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Abstract. This paper is concerned with the di�erential sensitivity analysis and the optimal
control of evolution variational inequalities (EVIs) of obstacle type. We demonstrate by means
of a counterexample that the solution map S of an EVI with a unilateral constraint is typically
not (weakly) directionally di�erentiable or Lipschitz continuous in any of the spaces Hs(0, T ;H),
s ≥ 1/2, where (0, T ) is the time interval and H is the pivot space of the underlying Gelfand triple
V ↪→ H ↪→ V ∗. We further establish that, despite this negative result, the solution operator is
always strongly Hadamard directionally di�erentiable as a function S : L2(0, T ;H) → Lq(0, T ;H)
for all 1 ≤ q <∞, weakly-? directionally di�erentiable as a function S : L2(0, T ;H)→ L∞(0, T ;H),
and weakly directionally di�erentiable as a function S : L2(0, T ;H) → L2(0, T ;V ). Using the
di�erentiability properties of the map S, we derive strong stationarity conditions for optimal control
problems that are governed by EVIs of obstacle type. The resulting optimality system is compared
with that obtained by regularization.
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1. Introduction. This paper is concerned with the sensitivity analysis and the
optimal control of obstacle-type evolution variational inequalities (EVIs) of the form

y ∈ L2(0, T ;V ) ∩H1(0, T ;H),

y ∈ K a.e. in (0, T ), y(0) = y0,∫ T

0

(y′, v − y)H + 〈Ay, v − y〉V − (u, v − y)H dt ≥ 0

∀v ∈ L2(0, T ;V ), v ∈ K a.e. in (0, T ).


(P)

For the precise assumptions on the quantities A,H, V,K etc., see Section 2 below. We
demonstrate that the solution operator S : u 7→ y associated with (P) is typically not
directionally di�erentiable as a function from L2(0, T ;H) toHs(0, T ;H), s ≥ 1/2, (see
the counterexample in Section 3), prove the Hadamard directional di�erentiability
of the solution map S in the spaces Lq(0, T ;H), 1 ≤ q < ∞, (see Theorem 4.1),
and establish strong stationarity conditions for optimal control problems that are
governed by EVIs of the type (P) (see Theorem 5.5 and (5.13)). The latter are shown
to contain information that is not present in stationarity systems which are obtained
by regularization, cf. the results in [5, Section 5.4] and [28, Theorem 6.2].

Let us put our work into perspective: Evolution variational inequalities with unilateral
constraints are relevant for numerous applications in engineering, physics, and other
disciplines. They emerge, for example, when the parabolic analogues of the classical
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obstacle problem and the Signorini variational inequality are considered, see [17,20,
29,35,39,42], in �nance, see [27,28,36,37,41], and in ice sheet models, see [10,30,43].

Despite this broad range of applications and the high interest in the optimal control
of obstacle-type evolution variational inequalities that it entails, the di�erentiability
properties of solution operators to EVIs of the type (P) are only rarely addressed in
the literature. To the author's best knowledge, the only contribution in this �eld is
that of Jaru²ek et al. in [29], where a parabolic problem with inequality constraints
on the boundary is considered. As a consequence, the overwhelming majority of
authors resorts to regularization or (semi-)discretization techniques to obtain, e.g.,
necessary optimality conditions for optimal control problems that are governed by
EVIs of the type (P), cf. [1,4,5,9,19,23,25,28]. The aim of this paper is to provide
di�erentiability results for evolution variational inequalities with unilateral constraints
that allow to avoid regularization and that may serve as a point of departure for
the development of solution algorithms for optimal control problems that take into
account the non-smooth behavior of the governing EVI, cf., e.g., the approaches in
[11,12,38]. We further demonstrate that our di�erentiability results give rise to strong
stationarity conditions that resemble those derived by Mignot and Puel for the time-
independent classical obstacle problem in [32,33] and that contain information which
is not obtainable with regularization techniques.

Before we begin with our analysis, we give a short overview of the content and the
structure of this paper:

In Section 2, we make precise our assumptions, present a preliminary existence and
uniqueness result, and provide some examples of special instances of the problem (P)
that illustrate the generality of our approach.

Section 3 contains a counterexample which demonstrates that the solution operator
S to a problem of the type (P) can, in general, not be expected to be directionally
di�erentiable or Lipschitz continuous as a function from L2(0, T ;H) to Hs(0, T ;H)
for any s ≥ 1/2. The results obtained in this section illustrate in particular that the
approach of Jaru²ek et al. in [29] cannot be generalized to EVIs that behave, e.g., like
the classical parabolic obstacle problem.

In Section 4, we prove the directional di�erentiability of the solution map S to (P) in
various Lq-spaces. See Theorem 4.1 for the main result.

Section 5 is concerned with strong stationarity conditions for optimal control problems
that are governed by EVIs of the form (P). Here, we use an auxiliary variational
inequality for the directional derivatives of the solution operator S that is obtained
as a byproduct of our sensitivity analysis to derive a stationarity system analogous
to that in [32,33]. The resulting system turns out to contain, e.g., an additional sign
condition on the adjoint state that is not present in the optimality conditions of [5,28].

Lastly, in Section 6, we give some concluding remarks.

2. Setting and Preliminaries. As already mentioned in the introduction, the
aim of this paper is to study EVIs of the type

y ∈ L2(0, T ;V ) ∩H1(0, T ;H),

y ∈ K a.e. in (0, T ), y(0) = y0,∫ T

0

(y′, v − y)H + 〈Ay, v − y〉V − (u, v − y)H dt ≥ 0

∀v ∈ L2(0, T ;V ), v ∈ K a.e. in (0, T ).


(P)
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Our standing assumptions on the quantities in (P) are as follows:

Assumption 2.1 (Standing Assumptions for the Study of the EVI (P)).

(i) (Ω,Σ, µ) is a complete measure space.
(ii) H := L2(Ω, µ). The norm ‖ · ‖H and the product (·, ·)H are de�ned as usual.
(iii) V ⊂ H is a separable Hilbert space with dual V ∗ such that V ↪→ H ↪→ V ∗

is a Gelfand triple, i.e., the embedding V ↪→ H is continuous and dense and
H is identi�ed with its own dual and subsequently with a subspace of V ∗. By
‖ · ‖V and 〈·, ·〉V we denote the norm and the dual pairing in V .

(iv) The map

V 3 v 7→ v+ := max(0, v) ∈ V

(where max(0, ·) acts pointwise µ-a.e. in Ω) is well-de�ned and continuous,
there exists a constant C > 0 with ‖v+‖V ≤ C‖v‖V for all v ∈ V , and for
every z ∈ L2(0, T ;V ) ∩H1(0, T ;H) it holds∫ T

0

(z′, z+)Hdt =
1

2
‖z+(T )‖2H −

1

2
‖z+(0)‖2H . (2.1)

(v) A : V → V ∗ is a linear, continuous, symmetric, strongly monotone operator
satisfying 〈

Av, v+
〉
V
≥
〈
Av+, v+

〉
V

∀v ∈ V.

(vi) K is a closed, convex, non-empty subset of V such that

v ∈ K, z ∈ V ⇒ v + z+ ∈ K,
v1 ∈ K, v2 ∈ K ⇒ min(v1, v2) ∈ K.

(vii) T > 0 and y0 ∈ K are given and �xed.
(viii) u ∈ L2(0, T ;H) is a given datum (the argument of the solution map).

Some remarks are in order regarding the conditions in Assumption 2.1:

Remark 2.2.

(i) The separability of V and the continuity and density of the embedding V ↪→ H
yield that the space H is separable as well.

(ii) Due to the continuity and the boundedness of the maps H 3 z 7→ z+ ∈ H
and V 3 v 7→ v+ ∈ V , the separability of the spaces H and V , and the Pettis
measurability theorem, see [24, Corollary 3.1.2], the maps

L2(0, T ;H) 3 z 7→ z+ ∈ L2(0, T ;H),

L2(0, T ;V ) 3 v 7→ v+ ∈ L2(0, T ;V )

are well-de�ned and bounded.
(iii) Following [44], we call a set K ⊂ V with the properties in Assumption 2.1(vi)

a set with a lower bound or a unilateral constraint set.
(iv) The sensitivity analysis in Section 4 also works for asymmetric operators A

and time-dependent K. We consider the situation in Assumption 2.1 here so
that the existence of a solution to the problem (P) follows straightforwardly
from the results in [5, Chapter 4], see Theorem 2.3 below. If the solvability
of the EVI at hand can be established by other means, e.g., by molli�cation,
cf. [27, Section 2.4], then our assumptions can be relaxed accordingly.

From classical results, we obtain:
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Theorem 2.3. In the situation of Assumption 2.1, the EVI (P) admits one and only
one solution y ∈ L2(0, T ;V ) ∩H1(0, T ;H) for every right-hand side u ∈ L2(0, T ;H).
Moreover, there exists an absolute constant C > 0 such that the solution operator
S : u 7→ y associated with (P) satis�es

‖S(u1)− S(u2)‖L2(0,T ;V ) + ‖S(u1)− S(u2)‖L∞(0,T ;H)

≤ C min
(
‖u1 − u2‖L2(0,T ;V ∗), ‖u1 − u2‖L1(0,T ;H)

)
∀u1, u2 ∈ L2(0, T ;H).

(2.2)

Proof. The existence of a unique solution y ∈ L2(0, T ;V )∩H1(0, T ;H) to (P) follows
from [5, Theorems 4.1, 4.2]. To prove (2.2), let us assume that two right-hand sides
u1, u2 ∈ L2(0, T ;H) with associated solutions y1, y2 are given. Then, we may test the
EVI for y1 with the function v ∈ L2(0, T ;V ) which is equal to y2 in (0, s) and equal
to y1 in (s, T ), s ∈ (0, T ), to arrive at the estimate∫ s

0

(y′1, y2 − y1)H + 〈Ay1, y2 − y1〉V − (u1, y2 − y1)H dt ≥ 0.

By exchanging the roles of y1 and y2, by adding the resulting two inequalities and by
exploiting the strong monotonicity of A, we obtain

1

2
‖y1(s)− y2(s)‖2H + c

∫ s

0

‖y1 − y2‖2V dt ≤
∫ s

0

(u1 − u2, y1 − y2)H dt (2.3)

for all s ∈ (0, T ) with some constant c > 0. Due to the continuity of the embedding
H1(0, T ;H) ↪→ C([0, T ];H) and the structure V ↪→ H ↪→ V ∗, (2.3) implies that there
exists an absolute constant C > 0 with

‖y1 − y2‖L2(0,T ;V ) ≤ C‖u1 − u2‖L2(0,T ;V ∗),

‖y1 − y2‖L∞(0,T ;H) ≤ C‖u1 − u2‖L1(0,T ;H).

Using the last two inequalities in (2.3) yields (2.2) as claimed.

See also [6,8,27] for alternative existence and uniqueness results for EVIs. Let us give
some examples of problems that �t into the setting of Assumption 2.1:

Example 2.4 (Primitive Real-Valued EVIs). Consider the variational inequality

y ∈ H1(0, T ), y ≥ α a.e. in (0, T ), y(0) = y0,∫ T

0

y′(v − y) +Ay(v − y)− u(v − y)dt ≥ 0

∀v ∈ L2(0, T ), v ≥ α a.e. in (0, T )

 (2.4)

with some α ∈ R, A ∈ R+, T ∈ R+, y0 ∈ [α,∞), u ∈ L2(0, T ), where L2(0, T )
and H1(0, T ) are the classical L2- and H1-space, respectively. Then, this EVI is
precisely of the form (P) and satis�es all conditions in Assumption 2.1. To see this,
de�ne Ω := {0}, choose µ to be the Dirac measure at zero, let Σ be the power set
of Ω and consider the (trivially complete) measure space (Ω,Σ, µ). For this choice
of (Ω,Σ, µ), the space H := L2(Ω, µ) can obviously be identi�ed with R. Doing so
and de�ning V := H = R, we obtain a Gelfand triple as in Assumption 2.1(iii) with
L2(0, T ;V ) = L2(0, T ;H) = L2(0, T ) and H1(0, T ;H) = H1(0, T ). Note that these
spaces trivially satisfy the conditions in point (iv) of Assumption 2.1 (see the lemma
of Stampacchia, [3, Theorem 5.8.2], for (2.1)). If we combine all of the above and
de�ne K := [α,∞), then it follows immediately that (2.4) is covered by our setting.
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Example 2.5 (Classical Parabolic Obstacle Problems). Let Ω ⊂ Rd, d ≥ 1, be a
bounded domain endowed with the d-dimensional Lebesgue measure Ld, and de�ne

H := L2(Ω), V := H1(Ω), K :=
{
v ∈ H1(Ω)

∣∣ v ≥ ψ Ld-a.e. in Ω
}
,

where L2(Ω) and H1(Ω) are de�ned as usual, see [3], and where ψ : Ω→ [−∞,∞] is
a Lebesgue measurable function such that the set K is non-empty. Then, Ω, µ := Ld,
the Lebesgue σ-algebra, H and V trivially satisfy the conditions in points (i), (ii) and
(iii) of Assumption 2.1, and we obtain from [3, Theorem 5.8.2] and [46, Lemma 3.2]
that the map V 3 v 7→ v+ ∈ V is well-de�ned, continuous and bounded, and that the
integration by parts formula (2.1) holds. Using the above and again [3, Theorem 5.8.2],
it follows straightforwardly that, e.g., the classical parabolic obstacle problem

y ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), y ∈ K a.e. in (0, T ), y(0) = y0,∫ T

0

(y′, v − y)L2 + (y, v − y)H1 − (u, v − y)L2 dt ≥ 0

∀v ∈ L2(0, T ;H1(Ω)), v ∈ K a.e. in (0, T )

 (2.5)

with a y0 ∈ K is covered by our analysis. Compare also with [27,28] in this context.

Example 2.6 (Signorini-Type Problems). Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz
domain endowed with the Lebesgue measure Ld. Suppose that Γ1 and Γ2 are two
disjoint subsets of the boundary Γ := ∂Ω and de�ne

H1
D(Ω) :=

{
v ∈ H1(Ω)

∣∣ tr(v) = 0 Hd−1-a.e. on Γ1

}
,

K :=
{
v ∈ H1

D(Ω)
∣∣ tr(v) ≥ 0 Hd−1-a.e. on Γ2

}
,

where Hd−1 denotes the (d− 1)-dimensional Hausdor� measure and where tr denotes
the trace. Then, it follows completely analogously to Example 2.5 that the EVI

y ∈ L2(0, T ;H1
D(Ω)) ∩H1(0, T ;L2(Ω)), y ∈ K a.e. in (0, T ), y(0) = y0,∫ T

0

(y′, v − y)L2 + (y, v − y)H1 − (u, v − y)L2 dt ≥ 0

∀v ∈ L2(0, T ;H1
D(Ω)), v ∈ K a.e. in (0, T )

 (2.6)

with a y0 ∈ K �ts into the setting of Assumption 2.1. The above problem corresponds
to that studied by Jaru²ek et al. in [29]. (Note that, in [29], the time interval is R.)

3. A Counterexample. To develop intuition for the behavior of the solution
operator S : u 7→ y associated with the EVI (P) and to get an idea of what to expect
when analyzing the di�erentiability properties of this map, we consider the following
special situation:

Assumption 3.1 (Standing Assumptions for Section 3).

(i) Ω, Σ, µ are chosen as in Example 2.4, and H, V , V ∗ are identi�ed with R,
(ii) A := 1, K := [0,∞), T := 3, y0 := 0,
(iii) ũ ∈ L2(0, 3) is an arbitrary but �xed function satisfying

ũ = ỹ′ + ỹ − ϕ (3.1)

for some ỹ, ϕ ∈ C∞([0, 3]) with

ỹ ≡ 0 in [0, 3] \ (1, 2), ỹ > 0 in (1, 2),

ϕ > 0 in [0, 3] \ [1, 2], ϕ ≡ 0 in [1, 2].
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For the above choice of H, V etc., (P) is a special instance of the EVI (2.4), namely:

y ∈ H1(0, 3), y ≥ 0 a.e. in (0, 3), y(0) = 0,∫ 3

0

y′(v − y) + y(v − y)− u(v − y)dt ≥ 0

∀v ∈ L2(0, 3), v ≥ 0 a.e. in (0, 3).

 (3.2)

We observe:

Lemma 3.2. The unique solution of (3.2) with right-hand side ũ is precisely the
function ỹ ∈ C∞([0, 3]) in (3.1).

Proof. We clearly have ỹ ∈ H1(0, 3), ỹ(0) = 0 and ỹ ≥ 0 in [0, 3], and for every
0 ≤ v ∈ L2(0, 3), it holds∫ 3

0

ỹ′(v − ỹ) + ỹ(v − ỹ)− ũ(v − ỹ)dt =

∫ 3

0

ϕ(v − ỹ)dt =

∫
[0,3]\[1,2]

ϕv dt ≥ 0.

This proves the claim.

In what follows, we will analyze how the di�erence quotients

S(ũ+ τh)− S(ũ)

τ
∈ H1(0, 3), τ > 0, h ∈ L2(0, 3),

associated with the solution map S : u 7→ y to (3.2) and the right-hand side ũ behave
when τ tends to zero. We begin by proving:

Lemma 3.3. Let h ∈ L2(0, 3) be arbitrary but �xed and let S denote the solution map
to (3.2). Then, the family of di�erence quotients{

S(ũ+ τh)− S(ũ)

τ

}
τ>0

⊂ H1(0, 3) (3.3)

is bounded in L2(0, 3) and every L2(0, 3)-weak accumulation point δ of the di�erence
quotients in (3.3) for τ ↘ 0 satis�es

δ = 0 a.e. in [0, 3] \ (1, 2),∫ 2

1

z′(z − δ) + δ(z − δ)− h(z − δ)dt ≥ 0 ∀z ∈ H1
0 (1, 2).

(3.4)

Proof. Fix a direction h ∈ L2(0, 3) and denote the di�erence quotients in (3.3) with δτ .
Then, the global Lipschitz continuity of S as a function from L2(0, 3) to L2(0, 3), see
Theorem 2.3, implies that the family {δτ} is bounded in L2(0, 3). Consider now an
arbitrary but �xed weak accumulation point δ of {δτ} in L2(0, 3) for τ ↘ 0, and let τn
and δn := δτn be sequences with τn ↘ 0 and δn ⇀ δ in L2(0, 3). Then, the de�nition
of δn yields ỹ+ τnδn = S(ũ+ τnh) for all n, and we may test the EVI for S(ũ+ τnh),
i.e., ∫ 3

0

(ỹ′ + τnδ
′
n + ỹ + τnδn − ũ− τnh)(v − ỹ − τnδn)dt ≥ 0

∀v ∈ L2(0, 3), v ≥ 0 a.e. in (0, 3),
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with functions of the type v = ỹ + τnz ≥ 0, z ∈ L2(0, 3), divide by τ2
n, and use (3.1)

to obtain∫ 3

0

δ′n(z − δn) + δn(z − δn)− h(z − δn) +
1

τn
ϕ(z − δn)dt ≥ 0

∀z ∈ L2(0, 3), ỹ + τnz ≥ 0 a.e. in [0, 3].

(3.5)

Choosing the function z = 0 in (3.5) yields (in combination with the properties of ϕ
and the fact that the di�erence quotients δn are necessarily non-negative everywhere
in [0, 3] \ (1, 2) where ỹ is zero)∫ 3

0

δ′nδn + δ2
n +

1

τn
|ϕδn|dt ≤

∫ 3

0

hδndt.

The above implies that ϕδn converges to zero in L1(0, 3) and that δ indeed vanishes
almost everywhere in [0, 3] \ (1, 2). It remains to prove the variational inequality in
(3.4). To this end, we note that the function

z :=


0 a.e. in (0, 1)

φ a.e. in [1, 2]

δn a.e. in (2, 3)

satis�es z ∈ L2(0, 3) and ỹ + τnz ≥ 0 a.e. in [0, 3] for all su�ciently large n and all
arbitrary but �xed φ ∈ C∞c (1, 2). Choosing this z in (3.5) yields∫ 1

0

−δ′nδn − δ2
n + hδn −

1

τn
ϕδndt

+

∫ 2

1

(δ′n − φ′)(φ− δn) + (φ′ + δn − h)(φ− δn) +
1

τn
ϕ(φ− δn)dt ≥ 0.

By integration and due to the properties of ϕ, φ, and δn, we may deduce∫ 1

0

hδndt+

∫ 2

1

φ′(φ− δn) + δn(φ− δn)− h(φ− δn)dt ≥ 0.

If we pass to the limit n → ∞ in the above (using the weak lower semicontinuity of
the L2-norm), then the claim follows immediately.

The important point in our counterexample is the following observation:

Lemma 3.4. Consider the situation in Lemma 3.3 and the special direction h ≡ 1.
Then, the solutions of (3.4) are precisely the functions

δ(t) =


0 a.e. in [0, 1)

1 + ce−t a.e. in [1, 2]

0 a.e. in (2, 3]

, c ∈
[
−2e2

e + 1
, 0

]
. (3.6)

Proof. Suppose that δ ∈ L2(0, 3) solves (3.4). Then, we may de�ne ζ := δ − 1 and
test the variational inequality in (3.4) with functions of the form z(t) = αφ(t)et,
φ ∈ C∞c (1, 2), α > 0, to obtain

0 +

∫ 2

1

−
(
φ(t)et

)′
ζ(t) + ζ(t)

(
φ(t)et − 1

α
δ

)
dt ≥ 0 ∀φ ∈ C∞c (1, 2).
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Passing to the limit α↗∞ in the above yields∫ 2

1

φ′(t)etζ(t)dt = 0 ∀φ ∈ C∞c (1, 2).

This shows that there exists a constant c ∈ R with ζ(t)et ≡ c in (1, 2) and that δ has
to satisfy δ = 0 a.e. in [0, 3] \ (1, 2) and δ(t) = 1 + ce−t a.e. in (1, 2). If we use this
formula in (3.4), then it follows∫ 2

1

z′(−1− ce−t) + ce−t(z − 1− ce−t)dt ≥ 0 ∀z ∈ H1
0 (1, 2)

and, after integration by parts,∫ 2

1

−ce−t − c2e−2tdt =

[
ce−2 +

1

2
c2e−4 − ce−1 − 1

2
c2e−2

]
= −1

2
e−4

(
e2 − 1

)
c

[
2e3 − 2e2

e2 − 1
+ c

]
≥ 0.

The above entails

c

[
2e3 − 2e2

e2 − 1
+ c

]
= c

[
2e2

e + 1
+ c

]
≤ 0

and, consequently,

c ∈
[
−2e2

e + 1
, 0

]
. (3.7)

This shows that every solution δ ∈ L2(0, 3) has to have the form (3.6). If, conversely,
we start with a function of the type (3.6) with a c as in (3.7), then we may use exactly
the same calculations as above to infer∫ 2

1

(z′ + δ − h)(z − δ)dt =

∫ 2

1

z′(−1− ce−t) + ce−t(z − 1− ce−t)dt

≥
∫ 2

1

z′(−1− ce−t) + ce−tz dt = 0 ∀z ∈ H1
0 (1, 2).

This proves that every function of the form (3.6) solves (3.4) and yields the claim.

Note that the functions in (3.6) all have at least one jump-discontinuity. This implies
in particular that a δ with (3.6) cannot be in Hs(0, 3), s ≥ 1/2, cf. the following
classical result:

Lemma 3.5. Let −∞ < a < b <∞. Suppose that a v ∈ L2(a, b) is given such that

v(t) =

{
φ1(t) a.e. in (a, c)

φ2(t) a.e. in (c, b)

holds for some c ∈ (a, b) and some φ1, φ2 ∈ C1(R) with φ1(c) 6= φ2(c), and let Hs(a, b),
s ∈ [1/2, 1), be the Hilbert space of all z ∈ L2(a, b) with

‖z‖2Hs(a,b) :=

∫ b

a

|z(t)|2dt+

∫ b

a

∫ b

a

|z(t1)− z(t2)|2

|t1 − t2|1+2s
dt1dt2 <∞.

Then, v 6∈ Hs(a, b) for all s ∈ [1/2, 1).
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Proof. We may assume w.l.o.g. that φ1 ≡ c1 6= c2 ≡ φ2. If this is not the case, then
we subtract suitable Lipschitz functions from v (note that C0,1(a, b) ⊂ Hs(a, b) for
all s ∈ [1/2, 1)). Due to the Sobolev embeddings, see [16, Proposition 2.1], we may
further restrict our attention to the case s = 1/2. A direct calculation now yields

‖v‖2H1/2(a,b) ≥
∫ c

a

∫ b

c

|c1 − c2|2

(t1 − t2)2
dt1dt2 = |c1 − c2|2

∫ c

a

−1

b− t2
+

1

c− t2
dt2 =∞.

This proves the claim.

If we combine all of the above, then we arrive at:

Theorem 3.6. Consider the situation in Assumption 3.1, the EVI (3.2) and the
function h ≡ 1. Then, every weak L2-accumulation point of the di�erence quotients

δτ :=
S(ũ+ τh)− S(ũ)

τ
∈ H1(0, 3), τ > 0, (3.8)

for τ ↘ 0 is an element of L∞(0, 3) \H1/2(0, 3).

Theorem 3.6 and the preceding results have several implications for the sensitivity
analysis of obstacle-type EVIs:

Remark 3.7.

(i) Since all L2-weak accumulation points of the di�erence quotients (3.8) for
τ ↘ 0 are in L∞(0, 3)\H1/2(0, 3), the solution map S : u 7→ y associated with
(3.2) cannot be (locally) Lipschitz continuous or directionally di�erentiable as
a function L2(0, 3) → Hs(0, 3) for any s ≥ 1/2. Note that ũ, ỹ and h are
smooth in our example. The regularity of the data is thus not the issue here.

(ii) The variational inequality (3.4) for the L2-weak accumulation points δ of the
di�erence quotients in (3.3) can also be written as

δ ∈ L2(0, 3), δ ∈ T tan[0,∞)(ỹ) ∩ ϕ⊥ a.e. in [0, 3],∫ 3

0

z′(z − δ) + δ(z − δ)− h(z − δ)dt+
1

2
z(0)2 ≥ 0,

∀z ∈ H1(0, 3), z ∈ T tan[0,∞)(ỹ) ∩ ϕ⊥ a.e. in [0, 3],

(3.9)

where ϕ = ỹ′ + ỹ − ũ is the function in (3.1), where T tan[0,∞)(x) is the tangent

cone to the set [0,∞) at x ∈ [0,∞), i.e.,

T tan[0,∞)(x) =

{
R if x > 0

[0,∞) if x = 0
,

and where a⊥ denotes the kernel of an a ∈ R interpreted as a linear function
on R, i.e.,

a⊥ =

{
{0} if a 6= 0

R if a = 0
.

Note that (3.9) is precisely the weak form of the problem

δ ∈ H1(0, 3), δ(0) = 0, δ ∈ T tan[0,∞)(ỹ) ∩ ϕ⊥ a.e. in [0, 3],∫ 3

0

δ′(z − δ) + δ(z − δ)− h(z − δ)dt ≥ 0

∀z ∈ L2(0, 3), z ∈ T tan[0,∞)(ỹ) ∩ ϕ⊥ a.e. in [0, 3],

(3.10)
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cf. [8, Section II] and [27, De�nition 2]. Further, (3.10) is the exact analogue
of the EVI that is used in [29] for the characterization of the derivatives of
the solution operator to (2.6) and the parabolic counterpart of the auxiliary
problem that characterizes the directional derivatives of the solution map for
a time-independent elliptic variational inequality with a polyhedric admissible
set, see [32] and [21, Theorem 1]. Recall now that Lemma 3.4 yields that (3.9)
possesses in�nitely many solutions for h ≡ 1 and that the existence of a strong
solution to an EVI of the form (3.10) always implies the unique solvability
of its weak formulation (to see this, test (3.10) with a weak solution, (3.9)
with the strong solution and add the resulting inequalities). What we have
constructed in this section is thus a situation in which the EVI that, in view
of the classical theory for elliptic variational inequalities, should characterize
the directional derivatives of the solution operator to a problem of the type (P)
does not admit a strong solution and possesses in�nitely many weak solutions.
This and the fact that we cannot work with the space H1/2(0, 3) either in the
situation of Assumption 3.1 suggest that uniquely characterizing directional
derivatives with an auxiliary problem is typically far from straightforward for
an obstacle-type evolution variational inequality. In particular, our results
indicate that it is not possible to proceed along the lines of [13,14,26,29] to
establish the directional di�erentiability of the solution map S to the general
problem (P). We remark that, despite the non-uniqueness of solutions to
(3.9), this variational inequality can still be used to derive strong stationarity
conditions. See Section 5 for details on this topic.

(iii) The construction that we have used in this section can be extended straightfor-
wardly to the problems in Examples 2.5 and 2.6. In the case of the classical
parabolic obstacle problem, it yields that the solution map S cannot be expected
to be Lipschitz continuous or directionally di�erentiable w.r.t. the norm

‖z‖H1/2(0,T ;L2(Ω))

:=

(
‖z‖2L2(0,T ;L2(Ω)) +

∫ T

0

∫ T

0

‖z(t1)− z(t2)‖2L2(Ω)

|t1 − t2|2
dt1dt2

)1/2

because the weak accumulation points of the di�erence quotients may suddenly
�jump� at some time t to the zero function, and in the case of the Signorini-
type problem (2.6), it implies that the solution map typically does not satisfy
a Lipschitz estimate w.r.t. the norm

‖z‖H1/2(0,T ;H1(Ω))

:=

(
‖z‖2L2(0,T ;H1(Ω)) +

∫ T

0

∫ T

0

‖z(t1)− z(t2)‖2H1(Ω)

|t1 − t2|2
dt1dt2

)1/2

.

Note that we do not get a contradiction with the Lipschitz result in [29] here,
since, for inequality constraints on the boundary ∂Ω, our approach only yields
a discontinuity in time of the trace of the L2(0, T ;H1(Ω))-weak accumulation
points of the di�erence quotients. Such a discontinuity is not detectable by
the norm ‖ · ‖H1/2(0,T ;L2(Ω)) used in [29]. Our results show, however, that the
approach in [29] has to fail for EVIs that behave like the classical parabolic
obstacle problem (2.5) due to the lacking H1/2-Lipschitz continuity of S.

10



4. Directional Di�erentiability of the Solution Map. Having established
that the solution operator S of the EVI (P) can, in general, not be expected to be
directionally di�erentiable in any of the spaces Hs(0, T ;H), s ≥ 1/2, we now turn
our attention to the di�erentiability properties of S in the Lq-spaces. Henceforth,
we again consider the general setting that we have introduced in Section 2, i.e., we
suppose that a problem of the type (P) is given and that Assumption 2.1 is satis�ed.
The aim of this section is to prove the following main result of this paper:

Theorem 4.1 (Directional Di�erentiability in the Lq-Spaces). Consider the situation
in Assumption 2.1. Then, the solution map S to (P) is directionally di�erentiable in
the sense that, for every u ∈ L2(0, T ;H) and every h ∈ L2(0, T ;H), there exists a
unique S′(u;h) =: δ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) such that the di�erence quotients

δτ :=
S(u+ τh)− S(u)

τ
, τ > 0,

satisfy

δτ
?
⇀ δ in L∞(0, T ;H), δτ ⇀ δ in L2(0, T ;V ),

δτ → δ in Lq(0, T ;H) ∀1 ≤ q <∞
(4.1)

for τ ↘ 0. Further, the directional derivatives δ = S′(u;h), u, h ∈ L2(0, T ;H), satisfy

δ ∈ T tanK,L2(y) ∩ ϕ⊥,∫ T

0

〈z′, z − δ〉V + 〈Aδ, z − δ〉V − 〈h, z − δ〉V dt+
1

2
‖z(0)‖2H ≥ 0

∀z ∈ clL2(0,T ;V )∩H1(0,T ;V ∗)

(
T radK (y) ∩ ϕ⊥

)
.

 (4.2)

Here, y := S(u) is the state associated with the right-hand side u, ϕ⊥ is the kernel of
the linear map ϕ := y′ +Ay − u ∈ L2(0, T ;V ∗) ∼= L2(0, T ;V )∗, i.e.,

ϕ⊥ :=

{
z ∈ L2(0, T ;V )

∣∣∣∣∣
∫ T

0

〈y′ +Ay − u, z〉V dt = 0

}
,

K is the set

K :=
{
z ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗)

∣∣∣ z ∈ K a.e. in (0, T )
}
,

and T radK (y) and T tanK,L2(y) are the radial and the L2(0, T ;V )-tangent cone to K at y,
respectively, i.e.,

T radK (y) := R+ (K − y) , T tanK,L2(y) := clL2(0,T ;V )

(
R+ (K − y)

)
,

where cl(·) denotes a topological closure.

Before we prove Theorem 4.1, we give some remarks:

Remark 4.2.

(i) The convergence behavior in (4.1) �ts very well to the Lipschitz estimate (2.2)
in Theorem 2.3 and the observations in the previous section. Moreover, (4.2)
corresponds precisely to the variational inequality (3.9).
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(ii) Recall that the space L2(0, T ;V )∩H1(0, T ;V ∗) is continuously embedded into
C([0, T ];H), see, e.g., [40, Theorem 10.9]. The expression ‖z(0)‖2H in (4.2)
is thus well-de�ned.

(iii) Since S is Lipschitz as a function L2(0, T ;H) → L∞(0, T ;H) and strongly
directionally di�erentiable as a function L2(0, T ;H) → Lq(0, T ;H) for all
1 ≤ q < ∞, S is Hadamard directionally di�erentiable in the sense of [7,
De�nition 2.45] from L2(0, T ;H) to Lq(0, T ;H) for all 1 ≤ q < ∞, see [7,
Proposition 2.49]. The notion of Hadamard directional di�erentiability is of
particular importance in the �elds of optimization and optimal control because
it is su�cient for the derivation of chain rules, see [7, Proposition 2.47].

(iv) As we will see in the proof of Theorem 4.1, the functions δτ converge pointwise
a.e. in (0, T ) monotonously from above to δ in H = L2(Ω, µ) for τ ↘ 0. Our
proof further shows that the C([0, T ];H)-representatives of δτ converge even
pointwise everywhere in [0, T ] in H for τ ↘ 0, cf. (4.4) below.

(v) If K is polyhedric in L2(0, T ;V ) ∩ H1(0, T ;V ∗), see [21,32,44], then (4.2)
holds for all z ∈ T tanK,H1(y) ∩ ϕ⊥, where T tanK,H1(y) is the tangent cone to K at

y w.r.t. the topology of the space L2(0, T ;V ) ∩ H1(0, T ;V ∗). Compare also
with the discussion after Remark 5.6 in this context.

To prove the directional di�erentiability of the solution operator S in the Lq-spaces,
we proceed in several steps. In the remainder of this section, we always tacitly assume
that the conditions in Assumption 2.1 are satis�ed, that an EVI of the form (P) is
given, that u, h ∈ L2(0, T ;H) are arbitrary but �xed, and that S, y, δτ ,K and ϕ are
de�ned as in Theorem 4.1. We �rst note:

Lemma 4.3. For every z ∈ L2(0, T ;V ), it holds∫ T

0

〈
y′ +Ay − u, z+

〉
V

dt =

∫ T

0

〈
ϕ, z+

〉
V

dt ≥ 0.

Proof. Test the variational inequality for y with functions of the form v = y + z+,
then the claim follows immediately.

The key observation is now the following:

Lemma 4.4. For all 0 < τ1 < τ2, it holds (δτ1 − δτ2)+ = 0 in L2(0, T ;V ).

Proof. Test the EVI for S(u+ τh) = y + τδτ , i.e., the problem∫ T

0

〈y′ + τδ′τ +Ay + τAδτ − u− τh, v − y − τδτ 〉V dt ≥ 0

∀v ∈ L2(0, T ;V ), v ∈ K a.e. in (0, T ),

with functions of the form y + τz and divide by τ2 to obtain

y + τδτ ∈ K a.e. in (0, T ), δτ (0) = 0,∫ T

0

〈δ′τ +Aδτ − h, z − δτ 〉V +
1

τ
〈y′ +Ay − u, z − δτ 〉V dt ≥ 0

∀z ∈ L2(0, T ;V ), y + τz ∈ K a.e. in (0, T ).

Consider now two arbitrary but �xed 0 < τ1 < τ2. Then, our assumptions on K and
the properties of τ1, τ2, δτ1 , δτ2 imply

y + τ2 max(δτ1 , δτ2) = y + τ2δτ2 + τ2(δτ1 − δτ2)+ ∈ K
12



and

y + τ1 min(δτ1 , δτ2) = min(y + τ1δτ1 , y + τ1δτ2)

= min
(
y + τ1δτ1 , y + τ1δ

+
τ2 + τ1δ

−
τ2

)
= min

(
y + τ1δτ1 , y + τ2δ

−
τ2 − τ2δ

−
τ2 + τ1δ

+
τ2 + τ1δ

−
τ2

)
= min

(
y + τ1δτ1 , y + τ2δ

−
τ2 + τ1δ

+
τ2 − (τ2 − τ1)δ−τ2

)
= min

(
y + τ1δτ1 ,min(y, y + τ2δτ2) + τ1δ

+
τ2 + (τ2 − τ1)(−δτ2)+

)
∈ K

for a.a. t ∈ (0, T ), where z− is short for min(0, z). Testing in the EVIs for δτ1 and δτ2
now yields∫ T

0

〈
δ′τ1 +Aδτ1 − h,min(δτ1 , δτ2)− δτ1

〉
V

+
1

τ1
〈y′ +Ay − u,min(δτ1 , δτ2)− δτ1〉V dt ≥ 0

and ∫ T

0

〈
δ′τ2 +Aδτ2 − h,max(δτ1 , δτ2)− δτ2

〉
V

+
1

τ2
〈y′ +Ay − u,max(δτ1 , δτ2)− δτ2〉V dt ≥ 0.

Add the above to obtain∫ T

0

〈
δ′τ1 +Aδτ1 − h,−(δτ1 − δτ2)+

〉
V

+
〈
δ′τ2 +Aδτ2 − h, (δτ1 − δτ2)+

〉
V

+
1

τ1

〈
y′ +Ay − u,−(δτ1 − δτ2)+

〉
V

+
1

τ2

〈
y′ +Ay − u, (δτ1 − δτ2)+

〉
V

dt ≥ 0

and, consequently,∫ T

0

− (δ′τ1 − δ
′
τ2 , (δτ1 − δτ2)+)H −

〈
A(δτ1 − δτ2), (δτ1 − δτ2)+

〉
V

−
(

1

τ1
− 1

τ2

)〈
y′ +Ay − u, (δτ1 − δτ2)+

〉
V

dt ≥ 0.

Due to (1/τ1 − 1/τ2) ≥ 0, our assumptions on A, the integration by parts formula
(2.1), and Lemma 4.3, the above entails

−1

2
‖(δτ1 − δτ2)+(T )‖2H −

∫ T

0

〈
A(δτ1 − δτ2)+, (δτ1 − δτ2)+

〉
V

dt ≥ 0.

The strong monotonicity of A now yields the claim.

Some remarks are in order regarding the last result:
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Remark 4.5.

(i) Since {δτ} ⊂ H1(0, T ;H) and L2(0, T ;V ) ↪→ L2(0, T ;H), Lemma 4.4 implies
that the C([0, T ];H)-representatives of the di�erence quotients {δτ} satisfy
δτ1(t) ≤ δτ2(t) pointwise µ-a.e. in Ω for all t ∈ [0, T ] and all 0 < τ1 < τ2.
The sequences {δτ (t)} ⊂ H, t ∈ [0, T ], are thus pointwise µ-a.e. monotonously
decreasing for τ ↘ 0.

(ii) A monotonicity behavior similar to that in Lemma 4.4 was observed in [2] for
directional derivatives in an iteration scheme for elliptic obstacle-type quasi
variational inequalities. In this paper, however, the authors only obtained
monotonicity for certain directions and right-hand sides, cf. [2, Lemma 4.1],
and for a di�erent limiting process (namely that of the iteration procedure).
Using the argumentation in the proof of Lemma 4.4, we are able to show
that, for the EVI (P), the di�erence quotients {δτ} are always monotonously
decreasing for τ ↘ 0, regardless of the properties of u, h and S(u+ τh).

(iii) The argumentation in the proof of Lemma 4.4 can also be used to show, e.g.,
that the di�erence quotients of the solution operator to the classical time-
independent obstacle problem are monotonously decreasing.

We are now in the position to prove the �rst part of Theorem 4.1:

Lemma 4.6. There exists a unique function δ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) such that

δτ
?
⇀ δ in L∞(0, T ;H), δτ ⇀ δ in L2(0, T ;V ),

δτ → δ in Lq(0, T ;H) ∀1 ≤ q <∞ as τ ↘ 0.
(4.3)

Proof. Suppose that a monotonously decreasing sequence {τn} ⊂ R+ with τn ↘ 0 is
given. Then, Lemma 4.4 yields that the C([0, T ];H)-representatives of the di�erence
quotients δn := δτn satisfy (δn+1(t)− δn(t))+ = 0 in H for all t ∈ [0, T ] and all n ∈ N.
The sequences of functions {δn(t)} ⊂ H = L2(Ω, µ), t ∈ [0, T ], are thus monotonously
decreasing pointwise µ-a.e. in Ω for n→∞. Note that this implies in particular that
the limit

lim
n→∞

δn(t) ∈ [−∞,∞)

exists pointwise µ-a.e. in Ω for all t ∈ [0, T ]. From the Lipschitz continuity of the
map S in Theorem 2.3, it follows further that ‖δn(t)‖H ≤ C holds for all n ∈ N and
all t ∈ [0, T ] with some absolute constant C > 0. Using Fatou's lemma, we may now
deduce that

0 ≤
∫

Ω

(
lim
n→∞

δn(t)
)2

dµ =

∫
Ω

lim
n→∞

δn(t)2dµ

=

∫
Ω

lim inf
n→∞

δn(t)2dµ ≤ lim inf
n→∞

∫
Ω

δn(t)2dµ ≤ C

for all t ∈ [0, T ]. The above implies that the µ-a.e.-de�ned function

δ(t) := lim
n→∞

δn(t)

can be identi�ed with an element of L2(Ω, µ) for all t ∈ [0, T ]. (Note that measurability
is not a problem here due to the pointwise µ-a.e. convergence δn(t)→ δ(t) in Ω.) From
the dominated convergence theorem (with majorant (δ1(t)− δ(t))2), we now obtain∫

Ω

(δn(t)− δ(t))2dµ→ 0 (4.4)
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for all t ∈ [0, T ] and n → ∞, i.e., we have δn(t) → δ(t) in H as n → ∞ for some
δ(t) ∈ H and all t ∈ [0, T ]. This pointwise convergence in time implies that the map
[0, T ] 3 t 7→ δ(t) ∈ H is Bochner measurable, see [24, Corollary 3.1.5]. Due to the
boundedness of {δn} in L∞(0, T ;H), it follows immediately that δ can be identi�ed
with an element of L∞(0, T ;H) and, by the dominated convergence theorem, that
δn → δ holds for n→∞ in all Lq(0, T ;H), 1 ≤ q <∞. Note that, due to [15, Theorem
IV-1], we have L1(0, T ;H)∗ ∼= L∞(0, T ;H), and that the uniform boundedness and
the pointwise convergence in time of δn to δ as well as the dominated convergence
theorem yield ∫ T

0

(z, δn)H dt→
∫ T

0

(z, δ)H dt ∀z ∈ L1(0, T ;H).

It thus holds δn
?
⇀ δ in L∞(0, T ;H). To see that we also have δn ⇀ δ in L2(0, T ;V ),

we recall that the sequence {δn} is bounded in L2(0, T ;V ) by Theorem 2.3. This
implies that every subsequence of {δn} contains a subsequence which converges weakly
in L2(0, T ;V ). Since we already know that δn → δ in, e.g., L2(0, T ;H), the weak
convergence in L2(0, T ;V ) now follows immediately. This proves that the di�erence
quotients δτn converge as claimed to some δ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) for every
monotonously decreasing {τn} ⊂ R+ with τn ↘ 0. Consider now two arbitrary
but �xed monotonously decreasing sequences {τn} ⊂ R+, {τ̃n} ⊂ R+ with τn ↘ 0,
τ̃n ↘ 0 and associated limit points δ1, δ2. Then, by passing over to subsequences (not
relabeled), we can always obtain that τn > τ̃n > τn+1 holds for all n ∈ N. Since
this nested sequence is again monotonously decreasing, we know that the associated
di�erence quotients converge as in (4.3). This is only possible if δ1 = δ2. The limit
of the di�erence quotients δτn is thus the same for all monotonously decreasing {τn}
with τn ↘ 0. The latter implies that there exists a uniquely determined δ such that
every {τn} ⊂ R+ with τn ↘ 0 (not necessarily monotonously) contains a subsequence
such that the associated di�erence quotients converge to δ as in (4.3). Using classical
contradiction arguments, cf. [40, Lemmas 4.16, 4.17], we now obtain that δτn converges
to δ for all sequences {τn} ⊂ R+ with τn ↘ 0. This proves the claim.

Note that the proof of Lemma 4.6 does not make use of the concept of polyhedricity,
cf. [21,32,44], but is completely elementary. It remains to show that δ solves the
variational inequality (4.2):

Lemma 4.7. The directional derivative δ = S′(u;h) satis�es

δ ∈ T tanK,L2(y) ∩ ϕ⊥,∫ T

0

〈z′, z − δ〉V + 〈Aδ, z − δ〉V − 〈h, z − δ〉V dt+
1

2
‖z(0)‖2H ≥ 0

∀z ∈ clL2(0,T ;V )∩H1(0,T ;V ∗)

(
T radK (y) ∩ ϕ⊥

)
.

Proof. The proof is along the lines of that of Lemma 3.3. By testing the EVI for
S(u+ τh) = y + τδτ with functions of the type v = y + τz, we again obtain

δτ ∈ L2(0, T ;V ) ∩H1(0, T ;H),

y + τδτ ∈ K a.e. in (0, T ), δτ (0) = 0,∫ T

0

〈δ′τ +Aδτ − h, z − δτ 〉V +
1

τ
〈y′ +Ay − u, z − δτ 〉V dt ≥ 0

∀z ∈ L2(0, T ;V ), y + τz ∈ K a.e. in (0, T ).

(4.5)
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In particular, the choice z = 0 yields∫ T

0

〈δ′τ +Aδτ − h,−δτ 〉V dt ≥
∫ T

0

1

τ
〈y′ +Ay − u, δτ 〉V dt =

1

τ

∫ T

0

〈ϕ, δτ 〉V dt ≥ 0,

(4.6)
where the second inequality in (4.6) follows from the EVI for y with v = y + τδτ .
From the boundedness of the sequence {δτ} in L2(0, T ;V ) ∩ L∞(0, T ;H), it now
follows immediately that δ ∈ ϕ⊥. Since R+(K− y) 3 δτ ⇀ δ in L2(0, T ;V ) and since
the radial cone T radK (y) = R+(K − y) is convex, we may further apply the lemma
of Mazur to deduce that δ ∈ T tanK,L2(y) ∩ ϕ⊥. Consider now an arbitrary but �xed

z ∈ T radK (y) ∩ ϕ⊥. Then, for all su�ciently small τ > 0, z is admissible in (4.5) and
we may use (4.6) to deduce∫ T

0

〈δ′τ − z′ + z′ +Aδτ − h, z − δτ 〉V dt ≥
∫ T

0

1

τ
〈y′ +Ay − u, δτ 〉V dt ≥ 0.

The above yields in combination with [40, Theorem 10.9] that

1

2
‖z(0)‖2H −

1

2
‖z(T )− δτ (T )‖2H +

∫ T

0

〈z′ +Aδτ − h, z − δτ 〉V dt ≥ 0.

Ignoring the ‖z(T )− δτ (T )‖H -term, passing to the limit τ ↘ 0 and using density and
weak lower semicontinuity, the claim now follows immediately.

Remark 4.8. The reader might ask at this point which of the candidates in (3.6) is the
actual directional derivative S′(ũ;h) ∈ L∞(0, 3) in the scenario studied in Section 3.
The answer is that it is precisely that function which does not have a discontinuity at
t = 1, i.e., the function with c = −e. To see this, it su�ces to note that, if we consider
the end time T̃ = 2 in Section 3 instead of the original T = 3, then the variational
inequality (4.2) has a unique strong and weak solution, namely, the function which
vanishes in (0, 1) and which equals 1 − e1−t in (1, 2). This function obviously has to
coincide with the restriction of the directional derivative for the end time T = 3 to
the time interval (0, 2). Note that, using exactly the same argumentation, it can be
shown that the directional derivatives are H1-regular in time �as long as possible�.

5. Strong Stationarity. In this section, we demonstrate that Theorem 4.1 can
be used to derive strong and Bouligand stationarity conditions for optimal control
problems that are governed by EVIs of the type (P). Our precise assumptions are as
follows:

Assumption 5.1 (Standing Assumptions for Section 5). We are given an optimal
control problem of the form

min J (y, u)

s.t. y = S(u), u ∈ Uad,
(O)

such that:

(i) Uad ⊂ L2(0, T ;H) is non-empty, convex and closed,
(ii) J : Lq(0, T ;H) × L2(0, T ;H) → R is Gâteaux di�erentiable in the sense of

[7, Section 2.2.1] and locally Lipschitz continuous for some 1 ≤ q <∞,
(iii) S : L2(0, T ;H)→ L2(0, T ;V )∩H1(0, T ;H) is the solution map to an EVI of

the form (P) that satis�es the conditions in Assumption 2.1.
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Remark 5.2. We could also work, e.g., with a Fréchet di�erentiable objective function
J : L2(0, T ;V ) × L2(0, T ;H) → R in this section, using a Taylor expansion and
the weak L2(0, T ;V )-directional di�erentiability of S. We restrict our attention to
functionals J : Lq(0, T ;H)× L2(0, T ;H)→ R for the sake of simplicity.

By invoking Theorem 4.1, it is straightforward to prove:

Proposition 5.3 (Bouligand Stationarity Condition). If ū ∈ Uad is a local minimizer
of (O) with associated state ȳ := S(ū), then it holds

〈∂yJ (ȳ, ū), S′(ū;h)〉Lq(0,T ;H)+〈∂uJ (ȳ, ū), h〉L2(0,T ;H) ≥ 0 ∀h ∈ R+(Uad−ū). (5.1)

Here, ∂yJ (ȳ, ū) and ∂uJ (ȳ, ū) denote the partial derivatives of J at (ȳ, ū).

Proof. Due to its local Lipschitz continuity and directional di�erentiability, J is
Hadamard-Gâteaux di�erentiable. Using the chain rule in [7, Proposition 2.47], the
claim now follows immediately from the local optimality of ū and Theorem 4.1.

To obtain a strong stationarity system analogous to that in [32,33] for the optimal
control problem (O), we proceed similarly to [11,31] and note the following:

Lemma 5.4. If ū ∈ Uad is Bouligand stationary for (O) in the sense of (5.1) with
associated state ȳ = S(ū) and if the set R+(Uad − ū) is dense in L2(0, T ;H), then
p̄ := −∂uJ (ȳ, ū) is an element of L2(0, T ;V ) ∩ L∞(0, T ;H).

Proof. From (5.1), we know that

〈−∂uJ (ȳ, ū), h〉L2(0,T ;H) ≤ 〈∂yJ (ȳ, ū), S′(ū;h)〉Lq(0,T ;H) ∀h ∈ R+(Uad − ū),

and from (2.2), we obtain that there exists an absolute constant C > 0 with

‖S(u1)− S(u2)‖Lq(0,T ;H) ≤ C min
(
‖u1 − u2‖L2(0,T ;V ∗), ‖u1 − u2‖L1(0,T ;H)

)
for all u1, u2 ∈ L2(0, T ;H). The latter implies

‖S′(ū;h)‖Lq(0,T ;H) ≤ C min
(
‖h‖L2(0,T ;V ∗), ‖h‖L1(0,T ;H)

)
∀h ∈ R+(Uad − ū)

and, consequently,

〈−∂uJ (ȳ, ū), h〉L2(0,T ;H) ≤ C̃ min
(
‖h‖L2(0,T ;V ∗), ‖h‖L1(0,T ;H)

)
∀h ∈ R+(Uad − ū)

(5.2)
with some C̃ > 0 independent of h. Since R+(Uad − ū) is dense in L2(0, T ;H), (5.2)
entails∣∣∣〈−∂uJ (ȳ, ū), h〉L2(0,T ;H)

∣∣∣ ≤ C̃ min
(
‖h‖L2(0,T ;V ∗), ‖h‖L1(0,T ;H)

)
∀h ∈ L2(0, T ;H).

This estimate implies, in combination with the density of L2(0, T ;H) in the spaces
L2(0, T ;V ∗) and L1(0, T ;H), that the map

L2(0, T ;H) 3 h 7→ 〈−∂uJ (ȳ, ū), h〉L2(0,T ;H) ∈ R

can be extended to a linear and continuous functional on L2(0, T ;V ∗) and L1(0, T ;H),
respectively. Using that L2(0, T ;V ∗)∗ ∼= L2(0, T ;V ) and L1(0, T ;H)∗ ∼= L∞(0, T ;H),
we now obtain that there exist p̄1 ∈ L2(0, T ;V ) and p̄2 ∈ L∞(0, T ;H) with∫ T

0

〈h, p̄1〉V dt =

∫ T

0

(p̄2, h)Hdt =

∫ T

0

(−∂uJ (ȳ, ū), h)Hdt ∀h ∈ L2(0, T ;H).

The above yields p̄1 = p̄2 = −∂uJ (ȳ, ū) and proves the claim.
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From the last result and Theorem 4.1, we may deduce:

Theorem 5.5 (Strong Stationarity Conditions). In the situation of Assumption 5.1,
the following holds true:

(I) For every ū ∈ Uad which satis�es the Bouligand stationarity condition (5.1)
and for which the set R+(Uad−ū) is dense in L2(0, T ;H), there exist a unique
p̄ ∈ L2(0, T ;V )∩L∞(0, T ;H) and a unique η̄ ∈ (L2(0, T ;V )∩H1(0, T ;V ∗))∗

such that the following strong stationarity system holds:

ȳ = S(ū),

ϕ̄ = ȳ′ +Aȳ − ū,
−p̄′ +A∗p̄ = ∂yJ (ȳ, ū)− η̄,

p̄+ ∂uJ (ȳ, ū) = 0,

p̄ ∈ T tanK,L2(ȳ) ∩ ϕ̄⊥, 〈η̄, z〉L2(0,T ;V )∩H1(0,T ;V ∗) ≥ 0 ∀z ∈ C(ȳ).

(5.3)

Here, C(ȳ) is de�ned by

C(ȳ) :=
{
z ∈ clL2(0,T ;V )∩H1(0,T ;V ∗)

(
T radK (ȳ) ∩ ϕ̄⊥

) ∣∣∣ z(0) = 0
}
,

the sets K, T tanK,L2(ȳ), T radK (ȳ) are de�ned as in Theorem 4.1, and the adjoint

equation is understood as a formal identity in (L2(0, T ;V ) ∩H1(0, T ;V ∗))∗,
see (5.6) below.

(II) If, conversely, we are given a ū ∈ Uad such that (5.3) holds with a p̄ ∈ C(ȳ)
and an η̄ ∈ (L2(0, T ;V ) ∩H1(0, T ;V ∗))∗, then it holds

〈∂yJ (ȳ, ū), S′(ū;h)〉Lq(0,T ;H) + 〈∂uJ (ȳ, ū), h〉L2(0,T ;H) ≥ 0 (5.4)

for all h ∈ L2(0, T ;H) with S′(ū;h) ∈ C(ȳ). In particular, ū is Bouligand
stationary for (O) if

L2(0, T ;H) = clL2(0,T ;H)

{
h ∈ L2(0, T ;H) |S′(ū;h) ∈ C(ȳ)

}
. (5.5)

Proof. Ad (I): Suppose that a ū ∈ Uad is given such that the Bouligand stationarity
condition (5.1) is satis�ed and such that the set R+(Uad − ū) is dense in L2(0, T ;H).
Then, we know from Lemma 5.4 that the derivative p̄ := −∂uJ (ȳ, ū) is an element of
L2(0, T ;V ) ∩ L∞(0, T ;H), and we may de�ne

〈η̄, z〉L2(0,T ;V )∩H1(0,T ;V ∗) := 〈∂yJ (ȳ, ū), z〉Lq(0,T ;H) − 〈z
′ +Az, p̄〉L2(0,T ;V )

∀z ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗)
(5.6)

to obtain an element of (L2(0, T ;V ) ∩H1(0, T ;V ∗))∗ which (formally) satis�es

−p̄′ +A∗p̄ = ∂yJ (ȳ, ū)− η̄

in (L2(0, T ;V )∩H1(0, T ;V ∗))∗. Here, we have again used the continuous embedding
L2(0, T ;V ) ∩H1(0, T ;V ∗) ↪→ C([0, T ];H), see [40, Theorem 10.9]. To prove that the
above p̄ and η̄ have the properties in (5.3), we note that (2.2) yields

‖S(u1)− S(u2)‖L2(0,T ;V ) + ‖S(u1)− S(u2)‖Lq(0,T ;H) ≤ C‖u1 − u2‖L2(0,T ;V ∗)

∀u1, u2 ∈ L2(0, T ;H)
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with some absolute constant C > 0. This implies in combination with the directional
di�erentiability properties of the solution map S and the weak lower semicontinuity
of the L2(0, T ;V )-norm that

‖S′(ū;h1)− S′(ū;h2)‖L2(0,T ;V ) + ‖S′(ū;h1)− S′(ū;h2)‖Lq(0,T ;H)

≤ C‖h1 − h2‖L2(0,T ;V ∗) ∀h1, h2 ∈ L2(0, T ;H)
(5.7)

holds, and that the map h 7→ S′(ū;h) admits a unique Lipschitz continuous extension
F : L2(0, T ;V ∗) → L2(0, T ;V ) ∩ Lq(0, T ;H). As before, we write ϕ̄ := ȳ′ + Aȳ − ū.
Using Theorem 4.1, the L2(0, T ;V )-closedness of the set T tanK,L2(ȳ)∩ ϕ̄⊥, the mapping

properties of the function F , and the Bouligand stationarity condition (5.1), we may
deduce that

F (h) ∈ T tanK,L2(ȳ) ∩ ϕ̄⊥,∫ T

0

〈z′ +AF (h)− h, z − F (h)〉V dt+
1

2
‖z(0)‖2H ≥ 0

∀z ∈ clL2(0,T ;V )∩H1(0,T ;V ∗)

(
T radK (ȳ) ∩ ϕ̄⊥

)
and

〈∂yJ (ȳ, ū), F (h)〉Lq(0,T ;H) − 〈h, p̄〉L2(0,T ;V ) ≥ 0 (5.8)

holds for all h ∈ L2(0, T ;V ∗). Consider now an arbitrary but �xed function z ∈ C(ȳ)
and de�ne h := z′ +Az ∈ L2(0, T ;V ∗). Then, it clearly holds∫ T

0

〈z′ +Az − h, F (h)− z〉V dt ≥ 0,

and we obtain from the variational inequality for F (h) that∫ T

0

〈z′ +AF (h)− h, z − F (h)〉V dt ≥ 0.

Adding the last two inequalities yields F (h) = z, i.e., we have F (z′ + Az) = z for all
z ∈ C(ȳ). The latter implies in combination with (5.8) that

〈∂yJ (ȳ, ū), z〉Lq(0,T ;H) − 〈z
′ +Az, p̄〉L2(0,T ;V ) = 〈η̄, z〉L2(0,T ;V )∩H1(0,T ;V ∗) ≥ 0

for all z ∈ C(ȳ). It remains to prove that p̄ ∈ T tanK,L2(ȳ) ∩ ϕ̄⊥. To this end, we note

that, for every h ∈ L2(0, T ;V ∗) with

〈h, z〉L2(0,T ;V ) ≤ 0 ∀z ∈ T tanK,L2(ȳ) ∩ ϕ̄⊥,

we may test the variational inequality for F (h) with z = 0 to obtain∫ T

0

〈AF (h), F (h)〉V dt ≤
∫ T

0

〈h, F (h)〉V dt ≤ 0.

The above implies F (h) = 0 and, due to (5.8),

−〈h, p̄〉L2(0,T ;V ) ≥ 0.
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We may thus conclude that

〈h, p̄〉L2(0,T ;V ) ≤ 0 ∀h ∈ L2(0, T ;V ∗) with 〈h, z〉L2(0,T ;V ) ≤ 0 ∀z ∈ T tanK,L2(ȳ) ∩ ϕ̄⊥

which may also be written as

p̄ ∈
(
T tanK,L2(ȳ) ∩ ϕ̄⊥

)◦◦
,

where (·)◦ denotes a polarization in L2(0, T ;V ) or L2(0, T ;V ∗), respectively. From
the bipolar theorem, see [18, Section III-5], and the fact that T tanK,L2(ȳ)∩ ϕ̄⊥ is a closed

convex pointed cone in L2(0, T ;V ), it now follows immediately that p̄ ∈ T tanK,L2(ȳ)∩ϕ̄⊥.
Since p̄ and η̄ are trivially unique, the proof of (I) is now complete.

Ad (II): Consider an arbitrary but �xed ū ∈ Uad which satis�es the strong stationarity
system (5.3) with a p̄ ∈ C(ȳ) and an η̄ ∈ (L2(0, T ;V ) ∩H1(0, T ;V ∗))∗, and suppose
that an h ∈ L2(0, T ;H) with δ := S′(ū;h) ∈ C(ȳ) is given. Then, (4.2) implies

δ ∈ C(ȳ),

∫ T

0

〈z′, z − δ〉V + 〈Aδ, z − δ〉V − 〈h, z − δ〉V dt ≥ 0 ∀z ∈ C(ȳ).

Since C(ȳ) is convex and since δ ∈ C(ȳ), we may test the above variational inequality
with functions of the form δ + α(z − δ), z ∈ C(ȳ), α ∈ (0, 1), divide by α and pass to
the limit α↘ 0 to obtain

δ ∈ C(ȳ),

∫ T

0

〈δ′ +Aδ − h, z − δ〉V dt ≥ 0 ∀z ∈ C(ȳ). (5.9)

Using (5.9), the adjoint equation in (5.3), the properties of η̄ and p̄, and the fact that
C(ȳ) is a convex cone, we may now deduce that

〈∂yJ (ȳ, ū), δ〉Lq(0,T ;H) = 〈η̄, δ〉L2(0,T ;V )∩H1(0,T ;V ∗) + 〈δ′ +Aδ, p̄〉L2(0,T ;V )

≥ 〈δ′ +Aδ − h, δ + p̄− δ〉L2(0,T ;V ) + 〈h, p̄〉L2(0,T ;V )

≥ 〈h, p̄〉L2(0,T ;V )

= 〈−∂uJ (ȳ, ū), h〉L2(0,T ;H) .

This proves (5.4) for all h ∈ L2(0, T ;H) with S′(ū;h) ∈ C(ȳ). If the density (5.5)
holds, then the Bouligand stationarity condition (5.1) follows immediately from the
continuity of the map L2(0, T ;H) 3 h 7→ S′(ū;h) ∈ Lq(0, T ;H), see (5.7). This
completes the proof of the theorem.

Remark 5.6. The optimality condition (5.3) is the parabolic counterpart of the strong
stationarity system derived by Mignot and Puel in [33, Theorem 2.2, Remark 2.1].
Compare also with [31, Theorem 6.8] in this context. Note that, in (5.3), the adjoint
state p̄ only satis�es p̄ ∈ T tanK,L2(ȳ) ∩ ϕ̄⊥ and is not necessarily contained in the set
C(ȳ) ⊂ T tanK,L2(ȳ) ∩ ϕ̄⊥ on which the multiplier η̄ is non-negative. This discrepancy is
a direct consequence of the asymmetry in the regularity properties of the solution and
the test functions in the weakly formulated variational inequality (4.2) and responsible
for the additional assumptions that are needed in part (II) of Theorem 5.5 to get from
(5.3) back to the Bouligand stationarity condition (5.1). Such an e�ect is not present
in the time-independent case where the equivalence between the Bouligand and the
strong stationarity system can be established without restrictions.
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To get a feeling for the results in Theorem 5.5 and to assess the strength of the
necessary optimality condition (5.3), let us consider the special case where the map
S in Assumption 5.1 is the solution operator of a classical parabolic obstacle problem
with homogeneous boundary conditions and zero obstacle. More precisely, let us
assume that Ω ⊂ Rd, d ≥ 1, is a bounded domain with a C1,1-boundary, that

V := H1
0 (Ω), H := L2(Ω), V ∗ := H−1(Ω), A := −∆,

K :=
{
v ∈ H1

0 (Ω)
∣∣ v ≥ 0 Ld-a.e. in Ω

}
,

where Ld again denotes the Lebesgue measure, that a T > 0 is given, that y0 = 0,
and that S : L2(0, T ;L2(Ω))→ L2(0, T ;H1

0 (Ω))∩H1(0, T ;L2(Ω)) is the solution map
of the EVI

y ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)),

y ∈ K a.e. in (0, T ), y(0) = 0,∫ T

0

(y′, v − y)L2 + 〈−∆y, v − y〉H1
0
− (u, v − y)L2 dt ≥ 0

∀v ∈ L2(0, T ;H1
0 (Ω)), v ∈ K a.e. in (0, T ).

(5.10)

Note that the conditions in Assumption 2.1 are satis�ed in the above situation by
[3, Theorem 5.8.2] and [46, Lemma 3.2], cf. Examples 2.5 and 2.6. The problem
(5.10) is thus covered by our analysis. From Theorem 5.5, we may now deduce that,
for every ū ∈ Uad which is Bouligand stationary for (O) in the sense of (5.1) and for
which the set R+(Uad − ū) is dense in L2(0, T ;L2(Ω)) ∼= L2((0, T ) × Ω), there exist
a unique adjoint state p̄ ∈ L2(0, T ;H1

0 (Ω))∩L∞(0, T ;L2(Ω)) and a unique multiplier
η̄ ∈ (L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)))∗ with

ȳ = S(ū),

ϕ̄ = ȳ′ −∆ȳ − ū,
−p̄′ −∆p̄ = ∂yJ (ȳ, ū)− η̄,

p̄+ ∂uJ (ȳ, ū) = 0,

p̄ ∈ T tanK,L2(ȳ) ∩ ϕ̄⊥, 〈η̄, z〉L2(0,T ;H1
0 (Ω))∩H1(0,T ;H−1(Ω)) ≥ 0 ∀z ∈ C(ȳ),

(5.11)

where the adjoint equation is again understood in the weak sense (5.6) and where

K :=
{
z ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω))
∣∣∣ z ∈ K a.e. in (0, T )

}
,

T radK (ȳ) := R+ (K − ȳ) ,

T tanK,L2(ȳ) := clL2(0,T ;H1
0 (Ω))

(
T radK (ȳ)

)
,

C(ȳ) :=
{
z ∈ clL2(0,T ;H1

0 (Ω))∩H1(0,T ;H−1(Ω))

(
T radK (ȳ) ∩ ϕ̄⊥

) ∣∣∣ z(0) = 0
}
.

(5.12)

To analyze the properties of the sets in (5.12) and the last line in (5.11), we note
that the solutions y = S(u) to (5.10) with u ∈ L2(0, T ;L2(Ω)) enjoy the additional
regularity y ∈ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1

0 (Ω)) by [5, Corollary 4.4]. This implies
that ϕ̄ = ȳ′ −∆ȳ − ū is an element of L2(0, T ;L2(Ω)). The EVI (5.10), the density
of the set of all non-negative L2(0, T ;H1

0 (Ω))-functions in the set of all non-negative
L2(0, T ;L2(Ω))-functions and L2(0, T ;L2(Ω)) ∼= L2((0, T )× Ω) now imply that

(ϕ̄, z)L2((0,T )×Ω) ≥ 0 ∀z ∈ L2((0, T )× Ω) with ȳ + z ≥ 0 Ld+1-a.e. in (0, T )× Ω.
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This yields

ϕ̄(t) = 0 Ld-a.e. in {ȳ(t) > 0} for a.a. t ∈ (0, T ),

ϕ̄(t) ≥ 0 Ld-a.e. in {ȳ(t) = 0} for a.a. t ∈ (0, T ).

From the de�nition of the sets in (5.12), it follows further that

T tanK,L2(ȳ) ⊂
{
z ∈ L2(0, T ;H1

0 (Ω))
∣∣∣ z(t) ∈ T tanK (ȳ(t)) for a.a. t ∈ (0, T )

}
,

where T tanK (v) := clH1
0

(R+(K − v)) denotes the H1
0 -tangent cone to K at v ∈ H1

0 (Ω),
and by invoking standard results from capacity theory, cf. [22, Lemma 3.11] and
[7, Theorem 6.57], we readily obtain that

T tanK (ȳ(t)) =
{
z ∈ H1

0 (Ω)
∣∣∣ z ≥ 0 H1

0 -q.e. in {ȳ(t) = 0}
}

for a.a. t ∈ (0, T ),

where �H1
0 -q.e.� is short for H1

0 (Ω)-quasi everywhere, i.e., equal up to a set of H1
0 (Ω)-

capacity zero, and where ȳ(t) denotes the H1
0 -quasi continuous representative of the

function ȳ(t) ∈ H1
0 (Ω), see [7, Section 6.4.3]. Since H1

0 -q.e. implies Ld-a.e., we may
combine all of the above to deduce that

T tanK,L2(ȳ) ∩ ϕ̄⊥

⊂
{
z ∈ L2(0, T ;H1

0 (Ω))
∣∣∣ z(t) ≥ 0 H1

0 -q.e. in {ȳ(t) = 0} for a.a. t ∈ (0, T ),

z(t) = 0 Ld-a.e. in {ϕ̄(t) > 0} for a.a. t ∈ (0, T )
}
.

This shows that the adjoint state p̄ in (5.11) is for almost all t quasi everywhere non-
negative on the contact set {ȳ(t) = 0} and for almost all t almost everywhere zero on
the strongly active set {ϕ̄(t) > 0} ⊂ {ȳ(t) = 0} (where the inclusion holds up to sets
of measure zero). To study the inequality in the last line of (5.11), we observe that

clW

(
R+
(
K̃ − ȳ

)
∩ ϕ̄⊥

)
⊂ C(ȳ),

where

K̃ := {z ∈ W | z ∈ K a.e. in (0, T )} ⊂ K

and where

W :=
{
z ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)) | z(0) = 0
}

is the Hilbert space with the product

(z1, z2)W :=

∫ T

0

∫
Ω

∇z1(t) · ∇z2(t) + z1(t)z2(t) + z′1(t)z′2(t)dLddt.

Note that [3, Theorem 5.8.2] and [46, Corollary 2.3] imply that the map z 7→ z+ is
well-de�ned and continuous from W to W and that

(z+, z−)W = 0 ∀z ∈ W.

The above yields that W is a vector lattice in the sense of [44, De�nition 4.6] when
endowed with the cone{

z ∈ W
∣∣ z(t) ≥ 0Ld-a.e. in Ω for a.a. t ∈ (0, T )

}
and a Dirichlet space in the sense of [32, Dé�nition 3.1] (with space X := (0, T ]×cl(Ω)
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and measure ξ := Ld+1). From [32, Lemme 3.2] and [44, Theorem 4.18], we may now
deduce that the set K̃ is polyhedric in W in the sense of [44, De�nition 3.1] and that

clW

(
R+
(
K̃ − ȳ

)
∩ ϕ̄⊥

)
= clW

(
R+
(
K̃ − ȳ

))
∩ ϕ̄⊥

=
{
z ∈ W

∣∣ z ≥ 0 W-q.e. in {ȳ = 0}
}
∩ ϕ̄⊥,

where �W-q.e.� is short for quasi everywhere w.r.t. the capacity of the Dirichlet space
W, and where the set {ȳ = 0} is de�ned w.r.t. the W-quasi continuous representative
of the state ȳ. Proceeding as for p̄, we now obtain that the multiplier

η̄ ∈ (L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)))∗ ⊂ W∗

satis�es

〈η̄, z〉W = 〈η̄, z〉L2(0,T ;H1
0 (Ω))∩H1(0,T ;H−1(Ω)) ≥ 0

for all z ∈ W with

z ≥ 0 W-q.e. in {ȳ = 0}, z = 0 Ld+1-a.e. in {ϕ̄ > 0}.

In summary, we have now proved that, for the problem (O) and the EVI (5.10), the
abstract optimality condition (5.11) gives rise to the stationarity system

ȳ = S(ū), ϕ̄ = ȳ′ −∆ȳ − ū,
p̄ = −∂uJ (ȳ, ū), η̄ = p̄′ + ∆p̄+ ∂yJ (ȳ, ū),

p̄(t) ≥ 0 H1
0 -q.e. in {ȳ(t) = 0} for a.a. t ∈ (0, T ),

p̄(t) = 0 Ld-a.e. in {ϕ̄(t) > 0} for a.a. t ∈ (0, T ),

ϕ̄(t) = 0 Ld-a.e. in {ȳ(t) > 0} for a.a. t ∈ (0, T ),

ϕ̄(t) ≥ 0 Ld-a.e. in {ȳ(t) = 0} for a.a. t ∈ (0, T ),

〈η̄, z〉W ≥ 0 ∀z ∈ W s.t. z ≥ 0 W-q.e. in {ȳ = 0}, z = 0 Ld+1-a.e. in {ϕ̄ > 0},
(5.13)

where the adjoint equation is still understood in the weak sense (5.6), and where ū,
ȳ, ϕ̄, p̄ and η̄ satisfy

ū ∈ L2(0, T ;L2(Ω)), ȳ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ C([0, T ];H1
0 (Ω)),

ϕ̄ ∈ L2(0, T ;L2(Ω)), p̄ ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), η̄ ∈ W∗.

Several things are noteworthy regarding the optimality condition (5.13):

Remark 5.7.

(i) The di�erent notions of quasi everywhere appearing in (5.13) are again a
consequence of the asymmetry in the regularity properties of δ and z in (4.2).
A similar e�ect cannot be observed in the time-independent case, cf., e.g., the
results in [22,33]. Note that (5.13) is still a necessary optimality condition
when �H1

0 -q.e.� is replaced with �Ld-a.e.�.
(ii) The stationarity system (5.13) immediately yields that ȳ, ϕ̄, p̄ and η̄ satisfy

the complementarity conditions

〈η̄, ȳ〉W = 0, ϕ̄(t)p̄(t) = 0 Ld-a.e. in Ω for a.a. t ∈ (0, T ).
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(iii) The line

p̄(t) ≥ 0 H1
0 -q.e. in {ȳ(t) = 0} for a.a. t ∈ (0, T ) (5.14)

in (5.13) does not appear in necessary optimality conditions that are obtained
by regularization, cf., e.g., the systems derived in [28, Theorem 6.2] and [5,
Theorem 5.2, Equations (5.61), (5.63)]. This makes sense since (5.14) yields
information about the behavior of p̄ on the bi-active set (i.e., the intersection
of the zero level sets of ȳ and ϕ̄) where regularization approaches are known
to be imprecise. Note that our results are in particular consistent with the
observations made in [31, Theorems 6.6, 6.8] and [11, Section 4] for optimal
control problems governed by non-smooth partial di�erential equations.

(iv) A stationarity system similar to (5.13) can be found in [34, Théorème 2].
However, a rigorous proof of the strong stationarity conditions in [34] has, at
least to the author's best knowledge, never been published (and the sketch of
proof in [34] seems to fail due to the inapplicability of subdi�erential calculus
rules). Further, the optimality system in [34] does not contain, e.g., the
L∞(0, T ;L2(Ω))-regularity of the adjoint state p̄ and the quasi everywhere
(in-)equalities in (5.13). Note that the analysis in Sections 3 and 4 provides
the di�erentiability results that are referred to as missing/unknown in [34,
Remarque 3] and [7, Section 7.5, Page 582].

6. Concluding Remarks and Open Questions. As we have seen in this
paper, the Hadamard directional di�erentiability of the solution operator S to an
obstacle-type evolution variational inequality of the form (P) can readily be estab-
lished in the spaces Lq(0, T ;H), 1 ≤ q <∞, by exploiting the monotonicity properties
of the di�erence quotients in Lemma 4.4. Moreover, the method of proof in Section 4
allows to completely circumvent the di�culties that arise due to the lacking Lipschitz
continuity properties of the solution map S in the spaces Hs(0, T ;H), s ≥ 1/2, and
the non-uniqueness of solutions to the problem (4.2) when an approach analogous
to [13,14,21,26,29,32] is used for the sensitivity analysis of an evolution variational
inequality. What is, at least to the author's best knowledge, presently unknown is
whether an argumentation similar to that in Section 4 can also be used for other
classes of EVIs. The same is true for the extension of the strong stationarity con-
ditions in Section 5 to optimal control problems with control constraints. Compare,
e.g., with the results for elliptic obstacle problems in [45] in this context.
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