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Abstract. We consider the heat equation on a bounded domain sub-
ject to an inhomogeneous forcing in terms of a rate-independent (hys-
teresis) operator and a control variable.

The aim of the paper is to establish a functional analytical setting
which allows to prove weak differentiability properties of the control-
to-state mapping. Using results of [BK] on the weak differentiability of
scalar rate-independent operators, we prove Bouligand differentiability
in suitable Bochner spaces of the control-to-state mapping in a parabolic
problem.

1. Introduction and Problem formulation

The aim of this article is to study weak differentiability properties of a
parabolic control problem with a rate-independent hysteresis operator. More
precisely, we consider the following problem.

Let Ω ⊂ RN be a bounded domain with sufficiently smooth boundary
Γ := ∂Ω ∈ C2+α for α > 0 and denote ΩT := Ω×(0, T ) and ΓT := Γ×(0, T ).
Given a control u ∈ L2(ΩT ), we shall consider the following control problem
for the heat equation coupled to a rate-independent operator W:

yt −∆y = u+ w, in ΩT , (1a)

w =W[y], in ΩT , (1b)

B[y] = 0, on ΓT , (1c)

y(·, 0) = y0, on Ω. (1d)

Here, W denotes a large class of operators, in particular rate-independent
operators, which shall be define precisely in the following. Moreover, B
specifies a linear boundary operator corresponding to homogeneous Dirichlet
data B[y] = y|ΓD

= 0 on a subpart of the boundary ΓD ⊂ Γ with non-
zero measure |Γ0| > 0 and homogeneous Neumann boundary data on the
remaining part of the boundary ΓN := Γ \ ΓD.

The operator W. The operator W is constructed as a space-dependent
version of an operator V,

W[y](x, t) = V[y(x, ·)](t), (x, t) ∈ Ω× [0, T ]. (2)
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Thus, W represents a family of operators acting on y(x, ·), viewed as a
function of time, at every x ∈ Ω.

We remark that if one wants to include a space-dependent initial condition
for V, one would writeW[y](x, t) = V[y(x, ·), x](t) instead of (2); we will not
do this in this paper.

Concerning the operator V, we assume that

V : C[0, T ]× Ω→ C[0, T ] (3)

is Lipschitz continuous; more precisely, we require that there exists an L > 0
such that

|V[v](t)− V[ṽ](t)| ≤ L sup
0≤s≤t

|v(s)− ṽ(s)| (4)

holds for every v, ṽ ∈ C[0, T ], every t ∈ [0, T ] and every x ∈ Ω. Condition
(4) also implies causality. We moreover assume linear growth

|V[v](t)| ≤ L sup
0≤s≤t

|v(s)|+ c0 (5)

for arguments as above, and some c0 > 0.

The properties (4) and (5) carry over to the operator W defined in (3).
Denoting

‖y(x, ·)‖∞,t = sup
0≤s≤t

|y(x, s)|, (6)

we immediately obtain that

‖W[y](x, ·)−W[ỹ](x, ·)‖∞,t ≤ L‖y(x, ·)− ỹ(x, ·)‖∞,t, (7)

‖W[y](x, ·)‖∞,t ≤ L‖y(x, ·)‖∞,t + c0, (8)

holds for every y, ỹ ∈ L2(Ω;C[0, T ]), for a.e. x ∈ Ω and every t ∈ [0, T ].
Thus,

W : L2(Ω;C[0, T ])→ L2(Ω;C[0, T ]) (9)

is well-defined.
Under the assumptions above, the following existence and uniqueness re-

sult is a consequence of Theorems X.1.1 and X.1.2 of [Vis]. In the following,
we shall either use the space

V = H1
ΓD

= {v ∈ H1
0 : v|ΓD

= 0},

in case |ΓN | > 0 or

V = H1
0 ,

in case |ΓN | = 0.

Theorem 1 (Existence and Uniqueness, see [Vis]).
For every u ∈ L2(ΩT ) and every y0 ∈ V , the initial-boundary value problem
given by (1) has a unique solution

y ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V ), W[y] ∈ L2(Ω;C[0, T ]).

Proof. The existence proof is based on the compactness of the embeddding
of H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V ) into L2(Ω;C[0, T ]), see [Vis]. �
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Theorem 1 guarantees that the control-to-state operator

y = Su , S : L2(ΩT )→ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V ) ,

is well-defined. Assume for a moment that the control-to-state operator S is
differentiable w.r.t. some suitable norms, then for an increment h ∈ L2(ΩT )
we would have

S(u+ h) = Su+ S′(u)h+ o(‖h‖) , (10)

where the first order approximation d = S′(u)h to the difference S(u+h)−Su
depends linearly upon h and is expected to solve a linear problem, obtained
from linearising the original problem.

When W is a hysteresis operator, W (and thus S) are not differentiable
in the classical sense. Nevertheless, let us consider the formal linearisation
of (1). Given functions y = Su and h, we want to determine functions d
and p as solutions of

dt −∆d = h+ p, in ΩT , (11a)

p =W ′[y; d], in ΩT , (11b)

B[d] = 0, on ΓT , (11c)

d(·, 0) = 0, on Ω. (11d)

Here,W ′[y; d] denotes the directional derivative ofW at y in the direction d.
We do not assume that the mapping d 7→ W ′[y; d] is linear; indeed, hysteresis
operators do not satisfy this property, but they possess directional deriva-
tives, see [BK]. Thus, we term the system (11) the first order problem;
it is nonlinear whenever the mapping d 7→ W ′[y; d] is not linear.

Our aim is to derive weak differentiability properties of the control-to-
state operator S from corresponding properties of the operatorW. More pre-
cisely, out main results shows the following Theorem, which will be proved
in Section 3 below:

Theorem 2 (Weak differentiability of the state-to-control map S).
The control-to-state mapping u 7→ Sy has a Bouligand derivative when con-
sidered as an operator

S : L2(0, T ;L∞(Ω))→ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V ) . (12)

The derivative d = S′(u;h) is given by the solution of the first order problem
(11).

Weak differentiability of V and W. We assume that the operator V :
C[0, T ]→ C[0, T ] has the following weak differentiability properties.

(i) For every v, η ∈ C[0, T ], the pointwise derivative VPD[v; η] : [0, T ]→
R defined by

VPD[v; η](t) = lim
λ↓0

V[v + λη](t)− V[v](t)

λ
(13)

exists for all t ∈ [0, T ] and is a regulated function. Linearity of the
mapping η → VPD[v; η] is not assumed.
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(ii) Let p ∈ (1,∞) and r ∈ [1,∞) be given. There exists a non-negative
function ρ : (0, ε0)→ R+ with ρ(ε)→ 0 as ε→ 0 such that

‖V[v + η]− V[v]− VPD[v; η]‖Lr(0,t) ≤ ρ(‖η‖∞,t)‖η′‖Lp(0,t) (14)

holds for all v ∈ C[0, T ], η ∈W 1,p(0, T ), t ∈ [0, T ].

Remark 3. The foregoing estimate implies that the operator V is Bouligand
differentiable when considered as an operator

V : W 1,p(0, T )→ Lr(0, T ) .

Accordingly, the pointwise derivative VPD[v; η] is called the Bouligand de-
rivative of V, and we shall denote it by V ′[v; η] instead.

The estimate

‖V ′[v; η]− V ′[v; ζ]‖∞,t ≤ L‖η − ζ‖∞,t , for all η, ζ ∈ C[0, T ], (15)

follows immediately from (13) and (4). In particular, since V ′[v; 0] = 0,

‖V ′[v; η]‖∞,t ≤ L‖η‖∞,t , for all η ∈ C[0, T ], (16)

We now define pointwise in x ∈ Ω

W ′[y; d](x, t) = V ′[y(x, ·); d(x, ·)](t). (17)

Due to (15) and (16), the operator

d 7→ W ′[y; d] , L2(Ω;C[0, T ])→ L2(Ω;G[0, T ])

is well-defined; here, G[0, T ] denotes the space of regulated functions on
[0, T ].

Due to (16) and (17), the operator η 7→ V ′[v; η] satisfies the assumptions
of Theorems X.1.1 and X.1.2 in [Vis], which can be extended to cover the
range space G[0, T ] instead of C[0, T ] for the hysteresis operator. This yields
the following

Theorem 4. The first order problem given by (11) has a unique solution

d ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;V ), p ∈ L2(Ω;G[0, T ]).

We remark that the function p has less regularity than the corresponding
function w in the original problem (1).

This regularity is consistent with standard parabolic regularity; given
(h + p) ∈ L2(ΩT ), then parabolic regularity yields d ∈ L2(Ω;W 1,2(0, T )) ∩
L∞((0, T );H1(Ω)).

We also have the following estimate.

Theorem 5. The solution d of the first order problem (11a – 11d) satisfies∫ T

0

∫
Ω
d2
t dx dt+ sup

t∈[0,T ]

∫
Ω
|∇d|2 dx ≤ C1(T )

∫ T

0

∫
Ω
h2 dx dt (18)

as well as

‖d‖L∞(ΩT ) ≤ C2(T )

∫ T

0
‖h(·, t)‖∞ dt . (19)

The constants C1(T ) and C2(T ) do not depend on h.
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Proof. The proof of (18) follows from estimate (22) in Lemma 6 by setting
z := d, f := |h| and g := h+ p as well as by noting that

|p+ h|(x, t) ≤ L sup
s≤t
|d(x, s)|+ |h(x, t)| ,

Moreover, (19) follows from estimate (23) in Lemma 6 in Section 2. �

2. Regularity estimates

The following Lemma 6 provides a parabolic regularity statement for the
heat equation subject to rate-independent operator satisfying the Lipschitz
continuity (8).

Lemma 6 (Parabolic regularity). Consider the parabolic problem:

zt −∆z = g, in ΩT , (20a)

B[z] = 0, on ΓT , (20b)

z(·, 0) = 0, on Ω, (20c)

where g ∈ L2(Ω;G[0, T ]) satisfies the following estimate

|g|(x, t) ≤ L sup
s≤t
|z(x, s)|+ f(x, t). (21)

for a non-negative function f(x, t) ≥ 0.

(1) Assume that f ∈ L2(ΩT ). Then, for all T > 0∫ T

0

∫
Ω

(zt)
2 dxdt+ sup

t∈[0,T ]

∫
Ω
|∇z(t)|2 dx ≤ C1(T )

∫ T

0

∫
Ω
f2 dxdt, (22)

where the constant C1(T ) grows at most linearly in T .
(2) Assume that f ∈ L1([0, T ];L∞(Ω)). Then, for all T > 0

sup
t∈[0,T ]

‖z‖L∞
x

(t) ≤ C2(T )

∫ T

0
‖f‖L∞

x
(s) ds, (23)

where the constant C2(T ) grows at most exponentially in T .

Remark 7. The estimate (22) implies the continuity at zero of the mapping

f ∈ L2(ΩT ) 7→ z ∈ L2(Ω;W 1,2(0, T )) ∩ L∞((0, T );H1(Ω))

with a bound which grows at most linearly in T . In fact, the estimates (29)
and (30) below imply even the continuity at zero of the mapping

(f, z0) ∈ L2(ΩT )×H1(Ω) 7→ z ∈ L2(Ω;W 1,2(0, T )) ∩ L∞((0, T );H1(Ω))

regardless of z(0) = 0 as considered in (20c). We remark that these esti-
mates do not imply linearity away from zero, which can not be expected in
general for rate-independent evolutions. However, we are only interested in
continuity at zero.

Moreover, the estimate (23) implies the continuity at zero of the mapping

f ∈ L1([0, T ];L∞(Ω)) 7→ z ∈ L∞(ΩT )

with a constant, which grows at most exponentially in T . Again, the solution
operator is nonlinear in general and continuity is only proved at zero.
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Proof. We prove first estimate (22). Our goal is to obtain an a priori es-
timate for z in terms of f . To this end, we test (20a) formally with zt
and integrate over ΩT . We point out that the formal integration with zt
can be made rigorous by a suitable approximation procedure whenever so-
lutions to (20) have full parabolic regularity, in particular, zt ∈ L2(ΩT ).
This is standard in the case V = H1

0 since we have g ∈ L2(ΩT ) and other-
wise smooth data, boundary and coefficients, see e.g. [QS]. For V = H1

ΓD
,

the required regularity zt ∈ L2(ΩT ) follows from ∆z ∈ L2(ΩT ), which can
be shown following [Chi][Chapter 11] by using that problem (20) is linear
with constant coefficients and homogeneous boundary and initial data and
∇g ∈ L2((0, T );V ′).

By integrating by parts and using (21), we obtain∫ T

0

∫
Ω

(zt)
2 dxds′ +

∫ T

0

∫
Ω
∂t

(
|∇z|

2

)
dxds′ ≤

∫ T

0

∫
Ω
|g||zt| dxds′

≤ L
∫ T

0

∫
Ω

sup
s≤t
|z(x, s)||zt(x, s′)| dxds′ +

∫ T

0

∫
Ω
f |zt| dxds′,

(24)

where we remark that all boundary terms vanish for the considered homoge-
neous boundary operator B in (20b). Moreover, we may replace the second

term in the first line by 1
2

∫ T
0

d
dt

∫
Ω |∇z|

2dxdt.
In order to handle the first term on the right hand side of (24), we use

that

sup
0≤s≤t

|z(x, s)| ≤
∫ T

0
|zt(x, s)|ds

and estimate with Young’s inequality∫ T

0

∫
Ω

sup
s≤t
|z(x, s)||zt(x, s′)| dxds′ ≤

∫ T

0

∫
Ω

∫ T

0
|zt(x, s)||zt(x, s′)| dsdxds′

≤
∫ T

0

∫
Ω

∫ T

0

|zt(x, s)|2

2
dsdxds′ +

∫ T

0

∫
Ω

∫ T

0

|zt(x, s′)|2

2
dsdxds′

≤ T
∫ T

0

∫
Ω
|zt(x, s′)|2 dxds′.

Coming back to (24), we obtain by using Young’s inequality with a con-
stant θ > 0,∫ T

0

∫
Ω

(zt)
2 dxds′ +

∫
Ω

|∇z(T )|2

2
dx

≤
∫

Ω

|∇z(0)|2

2
dx+ LT

∫ T

0

∫
Ω
|zt|2dxds′

+
θ

2

∫ T

0

∫
Ω
|zt|2 dxds′ +

1

2θ

∫ T

0

∫
Ω
f2 dxds′,

(25)

where we ignore for the moment that we actually have z(0) = 0.
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The estimate (25) has the following two consequences: First, choosing
T1 := 1

3L and setting θ = 2
3 , we obtain

1

3

∫ T

0

∫
Ω

(zt)
2 dxds′ ≤

∫
Ω

|∇z(0)|2

2
dx+

3

4

∫ T

0

∫
Ω
f2 dxds′, for all T ≤ T1.

(26)
Secondly, choosing θ such that 1 = LT1 + θ

2 , that is, θ = 4
3 , we conclude that∫

Ω

|∇z(T )|2

2
dx ≤

∫
Ω

|∇z(0)|2

2
dx+

3

8

∫ T

0

∫
Ω
f2 dxds′, for all T ≤ T1.

(27)
Next, we shall iterate the estimates (26) and (27) and consider subsequent

time intervals (Tn, Tn+1), where Tn := nT1 for n = 0, 1, . . . . For any cylinder
Ω × (Tn, Tn+1), we can perform the same arguments as above for (24) and
obtain analog estimates for (26) and (27), i.e.∫ Tn+1

Tn

∫
Ω

(zt)
2 dxds′ ≤ 3

2

∫
Ω
|∇z(Tn)|2 dx+

9

4

∫ Tn+1

Tn

∫
Ω
f2 dxds′, (28)∫

Ω
|∇z(Tn+1)|2 dx ≤

∫
Ω
|∇z(Tn)|2 dx+

3

4

∫ Tn+1

Tn

∫
Ω
f2 dxds′, (29)

Then, iterating (29) yields directly∫
Ω
|∇z(Tn+1)|2 dx ≤

∫
Ω
|∇z(0)|2 dx+

3

4

∫ Tn+1

0

∫
Ω
f2 dxds′. (30)

Moreover, by repeatedly using (29) and summing the intervals (Tn−1, Tn),
we obtain∫ Tn

0

∫
Ω

(zt)
2 dxds′ ≤ n3

2

∫
Ω
|∇z(0)|2 dx+

n−1∑
k=0

(n+ 1− k)
9

8

∫ Tk+1

Tk

∫
Ω
f2 dxds′,

≤ 3n

2

∫
Ω
|∇z(0)|2 dx+

9(n+ 1)

8

∫ Tn

0

∫
Ω
f2 dxds′, (31)

where we remark that 3n
2 = O(T ) = 9(n+1)

8 .
By recalling that the remainder system (20) is in fact subject to zero

initial data (20c), i.e. z(0) = 0, we obtain (22) for all T > 0.

We shall now prove (23). More precisely, we will show that the solution
of the remainder problem (20) can be estimated in L∞(ΩT ) via a maximum
principle argument. We refer, for instance, to [Chi] for weak maximum
principles for the heat equation with the homogeneous boundary operator
B as given in (20b) and inhomogeneity g ∈ L2(ΩT ).

Then, by applying the weak maximum principle for parabolic equations
to (20), we are able to estimate the growth of the L∞-norm of z as

∂t‖z‖L∞
x

(t) ≤ L sup
s≤t
‖z‖L∞

x
+ ‖f‖L∞

x
(t), (32)

where we have used ‖ sups≤t |z|‖L∞
x

= sups≤t ‖z‖L∞
x

. Moreover, we recall
that z(0) = 0.
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Therefore, a natural guess for an upper solution is the monotone increas-
ing solution of the initial-value problem{

d
dtM(t) = LM(t) + ‖f‖L∞

x
(t),

M(0) = ‖z‖L∞
x

= 0.
(33)

Indeed, by denoting m(t) := ‖z‖L∞
x

(t), we have{
d
dt(m−M) ≤ L

[
sups≤tm−M

]
≤ L

[
sups≤t(m−M)

]
(m−M)(0) = 0,

(34)

since sups≤t(m −M + M) ≤ sups≤t(m −M) + M(t) as M(t) is monotone
increasing. As a consequence we can estimate the growth behaviour of (34)
by

(m−M)(t) ≤ (m−M)(0) eL t = 0,

which implies with the solution of (33)

‖z‖L∞
x

(t) ≤
∫ t

0
eL (t−s)‖f‖L∞

x
(s) ds, for all t ∈ [0, T ], (35)

which yields (23) for all T > 0. �

3. Weak differentiability of S

Proof of Theorem 2. We consider an increment h ∈ L2(ΩT ) of a given nom-
inal control u ∈ L2(ΩT ). We denote by

y := Su, and yh := S[u+ h]

the corresponding states, and by

wh :=W[yh]

the corresponding output of the hysteresis operator. Then, yh and wh solve
the system

(yh)t −∆yh = (u+ h) + wh, in ΩT ,

wh =W[yh], in ΩT ,

B[yh] = yΓ, on ΓT ,

yh(·, 0) = y0, on Ω,

Moreover, we define the differences

dh := yh − y, ph := wh − w. (36)

Our goal is to show that the solutions d and p of the first order problem are
indeed first order approximations of dh and ph.

The differences dh−d and ph−p satisfy the following system of equations.

(dh − d)t −∆(dh − d) = ph − p, in ΩT , (37a)

ph − p =W[yh]−W[y]−W ′[y; d], in ΩT , (37b)

B[dh − d] = 0, on ΓT , (37c)

(dh − d)(·, 0) = 0, on Ω, (37d)
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We now want to estimate |ph − p|. From (7) we get

|W[yh(x, ·)]−W[(y + d)(x, ·)]| (t) ≤ L sup
s≤t
|yh(x, s)− y(x, s)− d(x, s)|

= L sup
s≤t
|dh(x, s)− d(x, s)|

for a.e. x ∈ Ω and all t ∈ [0, T ].
From (14) and (17), we obtain for a.e. x ∈ Ω and all t ∈ [0, T ]∣∣W[(y + d)(x, ·)]−W[y(x, ·)]−W ′[y(x, ·); d(x, ·)]

∣∣ (t)
≤ ‖dt(x, ·)‖Lp

t (0,t) ρ(‖d(x, ·)‖∞,t).
(38)

Therefore, we can estimate |ph − p| against |dh − d| as

|ph − p|(x, t) = |wh − w − p| =
∣∣W[yh]−W[y]−W ′[y; d]

∣∣
≤ |W[yh]−W[y + d]|+

∣∣W[y + d]−W[y]−W ′[y; d]
∣∣

≤ L sup
s≤t
|dh(x, s)− d(x, s)|+ ‖dt(x, ·)‖Lp

t (0,t) ρ(‖d(x, ·)‖∞,t),
(39)

for a.e. x ∈ Ω and all t ∈ [0, T ].

In the next step, we shall apply the remainder estimate (39) to the re-
mainder problem (37). Let us introduce the notation

z(x, t) := dh − d, f(x, t) := ‖dt(x, ·)‖Lp
t (0,t) ρ(‖d(x, ·)‖∞,t) ≥ 0. (40)

Then, the system (37) satisfies the assumptions of Lemma 6. In particular,
we have

∫ T

0

∫
Ω

(dh−d)2
t dxdt+ sup

t∈[0,T ]

∫
Ω
|∇(dh−d)|2 dx ≤ C1(T )

∫ T

0

∫
Ω
f2 dxdt, (41)

We shall now estimate f . Recalling (40), we have∫ T

0

∫
Ω
f2 dx dt =

∫ T

0

∫
Ω
‖dt(x, ·)‖2L2(0,t)ρ(‖d(x, ·)‖∞,t)2 dx dt

≤ T
∫ T

0

∫
Ω
dt(x, t)

2 dx dt · ρ(‖d‖L∞(ΩT ))
2 .

Using the bounds from Theorem 5, we get from (18) and (19) that∫ T

0

∫
Ω
‖(dh − d)t‖2 dx dt+ sup

t∈[0,T ]

∫
Ω
|∇(dh − d)|2 dx

≤ C1(T )

∫ T

0

∫
Ω
h2 dx dt · ρ

(
C2(T )

∫ T

0
‖h(·, t)‖∞ dt

)2
.

(42)

This ends the proof of Theorem 2. �
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2000.

[QS] P. Quittner, Ph. Souplet, Superlinear parabolic problems. Blow-up, global existence
and steady states, Birkhauser Advanced Texts, 2007.



10 M. BROKATE, K. FELLNER, M. LANG-BATSCHING

[Vis] A. Visintin, Differential Models of Hysteresis, Applied Mathematical Sciences 111,
Springer 1994.

Martin Brokate
Center for Mathematical Sciences, Technical University Munich, Boltzmann-
straße 3, D-85748 Garching b. Munich, Germany

E-mail address: brokate@ma.tum.de

Klemens Fellner
Institute of Mathematics and Scientific Computing, University of Graz, Hein-
richstraße 36, 8010 Graz, Austria

E-mail address: klemens.fellner@uni-graz.at

Matthias Lang-Batsching
Center for Mathematical Sciences, Technical University Munich, Boltzmann-
straße 3, D-85748 Garching b. Munich, Germany

E-mail address: mala@ma.tum.de


