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Abstract

The present work is the second of two papers on a variational model for image re-
construction whose specific features are twofold: First, data fidelity is realized by interval
constraints on the coefficients of a Riesz basis representation and second, Total General-
ized Variation (TGV) of arbitrary order is employed as image prior. While the first paper
provides a comprehensive analysis of the model in a general function space setting as well
as discusses applications such as artifact-free JPEG, JPEG 2000 decompression and vari-
ational zooming, this second part deals with the discretized setting and presents globally
convergent algorithms for these applications. In the case of JPEG and JPEG 2000 decom-
pression, highly improved color image reconstructions are obtained from the encoded files.
The numerical results are by supplemented by duality based stopping criteria, a parallelized
implementation and a comparison of results obtained with Total Variation and second and
third order TGV regularization.
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1 Introduction

This work is the second of two papers on a Total Generalized Variation (TGV) based image
reconstruction model. The variational problem under consideration in the present as well as the
first paper [8] reads as

min
u∈L2(Ω,Rm)

TGVk
α(u) + IUD

(u),

where TGVk
α [9] is the vectorial Total Generalized Variation functional of order k and IUD

is the
indicator function of the convex set UD, i.e. IUD

(u) = 0 if u ∈ UD and infinity else. The set UD
is given as

UD = {u ∈ L2(Ω,Rm) | (Au)n ∈ Jn, n ∈ N}

with A : L2(Ω,Rm) → `2 being a Riesz-basis transformation operator and (Jn)n being closed
intervals. This setting is motivated by the application to JPEG [27] decompression, where A is a
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block-wise cosine transform and, given a JPEG compressed file, UD defines the set of all images
that, when compressed at the given rate, result in the same file.

In the first paper [8] on this topic, the above minimization problem was investigated in a
general function space setting. Existence of a solution and optimality conditions were obtained
under generic assumptions. Three particular applications, namely the improved decompression
of JPEG and JPEG 2000 images and a variational zooming method, were defined and shown to
be concrete instances of the above setting.

The present, second part of our work is devoted to the numerical realization and practical
evaluation of these three applications. After discretization, we establish a uniform algorithmic
framework that is based on the primal-dual algorithm of [13] and obtain globally convergent
algorithms in all three cases. We provide duality based stopping criteria that allow to estimate
optimality in terms of the objective functional and an adaptive stepsize strategy that guarantees
a convergent algorithm while, in practice, enabling us to overcome the stepsize constraint of [13]
that yields prohibitively small stepsizes in some applications.

For JPEG and JPEG 2000 decompression, we are able to obtain highly improved reconstruc-
tions for color images by extracting the necessary information from the encoded files. In addition,
for JPEG decompression, a multi-core CPU and GPU implementation is presented that obtains
the improved decompression within seconds even for larger image files. As result of a general
formulation, a variational zooming method based on wavelet transformations can be derived from
the JPEG 2000 setting with minimal effort. While being quite simple, it yields a flexible zooming
method by allowing to use any wavelet analysis operator to model down-sampling and gives a
surprisingly good upsampling quality for some choices.

Both the general function space formulation as well as the numerical solution strategy allow
any order of the TGV functional for regularization. Nevertheless we restrict ourselves to the
second order functional in the discrete setting. This keeps the presentation of our methods
simple and yields a good compromise between computational complexity and obtained image
quality. We do, however, also provide experiments for JPEG decompression using the third
order TGV functional for regularization.

As our framework covers different applications in mathematical image processing, there is,
for each application, literature available. In particular for JPEG decompression there exist many
methods to improve on the standard decompression procedure and we refer to [25, 5, 4, 1, 30]
for the ones that are most related to our work. For JPEG 2000 decompression, the problem of
wavelet coefficient inpainting is most related and we refer to [28, 29, 14, 24, 15] for variational
approaches in this setting. Concerning image zooming, methods that approach the task by
applying either a TV type regularization or aiming at wavelet inpainting for upsampling can be
found in [2, 12, 22, 20, 16, 11]. In any case, we refer to [8] for a more detailed discussion on existing
methods. Regarding a common framework for different applications of the above type, the only
available work that goes in this direction is the TV based model [4] that preceded this work.
Indeed, [4], which is based on the TV functional for regularization and an orthonormal basis for
data fidelity, can be seen as motivation for the present work where non-trivial extensions have
been obtained in terms of regularization, data fidelity, assumptions for existence of a solution
and applications.

The present second part of our work is divided into four sections, the first one dealing with
aspects that are shared by all applications of interest and the three others dealing with the
particular reconstruction models.
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2 Discretization and algorithmic setup

In an abstract setting, we aim at solving the following minimization problem:

min
u∈L2(Ω,Rm)

TGVk
α(u) subject to (an, u)L2 ∈ Jn for all n

with Ω a rectangular domain and (an)n a given Riesz basis of L2(Ω,Rm) with (Jn)n given, non-
empty closed intervals, both of which depend on the concrete problem under consideration. In
this section, we fix the discretization of the TGVk

α functional and the underlying spaces. Also a
stepsize adaptive primal-dual algorithm based on [13] is described in a generic form.

While we will later on present numerical results also for third order TGV regularization, we
detail the discrete setting only for the second order TGV functional. The extension to the third
order can be obtained with similar techniques and also the same algorithmic framework can be
employed.

2.1 Discrete problem setting

Our discrete variational problem bases on functions on regular grids. The spaces of discrete
multichannel images and of first and second order gradient information are defined as

U := RN×M×C , V = U × U, W = U × U × U.

where N,M ∈ N, denote the image dimensions and C ∈ N the number of (color) channels, both
of which will be further specified in concrete applications.

For u ∈ U , the value uci,j is the value of the channel c of the pixel (i, j), (ui,j) ∈ RC denotes

the vector valued entry at the pixel (i, j) and uc ∈ RN×M is the color component c. A norm on
the entries (ui,j) is given by ∣∣(ui,j)∣∣2U =

C∑
c=1

(uci,j)
2.

Similarly, elements v ∈ V and w ∈W are denoted by

v = (vλ,ci,j )i,j,c,λ and w = (wλ,ci,j )i,j,c,λ,

for 0 ≤ i < N , 0 ≤ j < M , c ∈ {1, . . . , C} and λ ∈ {1, 2} for v and λ ∈ {1, 2, 3} for w, and norms
on their entries by

∣∣(vi,j)∣∣2V =
∑

c∈{1,...,C}
λ∈{1,2}

(vλ,ci,j )2 and
∣∣(wi,j)∣∣2W =

∑
c∈{1,...,C}
λ∈{1,2}

(wλ,ci,j )2 + 2

C∑
c=1

(w3,c
i,j )2.

There reason for the weighing in | · |W is that the three entries of w correspond to symmetric
2×2 matrices with the off diagonal entries stored only once. Standard norms and inner products
on U , V and W can be obtained, for E ∈ {U, V,W}, e, t ∈ E, by summation over each pixel and
the polarization identity, i.e.,

‖e‖2E =
∑

0≤i<N
0≤j<M

|ei,j |2E , (e, t)E =
1

4
(‖e+ t‖2E − ‖e− t‖2E). (1)
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Besides the 2-norm, we will also need other discrete Lp norms on U, V, W . For an exponent
r ∈ [1,∞] we always denote by r′ = r/(r − 1) ∈ [1,∞] its conjugate exponent and, abusing
notation, define

‖e‖r =


(∑

i,j |ei,j |rE
)1/r

if r <∞,
maxi,j{|ei,j |E} if r =∞,

(2)

for E ∈ {U, V,W}, e ∈ E.
The discretization of the second order TGV functional is based on its equivalent representation

as detailed in [8, 7] and is given as

TGV2
α(u) = inf

v∈V
α1‖∇u− v‖1 + α0‖Ev‖1, (3)

where ∇ : U → V denotes a discrete, color component-wise gradient operator using forward
differences and E : V →W denotes a discrete, color component-wise symmetric gradient operator
using backward differences, i.e.,

(∇u)1,c = (δx+u
c), (∇u)2,c = (δy+u

c)

for u ∈ U , c = 1, . . . , C, with
δx+, δy+ : RN×M → RN×M ,

(δx+z)i,j =

{
(zi+1,j − zi,j) if 0 ≤ i < N − 1,
0 if i = N − 1,

(δy+z)i,j =

{
(zi,j+1 − zi,j) if 0 ≤ j < M − 1,
0 if j = M − 1,

(4)

and

(Ev)1,c = (δx−v
1,c), (Ev)2,c = (δy−v

2,c), (Ev)3,c = (
δy−v

1,c + δx−v
2,c

2
)

for v ∈ V , c = 1, . . . , C, with
δx−, δy− : RN×M → RN×M ,

(δx−z)i,j =

{
(zi,j − zi−1,j) if 0 < i ≤ N − 1,
0 if i = 0,

(δy−z)i,j =

{
(zi,j − zi,j−1) if 0 < j ≤M − 1,
0 if j = 0.

(5)

Note that usage of forward and backward differences for the gradient ∇ and the symmetrized
gradient E , respectively, results in second order central differences for E ◦ ∇.

We will further need discrete divergence operators which are, abusing notation, defined as
div = −∇∗ and div = −E∗, or, more explicitly,

(div v)c = −(δ∗x+v
1,c + δ∗y+v

2,c)

and
(divw)1,c = −(δ∗x−w

1,c + δ∗y−w
3,c), (divw)2,c = −(δ∗x−w

3,c + δ∗y−w
2,c),

with

(δ∗x+z)i,j =

 (zi−1,j − zi,j) if 0 < i < N − 1,
−zi,j if i = 0,
zi−1,j if i = N − 1,

(6)
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Algorithm 1 Abstract primal-dual algorithm

• Initialization: Choose τ, σ > 0 such that ‖K‖2τσ < 1, (x0, y0) ∈ X × Y and set x0 = x0

• Iterations (n ≥ 0): Update xn, yn, xn as follows:
yn+1 = (I + σ∂F ∗)−1(yn + σKxn)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

xn+1 = 2xn+1 − xn

and

(δ∗x−z)i,j =

 (zi,j − zi+1,j) if 0 < i < N − 1,
−zi+1,j if i = 0,
zi,j if i = N − 1,

(7)

and δ∗y+, δ∗y− defined accordingly.

2.2 A stepsize-adaptive primal-dual algorithm

The solution strategies for the sub-sequent applications are derived from the primal-dual algo-
rithm presented in [13]. For the sake of completeness, we give a short overview of the abstract
framework. Given the problem setting

min
x∈X

F (Kx) +G(x)

with K : X → Y a linear operator, X,Y finite dimensional Hilbert spaces, and F and G convex
and l.s.c. functions, if Fenchel-Rockafellar duality is applicable, a saddle-point formulation of the
above minimization problem is given as

min
x∈dom(G)

max
y∈dom(F∗)

(Kx, y)Y +G(x)− F ∗(y),

with F ∗ being the convex conjugate of F . The solution strategy now essentially consists of
alternatingly performing gradient descent and ascent steps in the primal and dual direction,
respectively, resulting in Algorithm 1.

There, the expression (I + σ∂F ∗)−1 and (I + τ∂G)−1 are the proximal maps of F ∗ and G,
which are well-defined for any proper, convex, l.s.c. function. In our applications we employ the
abstract primal-dual algorithm to suitable reformulations of the problems of interest with the
aim of obtaining proximal maps that can be calculated explicitly and fast.

As shown in [13] the algorithm is globally convergent if the stepsizes σ, τ satisfy στ‖K‖2 <
1. An estimate on ‖K‖, however, has to include all pathological cases and thus the stepsize
restriction can be too conservative in some applications. On the other hand, we can learn from
the proof of convergence for Algorithm 1 as given in [13, Theorem 1] that this restriction is in
fact only needed to ensure that

‖K(xn − xn−1)‖Y <
1√
στ
‖xn − xn−1‖X (8)

is satisfied in each iteration. This means that one might only use the iterates to estimate ‖K‖
and doing so, potentially obtain convergence for larger stepsizes. Motivated by this, we formulate
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the following criterion for adaptive stepsize choice, that still allows to ensure convergence of the
primal-dual algorithm:

Given θ ∈ (0, 1) and η > 0, after each iteration of Algorithm 1, update σ and τ as

σ = S
(
στ,

‖xn+1 − xn‖X
‖K(xn+1 − xn)‖Y

)
η, τ = S

(
στ,

‖xn+1 − xn‖X
‖K(xn+1 − xn)‖Y

)
/η

with

S(στ, n) =


n if θστ ≥ n,√
θστ if στ ≥ n > θστ,
√
στ else.

(9)

As each reduction of σ and τ is done at least by a constant factor
√
θ < 1, this rule guarantees

that, after finitely many reductions, equation (8) holds for all remaining iterates. In practice,
this situation is often already reached for stepsizes that still cannot be guaranteed to satisfy
στL2 < 1 with L being an analytical upper bound of ‖K‖ and consequently, as we will see for
example in the application to JPEG 2000 decompression, convergence can be obtained using
significantly larger stepsizes. Note that the choice of η allows to balance between the primal
stepsize τ and the dual stepsize σ. As we did, for the applications considered in this work, not
observe a significant improvement with unequal primal and dual stepsizes, we choose η = 1 in
practice.

3 Color JPEG decompression

3.1 Discrete setting

Given the minimization problem [8, Equation (22)] for artifact free JPEG decompression, defined
in function space setting, we will now handle its discrete equivalent and show how a solution can
be obtained numerically. For that purpose, we use the notation as given in Section 2. We note
that some discrete formulations for this problem have already been presented in [5], however,
a more extensive treatment is presented in the following. We assume that the horizontal and
vertical number of pixels of the discrete images are multiples of 8 and consider three color
components, i.e., U is given by U = R8k×8l×3, k, l ∈ N. In order to describe the set of all
images matching a given, JPEG compressed file, we need discrete versions of a subsampling and
a block-wise cosine transform operator S and C, respectively, for which we only give a local,
component-wise definition in order to avoid extensive indexing.

A subsampling operator S : U → Ũ , with Ũ = RÑ1×M̃1 ×RÑ2×M̃2 ×RÑ3×M̃3 being the space
of subsampled images, is defined component-wise, locally, for subsampling factors f1, f2 of the
horizontal and vertical directions and (ri,j)i,j with 0 ≤ i < f1, 0 ≤ j < f2, as

Sr =
1

f1f2

f1−1∑
m=0

f2−1∑
n=0

rm,n, (10)

reducing the resolution of the component by factors f1 and f2 in the vertical and horizontal
direction, respectively. If the resolution of one component is not reduced, as typically for the
brightness component, S is the identity for this component. The discrete cosine transformation
operator is defined, for each color component, on each disjoint 8× 8 block (ri,j)0≤i,j<8, as

(Cr)p,q = cpcq

7∑
n,m=0

rn,m cos

(
π(2n+ 1)p

16

)
cos

(
π(2m+ 1)q

16

)
, (11)
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for 0 ≤ p, q < 8 and

cs =

{
1√
8

if s = 0,
1
2 if 1 ≤ s < 8.

Having this, the discrete data set UD of all images that would result in the same, given JPEG
file, can now be described by

UD = {u ∈ U |CSu ∈ D}, (12)

with D = {d | dci,j ∈ Jci,j} and Jci,j = [lci,j , o
c
i,j ] data intervals that can be obtained from the

quantized DCT coefficients stored in the compressed JPEG file as in [8, Equation (16)] (see also
[4, Section 5]).

With these prerequisites, the finite dimensional optimization problem for artifact-free JPEG
decompression reads as

min
u∈U

TGV2
α(u) + IUD

(u). (13)

with

IUD
(u) =

{
0 if u ∈ UD,
∞ else.

Now in order to solve (13) numerically with the primal-dual algorithm described in Subsection
2.2, we formulate an equivalent saddle-point problem. For that purpose, we define X and Y as

X := U × V, Y := V ×W,

equipped with the norms

‖(u, v)‖2X = ‖u‖2U + ‖v‖2V , ‖(p, q)‖2Y = ‖p‖2V + ‖q‖2W ,

resulting from inner products (·, ·)X , (·, ·)Y , the functions F : Y → R, G : X → R,

F (v, w) = α1‖v‖1 + α0‖w‖1, G(u, v) = IUD
(u) (14)

and the operator K : X → Y ,

K =

[
∇ − I
0 E

]
, (15)

with I : V → V denoting the identity. A saddle-point formulation of Problem (13) can now be
obtained as follows.

Proposition 3.1. The discrete minimization problem (13) related to artifact-free JPEG decom-
pression possesses a solution and is equivalent to

min
x∈X

F (Kx) +G(x). (16)

Further there exists a solution to the dual problem of (16), characterized by

max
y∈Y

−G∗(−K∗y)− F ∗(y), (17)

as well as to the saddle point problem, given by

min
x∈dom(G)

max
y∈dom(F∗)

(Kx, y)Y − F ∗(y) +G(x). (18)

In addition, x̂, ŷ are solutions to the primal and dual problem, respectively, if and only if (x̂, ŷ)
solves the saddle point problem.
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Proof. Existence of a solution to (13) can be obtained similar as in the continuous setting (see [8])
and the equivalence to the primal problem (16) is obvious. Given that F is continuous, existence
of a solution to the dual problem as well as equality of the primal and the dual problem at
optimal points follow immediately from [18, Theorem III.4.1]. The equivalence of the saddle
point problem then follows from [18, Proposition III.3.1].

Note that G∗ and F ∗ are given by

G∗(u∗, v∗) = sup
u∈UD

(u∗, u)U + I{0}(v∗),

where

I{0}(v) =

{
0 if v = 0,

∞ else,

and
F ∗(p, q) = I{‖·‖∞≤α1}(p) + I{‖·‖∞≤α0}(q),

where

I{‖·‖∞≤λ}(e) =

{
0 if ‖e‖∞ ≤ λ,
∞ else.

Further, the operator K∗ denotes the adjoint of K and is given by

K∗ =

[
− div 0
− I −div

]
.

By using standard arguments from convex analysis, we can also obtain an optimality condition
for the discrete saddle point problem that will be helpful when deriving a stopping criterion for
the algorithm later on (see also [8, Theorem 3.3] for optimality conditions in the general, infinite
dimensional setting).

Proposition 3.2. There exists a solution to (18) and (x̂, ŷ) = (û, v̂, p̂, q̂) being optimal is equiv-
alent to

• For all 0 ≤ i < N , 0 ≤ j < M ,
p̂i,j = α1

(∇û− v̂)i,j
|(∇û− v̂)i,j |V

if (∇û− v̂)i,j 6= 0 and |p̂i,j |V ≤ α0 else,

q̂i,j = α0
(E v̂)i,j
|(E v̂)i,j |W

if (E v̂)i,j 6= 0 and |q̂i,j |W ≤ α1 else,

• p̂+ div q̂ = 0,

• û ∈ UD and div p̂ = S∗C∗ŵ with ŵ ∈ Ũ such that
ŵci,j ≥ 0 if (CSû)ci,j = sup(Jci,j) 6= inf(Jci,j),

ŵci,j ≤ 0 if (CSû)ci,j = inf(Jci,j) 6= sup(Jci,j),

ŵci,j = 0 if (CSû)ci,j ∈ int(Jci,j).
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3.2 Practical implementation

We solve the saddle point problem (18) using the primal-dual algorithm presented in Subsection
2.2. As we will see, all necessary steps during one iteration reduce to simple arithmetic operations
and the evaluation of a forward and inverse blockwise cosine transformation, for which highly
optimized code already exists. This makes the algorithm fast and also easy to parallelize. Also,
we can obtain a suitable stopping rule ensuring optimality.

Using standard arguments from convex analysis, the proximal map (I+σ∂F ∗)−1 can be given
as

(I + σ∂F ∗)−1(p, q) =
(
projα1

(p),projα0
(q)
)
,

where, for E ∈ {V,W}, e ∈ E,

(projλ(e))i,j =
ei,j

max(1,
|ei,j |E
λ )

. (19)

Similar, the evaluation of (I + τ∂G)−1 is the identity for v and the projection on the data set

UD = {u ∈ U |CSu ∈ D}

of u in x = (u, v). As the following lemma shows, in the particular setting for JPEG decompres-
sion, this projection can be reduced to a projection on

UC = {u ∈ Ũ |Cu ∈ D}

by
PUD

(u) = u+ S̃∗ (PUC
(Su)− Su) ,

where S̃∗ is the adjoint of a re-weighted subsampling operator S̃ : U → Ũ , and is given locally
by replication of r ∈ R, i.e.,

S̃∗r =

r . . . r
...

...
r . . . r

 .

Lemma 3.1. Let H1, H2 be two Hilbert spaces and B : H1 → H2 be a bounded linear operator
such that, for all v ∈ H2, BB∗ = c I with c ∈ (0,∞). With D ⊂ H2 a non-empty, closed, convex
set and

VD = {u ∈ H1 |Bu ∈ D}

we get that for all û ∈ H1,

PVD
(û) = û+

1

c
B∗ (PD(Bû)−Bû)

with PVD
and PD being the projection operator onto VD and D, respectively.

Proof. Take û ∈ H1. Then,

B(û+
1

c
B∗(PD(Bû)−Bû) = PD(Bû)) ∈ D,

and thus it is left to show that

(û− û− 1

c
B∗ (PD(Bû)−Bû) , u− û− 1

c
B∗ (PD(Bû)−Bû))H1 ≤ 0

9



for all u ∈ VD. Note that we have

(Bû− PD(Bû), v − PD(Bû))H2
≤ 0 for all v ∈ D.

Using this we get, for all u ∈ VD,

(û− û− 1

c
B∗ (PD(Bû)−Bû) ,u− û− 1

c
B∗ (PD(Bû)−Bû))H1

=
1

c
(B∗ (Bû− PD(Bû)) , u− û− 1

c
B∗ (PD(Bû)−Bû))H1

=
1

c
(Bû− PD(Bû), Bu− PD(Bû))H2 ≤ 0.

Orthogonality of C then allows to reduce (I + σ∂G)−1 to

(I + τ∂G)−1(u, v) = (u+ S̃∗
(
projUC

(Su)− Su
)
, v),

where
projUC

(u) = C∗w,

with

wci,j =


uci,j if (Cu)ci,j ∈ Jci,j ,
sup(Jci,j) if (Cu)ci,j > sup(Jci,j),

inf(Jci,j) if (Cu)ci,j < inf(Jci,j).

Altogether, the concrete implementation of the primal-dual algorithm for JPEG decompres-
sion can be given in Algorithm 2. Note that the step-size restriction στ ≤ 1

12 results from

combining the estimates ‖∇‖ ≤
√

8, ‖E‖ ≤
√

8 to get ‖K‖2 < 12 (see [10]). As one can see,
all steps of Algorithm 2 can be evaluated by simple, mostly pixel-wise operations making each
iteration step fast.

Stopping criterion

In order to validate our numerical solution, we seek for a suitable stopping rule. Our goal is to
estimate optimality of the iterates in terms of the objective function. The basis for that is the
following observation, which holds for any optimal solution of the primal problem (16) x̂ and any
x ∈ X, y ∈ Y .

0 ≤ F (Kx)− F (Kx̂) = F (Kx)−
(

sup
z∈Y

(x̂,K∗z)X − F ∗(z)
)

≤ F (Kx)− (x̂,K∗y)X + F ∗(y).

(20)

As the following proposition shows, the last term of the above inequalities can be suitably
estimated using the iterates of Algorithm 2.

Proposition 3.3. Take 1 < γ, 1 ≤ r ≤ ∞, (xn, yn)n = ((un, vn, pn, qn))n to be the iterates of
Algorithm 2 and (x̂, ŷ) = (û, v̂, p̂, q̂) a saddle point of (18). Denoting Jci,j = [lci,j , o

c
i,j ], define

G(xn, yn) = F (Kxn) + Tn‖div2 q̃n − S∗S̃ div2 q̃n‖r′

+
∑
i,j,c

(
oci,j + lci,j

2
(−CS̃ div2 q̃n)ci,j +

oci,j − lci,j
2

|(−CS̃ div2 q̃n)ci,j |
)
,

(21)
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Algorithm 2 Scheme of implementation for JPEG decompression

1: function TGV-JPEG(Jcomp)

2: (Jci,j)i,j,c ← Decoding of JPEG-Object Jcomp

3: d← Midpoints of (Jci,j)i,j,c

4: u← S̃∗C∗d

5: v ← 0, u← u, v ← 0, p← 0, q ← 0

6: choose σ, τ > 0 such that στ ≤ 1/12

7: repeat

8: p← projα1
(p+ σ(∇u− v))

9: q ← projα0
(q + σ(Ev)

10: u+ ← u+ τ(div p)

11: v+ ← v + τ(p+ div q)

12: u+ ← u+ + S̃∗(projUC
(Su+)− Su+)

13: u← (2u+ − u), v ← (2v+ − v)

14: u← u+, v ← v+

15: until Stopping criterion fulfilled

16: return u+

17: end function

where q̃n := βnqn with βn := α1

max(α1,‖ div qn‖∞) , and Tn = γ‖un − S̃∗Sun‖r. Then,

G(xn, yn)→ 0 as n→∞

and, additionally,
G(xn, yn) ≥ F (Kxn)− TGV2

α(û) ≥ 0 (22)

whenever Tn ≥ ‖û− S̃∗Sû‖r which is eventually the case.

Proof. At first we show convergence of G(xn, yn) to zero, which follows from convergence of the
iterates, the optimality conditions given in Proposition 3.2 and strong duality as shown in the
proof of Proposition 3.1. Indeed, as βn → 1 and

div2 q̃n = div2 βnqn → div2 q̂ = − div p̂ = −S∗C∗ŵ, for n→∞,

and some ŵ ∈ Ũ , it follows from this identity as well as S̃S∗ = I that ‖ div2 q̃n−S∗S̃ div2 q̃n‖r′ → 0
as n→∞.

Now, a straightforward, pointwise calculation shows that, for w ∈ Ũ ,

sup
d∈D

(d,w)Ũ =
∑
i,j,c

(
oci,j + lci,j

2
wci,j +

oci,j − lci,j
2

|wci,j |
)
. (23)

This implies in particular that w 7→ supd∈D(d,w)Ũ is continuous and, using the optimality
conditions of Proposition 3.2, we hence get, for n→∞,

sup
d∈D

(d,−CS̃ div2 q̃n)Ũ → sup
d∈D

(d, ŵ)Ũ = sup
u∈UD

(u, S∗C∗ŵ)U = sup
u∈UD

(u,div p̂)U = G∗(−K∗(p̂, q̂)).
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Continuity of x 7→ F (Kx) further implies that

F (Kxn)→ F (Kx̂)

and hence, by strong duality, it follows that, for n→∞,

G(xn, yn) = F (Kxn) + Tn‖ div2 q̃n − S∗S̃ div2 q̃n‖r′ + sup
d∈D

(d,−CS̃ div2 q̃n)Ũ

→ F (Kx̂) +G∗(−K∗ŷ) = F (Kx̂) +G(x̂)− (−G∗(−K∗ŷ)− F ∗(ŷ)) = 0.

In order to get the estimate (22) we insert xn = (un, vn), ỹn = (−div q̃n, q̃n) in (20). Since, due
to our choice of βn and the projections in Algorithm 2, ‖ div q̃n‖∞ ≤ α1 as well as ‖q̃n‖∞ ≤ α0,
the last term in (20) is given as

F (Kxn)− (x̂,K∗ỹn)X + F ∗(ỹn) = F (Kxn) + (û,−div2 q̃n)U . (24)

Using that both S̃S∗ and SS̃∗ are the identity we can estimate

(û,− div2 q̃n)U

=
[
(û− S̃∗Sû+ S̃∗Sû,−div2 q̃n + S∗S̃ div2 q̃n − S∗S̃ div2 q̃n)U

]
=

[
(û− S̃∗Sû,−div2 q̃n + S∗S̃ div2 q̃n)U + (S̃∗Sû,−S∗S̃ div2 q̃n)U

]
≤ ‖û− S̃∗Sû‖r‖ div2 q̃n − S∗S̃ div2 q̃n‖r′ + (Sû,−S̃ div2 q̃n)U

≤ ‖û− S̃∗Sû‖r‖ div2 q̃n − S∗S̃ div2 q̃n‖r′ + sup
u∈UD

(Su,−S̃ div2 q̃n)U

= ‖û− S̃∗Sû‖r‖ div2 q̃n − S∗S̃ div2 q̃n‖r′ + sup
v∈D

(v,−CS̃ div2 q̃n)Ũ ,

(25)

where the supremum in the last expression is given as in (23). Combining this with the estimates
in (25), (24) and (20) and assuming that ‖û − S̃∗Sû‖r ≤ Tn the estimate (22) follows. At last,
we note that, since γ > 1 and un → û as n → ∞, ‖û − S̃∗Sû‖r ≤ Tn is satisfied after a finite
number of iterations.

This allows, for given ε > 0, to use G(xn, yn) < ε as stopping criterion. Note also that, if no
supsampling is performed, i.e., S is the identity, the estimate (22) holds without any assumptions
on Tn.

3.3 Numerical experiments

We now present a numerical evaluation of the proposed method for artifact free JPEG decom-
pression. To allow for an additional numerical evaluation beyond the results presented in this
section, we included the source code of our decompression algorithm in the supplementary ma-
terial of the paper (see also http://www.uni-graz.at/~hollerm). We tested the method for
several lossy JPEG compressed images, where the memory requirement of each JPEG compressed
image (including lossless compression) is given in bits per pixel (bpp). Note that we consider 8 bit
grayscale- and 24 bit true color images, i.e. an uncompressed grayscale and color image requires
8 and 24 bpp, respectively.

For decompression, we fix the ratio between α0 and α1 for the evaluation of the TGV2
α

functional (cf. equation (3)) as α0

α1
=
√

2 based on empirical observations. As stopping criterion
we use either the iteration number, if this is necessary for comparability, or a normalized version
of the modified primal-dual gap G introduced in (21), which is given by
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G(xn, yn) =
1

8k8l
G(xn, yn) (26)

with (xn, yn) the current iterates of Algorithm 2. The parameters in the definition of G are fixed
to r = r′ = 2, as this resulted in the lowest values of G in practice, and γ = 1.001. We point
out that, while γ > 1 is required by Proposition 3.3, we observed that the estimate (22) is in
practice satisfied even for γ = 0. This is, however, not the case in the application to JPEG
2000 decompression and we ask for the readers patience until Section 4.3 for a more detailed
discussion. The reason for normalizing the modified primal-dual gap is to make it image size
independent and, taking into account equation (22), to get an estimate on the average pixel-wise
difference [

|(∇un − vn)i,j |V + |(Evn)i,j |W
]
−
[
|(∇û− v̂)i,j |V + |(E v̂)i,j |W

]
,

where again (û, v̂) denote solutions of the primal problem (16). Considering this estimate, it is
important to note that in the numerical computations we process our images within the range
[0,255], thus a pixel wise error of, e.g., less than one results in a reconstruction that is almost
not distinguishable from the optimal solution.

As first example, Figure 1 depicts the standard decompression of two JPEG compressed
images, corrupted by blocking and ringing artifacts, and their improved decompression obtained
with our TGV based method. As stopping criterion we require the normalized modified primal-
dual gap to be below ε = 10−1, which resulted in 1668 iterations for the top and 1139 iterations
for the bottom image. As one can see, the blocking and ringing artifacts appearing in the
standard decompression have been removed in the improved version, while edges are kept sharp,
leading to more natural and visually more appealing images.

Next, Figure 3.3, compares different orders of TGV regularization on a synthetic test image.
The original, uncompressed image and a surface plot of the region marked in red is shown on the
top. The image was then compressed to 0.56 bpp. The lines below depict, from top to bottom,
results obtained with the standard decompression method, a TV, TGV2

α and TGV3
α regularized

decompression. Each line shows a magnification of the region marked in blue (left), surface
plots of the region marked in red (middle), and a difference images in logarithmic scale (right).
The TV and TGV3

α regularized decompressions were obtained with a similar implementation as
presented in Subsection 3.2 for second order TGV regularization. To ensure optimality, 5000
iterations were performed with each method.

The surface plots clearly show artifacts in the standard decompressed version, but also a
staircasing in the TV regularized result. For second and third order TGV regularization, only
marginal differences are visible in the image sections on the left and the surface plot in the
middle. The difference images, however, still show a significant improvement in the step from
second to third order TGV regularization.

3.4 A GPU implementation

As already discussed in [5], we also developed a parallel implementation of the reconstruction
method for multi-core CPUs and GPUs, using OpenMP [26] and Nvidia’s Cuda [23], respectively.
For the GPU implementation we partly used kernel functions adapted to the compute capability
of the device. The blockwise DCT was performed on the CPU and the GPU using FFTW [19]
and a block-DCT kernel provided by the Cuda SDK, respectively. Computation times of those
implementations for multiple image sizes are given in Table 1, taken from [5]. The relative
time cost of particular iteration steps is compared in Table 2. As one can see, especially the
GPU implementation yields a high acceleration and makes the method suitable for practical
applications. The given computation times correspond to the computation of 1000 iterations,
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Figure 1: On the left: Standard decompression. On the right: TGV-based reconstruction ob-
tained with normalized modified primal-dual gap below 10−1 as stopping criterion. Top: Parrot
image at 0.3 bpp (256×256 pixels, 1668 iterations). Bottom: Guitar image at 1.06 bpp (256×256
pixels, 1139 iterations)

which is motivated by the number of iterations resulting from a normalized modified primal-
dual gap below 10−1 as stopping criterion. Let us remark however that, since the decrease of
the TGV-value of the image is typically very high especially during the first iterations of the
algorithm, and since un ∈ UD can be ensured for any iteration step image un, one can also use
the images obtained after only a few iterations as (intermediate or final) reconstruction. This
yields a practicable method that allows to improve given JPEG images in almost real time.
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Figure 2: Top: Original image with red region plotted as surface. Below: Blue section (left),
surface plot (center) and difference image (right) for different decompression methods at 0.56
bpp. Top to bottom: Standard, TV, TGV2

α, TGV3
α regularized decompression.
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Table 1: Computation times in seconds to perform 1000 iterations for different devices and
image sizes. CPU: AMD Phenom 9950. GPUs: Nvidia Quadro FX 3700 (compute capability
1.1), Nvidia GTX 280 (compute capability 1.3), Nvidia GTX 580 (compute capability 2.0). Note
that on the Quadro FX 3700 and GTX 280, not enough memory was available to perform the
algorithm for the 3200× 2400 pixel image.

Device 512× 512 1600× 1200 3200× 2400

CPU Single-core 53.22 672.51 1613.44
CPU Quad-core 28.32 263.70 812.18
GPU Quadro FX 3700 4.92 35.52 -
GPU Nvidia GTX 280 2.2 10.22 -
GPU Nvidia GTX 580 1.2 6.6 25.70

Table 2: Relative computation times in percent for different iteration steps. The data was
obtained by reconstructing a 1600× 1200 pixel image with 1000 iterations.

Iteration step CPU GPU{
p← projα1

(p+ σ(∇u− v))

q ← projα0
(q + σ(E(v))

}
52% 32%{

u+ ← u+ τ(div p)

v+ ← v + τ(p+ div q)

}
19% 29%{

u+ ← u+ + S̃∗(projUC
(Su+)− Su+)

}
20% 21%{

u← (2u+ − u)

v ← (2v+ − v)

}
9% 18%

4 Color JPEG 2000 decompression

4.1 Discrete setting

In this section we deal with the discrete implementation of the decompression model for JPEG
2000 images as described in [8, Subsection 4.3]. Essentially, the lossy part of JPEG 2000 compres-
sion is based on a biorthogonal wavelet transform using either CDF 9/7 or Le Gall 5/3 wavelets,
followed by quantization of the resulting coefficients. As a consequence, the set of all images
whose compression results in the same, given file will be defined by imposing constraints on the
wavelet coefficients. However, as the quantization procedure of JPEG 2000 is more involved than
the one of JPEG, it will not be possible to obtain finite bounds for all coefficients.

For the sake of simplicity, we consider quadratic images and hence assume the finite dimen-
sional space of discrete color images to be given as U = RN×N×3, with N ∈ N. As described in
[8, Subsection 4.3], for any given resolution level R ∈ Z, we can obtain two dual Riesz bases of
L2((0, 1)× (0, 1)), denoted by

(ΦR,k)k ∪ (Ψj,k)j,k and (Φ̃R,k)k ∪ (Ψ̃j,k)j,k, (27)

that correspond to either CDF 9/7 or Le Gall 5/3 wavelets. Possibly shifting resolution levels,
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we assume that (Φ0,k)k, for 0 ≤ k ≤ N2 − 1 constitutes a basis of RN×N and hence, each color
component uc ∈ RN×Nof u ∈ U is uniquely defined by the inner products

(uc, Φ0,k) for 0 ≤ k < N2, c ∈ {1, 2, 3}.

For a given JPEG 2000 compressed file, we can then obtain a resolution level R ∈ N and, for
each color component c ∈ {1, 2, 3}, data intervals

(JΦ,c
R,k)k, (JΨ,c

j,k )j,k, (28)

such that the source image u ∈ U of the compression process satisfies

(uc,ΦR,k) ∈ JΦ,c
R,k, (uc,Ψj,k) ∈ JΨ,c

j,k , (29)

for all j, k and c ∈ {1, 2, 3}. Due to the multi-resolution framework of the wavelet basis, the

JΦ,c
R,k and JΨ,c

j,k provide the low resolution and detail information, respectively, about the image to
decompress. As result of the JPEG 2000 coding, each of these intervals is either bounded from
both sides or contains all of R.

Note that we consider only the case where the whole image is processed as one tile. For
multiple tiles, data fidelity for each tile can be obtained independently as for separate images,
while the TGV functional will be evaluated globally over all tiles. We further assume the same
resolution level R for each color component. A generalization of our model to a color dependent
resolution level R(c), as it is possible within the JPEG 2000 standard, is straightforward but will
be omitted for the sake of simplicity.

The component-wise wavelet transform operator of order R, denoted by W = (W 1,W 2,W 3) :
U → U , is now defined by repeatedly filtering each color component with the finite filters (hn)n
or (gn)n, followed by subsampling. The filters (hn)n depend on the type of wavelet basis and
correspond to the scaling functions (Φj,k)j,k as described in [8, Subsection 4.3.1], while the filters
(gn)n are defined by

gn = (−1)nh1−n

and correspond to the wavelets (Ψj,k)j,k. Filtering both horizontally and vertically with (hn)n,
for instance, decreases the resolution level by one step while involving the filters (gn)n results
in horizontal, vertical or diagonal detail information. Note that we use symmetric boundary
extension for the filtering operations. In total, the filtering operations map the inner products
(uc,Φ0,k), describing an image u ∈ U , to inner products as in (29) that can be compared with
the given JPEG 2000 data.

Using the dual filters (h̃n)n and (g̃n)n, which correspond to the scaling function and mother
wavelet, respectively, of the dual wavelet basis as described in [8, Subsection 4.3.1], the inverse
wavelet transform operator

W−1 = ((W 1)−1, (W 2)−1, (W 3)−1)

can be defined component-wise by upsampling and filtering with the dual filters, again using
symmetric boundary extension.

Suitably summing up all data intervals as defined in (28) to

(Jci,j)i,j,c, with 0 ≤ i, j < N , c ∈ {1, 2, 3},

the discrete data set for the JPEG 2000 decompression process can then be given as

UD = {u ∈ U | (Wu)ci,j ∈ Jci,j , 0 ≤ i, j < N, c ∈ {1, 2, 3}}. (30)
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As in Subsection 3.1 we consider a discrete version of the TGV functional of order two defined
on U as in Equation (3). Again, with these prerequisites, the discrete minimization problem for
artifact free JPEG 2000 decompression can be written as

min
u∈U

TGV2
α(u) + IUD

(u). (31)

Now as the wavelet transformation operator W is not orthogonal in general, we cannot use
the same solution strategy as for the JPEG case, since a closed form of the projection to the
data set is no longer available. Hence we use a slight reformulation of the minimization problem
which will result in the introduction of an additional dual variable for the data constraint. For
that purpose, first note that, with D = {w ∈ U |wci,j ∈ Jci,j}, the convex indicator function for the
data set UD can be written as IUD

(u) = ID(Wu). Defining the spaces X := U ×V , Y := V ×W
and Z = Y × U , and using again the function F : Y → R and the operator K : X → Y as in
(14) and (15), we define F : Z → R and K : X → Z by

F(z) = F(x,w) = F (x) + ID(w)

and

K =

∇ −I
0 E
W 0

 .
Then, the optimization problem for JPEG 2000 decompression (31) can be posed as

min
x∈X

F(Kx). (32)

Existence of a solution to this problem as well as equivalence to a dual and saddlepoint problem
are summarized in the following proposition:

Proposition 4.1. There exists a solution û to (31) and û is optimal if and only if there exists
v̂ such that x̂ = (û, v̂) solves (32). Further, there exists a solution to the dual problem, given by

max
z∈Z
−I{0}(−K∗z)− F∗(z), (33)

and the saddle point problem
min
x∈X

max
z∈Z

(Kx, z)− F∗(z), (34)

and x̂, ẑ are solutions to the primal problem (32) and the dual problem (33), respectively, if and
only if (x̂, ẑ) solves the saddle point problem (34).

Proof. Existence of a solution to problem (31) follows by similar argumentation as in the infinite
dimensional setting (see [8]). Equivalence of (31) to the primal problem (32) is obvious. Hence,
following [18, Proposition III.3.1] it suffices to show existence of a solution to the dual problem
and equality of the primal and dual problem at optimal points, to conclude all claims. Using [3,
Corollary 2.3] this follows provided that⋃

λ≥0

λ[dom(F)−K(dom(0))] = Z,

where 0 : X → 0 is the zero mapping. But this is satisfied since, given any w0 ∈ UD fixed, any
(p, q, w) can be written aspq

w

 =

p+∇W−1(w0 − w)
q
w0

−K

(
W−1(w0 − w)

0

)
∈ dom(F)−K(dom(0)).
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Again, optimality conditions for the discrete saddle-point problem will be helpful for a stop-
ping criterion later on and follow by standard arguments (see [8, Theorem 3.3]).

Proposition 4.2. Let the assumptions of Proposition 4.1 be satisfied. Then, there exists a
solution to (34) and (x̂, ẑ) = (û, v̂, p̂, q̂, ŵ) solves (34) if and only if

•
(
−div p̂+W ∗ŵ
−p̂− div q̂

)
=

(
0
0

)
,

• For all 0 ≤ i < N , 0 ≤ j < N ,
p̂i,j = α1

(∇û− v̂)i,j
|(∇û− v̂)i,j |V

if (∇û− v̂)i,j 6= 0 and |p̂i,j |V ≤ α0 else,

q̂i,j = α0
(E v̂)i,j
|(E v̂)i,j |W

if (E v̂)i,j 6= 0 and |q̂i,j |W ≤ α1 else,

• û ∈ UD and 
ŵci,j ≥ 0 if (Wû)ci,j = sup(Jci,j) 6= inf(Jci,j),

ŵci,j ≤ 0 if (Wû)ci,j = inf(Jci,j) 6= sup(Jci,j),

ŵci,j = 0 if (Wû)ci,j ∈ int(Jci,j).

4.2 Practical implementation

To solve (34) numerically, we again employ the abstract primal-dual algorithm given in Subsection
2.2. For that purpose, we need an explicit form of W ∗, the adjoint of W , the proximal mapping
(I + σ∂F∗)−1 and an estimate on ‖K‖.
The adjoint of W : Since the filters (hn)n, (gn)n for the forward wavelet transform are symmet-
ric, and also the boundary extension in the evaluation of W is symmetric, W ∗ can be obtained
by applying W−1 with (hn)n, (gn)n instead of (h̃n)n, (g̃n)n.
The proximal mapping (I+σ∂F∗)−1: First note that F∗ can be decomposed as F∗(y∗, w∗) =
F ∗(y∗) + I∗D(w∗) and hence (I + σ∂F∗)−1 can be written as

(I + σ∂F∗)−1(y, w) =

(
(I + σ∂F ∗)−1(y)
(I + σ∂I∗D)−1(w)

)
,

where, as already discussed in Subsection 3.1, (I + σ∂F ∗)−1(y) is given as

(I + σ∂F ∗)−1(y) = (I + σ∂F ∗)−1(p, q) =
(
projα1

(p),projα0
(q)
)

(35)

with projα1
,projα0

as in Equation (19). As I∗D can also be decomposed to

I∗D(w∗) =
∑
i,j,c

I∗Jc
i,j

((w∗)ci,j),

the resolvent (I + σ∂I∗D)−1(w) can be obtained component-wise: In case J = [l, o] is a bounded
interval, a calculation already done in the proof of Proposition 3.3 again yields

I∗J(r∗) = sup
r∈J

(r, r∗) =
l + o

2
r∗ + |o− l

2
r∗|. (36)

From this, one can deduce that r∗ = (I + σ∂I∗J)−1(r) is equivalent to a shrinkage operation
according to 

r∗ = r − σ l+o2 −
o−l
2 σ if r − σ l+o2 > o−l

2 σ,

r∗ = r − σ l+o2 + o−l
2 σ if r − σ l+o2 < − o−l2 σ,

r∗ = 0 if |r − σ l+o2 | ≤
o−l
2 σ.

(37)
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In the case J = R, it is immediate that

I∗J(r∗) = I{0}(r∗) and (I + σ∂I∗J)−1(r) = 0.

Hence, denoting by N the set of all indices (i, j, c) such that Jci,j is bounded, i.e, is of the form
Jci,j = [lci,j , o

c
i,j ] with lci,j , o

c
i,j ∈ R, we get that

(I + σ∂F∗)−1(x,w) =

 projα1
(v)

projα2
(w)

shrinkJ,N (w, σ)

 ,

with the shrinkage operator shrinkJ,N defined as

(shrinkJ,N (w, σ))ci,j =



wci,j − σoci,j if wci,j > σoci,j ,

wci,j − σlci,j if wci,j < σlci,j ,

0 if wci,j ∈ [σlci,j , σo
c
i,j ],

if (c, i, j) ∈ N ,

0 else.

(38)

The norm of K: An estimate on ‖K‖ needs an estimate on ‖W‖. Even though such an
estimate can be obtained analytically, ‖W‖ depends on the level of wavelet decomposition and
can get quite high. For example, using a decomposition level of 5 and the CDF 9/7 filters, we
can estimate ‖K‖ ≤ 2839.97 and, choosing equal stepsizes, consequently get

σ = τ ≈ 0.000352.

Compared to the JPEG case, where σ = τ ≈ 0.2965, this is clearly too small for efficient numerical
solution. Even though our estimate on ‖W‖ certainly was not optimal, one can get lower bounds
on ‖W‖ in particular situations which still yield impracticable small stepsizes. To overcome this
difficulty, we propose to choose the stepsize adaptively as explained in Subsection 2.2 and defined
in (9). In practice, the adaptive stepsize choice reduces the stepsize only a few times during the
first iterations and allows stepsizes in the range of 0.3, and consequently, significantly accelerates
convergence.

A scheme of implementation for the JPEG 2000 decompression process can then be given in
Algorithm 3. Note that there, J denotes the collection of all data intervals and d the matrix
where each entry is the midpoint of the corresponding interval (0 if the interval is R). Fur-
ther ∇, E ,div,div are again the component-wise gradient and divergence operators as defined in
Subsection 3.1.

Stopping rule

In order to validate our numerical solution, we again seek for a suitable stopping rule that allows
to estimate optimality in terms of the objective function. However, as, in contrast to the JPEG
decompression setting, we cannot ensure the current iterates being contained in the data set UD,
we cannot expect to get an estimate on

0 ≤ F(Kxn)− F(Kx̂)

as F(Kxn) might be infinity. Our solution is to relax the data constraint as follows. Given
some constants (Cci,j)(i,j,c)∈N with N the set of indices where the intervals are bounded, i.e.,
Jci,j = [lci,j , o

c
i,j ] for (i, j, c) ∈ N , we define

IDC
(w) =

∑
wc

i,j /∈Jc
i,j

Cci,j max{wci,j − oci,j , lci,j − wci,j}.
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Algorithm 3 Scheme of implementation for JPEG 2000 decompression

1: function TGV-JP2(Jcomp)

2: (d, J)← Decoding of JPEG 2000 object Jcomp

3: N ← J

4: u←W−1(d)

5: v ← 0, u← u, v ← 0, p← 0, q ← 0, w ← 0

6: choose σ, τ > 0

7: repeat

8: p← projα1
(p+ σ(∇u− v))

9: q ← projα0
(q + σEv)

10: w ← shrinkJ,N (w + σWu, σ)

11: u+ ← u− τ(−div p+W ∗w)

12: v+ ← v − τ(−p− div q)

13: u← (2u+ − u), v ← (2v+ − v)

14: σ+ ← S(στ, ‖(u+,v+)−(u,v)‖X
‖K((u+,v+)−(u,v))‖Z ), τ+ ← σ+

15: u← u+, v ← v+

16: until Stopping criterion fulfilled

17: return u+

18: end function

Note that IDC
is a relaxed version of ID as coefficients outside of the data intervals are penalized

with Cci,j instead of infinity. An easy calculation shows that

I∗DC
(w∗) =

∑
(i,j,c)∈N

I{|·|≤Cc
i,j}((w

∗)ci,j) +
lci,j + oci,j

2
wci,j + |

oci,j − lci,j
2

wci,j |+
∑

(i,j,c)/∈N

I{0}(wci,j),

in particular I∗DC
(w∗) = I∗D(w∗) if |wci,j | ≤ Cci,j for all (i, j, c) ∈ N . Now given x̂ = (û, v̂) and

ẑ = (p̂, q̂, ŵ) an optimal solution to the saddle point problem (34) and choosing Ĉci,j = |ŵci,j | for
all (i, j, c) ∈ N , we can estimate for any x = (u, v) ∈ X

F (Kx) + IDĈ
(Wu) = sup

s=(p,q,w)

(Kx, s)Z − F ∗(p, q)− I∗DĈ
(w)

≥ (Kx, ẑ)Z − F ∗(p̂, q̂)− I∗DĈ
(ŵ)

≥ (Kx̂, ẑ)Z − F ∗(p̂, q̂)− I∗D(ŵ)

= sup
s=(p,q,w)

(Kx̂, s)Z − F ∗(p, q)− I∗D(w)

= F(Kx̂)

from which we can proceed as in the JPEG setting to get, for any z ∈ Z,

0 ≤ F (Kx) + IDĈ
(Wu)− F(Kx̂) = F (Kx) + IDĈ

(Wu)−
(

sup
s∈Z

(Kx̂, s)Z − F∗(s)

)
≤ F (Kx) + IDĈ

(Wu)− (Kx̂, z)Z + F∗(z).

(39)

This allows to define a suitable stopping rule as follows.
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Proposition 4.3. Let γ > 1, 1 ≤ r ≤ ∞ xn = (un, vn), zn = (pn, qn, wn) be the iterates of
Algorithm 3 and (û, v̂), (p̂, q̂, ŵ) be an optimal solution to (34). Then, defining

G(xn, zn) : = F (Kxn) + IDCn
(Wun) + Tn‖div2 q̃n −W ∗wn‖r′

+
∑

(i,j,c)∈N

lci,j + oci,j
2

(wn)ci,j + |
oci,j − lci,j

2
(wn)ci,j |

(40)

with (Cn)ci,j = γ|(wn)ci,j |, Tn := γ‖un‖r and q̃n = βnqn with βn := α1

max(α1,‖ div qn‖∞) , we get that

G(xn, zn)→ 0 as n→∞

and, additionally,
0 ≤ F (Kxn) + IDĈ

(Wun)− TGV2
α(û) ≤ G(xn, zn) (41)

whenever Tn ≥ ‖û‖r and (Cn)ci,j ≥ |ŵci,j | for all 0 ≤ i < N , 0 ≤ j < N , c ∈ {1, 2, 3}, which is
eventually the case.

Proof. The claimed convergence to zero follows, with similar techniques as employed in the proof
of Proposition 3.3, from convergence of the iterates, the optimality conditions given in Proposition
4.2 and strict duality as shown in the proof of Proposition 4.1. Now inserting xn = (un, vn),
z̃n = (−div q̃n, q̃n, wn) in (39) the last term reduces to

F (Kx)+IDĈ
(Wu)−(Kx̂, z)Z+F∗(z) = F (Kxn)+IDĈ

(Wun)−(û,div2 q̃n+Wwn)U+sup
s∈D

(s, wn)U .

(42)
As, due to the shrinkage operator in Algorithm 3, all indices of wn corresponding to unbounded
intervals are zero, the supremum in the above expression can be written explicitly as

sup
s∈D

(s, wn)U =
∑
i,j,c

lci,j + oci,j
2

(wn)ci,j + |
oci,j − lci,j

2
(wn)ci,j |.

Combining this with (42) and the estimate (39) and assuming that Tn ≥ ‖û‖r and (Cn)ci,j ≥ |ŵci,j |
the estimate (41) follows. Finally, due to convergence of the iterates and γ > 1, both Tn ≥ ‖û‖r
and (Cn)ci,j ≥ |ŵci,j | are satisfied after finitely many iterations.

This allows, for given ε > 0, to use G(xn, yn) < ε as stopping criterion and provides, at least
in the limit, a suitable estimate of the error in terms of functional values. Note that we cannot
expect to get the estimate

G(xn, zn) ≥ F (Kxn)− TGV2
α(û) ≥ 0

since, as already mentioned, the iterates (un)n are only contained in the data set UD in the
limit and thus it is possible that F (Kxn) < TGV2

α(û). This was also observed in numerical
experiments.

4.3 Numerical experiments

The aim of this subsection is to provide numerical results obtained with our framework for
improved decompression of JPEG 2000 images. We used Algorithm 3 with adaptive stepsize
choice, θ = 0.95 and a stepsize initialization of σ = τ = 1/3 for all experiments in this section.
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Figure 3: Left: Comparison of modified primal-dual gap for γ = 1.001, r = 2 and γ = 0 to
difference of TGV(uk) +IDCk

(uk) and optimal TGV value (obtained with adaptive stepsize and
15000 iterations). As one can see, the modified primal-dual gap with γ = 0 violates the estimate
G(xk, yk) ≥ TGV(uk) + IDCk

(Wuk) − TGV(û). Right: Difference of modified primal-dual gap
for different choices of γ, r to modified primal-dual gap obtained with γ = 0.

As stopping rule, we use a normalization of the modified primal-dual gap G as in (40), defined
by

G(xn, yn) =
G(xn, yn)

N2
, (43)

with N2 the number of image pixels. As for the application to JPEG decompression, the normal-
ization is motivated by making G image size independent and getting an estimate on an average
pixel error; remembering that, in the limit, we have the estimate

0 ≤ F (xn) + IDCn
(Wun)− TGV2

α(û) ≤ G(xn, yn).

In contrast to the JPEG decompression setting, we did not implement CPU or GPU opti-
mized code for the TGV based JPEG 2000 decompression algorithm. Considering computation
times, however, one could expect that each iteration step of an optimized JPEG 2000 decom-
pression scheme would take about as long as for the JPEG decompression setting. Indeed, from
the computational viewpoint, the only considerable difference is that instead of a Block-DCT
transform, a wavelet transform is used.

Primal-dual gap parameters

As for the application to JPEG decompression, we again have free choice of the parameters γ
and r for evaluation of the modified primal-dual gap: Figure 3 evaluates different choices of γ
and r. As can be seen in the left plot the choice γ = 0 violates the estimate (41), but the choice
γ = 1.001, p = 2, r = 2 does not. The observation that, in contrast to JPEG decompression,
the choice γ = 0 is not feasible can be explained by the fact that this time the unbounded data
part, and, consequently the choice of γ, has much more influence. As can be seen in Figure 3 on
the right, even not violating estimate (41), the choices γ = 1.001 and r = 2 result again in the
lowest modified primal-dual gap. Thus, we used this choice for all subsequent experiments.
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Experimental results for decompression

We now consider numerical results obtained with the proposed method for different JPEG 2000
compressed images. If not mentioned otherwise, we always require the normalized modified
primal-dual gap to be below 10−1 as stopping criterion and again fix the ratio between α0 and
α1 for the evaluation of the TGV2

α functional as α0

α1
=
√

2 based on empirical observations.
Figure 4 compares the standard reconstruction with the TGV based reconstruction. As one can
see, in the TGV based reconstruction, all wavelet artifacts have been removed while edges are
kept sharp. In general the reconstruction quality is strongly improved and yields more natural
and visually more appealing images. The two top rows of Figure 4 show a compression and
reconstruction of the same parrot image, once without tiling and once using 4 tiles. Even at
the same bit rate, the image with tiling looks worse as the tile boundaries are clearly visible. In
the improved reconstruction, these artificial edges as well as the stronger wavelet artifacts have
been removed completely. But also the improved reconstruction quality is slightly worse when
using multiple tiles. The larger number of iterations (3975, 4580 and 5056 for the two parrots
and the peppers image, respectively), compared to JPEG reconstruction, necessary to satisfy
the stopping rule might be due to the unboundedness of some data intervals for JPEG 2000
decompression. However, as we will see in Figure 6 later on, this bound is merely important to
ensure optimality, in practical applications a much lower iteration number is sufficient to obtain
a reconstruction visually almost indistinguishable from the optimal one.

Figure 5 allows a more detailed comparison of the standard and TGV based reconstruction
for a color test image. As one can see in the difference images below, the total energy of the
error has been significantly reduced with the TGV based reconstruction and the error is of a less
visible type.

Figure 6 now allows to compare the reconstruction quality for the parrot image by performing
less iterations. It depicts the standard decompression and reconstructions obtained using 100
iterations, G(xn, yn) < 1 (836 iterations) and again G(xn, yn) < 0.1 (3975 iterations) as stopping
rule. As one can see, even after 100 iterations the JPEG 2000 artifacts are already removed
and the image is comparable to the optimal solution at 4111 iterations. However, in contrast to
JPEG decompression, for such suboptimal reconstructions a perfect fit to data cannot be ensured
and is not satisfied in practice.

5 Variational image zooming

5.1 Discrete framework

This section deals with a discrete version of the variational zooming approach as described in
[8, Subsection 4.4]. For simplicity, we consider only grayscale images and define U = RN×N ,
N ∈ N, to be the space of discrete, high resolution images. Given a Riesz basis (ai,j)i,j of U , we
define a subsampling operator A : RN×N → RM×M with M < N as

(Au)i,j = (ai,j , u)U for 0 ≤ i, j < M.

Our goal is to perform a TGV regularized inversion of this type of subsampling, i.e., given low
resolution image data (di,j)i,j , to find an image u ∈ U minimizing the TGV2

α function as in (3)
such that

(Au)i,j = di,j for all 0 ≤ i, j < M.

A particular case of such a setting, which has also been considered in [6], arises when choosing
(ai,j)i,j to be a wavelet basis of U , which is, for a given resolution level R, again denoted by

(ΦR,k)k ∪ (Ψj,k)j,k. (44)
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Figure 4: On the left: Standard decompression. On the right: TGV based reconstruction
obtained with normalized modified primal-dual gap below 10−1 as stopping criterion. From top
to bottom: Parrot image at 0.3 bpp (256× 256 pixels, 3975 iterations), Parrot image with tiling
at 0.3 bpp (256× 256 pixels, 4580 iterations), Peppers image at 0.15 bpp (512× 512 pixels, 5056
iterations).
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Figure 5: Left: Standard decompression, right: TGV based reconstruction. Top: Color test
image at 0.6 bpp (256 × 256 pixels, 4144 iterations). Bottom: Visualization of the pointwise
reconstruction error (logarithmic scale).

Then, possibly shifting resolution levels, we can choose M = 2−RN and define A to map high
resolution images u ∈ U to inner products with the scaling functions, i.e., Au = ((u,ΦR,k)U )k for
0 ≤ k < M2. As these inner products correspond to a local averaging, we interpret each (u,ΦR,k)

as pixel value and hence A indeed maps images u ∈ U to low resolution images Au ∈ R2−RN×2−RN

(see also [8, Figure 5]). In particular, when choosing (ai,j)i,j to be a Haar wavelet basis, (u,ΦR,k)
is a local average on a patch of size 2R at position k.

Alternatively, one can also incorporate data from a given JPEG or JPEG 2000 compressed file
to obtain a combined decompression and zooming approach. Choosing (ai,j)i,j for 0 ≤ i, j < N
to be either a block-wise cosine basis or a tile-wise wavelet basis with CDF 9/7 or Le Gall 5/3
wavelets, we can assume that a given file describes only a low resolution image u ∈ RM×M by
providing interval bounds Ji,j on the coefficients (ai,j , u)U for 0 ≤ i, j < M and reconstruct a
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Figure 6: Decompression of parrot image (0.3 bpp, 256× 256 pixels) using only a few number of
iterations. Top left: Standard decompression, top right: TGV regularized decompression after
100 iterations, bottom left and right: TGV regularized decompression obtained with G(xn, yn) <
1 (836 iterations) and G(xn, yn) < 1 (3975 iterations) as stopping criterion, respectively.

high resolution image u ∈ U such that (Au)i,j ∈ Ji,j for 0 ≤ i, j < M .
In both cases, the proposed zooming approach can be realized by solving

min
u∈U

TGV2
α(u) + IUD

(u), (45)

where
UD = {u ∈ U | (Au)i,j ∈ Ji,j for 0 ≤ i, j < M}, (46)

with Ji,j either being point intervals or intervals that are given from a compressed JPEG or
JPEG 2000 file.
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Now since the setting we used for the discrete minimization problem for JPEG 2000 decom-
pression does not exclude the case of point intervals, all results, such as existence of a solution
and the optimality condition, apply. Consequently, also the saddle point problem

min
x∈X

max
z∈Z

(Kx, z)− F∗(z), (47)

with X,Z,K,F defined as in Subsection 4.1, where UD is now given as in (46), is equivalent to
(45) and can be solved by the primal-dual Algorithm 3. Also, the considerations concerning the
norm of K and, consequently, the stepsizes σ, τ as well the estimates on the modified primal-dual
gap G defined in (40) directly apply to the variational zooming model. In applications where
the basis (ai,j)i,j is orthogonal, such as when (ai,j)i,j is a block cosine basis or a Haar wavelet
basis, also the simpler algorithmic framework of JPEG compression as in Section 3.1 applies.
The modified primal-dual gap given there, however, has to be modified accordingly to account
for unbounded intervals.

5.2 Numerical experiments

This section presents numerical results for variational image zooming and combined decompres-
sion and zooming. As stopping rule for our experiments, we require the normalized modified
primal-dual gap as in (43) to be below 10−1 for all experiments. Motivated by the discussion
in Subsection 4.3 we again use adaptive stepsizes initialized with σ = τ = 1/3 and γ = 1.001,
p = 2 and r = 2 for the evaluation of the modified primal-dual gap. However, in contrast to
the decompression setting, we now fix the ratio between α0 and α1 for evaluation of the TGV
functional to 4 rather than

√
2 since, as we experienced, this choice improves reconstruction

quality in zooming applications.
Figure 7 shows results for the fourfold magnification of a patch of the Barbara image con-

taining a stripe structure, and a synthetic test image. For better comparability, we used the
original image rather than a down-sampled version. Thus, the down-sampling procedure is not
known and cannot favor any particular method, but also no original data is available. As one
can see for the Barbara image, a Lanczos 2 filter [17] based zooming leads to blurring of the
stripes while our method yields a reconstruction appearing much sharper. Using the CDF 9/7
wavelets results in the best reconstruction quality. In particular, we observe that not only the
edges are preserved, but also the geometrical information is extended in a natural manner for
the CDF 9/7 wavelet (as opposed to the Haar wavelet, where “geometrical staircasing” occurs).
For the test image at the bottom of Figure 7, we can observe that, as one would expect, the
Haar wavelet based approach keeps the block structure of the edges of the objects, but leads to
sharp object boundaries and naturally smoothes homogeneous regions.

Figure 8 then shows results for the combined decompression and eightfold magnification of
JPEG and JPEG 2000 decompressed images. As one can see, even in the difficult situation of
having only highly subsampled and compressed data available, our method performs reasonably
well. While with standard box upsampling, the artifacts resulting from compression are magni-
fied, the do not appear in the TGV regularized upsampled images. Also, sharp boundaries of
the hand are recovered reasonably well. Fine texture is, of course, lost due to high subsampling.

6 Conclusions

We have presented different applications of a general variational model for TGV regularized image
reconstruction. After the model has been analyzed in function space setting in a previous work
[8], we have focused on the discrete setting and have obtained a practical realization for JPEG
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Figure 7: Top left: Low resolution and box-upsampled patch of Barbara images. Top right:
4 times magnifications by linear filtering with Lanczos 2 filter. Center left and right: 4 times
magnification by TGV based variational zooming using the Haar (1948 iterations) and CDF 9/7
wavelet (1773 iterations) to model subsampling, respectively. Bottom: 4 times magnification
with box-upsampling (left) and TGV based variational zooming using the Haar wavelet (right,
4680 iterations) of a test image.
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Figure 8: Upsampling by pixel repetition (left) and TGV2
α regularized, combined decompression

and zooming (right) for a low resolution, JPEG (top, 3276 iterations) and JPEG 2000 (bottom,
11893 iterations) compressed image (both compressed to 2.96 bpp). Image by [21], licensed under
CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0/).

and JPEG 2000 decompression and a variational zooming method. In particular, a uniform
algorithmic framework allowing to obtain a globally convergent algorithm for all applications
has been presented. To ensure a reasonably fast convergence and optimality of the obtained
solutions, we have proposed an adaptive stepsize strategy and a duality based stopping criterion.
For JPEG decompression, we have also developed a multi-core CPU and GPU implementation
that shows our approach to be suited for practical application. Numerical experiments further
allow to compare results obtained with TV and second and third order TGV regularization and
confirm a high visual quality of our obtained reconstruction.
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