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ABSTRACT. We consider the heat equation on a bounded domain sub-
ject to an inhomogeneous forcing in terms of a rate-independent (hys-
teresis) operator and a control variable.

The aim of the paper is to establish a functional analytical setting
which allows to prove weak differentiability properties of the control-
to-state mapping. Using results of [BK] on the weak differentiability of
scalar rate-independent operators, we prove Bouligand differentiability
in suitable Bochner spaces of the control-to-state mapping in a parabolic
problem.

1. INTRODUCTION AND PROBLEM FORMULATION

The aim of this article is to study weak differentiability properties of a
parabolic control problem with a rate-independent hysteresis operator. More
precisely, we consider the following problem.

Let © C RY be a bounded domain with sufficiently smooth boundary
I':=0Q € C*** for a > 0 and denote Q7 := Qx (0,7) and ' := I'x (0, T).
Given a control u € L?(Qr), we shall consider the following control problem
for the heat equation coupled to a rate-independent operator W:

yr — Ay = u + w, in Qp, (1a)
w = Wly|, in Qr, (1b)

Bly] = 0, on I'p, (1c)
y(-,0) = wo, on (. (1d)

Here, W denotes a large class of operators, in particular rate-independent
operators, which shall be define precisely in the following. Moreover, B
specifies a linear boundary operator corresponding to homogeneous Dirichlet
data Bly] = y|r, = 0 on a subpart of the boundary I'p C I'" with non-
zero measure [[g] > 0 and homogeneous Neumann boundary data on the
remaining part of the boundary I'y :=T'\ I'p.

The operator V. The operator W is constructed as a space-dependent
version of an operator V,

Wiyl(z,t) = Vy(x,)(t), (x,t) € 2 x[0,T]. (2)
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Thus, W represents a family of operators acting on y(z,-), viewed as a
function of time, at every x € Q.

We remark that if one wants to include a space-dependent initial condition
for V, one would write W[y|(z,t) = V[y(z, ), z](t) instead of (2); we will not
do this in this paper.

Concerning the operator V, we assume that
V:C[0,T] x Q — C[0,T] (3)
is Lipschitz continuous; more precisely, we require that there exists an L > 0

such that
V[ul(t) = V[o|(t)] < L sup [v(s) —v(s)] (4)

0<s<t
holds for every v,v € C[0,T], every t € [0,T] and every = € §. Condition
(4) also implies causality. We moreover assume linear growth

VIl(t)] < L sup. [v(s)| + co (5)

for arguments as above, and some ¢y > 0.
The properties (4) and (5) carry over to the operator W defined in (3).
Denoting
[y(@, Moo = sup |y(z,s)l, (6)

0<s<t

we immediately obtain that

Wyl (@, ) = WGl )loos < Llly(z, ) = () lloo,s, (7)
IV, ot < Llly(x, -)l|oo,t + co, (8)
holds for every y,§ € L?(Q;C[0,T]), for a.e. €  and every t € [0, T].
Thus,
W : L*(Q; C[0,T]) — L*(Q;C[0,T]) (9)
is well-defined.
Under the assumptions above, the following existence and uniqueness re-

sult is a consequence of Theorems X.1.1 and X.1.2 of [Vis]. In the following,
we shall either use the space

V =Hp, ={veH;:v|r, =0},
in case [I'y| > 0 or
V = Hy,
in case |I'ny| = 0.

Theorem 1 (Existence and Uniqueness, see [Vis]).
For every u € L*(Q7) and every yo € V, the initial-boundary value problem
given by (1) has a unique solution

y e HY0,T; L*(Q)) N L>=(0,T; V), Wly] € L3(Q; C[0,T7).

Proof. The existence proof is based on the compactness of the embeddding
of HY(0,T; L?(2)) N L*°(0,T; V) into L?(%; C[0,T)), see [Vis]. O



WEAK DIFFERENTIABILITY IN A PARABOLIC HYSTERESIS CONTROL PROBLEM3

Theorem 1 guarantees that the control-to-state operator
y = Su, S: L*(Qr) — HY(0,T; L*(Q)) N L™=(0,T; V),

is well-defined. Assume for a moment that the control-to-state operator S is
differentiable w.r.t. some suitable norms, then for an increment h € L?(Q27)
we would have

S(u+ h) = Su+ S (u)h + o ||h]]), (10)

where the first order approximation d = S’(u)h to the difference S(u-+h)—Su
depends linearly upon h and is expected to solve a linear problem, obtained
from linearising the original problem.

When W is a hysteresis operator, YW (and thus S) are not differentiable
in the classical sense. Nevertheless, let us consider the formal linearisation
of (1). Given functions y = Su and h, we want to determine functions d
and p as solutions of

dy — Ad = h+ p, in Qr, (11a)
p=W1y;d, in Qp, (11b)

Bld] =0, on I'p, (11c)
d(-,0) =0, on €. (11d)

Here, W'[y; d] denotes the directional derivative of W at y in the direction d.
We do not assume that the mapping d — W[y; d] is linear; indeed, hysteresis
operators do not satisfy this property, but they possess directional deriva-
tives, see [BK]. Thus, we term the system (11) the first order problem,;
it is nonlinear whenever the mapping d — W[y; d] is not linear.

Our aim is to derive weak differentiability properties of the control-to-
state operator S from corresponding properties of the operator W. More pre-
cisely, out main results shows the following Theorem, which will be proved
in Section 3 below:

Theorem 2 (Weak differentiability of the state-to-control map S).
The control-to-state mapping u — Sy has a Bouligand derivative when con-
stdered as an operator

S L*(0,T;L%°(Q)) — HY(0,T; L*(Q)) N L>=(0,T; V). (12)
The derivative d = S'(u; h) is given by the solution of the first order problem
(11).
Weak differentiability of YV and W. We assume that the operator V :
C[0,T] — C[0,T] has the following weak differentiability properties.
(i) For every v,n € C[0,T], the pointwise derivative VFP[v; ] : [0,T] —
R defined by

PP el — e VI A0 = VL)

13
AL0 A (13)

exists for all ¢ € [0,7T] and is a regulated function. Linearity of the
mapping 7 — VFP[v; 7] is not assumed.
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(ii) Let p € (1,00) and r € [1,00) be given. There exists a non-negative
function p : (0,e9) — Ry with p(e) — 0 as € — 0 such that

Vo + 0] = Vo]l = VPPl o < plinllec) 0 ooy (14)
holds for all v € C[0,T], n € WYP(0,T), t € [0, 7).

Remark 3. The foregoing estimate implies that the operator V is Bouligand
differentiable when considered as an operator

V:Wh(0,T) - L"(0,T).

Accordingly, the pointwise derivative VEP[v;n] is called the Bouligand de-
rivative of ¥V, and we shall denote it by V'[v;n] instead.

The estimate
IV'[vsn] = V'[viJllsot < LIn = Cllocye,  foralln, ¢ € C[0,T],  (15)
follows immediately from (13) and (4). In particular, since V'[v; 0]

IV [vsnllloot < Lllnlloos,  for all n € C[0,T], (16)

Il
o

We now define pointwise in x €
Wy dj(z,t) = V'[y(x,); d(x,)](2). (17)
Due to (15) and (16), the operator
d— W'ly:d], L*(Q;0[0,T)) — L*(2G[0,T))

is well-defined; here, G[0,T] denotes the space of regulated functions on
[0,T7.

Due to (16) and (17), the operator n — V'[v; 7] satisfies the assumptions
of Theorems X.1.1 and X.1.2 in [Vis|, which can be extended to cover the
range space G[0, T instead of C[0, T for the hysteresis operator. This yields
the following

Theorem 4. The first order problem given by (11) has a unique solution
de HY0,T; L*(Q) N L>®(0,T;V),  pe L*Q;G[0,T]).

We remark that the function p has less regularity than the corresponding
function w in the original problem (1).

This regularity is consistent with standard parabolic regularity; given
(h +p) € L?(Qr), then parabolic regularity yields d € L2(; W12(0,T)) N
L((0,T); HL(%)).

We also have the following estimate.

Theorem 5. The solution d of the first order problem (11a — 11d) satisfies

T T
//dtzdxdt—k sup /|Vd|2dx§Cl(T)//h2dxdt (18)
0JQ t€[0,T] JQ 0JQ

as well as

T
Il < Co(T) [ 1.0l . (19)
The constants C1(T) and Co(T) do not depend on h.
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Proof. The proof of (18) follows from estimate (22) in Lemma 6 by setting
z:=d, f:=|h| and g := h + p as well as by noting that

[p+ hl(2,t) < Lsup|d(z, s)| + [h(z, )],
s<t
Moreover, (19) follows from estimate (23) in Lemma 6 in Section 2. O

2. REGULARITY ESTIMATES

The following Lemma 6 provides a parabolic regularity statement for the
heat equation subject to rate-independent operator satisfying the Lipschitz
continuity (8).

Lemma 6 (Parabolic regularity). Consider the parabolic problem:

2 — Az =g, in Qr, (20a)
B[z] =0, on Ip, (20b)
z(-,0) =0, on €, (20c)
where g € L*(Q; G[0,T)) satisfies the following estimate
9l(z,1) < L sup|z(z, 5)| + f (@, 1). (21)

for a non-negative function f(x,t) > 0.
(1) Assume that f € L*(Qr). Then, for all T > 0

)
T T
2 2 2
/0 /Q () o + s /Q V()2 dz < C(T) /0 /Q Pdedt,  (22)

where the constant C1(T) grows at most linearly in T

(2) Assume that f € L*([0,T]; L%°(Q2)). Then, for all T >0
T
sup [l (8) < CalT) [ 1fl1z=(5) s, (23)
te[0,T 0
where the constant Co(T) grows at most exponentially in T.

Remark 7. The estimate (22) implies the continuity at zero of the mapping
f e LX(Qr) w2z € LX(QWH2(0,T)) N L™((0,T); H'(2))

with a bound which grows at most linearly in T'. In fact, the estimates (29)
and (30) below imply even the continuity at zero of the mapping

(f,z0) € L3(Qr) x HY(Q) — z € L>(Q; WH2(0,T)) N L>®((0,T); H(Q))

regardless of z(0) = 0 as considered in (20c). We remark that these esti-
mates do not imply linearity away from zero, which can not be expected in
general for rate-independent evolutions. However, we are only interested in
continuity at zero.

Moreover, the estimate (23) implies the continuity at zero of the mapping

f e LY[0,T]; L®(Q)) — z € L*®(Qr)

with a constant, which grows at most exponentially in T'. Again, the solution
operator is monlinear in general and continuity is only proved at zero.
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Proof. We prove first estimate (22). Our goal is to obtain an a priori es-
timate for z in terms of f. To this end, we test (20a) formally with z
and integrate over Q2. We point out that the formal integration with z
can be made rigorous by a suitable approximation procedure whenever so-
lutions to (20) have full parabolic regularity, in particular, z; € L?(Qr).
This is standard in the case V = H} since we have g € L?(Q7) and other-
wise smooth data, boundary and coefficients, see e.g. [QS]. For V = H%D,
the required regularity z € L?*(Qr) follows from Az € L?(27), which can
be shown following [Chi][Chapter 11] by using that problem (20) is linear
with constant coefficients and homogeneous boundary and initial data and
Vg € L?((0,T); V).
By integrating by parts and using (21), we obtain

g 2 ' r |Vz| ' T '
(zt) dxds’ + 8t —— | dads’ < ]g]|zt|dxd5
0
<L//sup| 2(x, 8)||2¢(z, 8")| dwds’ +//f|zt|dmd8
Q s<t

where we remark that all boundary terms vanish for the considered homoge-
neous boundary operator B in (20b). Moreover, we may replace the second
term in the first line by 3 f 4 [ V2|2 dadt.

In order to handle the ﬁrst term on the right hand side of (24), we use
that

(24)

T
sup |2(x,5)| < / l2u(, ) |ds
0

0<s<t

and estimate with Young’s inequality

//sup| 2(x, 8)||2¢(z, 8")| dwds’ </// |2¢e(x, 8)||2¢(x, 8")| dsdxds’
Q s<t
T T
§/ // stdmds'—}—/ // Mdsdxds'
0 JaJo 2 0 JaJo 2
T
ST// |2z, 8) [ dads’.
0JQ

Coming back to (24), we obtain by using Young’s inequality with a con-
stant 6 > 0,

/OT/Q(Zt)Q dxds’+/QWz(2T)|2dx
</QWZ;0)|2dx+LT/T/ |2 2dds’ -
//!zt\zdxds + = //ﬂdmds

where we ignore for the moment that we actually have z(0) = 0.
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The estimate (25) has the following two consequences: First, choosing
Ty : 3L and setting 0 = 3, we obtain

1 T
//(zt)2dxds’g/|w(0)|dx+3//f2dxds’, forall T <T.
3Jo Ja o 2 4 Jo Jo

(26)
Secondly, choosing ¢ such that 1 = LT} + 5 9 thatis, 0 = %, we conclude that

/W'z da </ V(OF 4, 4 3 //f%zxds for all T <Tj.

(27)
Next, we shall iterate the estimates (26) and (27) and consider subsequent
time intervals (7},, T),+1), where T,, := nTj forn = 0, 1,.... For any cylinder

Q x (T, Th+1), we can perform the same arguments as above for (24) and
obtain analog estimates for (26) and (27), i.e

Tn+1 3 9 Tn+1
/ /(zt)2 drds’ < 2/ \Vz(Tn)2d:c+/ /f2 dzds’, (28)
n T’Vl
Tﬂ+1
/Vz Tri1)]? dm</ \V2(T,)|? do + = / /dexds (29)

Then, iterating (29) yields directly

Tn+1
/Q|V2(Tn+1)|2d:c§/ﬂVz(0)|2dx+i/0 /szda:ds’. (30)

Moreover, by repeatedly using (29) and summing the intervals (7),—1,7T,),
we obtain

Ty Tkt1
/ /zt dzds' < n> /|Vz ]2dx+2n+1— / /dexds
1) [T
g”/ |Vz(0)|2d:c+(n+/ /fzd:vds’, (31)
2 Jo 8 0o Ja

where we remark that 2 = O(T) = 9(n8+1).

By recalling that the remainder system (20) is in fact subject to zero
initial data (20c), i.e. z(0) = 0, we obtain (22) for all 7" > 0.

We shall now prove (23). More precisely, we will show that the solution
of the remainder problem (20) can be estimated in L>(2r) via a maximum
principle argument. We refer, for instance, to [Chi] for weak maximum
principles for the heat equation with the homogeneous boundary operator
B as given in (20b) and inhomogeneity g € L?(Q7).

Then, by applying the weak maximum principle for parabolic equations

0 (20), we are able to estimate the growth of the L>°-norm of z as

OtllzllLe= (1) < Lsup 12l e + [I.f [l zee (2), (32)
S_

where we have used || supg<; |2|[[zc = supg<;||2||Lee. Moreover, we recall
that z(0) = 0.
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Therefore, a natural guess for an upper solution is the monotone increas-
ing solution of the initial-value problem

EM(t) = LM () + || fllze= (2),
dt 2
{M(O) — lells = 0. (33)
Indeed, by denoting m(t) := ||z||L (t), we have
d(m—-M)<L [supse;m — M| < L [sup,<;(m — M)]
{Elm — M)(0) =0, (34)

since supg<;(m — M + M) < supg,(m — M) + M(t) as M(t) is monotone
increasing. As a consequence we can estimate the growth behaviour of (34)
by

(m = M)(t) < (m — M)(0) - = 0,
which implies with the solution of (33)

t
2] £ee () < / el 9| fll 1o (5) ds, for all te[0,T], (35)
0
which yields (23) for all T' > 0. O

3. WEAK DIFFERENTIABILITY OF S

Proof of Theorem 2. We consider an increment h € L?(Qr) of a given nom-
inal control u € L?(Qr). We denote by

y := Su, and yp = Slu + h]
the corresponding states, and by
wp, := Wy

the corresponding output of the hysteresis operator. Then, y;, and wy solve
the system

(Yn)t — Ayp = (u+h) +wy,  in Qp,

wp, = Wlyn), in Qr,
Blyn] = yr. on T'r,
yh('a 0) = Yo, on Qa

Moreover, we define the differences

dp = =yn—vy,  ppi=w,—w. (36)

Our goal is to show that the solutions d and p of the first order problem are
indeed first order approximations of dj and py,.
The differences dj, —d and pj, — p satisfy the following system of equations.

(dp, —d)y — A(dp, — d) = pr, — p, in Qp, (37a)
pr—p =Wl =Wyl - W'[y;d], in Qr, (37b)

Bldy, — d] =0, on I'pr,  (37¢)

(dp, — d)(-,0) =0, on €, (37d)
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We now want to estimate |py, — p|. From (7) we get
’W[yh('x? )] - W[(y + d)(.’L‘, )” (t) < Lsglt) ‘yh(xv S) - y(xa S) - d(xa S)’

= Lsup |dp(z, s) — d(z, 5)|
s<t

for a.e. . € Q and all ¢t € [0,T].
From (14) and (17), we obtain for a.e. x € Q and all t € [0, 7]

Wy + d) (=, )] = Wy(, )] = Wy(, ) d(z, )] (1)
< lde (@, )2z 0,6y PUIA(, )l 00,0)-
Therefore, we can estimate |p, — p| against |d;, — d| as
I = pl(2, 1) = |lwp —w —p| = [Wlys] = Wiyl = W[y: d]|
< [Wlyn] = Wiy +d]| + Wy + d] = Wly] = W'[y; d]| (39)
< Lsup ldp(z,5) = d(z, s)| + |lde(@, 2z 0.0 AU, )lloo.t),

(38)

for a.e. x € Q and all ¢t € [0,T].

In the next step, we shall apply the remainder estimate (39) to the re-
mainder problem (37). Let us introduce the notation

2w, t) :=dp—d,  [f(z,t) = |[di(2, )| Lp0,0) P15 )]loor) = 0. (40)

Then, the system (37) satisfies the assumptions of Lemma 6. In particular,
we have

T
//(dh—d),?dmdt+ sup /yv dp—d)|* dz < Cy(T //fzda:dt (41)
0 JQ t€[0,T]

We shall now estimate f. Recalling (40), we have

//dez:dt //Hdt ||L2(Ot (||d($a‘)”oo,t)2dfcdt

<T /O /Q do(e, )2 dw dt - p(|d]l e (p))?
Using the bounds from Theorem 5, we get from (18) and (19) that

T
| 1 = izt + sup /!v(dh—d)Ide
0 te[0,T)

<O|(T //th:cdt p| Co(T )/ (-t )Hoodt)2

This ends the proof of Theorem 2. U

(42)
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