2 |2 =

∑
n∈N
|(B−∗f1, ẽn)`2 |2 +

∑
n∈N\N

|(f2, zn)L2 |2 ≤ C2‖B−∗f1‖`2 + ‖f2‖L2 .

Consequently, (an)n, (ãn)n are biorthogonal Riesz bases.
At last we define the intervals (J̃i)i∈N by J̃i = Ji for i ∈ N and J̃i = R for i ∈ N \N . Then,

setting ŨD = {u ∈ L2(Ω,Rm) | (Au)n ∈ J̃n ∀n ∈ N} we have

u ∈ ŨD ⇔ (u,B∗ei)L2 ∈ J̃i for all i ∈ N ⇔ (Bu, ei)`2 ∈ Ji for all i ∈ N ⇔ u ∈ UD.

We now consider the ill-posed operator equation

F (u) = d,

with F : L2(Ω,Rm)→ `2 a linear, bounded operator and d ∈ `2 a given, degraded data which is
close to the true, unknown data d†. We assume that information on the data acquisition process
allows us to define an index set N , closed intervals (Jn)n∈N and a sequence (en)n∈N in `2 such
that

d† ∈ D := {v ∈ `2 | (v, en)`2 ∈ Jn for all n ∈ N}

and D is sufficiently “small”. Motivated by the true signal being an image, our aim is to apply
TGVk

α regularization and reconstruct a signal u∗ ∈ L2(Ω,Rm) which solves

min
F (u)∈D

TGVk
α(u). (14)

This setting is related to residual methods for inverse problems and we refer to [31] for a discussion
of such methods in a more general context.

The theory of Section 3 can now be applied to this situation as follows.

• If the forward mapping F is well-behaved, i.e., has closed range, and the ill-posedness is
hence only given in terms of non-uniqueness, and if further (en)n∈N constitutes a Riesz basis
of Rg(F ), then Proposition 4.1 can be applied and the data constraints can equivalently be
defined on the coefficients of the signal after a Riesz basis transform. If the data intervals
are such that (EXk) as well as the non-empty interior condition of (A) are satisfied and
the dual Riesz basis is further contained in BV(Ω,Rm), all results of Section 3 apply, in
particular existence of a solution is guaranteed and the optimality conditions are valid.
One example of this situation is given when F is a Riesz basis transform, but the (en)n∈N
constitute a Riesz basis different from the standard basis in `2. Another example is the
situation when F is a bounded surjective operator with non-trivial kernel for which interval
restrictions on its coefficients can for example be realized by taking (en)n∈N as the standard
basis of `2.
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Figure 1: JPEG image with typical blocking and ringing artifacts.

• If the data intervals (Jn)n only satisfy the assumption (EXk), in particular if only finitely
many of them are half-bounded, we can still guarantee existence of a solution to (14).
Indeed, inspection of the proof of Proposition 4.1 shows that, without further assumptions
on the sequence (en)n and the bounded linear operator F : L2(Ω,Rm) → `2, we can
set (an)n∈N = (F ∗en)n∈N and equivalently define UD by using inner products with this
sequence. In view of Remark 3.2 we can thus still guarantee existence of a solution.

Having discussed the general applicability of our model to inverse problems, we now turn to
concrete applications in mathematical imaging.

4.2 Color JPEG decompression

As first application, we consider the problem of artifact-free decompression of JPEG compressed
color images. This problem has already been addressed in various publications, of which the
TV-based models of [8, 1, 52] are most related. Also, a discrete version of the problem using
second order TGV regularization has already been published in [9] and in [42]. We further refer
to [8, 39, 44, 43] for a short overview of current standard techniques.

We start with a brief explanation of the basic steps of the JPEG compression standard. For
further information about our modeling we refer to [8, 9] and for a more detailed explanation of
the JPEG compression procedure to [47].

The process of JPEG compression is lossy, which means that typically most of the compression
is obtained by loss of data. As a consequence, the original image cannot be restored completely
from the compressed object, which causes ringing and blocking artifacts in the reconstructed
images, as can be seen for example in Figure 1. Figure 2 gives an overview of the basic steps
of JPEG compression for color images that are important for our reconstruction framework. In
particular, a further lossless coding of integer data is omitted here, since this procedure can be
inverted without loss of data.

A color JPEG image is typically processed in the YCbCr color space, where the first (lumi-
nance) component essentially contains the brightness information and the second two (chroma)
components the color information of the image. This color space is equivalent to the standard
RGB color space and images can be transformed from one to another without significant loss
of data. The advantage of using the YCbCr color space is the following: Knowing that the hu-
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man visual system is less sensitive to color than to brightness oscillations, as first step of JPEG
compression, data reduction can be achieved by subsampling the two chroma components.

Next, each component undergoes a discrete cosine transformation on each block of 8 × 8
pixels, resulting in a local representation of the components as linear combination of different
frequencies. Again, there is empirical evidence that the human visual system is less sensitive
to high frequency variations than to low frequency variations. Consequently, the coefficients
representing the cosine frequencies are quantized by pointwise division of each 8× 8 pixel block
by a predefined quantization matrix reflecting this empirical observation. The resulting data is
then rounded to integer and, after further lossless compression, stored in the compressed JPEG
object.

In order to reconstruct an image from the compressed file, standard decompression algorithms
now simply revert the compression process by dequantization, application of the inverse blockwise
cosine transform and color upsampling. It is thereby not taken into account that the data is
incomplete, i.e., that it is a result of a rounding procedure, and thus does not uniquely determine
a single source image, but a set of possible source images. Indeed, since, besides the quantized
integer coefficient data d = (dci,j), also the quantization matrix Q = (Qci,j) can be obtained from
the compressed file, it is possible to define interval bounds

Jci,j =
[
Qci,j(d

c
i,j −

1

2
), Qci,j(d

c
i,j +

1

2
)
]

(15)

for each quantized coefficient, and, consequently, a convex set of possible source data

D = {(zci,j) | zci,j ∈ Jci,j for all i, j, c}. (16)

Then D is the set of all coefficients that would, after quantization and rounding, result in the same
data as given by the JPEG compressed file. Note that here, i and j denote ith and jth coefficient
of the block-cosine transform, respectively, while c ∈ {1, 2, 3} denotes the color component.

Coupling the subsampling S and the cosine transformation operator C, as in Figure 2, we
will see that with this the set of all possible source images of the compressed JPEG object can
be described by D and an (even orthogonal) basis transformation operator. Thus it fits in our
image reconstruction framework, where we aim at choosing one of all possible source images that
minimizes the TGVk

α functional.

4.2.1 Continuous modeling

We consider color images as functions in L2(Ω,R3), where Ω = (0, 8k) × (0, 8l), k, l ∈ N is a
rectangular domain, in particular a Lipschitz domain.

Sub-sampled image components are considered as functions in L2(Ωc), where Ωc = (0, 8kc)×
(0, 8lc) are domains smaller than Ω, i.e., kc ≤ k, lc ≤ l. With these prerequisites, the subsampling
process can be described color component-wise via the operators Sc : L2(Ω) → L2(Ωc), c ∈
{1, 2, 3}, given by

Scu(x, y) = u(scx, tcy),

where sc = k
kc
, tc = l

lc
are the subsampling factors.

Remark 4.1. Typically we have no subsampling for the luminance component, i.e., s1 = t1 = 1,
while the chroma components are subsampled with factor 2, i.e., s2 = t2 = s3 = t3 = 2.

In order to define the blockwise cosine transform, we first need the following definition, which
is taken from [8]:
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JPEG File

4 5 3 8 12 7 4 3 1

7 34 5 3 6 3 9 6 1S

S

G

G

G

Q

Q

Q

Figure 2: Scheme of JPEG compression procedure. Here, S denotes a subsampling operation,
G a blockwise discrete cosine transformation and Q a quantization to integer, i.e., a blockwise
division through a predefined quantization matrix followed by rounding to integer.

Definition 4.1 (Block-wise cosine system). For t, r ∈ N, set H = (0, 8t) × (0, 8r) ⊂ R2. For
i, j ∈ N0, 0 ≤ i < t, 0 ≤ j < r we define the squares

Ei,j =
(

[8i, 8i+ 8)× [8j, 8j + 8)
)
∩H

and
χi,j = χEi,j

their characteristic functions. Furthermore, let the standard cosine orthonormal system (bn,m)n,m ⊂
L2((0, 1)2) be defined as

bn,m(x, y) = λnλm cos(nxπ) cos(myπ), (17)

for (x, y) ∈ R2 and n,m ∈ N0, where

λl =

{
1 if l = 0,√

2 if l 6= 0.

We define the blockwise cosine system gi,jn,m ∈ L2(H) as the collection of all gi,jn,m ∈ L2(H)
according to

gi,jn,m(x, y) =
1

8
bn,m

(
x− 8i

8
,
y − 8j

8

)
χi,j(x, y) (18)

for (x, y) ∈ H. Here, 0 ≤ i < t, 0 ≤ j < r and n,m ∈ N0.

Remark 4.2. It follows by reduction to the cosine-orthonormal system (bn,m)n,m that
{gi,jn,m |n,m ∈ N0, 0 ≤ i < k, 0 ≤ j < l} is a complete orthonormal system in L2 (H). Further,

one can see that {gi,jn,m |n,m ∈ N0, 0 ≤ i < k, 0 ≤ j < l} ⊂ BV(H).

Denoting, for c ∈ {1, 2, 3}, by (gcn)n a blockwise cosine orthonormal systems of L2(Ωc) as
described in Definition 4.1 (note that we use a different index notation), the operators Gc :
L2(Ωc)→ `2 are defined to be their corresponding basis transformation operators, i.e.

(Gcv)n = (gcn, v)L2 , (19)
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for v ∈ L2(Ωc).
With these preliminaries, we define the operator modeling the JPEG compression procedure

for each color component as Ac : L2(Ω) → `2 with Ac = GcSc. We further assume that we are
given closed intervals (Jcn)n such that

UD = {u ∈ L2(Ω,R3) | (Au)cn ∈ Jcn for n ∈ N, c ∈ {1, 2, 3}} (20)

defines the set of possible source image of a given, JPEG compressed file. Clearly, each Ac is
bijective and, following the proof of Proposition 4.1, Ac can be regarded as basis transformation
operator related to basis elements (acn)n, that can be given as

acn(x, y) = S∗c g
c
n(x, y) =

1

sctc
gcn(

x

sc
,
y

tc
), (21)

which are orthogonal and contained in BV(Ω). Further, rewriting the component-wise opera-
tors Ac as basis transformation operator A : L2(Ω,R3) → `2, UD can be rewritten to a form
as in assumption (A) and the continuous minimization problem corresponding to color JPEG
decompression is given by

min
u∈L2(Ω,R3)

TGVk
α(u) + IUD (u), (22)

with UD being equivalently defined in equation (20). In order to assure (A) and (EXk) to hold,
we need to specify our continuous modeling of the given data intervals (Jcn)n. Remember that
for each given integer coefficient dcn and the corresponding quantization value Qcn we can define
an error interval Jcn as

Jcn = [Qcn(dcn −
1

2
), Qcn(dcn +

1

2
)]. (23)

Now one can model the JPEG compression process by assuming that all coefficients ((acn, u
†))n

of the original image u† ∈ L2(Ω,Rm) are quantized, rounded and stored. This means that all
(Jcn)n are given from data coefficients (dcn)n and quantization values (Qcn)n as in Equation (23),
in particular are bounded. Since the quantization values Qcn are typically non-decreasing for
larger n, meaning that coefficients representing higher frequency are stored with less or the same
precision, it is reasonable to assume that they are bounded below by some ε > 0. Hence, as
each coefficient dcn results from a rounding procedure of quantized data contained in `2, all but
finitely many must be zero and the resulting data intervals thus contain [− ε

2 ,
ε
2 ]. Consequently,

UD has non-empty interior and assumptions (A) and (EXk) are clearly satisfied. This ensures
existence of a solution and validity of the optimality condition as in Theorem 3.3.

Remark 4.3. As alternative approach, one could regard the coefficient data dcn as a given, finite
number of samples of the unknown image u† ∈ L2(Ω,Rm). This means that only finitely many
intervals Jcn can be constrained as in Equation (23) and all remaining are set to be all of R. Such
a setting again satisfies our assumptions (A) and (EXk) and thus all results of Section 3 apply.

4.3 Color JPEG 2000 decompression

As second application, we employ the reconstruction model of Section 3 for the improved recon-
struction of JPEG 2000 color images, where the coding is essentially based on a biorthogonal
wavelet transform. For the sake of self-containedness we will briefly explain basic features of
JPEG 2000 compression that are necessary to understand the modeling. It will turn out that,
again, the set of possible source images can be described by interval restrictions on the coeffi-
cients of the transformed image and thus fits to our reconstruction model of Section 3. However,
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due to the coding process, it will not be possible to restrict every coefficient by a bounded in-
terval. After presenting an overview of JPEG 2000 compression, we will define and discuss the
minimization problem for artifact free JPEG 2000 decompression.

But at first, we discuss previous approaches to improve the reconstruction quality of the JPEG
2000 standard. To the best knowledge of the authors, in contrast to the JPEG decompression
model, there does not exist any model or method designed in particular for improved JPEG 2000
decompression that is related to the present one. However, even if not designated to improve
the JPEG 2000 compression/decompression procedure, some works on wavelet inpainting aim to
solve a very similar task: Assuming that, due to transmission or storage error, some coefficients
of the wavelet representation of an image are lost, the aim is to reconstruct an image that fits
to the known coefficients and minimizes the TV functional. In our terminology, given a suitable
basis (an)n of L2(Ω) and a source image u0, this means to solve

min
u∈L2(Ω)

TV(u) + IV (u)

with
V = {u ∈ L2(Ω) | (u, an)L2 = (u0, an)L2 for all n ∈M}

and M being the index set of known coefficients. In [19] existence of a solution for this problem
was established in function space setting under the assumption that Ω = R2 and only finitely
many coefficients are unknown. Numerical solution strategies for this, and a similar model with
L2 data fit, were presented in [19, 18, 49, 41]. In [51] the same model using non-local TV
regularization was considered. In [26] the authors present the statement and numerical solution
of a TV-wavelet denoising scheme whose formulation is also quite similar to those methods:
Motivated by denoising with wavelet thresholding, the authors propose to minimize the TV
functional subject to equality constraints on all wavelet coefficients with absolute value above a
certain threshold.

However, even when considered solely as method for wavelet-constrained optimization, our
work differs significantly from the ones cited above. First of all we use the total generalized
variation functional of arbitrary order as regularization. Also, we are able to establish existence
of a solution and optimality conditions in the case Ω is a bounded Lipschitz domain and using
natural boundary extension also in function space setting. Additionally, we allow infinitely many
wavelet coefficients to be unbounded and possible interval constraints. We also formulate the
model for general biorthogonal wavelet bases from the very beginning and our numerical solution
scheme presented in [12] is different to the ones of previous works. Let us point out however,
that the assumptions of our work include the problem of wavelet inpainting, thus it can also be
seen as a generalization of methods of [19, 26] using arbitrary order TGV regularization.

Other methods mainly focused on the concealment of wavelet data error due to transmission
are the works [35, 5, 21]. In [48] the aim is the reduction of artifacts due to tile separation of the
image. We also refer to [40] for a post processing method that attempts to improve reconstruction
quality by reapplication of JPEG 2000 on shifted versions of the image.

The JPEG 2000 standard

We will now briefly discuss the JPEG 2000 compression procedure. For more information, we
refer to [37, 45, 46, 32] and the references therein.

Figure 3 gives a schematic overview of some main steps for JPEG 2000 compression that will
be discussed in the following. As first step, the image is split into color components and further
into tiles, where each tile undergoes the same compression process. Next, a discrete wavelet
transformation of arbitrary order is applied to each tile. Two types of wavelet transformation
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are possible within the standard, the Cohen-Daubechies-Feauveau (CDF) 9/7 and the Le Gall
5/3 wavelet transform (see [45, 32]). The numbers 9/7 and 5/3 indicate the support length of
related filters. The resulting coefficients are then quantized depending on their importance for
visual image quality. The values used for quantization are uniform on each subband, i.e., on each
direction dependent part of each resolution level of each tile, and can in particular be obtained
from the compressed code stream.

The quantized coefficients are then further split into different kinds of subunits, resulting
finally in a set of code blocks. Each of these code blocks then undergoes a bit-level encoding
consisting of three different passes. Starting from the highest non-zero bit-level, these three
passes are repeated until the lowest bit-level has been encoded. This generates, for each code
block, an independent bit-stream together with a set of valid truncation points (typically the last
bit that has been encoded by each pass). Finally, the data from all code blocks is reorganized
using mean-squared error estimations with respect to the original image. The result is a single
bit-stream together with a set of possible truncation points which are, given a maximal number
of bits to be saved, expected to be optimal in terms of PSNR (see [37, Section 10.5.2],[32, Section
J.10]). When the compression rate is fixed by the user, this bit stream is truncated to one of
these points.

In the compressed JPEG 2000 file, the amount of information available in the bit stream of
one code block hence depends on the importance of the information in the code block for the
PSNR rate. Thus, if, due to truncation, for one code block no bit-level information is left at
all, the only information we can infer is that skipping information about its coefficients resulted
in a better estimated PSNR rate than for other code blocks. However, since the original image
is not known, we cannot use this information to obtain any estimate on its coefficients. Each
individual coefficient could have been arbitrary high, as long as the overall information of the
code block was less important for the PSNR value.

However, if at least one bit of coefficient information is left for a given code block, we can
determine a bounded error interval for each of its coefficients as follows: As already explained,
during compression, each code block is transformed into a bit stream by repeating three passes,
the significance propagation pass, the magnitude refinement pass and the cleanup pass (see [32,
Annex D]). Starting at the highest bit level, each pass follows predefined rules whether it encodes
a particular bit or not. Thus, extracting the truncated, non-empty bit stream and information
about which pass has been performed last before truncation from the compressed file, we can
determine, for each coefficient of the code block, up to which bit level it has been encoded, i.e.,
its precision.

Using this knowledge, we can define a source value together with a (bounded) error interval
for each coefficient of the code block, exactly how we could do for a JPEG compressed image.
Thus, given any code block with non-zero information, we can define the set of its possible source
coefficients again by bounded interval restrictions. As one can see in the numerical experiments
in [12], this is possible for sufficiently many code blocks to keep the set of possible source images
small and hence to achieve a good reconstruction quality. We refer to Figure 4 for a visualization
of the error bounds obtained from a JPEG 2000 compressed file.

Note that, in contrast to JPEG compression, the JPEG 2000 standard does not include
explicit color subsampling. However, since due to the wavelet transformation the image is com-
posed into a low-resolution and a detail-part, subsampling is still possible by skipping the detail
coefficients of the finest scale.
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Uncompressed image Transformed image Bit-level coding

00001010 =10
00000100 =40
00000111 =70
00000001 =10
00000100 =40
00000010 =20
00010000 =16
01011100 =92
00000011 =30

JPEG2000 file

10000000011

=30

W

Figure 3: Selected steps of JPEG 2000 compression including bit-level coding for one image
component. See also [37, Figures 10.16,10.17].

4.3.1 Continuous modeling

The definition of the wavelet transform for JPEG 2000 compression, is based on either the Le
Gall 5/3 or CDF 9/7 wavelets. Let us detail on the construction of a Riesz basis for L2(Ω,Rm)
from these wavelets. We start with two finite length filter sequences (hn)n and (h̃n)n which yield
either Le Gall 5/3 or CDF 9/7 wavelets and are defined in [22, Table 6.1 and Table 6.2] for
N = Ñ = 2 and N = Ñ = 4, respectively. As shown in [22], from both of these filter choices
one can define scaling functions φ, φ̃ ∈ L2(R) and mother wavelets ψ, ψ̃ ∈ L2(R) that allow, by
translations and dilatations, the construction of biorthogonal Riesz bases. Indeed, defining for
j, k ∈ Z,

φj,k(x) = 2−j/2φ(2−jx− k), ψj,k(x) = 2−j/2ψ(2−jx− k),

one obtains that, for any R ∈ Z,

(φR,k)k ∪ (ψj,k)j,k, for indices k ∈ Z and j ≤ R, (24)

is a Riesz bases of L2(R). Its dual basis is further denoted by

(φ̃R,k)k ∪ (ψ̃j,k)j,k, for indices k ∈ Z and j ≤ R, (25)

where φ̃j,k, ψ̃j,k are obtained from the dual scaling and wavelet functions φ̃, ψ̃ again by trans-
lations and dilatations. We point out that, since we use only finite length filters for their con-
struction, each of these basis elements has finite support length. Any signal f ∈ L2(R) can now
be decomposed to the scale R ∈ Z, using the bases (24) and (25), as

f =
∑
k∈Z

(φ̃k,R, f)φk,R +
∑

k∈Z,j≤R
(ψ̃j,k, f)ψj,k

=
∑
k∈Z

(φk,R, f)φ̃k,R +
∑

k∈Z,j≤R
(ψj,k, f)ψ̃j,k.

(26)

The first sum in each of the terms can be interpreted as a low resolution approximation of f
while the second one contains detail information.

Next we want to obtain a Riesz basis of L2((0, 1)) from such a given Riesz basis of L2(R) which
corresponds to symmetric boundary extension. For that purpose we apply a folding technique
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Figure 4: Left: Wavelet coefficients of the brightness component of the bird image of Figure 3
(logarithmic scale). Right: Size of data intervals for the wavelet coefficients (Note that 0, i.e.,
dark blue, indicates that the data is unbounded).

as in [23, Section 2]. Given any compactly supported function η ∈ L2(R), we define its folded
version ηf ∈ L2((0, 1)) pointwise almost everywhere as

ηf(x) =
∑
n∈Z

[η(x− 2n) + η(2n− x)].

Then, denoting by u ∈ L2((0, 1)) a function and by u its symmetric extension to all of R we get

1∫
0

ηfu =

∫
R

ηu.

Thus, testing u ∈ L2((0, 1)) with ηf corresponds to testing its symmetric extension with η.
Using this techniques and skipping redundant indices, it has been shown in [23, Section 2] that
for R ∈ Z the folded sequences

(φf
R,k)k ∪ (ψf

j,k)j,k and (φ̃f
R,k)k ∪ (ψ̃f

j,k)j,k

constitute Riesz bases of L2((0, 1)) in duality. Due to the support restriction, the folded bases
contain only finitely many translations of the scaling functions.

From these two bases we then construct dual Riesz bases of L2((0, 1)× (0, 1)) by using tensor
products of the basis elements, as done for example in [25, Section 10.1] for orthogonal wavelet
bases. Tensor products of two scaling functions give again a scaling function on R2, while tensor
products of a wavelet with either a scaling function or another wavelet gives a wavelet that
resolves horizontal, vertical or diagonal details, respectively. Grouping the scaling functions
and the wavelets together and re-indexing we obtain, again for R ∈ Z, two dual Riesz bases of
L2((0, 1)× (0, 1)) written as

(ΦR,k)k ∪ (Ψj,k)j,k and (Φ̃R,k)k ∪ (Ψ̃j,k)j,k. (27)
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Depending on our initial choice of filters (hn)n, (h̃n)n these bases correspond either to Le Gall
5/3 or CDF 9/7 wavelets.

In order to apply the problem setting of Section 3, we will need to assure certain regularity
assumptions on the Riesz basis, i.e., the dual basis must be contained in BV((0, 1) × (0, 1)).
By construction (see [22]), all basis elements of the one dimensional dual basis in L2(R) can be
expressed as finite linear combinations of translated, scaled versions of the scaling function φ̃.
Also folded versions and tensor products of compactly supported BV functions are again in BV,
hence it suffices to ensure regularity of φ̃. In the case of Le Gall 5/3 filters the scaling function φ̃ is
just a piecewise linear spline (see [22, Section 6.A] and note that there, φ and φ̃ are interchanged),
thus is contained in W 1,1(R). In the case of CDF 9/7 filters it has been shown for example in
[46] that the scaling function corresponding to synthesis possesses a Sobolev regularity higher
than 2, in particular is also contained in W 1,1(R).

We consider color images as functions in L2(Ω,R3), where Ω = (0, k)× (0, l) is a rectangular
Lipschitz domain and k, l denote the number of tiles in which the images are split as part
of compression. In contrast to JPEG compression, now also the definition of the basis used
for reconstruction depends on the information obtained from a given, compressed file. For
each color component and tile encoded by a JPEG 2000 compressed file we can now choose
an appropriate resolution level and wavelet type and obtain a Riesz bases of L2((0, 1)× (0, 1)) as
in (27). Using these bases we can construct, for each color component, a block-wavelet basis of
L2(Ω). As in Remark 2.2, we obtain a Riesz bases of L2(Ω,R3) together with a dual basis from
these component-wise bases. We denote these bases by (an)n and (ãn)n and the corresponding
basis transformation operators by A and Ã, respectively. Since each dual basis for each color
component and tile is contained in BV(Ω), so is (ãn)n. As explained at the beginning of this
section, we can further obtain data intervals (Jn)n such that all possible source images of the
given, JPEG 2000 compressed file, must be contained in

UD = {u ∈ L2(Ω,Rm) | (Au)i ∈ Ji for all i ∈ N}.

In contrast to JPEG decompression, each of these intervals might also be unbounded. However,
as the standard encodes the sign of a coefficient only when the first non-zero bit is encoded, no
intervals are half bounded and (EXk) applies. During compression, the wavelet coefficients of
the signal are quantized, rounded towards zero and a bit truncation is performed. The values
used for quantization are uniform on each subband and are typically non-decreasing for higher
subbands, meaning that coefficients corresponding to finer scales are saved the same or less
precision. Thus we again assume that the quantization values are bounded below by some ε > 0
and, consequently, as the original sequence of coefficients is contained in `2, all but finitely
many intervals must contain [−ε, ε]. This ensures assumption (A) to be valid and thus again the
existence result and the optimality conditions of Theorem 3.3 apply.

4.4 Variational image zooming

Apart from the data decompression models of Subsections 4.2 and 4.3, we now consider the task
of obtaining a high resolution image from low resolution data. A generic approach in this context
is to perform a regularized inversion of a subsampling operation, i.e., given Ω = (0, 1) × (0, 1),
L2(Ω,R3) the space of high resolution color images and K a subsampling operator, one aims at
solving

min
Ku=u0

F (u)

where u0 is the given, low resolution data and F a regularization functional. Following this
approach, we model subsampling as a linear operator mapping a function to a finite subset of
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Figure 5: Visualization of of the low resolution image and the detail coefficients obtained from a
high resolution image with one level of wavelet decomposition. Note that the wavelet coefficients
have been rescaled for better visibility.

its coefficients with respect to a Riesz basis. That is, given (an)n a Riesz basis of L2(Ω,R3) and
N ⊂ N a finite subset, we assume the subsampling operator K to be given as

Ku = ((an, u)L2)n for n ∈ N.

As we will see, this can indeed be considered as a subsampling operation for images and covers
also standard subsampling techniques such as averaging.

For regularization, we again use the TGVk
α functional. With A : L2(Ω,R3) → `2 the basis

transformation operator corresponding to (an)n, the task of reconstructing a high resolution
image u† ∈ L2(Ω,R3) from given, low resolution data ((an, u

†)n)n, for n ∈ N , then amounts to
solving

min
u∈L2(Ω,R3)

TGVk
α(u) + IUD (u)

with
UD = {u ∈ L2(Ω,R3) | (Au)n = (an, u

†)L2 for all n ∈ N}.

In the notation of Section 3 this means to set Jn = {(an, u†)L2} for n ∈ N and Jn = R else, and
corresponds to the case where the low resolution data is exactly given.

A particular case of this setting is given when (an)n results from a wavelet basis of L2(Ω,R)
and can be split into scaling functions (Φj,k)j,k and wavelet functions (Ψj,k)j,k. Fixed a resolution
level R ∈ Z, UD can then be defined as

UD = {u ∈ L2(Ω,R3) | (ΦR,k, u)L2 = (ΦR,k, u
†)L2 for all k ∈ N},

and indeed defines a low resolution version of the original image u†, see Figure 5 for a visu-
alization. This setting has already been discussed in [10] for the case of second order TGV
regularization. As it allows any type of wavelet for the subsampling operation, it is still flexible
in the choice of a subsampling operator. In particular, using the Haar wavelet corresponds to
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subsampling by averaging and using the Le Gall 5/3 wavelet corresponds to the adjoint of bi-
linear interpolation as subsampling operator (see [10]). We also refer to [10] for a discussion of
existing methods that are related to the present one.

Alternatively, one can also incorporate data from a given JPEG or JPEG 2000 compressed
file in the zooming approach. Choosing the basis (an)n to be either a block-wise cosine basis or a
tile-wise wavelet basis with CDF 9/7 or Le Gall 5/3 wavelets, one can regard a compressed file as
a finite number of truncated samples of the unknown image u† ∈ L2(Ω,R3), define N to be the
set of all coefficients for which data is available and the intervals (Jn)n to be the error bounds
for these coefficients. Setting all remaining Jn to be all of R, this yields a method for combined
decompression and zooming of JPEG or JPEG 2000 compressed image files. We refer to [9] for
a discussion of this method in the case of JPEG files and second order TGV regularization.

In both of the above discussed settings, all but finitely many intervals contain all of R. Thus,
for any choice of basis such that the dual basis is contained in BV(Ω,R3), the assumptions (EXk)
and (A) are clearly satisfied and all results of Section 3 apply. Hence our general problem formu-
lation is also directly applicable to a variational zooming as well as a combined decompression
and zooming approach.

5 Conclusion

Motivated by applications to image decompression, we have introduced a TGV regularized image
reconstruction framework in a general function space setting. We have posed generic assumptions
for which existence of a solution and optimality conditions for the resulting minimization problem
were be obtained. These assumptions are quite general in the sense that an arbitrary Riesz basis
together with a broad class of interval restrictions can be used for data fidelity. This provides
a common framework for a large class of problem settings in mathematical image processing,
particular examples being the TGV regularized decompression of JPEG and JPEG 2000 images
and a variational zooming model. After having established the theoretical foundations, the
numerical realization and evaluation of these applications is the topic of a second paper [12]
whose contents are strongly connected to the present one.

A Products of tensor spaces and related mappings

The appendix gives a short overview on functions mapping to products of tensor spaces, hence-
forth referred to as tensor fields. These spaces are needed to define the total generalized varia-
tion functional for vector-valued data. The definitions and results stated in this subsection are
straightforward generalizations of the ones presented in [13, 11] and are provided for the readers
convenience.

The space of symmetric tensors of order k is defined as

Symk(Rd) :=
{
ξ :
(
Rd
)k → R

∣∣ ξ : k − linear and symmetric
}
, (28)

respectively, with the scalar product

ξ · η =
∑

p∈{1,...d}k
ξ(ep1 , . . . , epk)η(ep1 , . . . , epk), (29)

for ξ, η ∈ Symk(Rd), and the induced norm |ξ| =
√
ξ · ξ. For a given, sufficiently smooth, tensor

field ξ, its lth derivative can be identified with a (non-symmetric) (k + l) tensor field ∇l ⊗ ξ,

30



defined by
(∇l ⊗ ξ)(x)(a1, . . . , ak+l) =

(
Dlξ(x)(a1, . . . , al)

)
(al+1, . . . , ak+l),

where Dlξ : Ω → Ll
(
Rd,Symk(Rd)

)
denotes the lth Fréchet derivative of ξ and Ll(X,Y ) the

space of l-linear and continuous mappings from X l to Y . Further we define a symmetrized
derivative of a smooth tensor field ξ : Ω → Symk(Rd) that can be identified with a symmetric
tensor field:

E lξ = |||(∇l ⊗ ξ). (30)

Here |||η denotes the symmetrization of a given tensor η defined by

(|||η)(a1, . . . , ak) =
1

k!

∑
π∈Sk

η(aπ(1), . . . aπ(k)),

where Sk is the set of all permutations of {1, . . . , k}.
We also use the notion of l-divergence of a sufficiently smooth (k + l) tensor field:

divl η = trl(∇l ⊗ η)

for η ∈ Symk+l(Rd), where, for ξ ∈ Symk(Rd),

tr(ξ) ∈ Symk−2(Rd), tr(ξ)(a1, . . . , ak−2) =
d∑
i=1

ξ(ei, a1, . . . , ak−2, ei).

Note that by definition of the trace operator, the divergence of η is symmetric.
Likewise we equip the space Symk(Rd)m containing m-tuples of symmetric tensors, i.e.,

Symk(Rd)m =
{
ξ = (ξ1, . . . , ξm)

∣∣ ξi ∈ Symk(Rd), i ∈ {1, . . . ,m}
}
, (31)

with the inner product and norm

ξ · η =

m∑
i=1

ξi · ηi and |ξ|2 = ξ · ξ. (32)

For sufficiently smooth m-tuples of symmetric tensor fields, the differentiation operators ∇, E ,div
are defined component-wise. The spaces

Lp(Ω,Symk(Rd)m), Clc(Ω,Symk(Rd)m), C∞c (Ω,Symk(Rd)m)

are defined in the usual way, where we use tensor norm | · | as in (32) as vector norm. Spaces of
measures and distributions Ω are defined by duality as

M(Ω,Symk+1(Rd)m) =

(
Cc
(

Ω,Symk(Rd)m
)‖·‖∞)∗

D(Ω,Symk(Rd)m) = C∞c (Ω,Symk(Rd)m)∗

For ξ ∈ D(Ω,Symk(Rd)m), η ∈ D(Ω,Symk+1(Rd)m) is called the weak symmetrized derivative
of ξ if

〈η, ζ〉 = −〈ξ,div ζ〉
for all ζ ∈ C1

c (Ω,Symk+1(Rd)m). In this case we denote Eξ = η.
We will need that a distribution is represented by an L1 function if its symmetrized gradient

can be represented by a Radon measure. This has been shown in [11] for tensor spaces and can
be generalized to products of tensor spaces as follows.
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Proposition A.1. If for u ∈ D(Ω,Symk(Rd)m) we have Eu ∈ M(Ω,Symk+1(Rd)m), then
u ∈ L1(Ω,Symk(Rd)m).

Proof. Given any distribution u ∈ D(Ω,Symk(Rd)m), we apply the result of [11] to the distribu-
tions ui ∈ D(Ω,Symk(Rd)) defined by

〈ui, φ〉 = 〈u, ( 0, . . . , 0︸ ︷︷ ︸
(i−1) times

, φ, 0 . . . , 0︸ ︷︷ ︸
(m−i) times

)〉

for φ ∈ C∞c (Ω,Symk(Rd)).
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