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Abstract. We consider the numerical simulation of coupled volume-surface reaction-diffusion
systems having a detailed balance equilibrium. Based on the conservation of mass, an appro-
priate quadratic entropy functional is identified and an entropy-entropy dissipation inequality
is proven. This allows us to show exponential convergence of solutions to equilibrium by the
entropy method. We then investigate the discretisation of the system by finite element meth-
ods, including the domain approximation by polyhedral meshes, and an implicit time stepping
scheme. Mass conservation and exponential convergence to equilibrium are established also on
the discrete level by using arguments very similar to those on the continuous level. This allows
us to establish convergence estimates for the discretisation error uniformly in time. Numerical
tests are presented to illustrate the theoretical results. The analysis and numerical approxi-
mation are presented in detail for a simple model problem. Our arguments, however, can be
applied also in a more general context. This is demonstrated by investigation of a biological
volume-surface reaction-diffusion system modeling asymmetric stem cell division.

1. Introduction

Various physical phenomena in biology, material science, or chemical engineering are driven
by reaction-diffusion processes in different compartments and by transfer between them. This
may involve mass transfer between domains and interfaces or the boundary. In cell-biology,
for instance, many phenomena are based on reaction-diffusion processes of proteins within the
cell-body and on the cell cortex, see e.g. [19, 22]. Particular examples are systems modeling cell-
biological signalling processes, see e.g. [21], or models for asymmetric stem cell division, which
describe the localisation of so-called cell-fate determinants during mitosis, see e.g. [23, 25, 24].

As a simple model for a coupled volume-surface reaction-diffusion process, we consider the
system

Lt − dL∆L = 0, on Ω, (1a)

`t − d`∆Γ` = λL− γ`, on Γ. (1b)

dL∂νL = −λL+ γ`, on Γ, (1c)

Here Γ = ∂Ω is the surface, ∆Γ denotes the Laplace-Beltrami operator, and the parameters
dL, d`, λ, γ are positive constants. The equations are assumed to hold for all t > 0 and are
complemented by appropriate initial conditions. The system (1a)–(1c) describe the diffusion
of a substance with concentration L in the volume and concentration ` on the surrounding
surface Γ, coupled by mass transfer between the two compartments. This problem may serve
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as a starting point for considering more realistic adsorption/desorption processes but also as a
reduced model for volume-surface reaction-diffusion processes arising in cell biology.

Despite its simplicity, the model problem (1a)–(1c) already features some interesting proper-
ties, which will be of main interest for our further considerations:

(i) The system preserves non-negativity of solutions and describes a conservation law,
namely, the conservation of the total mass M =

∫
Ω Ldx+

∫
Γ `ds.

(ii) There exists a unique constant positive detailed balance equilibrium, which can be
explicitly parametrised by the total conserved mass and the parameters λ and γ.

iii) The solutions are uniformly bounded and converge exponentially fast towards the equi-
librium state with respect to any Lebesgue/Sobolev norm.

The first goal of our paper will be to establish these properties, in particular (iii), for the model
problem (1a)–(1c). The second aim is to investigate the discretisation of the system by finite ele-
ment methods. Our guideline is to preserve the key features of the model utilised for the analysis
on the continuous level also on the discrete level. In particular, we establish the conservation of
mass, the possibility for preserving non-negativity, the existence of a unique equilibrium, and
the exponential convergence to equilibrium on the discrete level. The discretisation process
involves domain approximations by polyhedral meshes, finite element approximation, and time
stepping. The numerical analysis is based on arguments for the discretisation of evolution prob-
lems [16], on general ideas for the analysis of domain approximations [7, 10], and recent results
results from [13], who considered a somewhat simpler elliptic volume-surface reaction-diffusion
problem. A careful use of the entropy estimates and the convergence to equilibrium will allow
us to establish order optimal convergence rates that are uniform in time.

The model problem (1a)–(1c) is simple enough to avoid complicated notation and therefore
allows us to present our basic ideas in the most convenient way to the reader. To illustrate the
application to more general problems, we consider also the following system in Section 7:

Lt − dL∆L = −βL+ αP, on Ω, (2a)

Pt − dP∆P = βL− αP, on Ω, (2b)

`t − d`∆Γ` = −dL∂nL+ χΓ2(−σ`+ κp), on Γ, (2c)

pt − dp∆Γ2 = σ`− κp− dP∂nP, on Γ2. (2d)

As before, Γ = ∂Ω denotes the boundary and Γ2 =⊂ Γ is a proper part of it. The mass transfer
between the domain and the surface is described by

dL∂nL = −λL+ γ`, on Γ, (2e)

dP∂nP = χΓ2(−ηP + ξp), on Γ, (2f)

dp∂nΓ2
p = 0, on ∂Γ2. (2g)

The diffusion and reaction parameters are positive constants, and the equations are assumed to
hold for t > 0 and to be complemented by appropriate initial conditions. This coupled volume-
surface reaction-diffusion system models four conformations of the key protein Lgl during the
mitosis of Drosophila SOP precursor stem-cells, see e.g. [23, 25, 8]. In particular, L and ` denote
the concentrations of native Lgl within the cell cytoplasm and on the cell cortex, respectively,
while P and p denote the corresponding phosphorylated Lgl conformations.

Let us point out that like the model problem (1a)–(1c), also the system (2a)–(2c) involves fully
reversible reaction and mass transfer processes; see Figure 1 for a schematic sketch. This allows
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Figure 1. The mass transfer dynamics for model (1) (left) and model (2) (right).

us to show that the key properties (i)–(iii) also hold for the system (2a)–(2c), i.e. solutions
remain non-negative and the total mass is conserved, there exists a unique positive detailed
balance equilibrium, and the solutions converge exponentially fast to the equilibrium state.
These assertions can be verified by application of the arguments used for the model problem
(1a)–(1c) to the more general system (2a)–(2g). As a consequence, also the discretization
method can be extended straight forward yielding approximations of optimal order and uniform
in time.

The remainder of the manuscript is organised as follows: Section 2 is devoted to the analysis
of problem (1a)–(1c) on the continuous level. We establish global existence and non-negativity
of solutions and show conservation of mass. The latter allows us to identify a unique constant
equilibrium state and to define a quadratic entropy functional which serves as a Lyapunov func-
tional. We establish entropy-dissipation and prove the essential entropy-entropy dissipation
estimate, from which we directly obtain exponential convergence to equilibrium and uniform
bounds for the solution and its derivatives. The relevant notations for the finite element dis-
cretization are introduced in Section 3, where we also recall some important results about
domain approximations. In Section 4, we formulate the semi-discretization of the model prob-
lem by a finite element method. We establish existence and uniqueness of a discrete solution
and establish the mass conservation. We then identify the discrete equilibrium and provide a
simple error estimate. Based on the discrete equilibrium, we can formulate a discrete entropy
functional and we establish entropy dissipation and the entropy-entropy dissipation inequality
on the discrete level. As a consequence we obtain global in time existence and uniform bounds
for the semi-discrete solution and exponential convergence to the discrete equilibrium. We then
present a complete convergence analysis and establish order optimal convergence orders of the
discretization error uniform in time. Section 5 is concerned with the time discretisation by
the implicit Euler method. All important properties derived for the semi-discretisation can be
preserved also on the fully discrete level and order optimal convergence is obtain with respect
to both, the mesh size and the time step and, in particular, uniform in time. The validity of the
theoretical results is illustrated by some numerical tests in Section 6. We then demonstrate the
applicability of our arguments to more general volume-surface reaction-diffusion problems in
Section 7, where we discuss in more detail the system (2a)–(2g) and show how our analysis and
numerical methods can be extended naturally. The presentation closes with a short summary
of our results and a discussion of open problems.
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2. Analysis of the model problem

We start by introducing the relevant notation and basic assumptions, and recall the statement
of our model problem. Next, we establish some basic properties, show existence and unique-
ness of solutions, identify the unique equilibrium state and prove exponential convergence to
equilibrium and uniform bounds.

2.1. Preliminaries. Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ ∈ C3. We
consider the coupled volume-surface reaction-diffusion system

Lt − dL∆L = 0, x ∈ Ω, t > 0, (3a)

`t − d`∆Γ` = λL− γ`, x ∈ Γ, t > 0, (3b)

subject to the boundary and initial conditions

dL∂nL = γ`− λL, x ∈ Γ, t > 0, (3c)

L(0) = L0, x ∈ Ω, `(0) = `0, x ∈ Γ. (3d)

The diffusion coefficients dL, d` and the reaction constants λ, γ are assumed to be positive. We
use standard notation for function spaces [12] and, for brevity, we denote by (·, ·)Ω and (·, ·)Γ

the inner products and by ‖ · ‖Ω and ‖ · ‖Γ the induced norms of L2(Ω) and L2(Γ), respectively.

2.2. Existence, uniqueness, and regularity. In this section we will discuss the existence
and uniqueness of weak solutions and their qualitative properties, which we shall need later on.

Definition 1 (Weak form). Let T ∈ (0,∞] be a given constant, the time horizon, and define

a(L, `; v, w) := dL(∇L,∇v)Ω + d`(∇Γ`,∇Γw)Γ + (λL− γ`, v − w)Γ, (4)

as well as c(L, `; v, w) = (L, v)Ω + (`, w)Γ. A pair of functions

(L, `) ∈ C([0, T ];L2(Ω)× L2(Γ)) ∩ L2(0, T ;H1(Ω)×H1(Γ))

is called weak solution of (3a)–(3d), if L(0) = L0, `(0) = `0, and the identity

d
dtc(L(t), `(t); v, w) + a(L(t), `(t); v, w) = 0, (5)

holds for all v ∈ H1(Ω) and w ∈ H1(Γ), and for a.e. t > 0.

The weak form is derived in the usual way by multiplying with appropriate test functions,
integration-by-parts, and utilization of the boundary condition. Problem (5) fits within the
framework of parabolic evolution equations as discussed, for instance, in [12, 17], and can be
analysed with standard arguments. The main ingredient is the following

Lemma 2 (G̊arding inequality). There exists a constant η > 0 depending only on the parameters
dJ , d`, γ, λ, and on the domain Ω, such that

a(v, w; v, w) ≥ ‖v‖2H1(Ω + ‖w‖2H1(Γ) − η(‖v‖2Ω + ‖w‖2Γ)

for all functions v ∈ H1(Ω) and w ∈ H1(Γ).

Proof. The result follows from the definition of a and the Cauchy-Schwarz inequality. �

Let us emphasize that the bilinear form a is not elliptic, which can easily be seen by choosing
v and w as appropriate constants.



FINITE ELEMENT METHOD FOR VOLUME-SURFACE SYSTEMS 5

Theorem 3 (Existence of weak solutions). For any initial data L0 ∈ L2(Ω) and `0 ∈ L2(Γ),
the problem (3a)-(3d) has a unique weak solution (L, `), and

sup
t∈(0,T )

(‖L(t)‖Ω + ‖`(t)‖Γ) +

∫ T

0
(‖L(t)‖2H1(Ω) + ‖`(t)‖2H1(Γ)) dt ≤ C(T )(‖L0‖Ω + ‖`0‖Γ).

If the initial data are non-negative, then the solution remains non-negative for all time.

Proof. Existence and uniqueness of a global weak solution follow by standard results, see e.g.,
[17, Chapter XVIII], and positivity can be established by an iteration argument, see e.g. [8]. �

From the abstract results, we obtain a constant C(T ) in the a-priori bound which increases
with T . We will later show by entropy arguments, that the bounds are actually uniform in T .
A basic ingredient for our analysis will be the fact, that the total mass is conserved during the
evolution of our system.

Lemma 4 (Mass conservation). Let (L, `) denote a weak solution of (3a)–(3d), and denote by

M(t) = (L(t), 1)Ω + (`(t), 1)Γ

the total mass at time t. Then,

M(t) = M(0) =: M0 for all t > 0.

Proof. Testing the weak form (5) with v ≡ 1 and w ≡ 1, we get

d
dtM(t) = d

dt(L(t), 1)Ω + d
dt(`(t), 1)Γ = d

dtc(L(t), `(t); 1, 1) = −a(L(t), `(t); 1, 1) = 0,

and the result follows by integration with respect to time. �

2.3. Equilibrium system. A reaction-diffusion system like (3a)–(3c) can be assumed to tend
to a unique positive equilibrium on the long run. For the problem under consideration, the
equilibrium concentrations L∞, `∞ have to satisfy

−dL∆L∞ = 0, in Ω, (6a)

dL∂nL∞ = γ`∞ − λL∞, on Γ, (6b)

−d`∆Γ`∞ = λL∞ − γ`∞, on Γ. (6c)

Because of the mass conservation law, one additionally knows that

(L∞, 1)Ω + (`∞, 1)Γ = M0, (6d)

where M0 =
∫

Ω L0 +
∫

Γ `0 is the total initial mass of the system. As we will see in a moment,
this extra condition is also required to ensure the uniqueness of the equilibrium state.

Definition 5. A pair of functions L∞ ∈ H1(Ω) and `∞ ∈ H1(Γ) is called weak solution of the
equilibrium system (6a)–(6d), if

a(L∞, `∞; v, w) = 0, (7)

for all v ∈ H1(Ω) and w ∈ H1(Γ), and the mass constraint (6d) holds.

For showing well-posedness of the equilibrium problem, we will utilize the following Poincaré-
type inequality, which will also play a crucial role in our subsequent analysis.
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Lemma 6 (Poincaré-type inequality). There exists a constant CP > 0 depending only on the
parameters dL, d`, λ, γ, and on the domain Ω, such that

λ‖L‖2H1(Ω) + γ‖`‖2H1(Γ) ≤ CP
(
λdL‖∇L‖2Ω + γd`‖∇Γ`‖2Γ + ‖λL− γ`‖2Γ

)
(8)

for all L ∈ H1(Ω) and ` ∈ H1(Γ) satisfying the mass constraint (L, 1)Ω + (`, 1)Γ = 0.

Proof. The right hand side is zero if and only if L and ` are constants, and L = γ/λ`. Since
γ, λ > 0, the mass constraint then yields L = ` = 0. Therefore, the term in parenthesis on
the right hand side of (8) defines a norm on H1(Ω) × H1(Γ). The assertion then is a direct
consequence of the lemma of equivalent norms; see e.g. [18, Ch. 11]. �

The choice of the norm on the right hand side of the Poincaré’s inequality becomes clear from

Lemma 7 (Inf-sup stability). For any v ∈ H1(Ω) and w ∈ H1(Γ) with (v, 1)Ω + (w, 1)Γ = 0

a(v, w;λv, γw) = λdL‖∇v‖2Ω + γd`‖∇Γw‖Γ + ‖λv − γw‖2Γ, (9)

Together with the Poincaré-type inequality, this stability condition already suffices to show
the well-posedness of the weak form of the equilibrium problem. Since the right hand side in
the weak formulation (7) is zero, the solution can however even be obtained explicitly here.

Lemma 8 (Equilibrium). The system (6a)–(6d) has a unique weak solution (L∞, `∞) given by

L∞ =
γM0

γ|Ω|+ λ|Γ|
and `∞ =

λ

γ
L∞. (10)

Proof. One easily verifies that (L∞, `∞) given by the formulas above is a solution satisfying the
mass constraint. Now assume that L∗, `∗ is any other weak solution to (6a)–(6d). Then, the
difference (L∞ − L∗, `∞ − `∗) has zero mass, and

a(L∞ − L∗, `∞ − `∗; v, w) = 0 (11)

for all v ∈ H1(Ω) and w ∈ H1(Γ). By choosing v = λ(L∞ − L∗) and w = γ(`∞ − `∗), we get

λdL‖∇(L∞ − L∗)‖2Ω + γd`‖∇Γ(`∞ − `∗)‖2Γ + ‖λ(L∞ − L∗)− γ(`∞ − `∗)‖2Γ = 0, (12)

and Lemma 6 immediately implies that L∞ = L∗ and `∞ = `∗. �

2.4. Convergence to equilibrium. We will now show that the solution (L(t), `(t)) converges
to the equilibrium (L∞, `∞) by using the entropy method. For a given constant equilibrium
state (L∞, `∞), we define the quadratic relative entropy functional

E(L, `) =
1

2

(
λ‖L− L∞‖2Ω + γ‖`− `∞‖2Γ

)
, (13)

which is just a scaled L2-distance to the equilibrium on the product space L2(Ω)× L2(Γ).

Lemma 9 (Entropy dissipation). Let (L, `) denote a weak solution of (3a)–(3d) with corre-
sponding constant equilibrium (L∞, `∞). Then

d
dtE(L(t), `(t)) = −dLλ‖∇(L(t)− L∞)‖2Ω − d`γ‖∇Γ(`(t)− `∞)‖2Γ (14)

− ‖λ(L(t)− L∞)− γ(`(t)− `∞)‖2Γ =: −D(L(t), `(t))

for all t > 0. The functional D is called the entropy dissipation.
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Proof. By definition of E and elementary manipulations, we obtain

d
dtE(L(t), `(t)) = λ(Lt(t), L(t)− L∞)Ω + γ(`t(t), `(t)− `∞)Γ

= −a(L(t)− L∞, `(t)− `∞;λ(L(t)− L∞), γ(`(t)− `∞))

= −dLλ‖∇(L− L∞)‖2Ω − d`γ‖∇Γ(`− `∞)‖2Γ − ‖λ(L− L∞)− γ(`− `∞)‖2Γ,

which already yields the result. �

From the Poincaré-type inequality established in Lemma 6, we directly deduce

Lemma 10 (Entropy-entropy dissipation inequality). For functions L ∈ H1(Ω) and ` ∈ H1(Γ)
satisfying (L, 1)Ω + (`, 1)Γ = M0, there holds

D(L, `) ≥ c0E(L, `) with c0 = 2/CP . (15)

A combination of the previous results now yields

Theorem 11 (Exponential convergence to equilibrium). Let (L, `) denote the weak solution of
the system (3a)–(3c) and (L∞, `∞) be the corresponding equilibrium. Then,

‖L(t)− L∞‖2Ω + ‖`(t)− `∞‖2Γ ≤ Ce−c0t
(
‖L0 − L∞‖2Ω + ‖`0 − `∞‖2Γ

)
for all t > 0 with constants c0, C > 0 depending only dL, d`, λ, γ, and on the domain Ω.

Proof. As a direct consequence of Lemma 9 and 10, we get

d
dtE(L(t), `(t)) ≤ −c0E(L(t), `(t)) for all t > 0.

Therefore, the classic Gronwall inequality gives

E(L(t), `(t)) ≤ e−c0tE(L0, `0).

The desired result then follows from the fact that λ, γ are positive constants and therefore
E(L, `) is equivalent to the square of the L2-norm distance to equilibrium. �

The dependence of the constant c0 on the parameters λ, γ, dL, and d` and on certain geometric
constants for the domain can be made more explicit; see [11, 26] for details also on non-linear
problems. For linear problems, c0 could alternatively be determined by computing a view
eigenvalues of a generalized eigenvalue problem.

Remark 12. As a direct consequence of Theorem 11 we obtain uniform bounds for the solu-
tion in L∞(0,∞;L2(Ω) × L2(Γ)). Since the problem (3a)–(3c) is linear and all coefficients are
independent of time, one can obtain in the usual way also uniform bounds for (L, `) and time

derivatives (∂jtL, ∂t`) in Lp(0,∞;Hk(Ω)×Hk(Γ)), provided that the usual compatibility condi-
tions hold; for details, see e.g., [12]. Since the growth of these regularity estimates is polynomial
in time, an interpolation argument with the exponential convergence to equilibrium yields that
all Sobolev norms decay in fact exponentially in time, see e.g. [11].
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3. Basic notation and domain approximations

In this section, we introduce some basic notation needed for the formulation of the finite
element approximation of our problem. In addition, we recall some basic results about domain
approximation by polyhedral meshes from [10, 13]. For ease of presentation, we restrict our
presentation to a two dimensional setting. All arguments however easily generalise to dimension
three.

Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ ∈ C3. We approximate Ω by a
polygonal domain Ωh for which a conforming triangulation T h = {T} is available. As usual, we
denote by ρT and hT the incircle radius and the diameter of the triangle T , respectively, and we
call h = maxT hT the meshsize. We further denote by Eh = {e} the partition of Γ into edges e
inherited from the triangulation T h. Throughout, we make use of the following assumptions.

(A1) T h is γ-shape-regular, i.e., there exists a constant γ > 0 such that

ρT ≤ hT ≤ γρT , for all T ∈ Th.

(A2) There exists a diffeomorphism Gh : Ωh → Ω such that the estimates

‖Gh − id‖L∞(T ) ≤ βhT , ‖DGh − I‖L∞(T ) ≤ βhT ,
‖DG−1

h ‖L∞(Gh(T )) ≤ β, ‖D2Gh‖L∞(T ) ≤ β, ‖D2G−1
h ‖L∞(Gh(T )) ≤ β,

hold for all T ∈ Th with a constant β independent of the meshsize h. Morover, Gh(T ) = T for
all elements T with G(T ) ∩ ∂Ω = ∅.

An explicit construction of an appropriate domain mapping Gh can be found, for instance,
in [13, Section 4.2]; for further details, see also [3, 7]. In order to be able to compare functions
defined on Ω and Ωh or the corresponding boundaries, we associate to any function u : Ω→ R
defined on the physical domain Ω a function

ũ := u ◦Gh (16)

defined on the discrete approximate domain Ωh, which we call restriction of u to Ωh. Using the
properties of the mapping Gh, one easily obtains

c‖ũ‖Hk(T ) ≤ ‖u‖Hk(Gh(T )) ≤ c−1‖ũ‖Hk(T ), (17)

for all u ∈ Hk(Gh(T )) and k ≤ 2 with a positive constant c that only depends on β. By
restriction of Gh to the boundary of Ωh, we may define

gh : Γh → Γ, gh = Gh|Γh
. (18)

which is piecewise smooth and invertible with g−1
h = G−1

h |Γ. As a consequence of the properties

of Gh, we obtain corresponding bounds for the derivatives of gh and g−1
h . In accordance with the

above notation, we define for any function p : Γ→ R defined on the boundary Γ the restriction
p̃ to the boundary Γh of the discrete domain Ωh by

p̃ := p ◦ gh. (19)

By the chain rule and applications of the previous estimates, we then readily obtain

c‖p̃‖Hk(e) ≤ ‖p‖Hk(gh(e)) ≤ c−1‖p̃‖Hk(e) (20)

for all functions p ∈ Hk(e) with e ∈ Eh and integers k ≤ 2.
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4. Semi-discretisation in space

In this section, we investigate the semi-discretization of problem (3a)–(3c) in space by a finite
element method. To this end, let

V h = {vh ∈ C(Ωh) : vh|T ∈ P1(T ) for all T ∈ T h}
be the space of piecewise linear continuous polynomials over Ωh, and denote by

W h = {wh : Γh → R : wh = vh|Γh
for some vh ∈ V h}

the space of piecewise linear polynomials over the surface Γh. Note that, by construction, W h

is the space of traces of functions in V h, which we will use later on.

4.1. Finite element discretisation of the evolution problem. As approximation of the
volume-surface reaction-diffusion system (3a)–(3c), we then consider the following problem.

Problem 1 (Semi-discrete evolution problem). Let us define

ah(L, `; v, w) = dL(∇L,∇v)Ωh
+ d`(∇Γh

`,∇Γh
w)Γh

+ (λL− γ`, v − w)Γh
. (21)

and ch(L, `; v, w) = (L, v)Ωh
+ (`, w)Γh

. Find (Lh, `h) ∈ H1(0, T ;V h ×W h) such that

(Lh(0), vh)Ωh
= (L̃0, v

h)Ωh
and (`h(0), wh)Γh

= (˜̀0, wh)Γh
,

for all vh ∈ V h, wh ∈W h, and such that

d
dtch(Lh(t), `h(t), vh, wh) + ah(Lh, `h; vh, wh) = 0 (22)

holds for all vh ∈ V h and wh ∈W h, and for all 0 < t ≤ T .

This semi-discrete problem has exactly the same structure as the weak form (5) of the con-
tinuous problem, which allows us to utilize similar arguments as in Section 2 for its analysis.
By choice of a basis for the finite dimensional spaces V h and W h, Problem 1 can be recast as
a linear system of ordinary differential equations. Existence and uniqueness of a solution then
follow immediately from the Picard-Lindelöf theorem.

Lemma 13. For any L0 ∈ L2(Ω) and `0 ∈ L2(Γ), Problem 1 has a unique solution.

As a next step, let us demonstrate that the total mass is conserved also on the discrete level.
By using vh ≡ 1 and wh ≡ 1 as test functions in (22), we readily obtain

Lemma 14 (Mass conservation). Let Lh, `h denote the solution of Problem 1. Then

(Lh(t), 1)Ωh
+ (`h(t), 1)Γh

= (L̃0, 1)Ωh
+ (˜̀0, 1)Γh

=: Mh
0 ,

for all t > 0, i.e., the total mass is conserved for all times also on the discrete level.

4.2. The discretisation of the equilibrium problem. For the approximation of the equi-
librium system (6a)–(6d), we consider the following discrete variational problem.

Problem 2 (Discrete equilibrium problem). Find Lh∞ ∈ V h and `h∞ ∈ W h satisfying the
conservation law constraint (Lh∞, 1)Ωh

+ (`h∞, 1)Γh
= Mh

0 such that for all (vh, wh) ∈ V h ×W h

there holds

ah(Lh∞, `
h
∞; vh, wh) = 0. (23)



10 H. EGGER, K. FELLNER, J.-F. PIETSCHMANN, B.Q. TANG

In order to ensure the well-posedness of this problem, it suffices to show uniqueness, which
readily follows from the following two results.

Lemma 15 (Discrete inf-sup stability). For any v ∈ H1(Ωh) and w ∈ H1(Γh) satisfying the
constraint (v, 1)Ωh

+ (w, 1)Γh
= 0, there holds

ah(v, w;λv, γw) = λdL‖∇v‖2Ωh
+ γd`‖∇Γh

w‖2Γh
+ ‖λv − γw‖2Γh

. (24)

Note that stability holds for all functions in H1(Ωh)×H1(Γh) defined on the discrete domain.
The right hand side of (24) defines a norm on the subspace of functions with zero total mass,
which follows by a Poincaré-type inequality. It will be important later on, that the equivalence
constant can be chosen to be independent of the meshsize h.

Lemma 16. For any v ∈ H1(Ωh) and w ∈ H1(Γh) with (v, 1)Ωh
+ (w, 1)Γh

= 0 there holds

λdL‖∇L‖2Ωh
+ γd`‖∇Γ`‖2Γh

+ ‖λL− γ`‖2Γh
≥ CP (‖L‖2H1(Ωh) + ‖`‖2H1(Γh)) (25)

with a constant CP that only depends on the parameters dL, d`, λ, and γ, on the domain Ω,
and the constants in the estimates of Gh, but is otherwise independent of the meshsize h.

Proof. The proof follows from the Poincaré-type inequality stated in Lemma 6 by using the
mapping Gh and the stability estimates (17) and (20). �

Since the constant can be chosen independently of the meshsize, we deliberately use the same
symbol CP as on the continuous level here. By similar arguments as in Lemma 8, we then get

Proposition 17. Problem 2 has a unique solution given by

Lh∞ =
γMh

0

γ|Ωh|+ λ|Γh|
and `h∞ =

λ

γ
Lh∞. (26)

Since the equilibrium solutions on the continuous and the discrete level are constants, we can
give a very precise estimate for the discretization error.

Proposition 18. Let (L∞, `∞) and (Lh∞, `
h
∞) be the solutions of (7) and (23), respectively, and

define L̃ = L ◦Gh and ˜̀= ` ◦ gh. Then

|L̃∞ − Lh∞|+ |˜̀∞ − `h∞| ≤ Ch2.

with a constant C independent of the meshsize.

Proof. Using the explicit forms of L∞ and Lh∞ in (10) and (26) we can write

|RhL∞ − Lh∞| =
∣∣∣∣ γM0

λ|Ω|+ γ|Γ|
− γMh

0

λ|Ωh|+ γ|Γh|

∣∣∣∣
≤ c

(
λ|Ω||M0 −Mh

0 |+ γM0

∣∣∣∣∫
Ω
dx−

∫
Ωh

dx

∣∣∣∣)
The result for the volume term then follows from the properties of Gh, and that for the boundary
component follows in a similar way. �
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4.3. Convergence to discrete equilibrium. Following our analysis on the continuous level,
we define the discrete entropy functional

Eh(Lh, `h) =
1

2

(
λ‖Lh − Lh∞‖2Ωh

+ γ‖`h − `h∞‖2Γh

)
. (27)

With the same arguments as in the proof as on the continuous level, we then obtain

Lemma 19 (Discrete entropy dissipation). Let (Lh, `h) denote the solution of discrete evolution
Problem 1 and (Lh∞, `

h
∞) be the corresponding discrete equilibrium. Then,

d
dtE

h(Lh(t), `h(t)) = −dLλ‖∇(Lh(t)− Lh∞)‖2Ωh
− d`γ‖∇Γ(`h(t)− `h∞)‖2Γh

(28)

− ‖λ(Lh(t)− Lh∞)− γ(`h(t)− `h∞)‖2Γh
=: −Dh(Lh(t), `h(t)).

As a consequence of the discrete Poincaré-type inequality, we further get

Lemma 20 (Entropy-entropy dissipation inequality). For any v ∈ H1(Ωh) and w ∈ H1(Γh)
with (v, 1)Ωh

+ (w, 1)Γh
= (Lh∞, 1)Ωh

+ (`h∞, 1)Γh
there holds

Dh(v, w) ≥ c0E
h(v, w) with c0 = 2/CP . (29)

Note that c0 can be chosen independent of h. Using the previous estimates, a Gronwall
inequality, and the fact that the entropy is just a scaled L2-norm distance, we finally obtain

Theorem 21 (Convergence to discrete equilibrium). Let (Lh, `h) denote the solution to Prob-
lem 1 and (Lh∞, `

h
∞) be defined as in Proposition 17. Then

‖Lh(t)− Lh∞‖2Ωh
+ ‖`h(t)− `h∞‖2Γh

≤ Ce−c0t
(
‖L̃0 − Lh∞‖2Ωh

+ ‖˜̀0 − `h∞‖2Γh

)
, (30)

where C > 0 and c0 > 0 are independent of t and h.

Let us emphasize that up to perturbations that vanish with h → 0, the constants C and c0

are the same as on the continuous level. One can thus expect that the decay to equilibrium
occurs at the same rate as on the continuous level. This is also what we observe in our numerical
tests; see Section 6 for details.

4.4. Geometric errors. In order to be able to compare the continuous and discrete solutions,
which are defined on different domains, we utilize the geometric transformations Gh : Ωh → Ω
and gh : Γh → Γ and the restrictions

L̃ = L ◦Gh and ˜̀= ` ◦ gh,
as defined in Section 3. We then proceed with similar arguments as used in [7, 13], however, we
work most of the time on the discrete domain Ωh here, instead of Ω. We therefore define the
restriction of the bilinear form a to the discrete domain Ωh by

ãh(L̃, ˜̀; ṽ, w̃) := a(L, `; v, w) for all (L, `), (v, w) ∈ H1(Ω)×H1(Γ). (31)

Using the transformation formulas for integrals and derivatives, we can express ãh directly by

ãh(L̃, ˜̀; ṽ, w̃) = dL(A∇L̃,∇ṽ)Ωh
+ d`(B∇Γh

˜̀,∇Γh
w̃)Γh

+ (C(λL̃− γ ˜̀), ṽ − w̃)Γh

with

A = (DG>hDGh)−1 det(DGh), B = (Dg>hDgh)−1 det(Dgh), and C = det(Dgh).
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The bilinear form ah used to define the finite element approximations can therefore be considered
to be a non-conforming approximation of the true form ãh. Similarly, we define

c̃h(L̃, ˜̀; ṽ, w̃) :=

∫
Ωh

L̃v det(DGh)dx+

∫
Γh

˜̀
hw det(Dgh)dS = c(L, `; v, w).

The weak form (5) of Problem (3a)–(3c) can now be written equivalently as

d
dt c̃h(L̃(t), ˜̀(t); v, w) + ãh(L̃(t), ˜̀(t); v, w) = 0 (32)

for all (v, w) ∈ H1(Ωh)×H1(Γh), whereas the discrete variational problem has the form

d
dtch(Lh(t), `h(t); vh, wh) + ah(Lh(t), `h(t); vh, wh) = 0 (33)

for all (vh, wh) ∈ V h×W h. The finite element problem, therefore, can be interpreted as a non-
conforming approximation of the continuous problem over the discrete domain. The difference
between the bilinear forms ah and ãh as well as c̃h and ch are however only due to ”geometric
errors”, which can be quantified as follows.

Lemma 22. For all (L, `), (v, w) ∈ H1(Ωh)×H1(Γh) there holds

|ah(L, `; v, w)− ã(L, `; v, w)| ≤ Ch‖(L, `)‖H1(Ωh)×H1(Γh)‖(v, w)‖H1(Ωh)×H1(Γh). (34)

with constant C independent of h. If (L, `) ∈ H2(Ω)×H2(Γ), then one even has

|ah(L̃, ˜̀; v, w)− ã(L̃, ˜̀; v, w)| ≤ Ch2‖(L, `)‖H2(Ω)×H2(Γ)‖(v, w)‖H1(Ωh)×H1(Γh). (35)

The same estimates hold for the difference in ch and c̃h with the regularity on the right hand
side of the estimates reduced by one order.

Proof. The estimates follow from [13, Lemma 6.2] with minor modifications in the proofs. �

4.5. Error estimate. The derivation of the error estimate now follows with standard argu-
ments, see [16], but taking into account the additional geometric errors. An important step in
our analysis will be the definition of an appropriate Ritz projection. For given functions (L, `)
in H1(Ω)×H2(Γ), we define Rh(L, `) ∈ V h ×W h by

ah(Rh(L̃, ˜̀); vh, wh) + ηch(Rh(L̃, ˜̀); vh, wh) = ãh(L̃, ˜̀; vh, wh) + ηch(L̃, ˜̀; vh, wh)

for all (vh, wh) ∈ V h×W h. The following result states the basic properties of this construction.

Lemma 23 (Ritz projection). Let η > 0 be large enough. Then Rh : H1(Ωh) × H1(Γh) →
V h ×W h is a well-defined bounded linear operator and the following error estimates hold:

‖(L̃, ˜̀)−Rh(L̃, ˜̀)‖H1(Ωh)×H1(Γh) ≤ Ch‖(L, `)‖H2(Ω)×H2(Γ)

and

‖(L̃, ˜̀)−Rh(L̃, ˜̀)‖L2(Ωh)×L2(Γh) ≤ Ch2‖(L, `)‖H2(Ω)×H2(Γ),

for all L ∈ H2(Ω) and ` ∈ H2(Γ) with a constant C that is independent of the meshsize h.

Moreover, ch(Rh(L̃, ˜̀); 1, 1) = ch(L̃, ˜̀; 1, 1), i.e., Rh is mass preserving.

Proof. Note that for η large enough, the bilinear forms on both sides are elliptic. The Ritz
projection therefore is the finite element approximation of an elliptic volume-surface reaction-
diffusion problem. The error estimates then follow from the results in [13], and mass conservation
follows directly from the definition of the bilinear forms. �
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We are now in the position to prove our first main error estimate.

Theorem 24. Let (A1) and (A2) hold. Moreover, assume that the solution (L, `) to (3a)–(3d)
is sufficiently smooth. Then for all t > 0 we have the estimate

‖L̃(t)− Lh(t)‖Ωh
+ ‖˜̀(t)− `h(t)‖Γh

≤ Ch2,

with a constant C that is independent of t and h.

Proof. To improve the presentation of the proof, we will use the short-hand notation U = (L, `),

Ũ = (L̃, ˜̀), Uh = (Lh, `h), and Φ = (v, w). We further denote by Hh = L2(Ωh) × L2(Γh) the
tensor product space with inner product (·, ·)Hh and norm ‖ · ‖Hh . To prove the error estimate,
we decompose the error in the usual manner into

Uh(t)− Ũ(t) = [Ũ(t)−RhŨ(t)] + [Uh(t)−RhŨ(t)] =: ρ(t) + θh(t).

Using Lemma 23, we already have the desired estimate for the first component

‖ρ(t)‖L2(Ωh)×L2(Γh) ≤ Ch2‖Ũ(t)‖H2(Ωh)×H2(Γh).

To estimate the second term θh(t), observe that

ch(θht ;Φh) + ah(θh; Φh)

= ch(Uht ; Φh)− ch(RhŨt; Φh) + ah(Uh; Φh)− ah(RhŨ ; Φh)

= −ch(RhŨt,Φ
h)− ãh(Ũ ; Φh) + ηch(RhŨ − Ũ ,Φh)

= ch(Ũt −RhŨt; Φh) +
[
ch(Ũt,Φ

h)− c̃h(Ũt,Φ)
]

+ ηch(RhŨ − Ũ ; Φh)

≤ ‖ρt‖Hh‖Φh‖Hh +
∣∣∣c̃h(Ũt,Φ

h)− (Ũt,Φ
h)
∣∣∣+ η‖ρ‖Hh‖Φh‖Hh .

By using Lemma 22, the properties of the mapping Gh, the estimate of the Ritz projection in
Lemma 23 and the Cauchy-Schwarz inequality, it follows that

ch(θht ,Φ
h) + ah(θ; Φh)

≤ Ch2
(
‖Ut‖H2(Ω)×H2(Γ)‖Φ‖L2(Ωh)×L2(Γh) + ‖U‖H2(Ω)×H2(Γ)‖Φ‖H1(Ωh)×H1(Γh)

)
.

Now recall that θh(t) = (Lh(t)− L̃R(t), `h(t)− ˜̀R(t)), where (L̃R, ˜̀R) := RhŨ . We then choose

the test function as Φh = (λ(Lh(t)− L̃R(t)), γ(`h(t)− ˜̀R(t))), and we use the definition of the
discrete entropy functional and the entropy dissipation in (27) and (28), to get

d
dtE

h(θh) +Dh(θh) = ch(θht ,Φ
h) + ah(θh; Φh)

≤ Ch2
(
‖Ut‖H2(Ω)×H2(Γ)‖θh‖L2(Ωh)×L2(Γh) + ‖U‖H2(Ω)×H2(Γ)‖θh‖H1(Ωh)×H1(Γh)

)
.

Since the total mass of θh(t) = Uh(t)−RhŨ(t) is zero, we obtain from Lemma 16

Dh(θh) ≥ c‖θh‖2H1(Ωh)×H1(Γh) ≥ c
′Eh(θ),

which allows us to absorb the terms containing θh via Young’s inequality by the entropy dissi-
pation, which finally leads to

d
dtE

h(θ) + c1E
h(θ) ≤ C ′h4

(
‖Ut‖2H2(Ω)×H2(Γ) + ‖U‖2H2(Ω)×H2(Γ)

)
The claim now follows by application of Gronwall’s inequality and noting that the initial con-
ditions are approximated with order h2. �
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5. Time discretisation

5.1. Implicit backward Euler scheme. For the time discretization of the semi-discrete prob-
lem, we consider the backward Euler method with a uniform time step. To be more precise,
for a fixed time step τ > 0, we denote by tn = nτ for n = 0, 1, 2, . . . , the time nodes. Given a
sequence {un : n ≥ 0}, we set as usual

∂̄un :=
un − un−1

τ
(36)

The fully discrete approximation for the system (3a)–(3d) then reads

Problem 3 (Time Discretisation). Define (Lh0 , `
h
0) ∈ V h ×W h by

(Lh0 , v
h)Ωh

= (L̃0, v
h)Ωh

and (`h0 , w
h)Γh

= (˜̀0, wh)Γh
(37)

for all (vh, wh) ∈ V h ×W h and for n = 1, 2, . . ., find (Lhn, `
h
n) ∈ V h ×W h such that

ch(∂̄Lhn, ∂̄`
h; vh, wh) + ah(Lhn, `

h
n; vh, wh) = 0 (38)

holds for all test functions (vh, wh) ∈ V h ×W h.

Note that the problem (38) can be written equivalently as

1
τ ch(Lhn, `

h
n; vh, wh) + ah(Lhn, `

h
n; vh, wh) = 1

τ ch(Lhn−1, `
h
n−1; vh, wh). (39)

As a consequence of the discrete inf-sup stability condition (24), the problems for the individual
time-steps are uniquely solvable, and we obtain

Lemma 25. For any time step τ > 0, Problem 3 admits a unique solution (Lhn, `
h
n)n≥0.

Further, by testing with vh ≡ 1 and wh ≡ 1, we directly obtain

Proposition 26 (Mass conservation). Let Mh
0 := (L̃0, 1)Ω + (˜̀0, 1)Γh

. Then,

(Lhn, 1)Ωh
+ (`hn, 1)Γh

= Mh
0 for all n ≥ 1, (40)

i.e., the total mass is conserved for all time steps.

5.2. Convergence to discrete equilibrium. To study the large time behavior, we again
employ the discrete entropy of Section 4, which was defined as

Eh(L, `) =
1

2

(
λ‖L− Lh∞‖2Ωh

+ γ‖`− `h∞‖2Γh

)
. (41)

As a replacement for the entropy dissipation stated in Lemma 19, we now have

Lemma 27 (Entropy dissipation). For all n ≥ 1, there holds

∂̄Eh(Lhn, `
h
n) ≤ −λdL‖∇(Lhn − Lh∞)‖2Ωh

− γd`‖∇Γ(`hn − `h∞)‖2Γh
(42)

− ‖λ(Lhn − Lh∞)− γ(`hn − `h∞)‖2Γ = −Dh(Lhn, `
h
n).

Proof. As one can see by direct computation, we have

∂̄Eh(Lhn, `
h
n) ≤ (∂̄Lhn, λ(Lhn − Lh∞))Ωh

+ (∂̄`hn, γ(`hn − `h∞))Γh
. (43)

The rest follows along the lines of the proof of Lemma 19. �
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The convergence to equilibrium can now be established in a similar manner as on the
semi-discrete level by using the previous lemma, the entropy-entropy dissipation inequality
of Lemma 20, and a discrete Gronwall inequality. Summarizing, we obtain

Theorem 28 (Convergence to discrete equilibrium). For any τ > 0 and n ≥ 0, there holds

‖Lhn − Lh∞‖2Ωh
+ ‖`hn − `h∞‖2Γh

≤ Ce−c0τn(‖Lh0 − Lh∞‖2Ωh
+ ‖`h0 − `h∞‖2Γh

) (44)

with the same constants C and c0 as in Theorem 21 independent of h and n.

5.3. Error estimates. For the derivation of error estimates for the full discretization, we again
use standard arguments and appropriately take into account the geometric errors.

Theorem 29 (Convergence rate for time discretisation). Let (A1) and (A2) hold and assume
that the solution (L, `) of (3a)–(3d) is sufficiently smooth. Then, for all n ≥ 0 we have

‖Lhn − L̃(tn)‖Ωh
+ ‖`hn − ˜̀(tn)‖Γh

≤ C(h2 + τ)

with a constant C that is independent of n, τ , and h.

Proof. To simplify the presentation, we again introduce the following short-hand notations

Uhn = (Lhn, `
h
n), Ũ = (L̃, ˜̀), and Φ = (v, w). As before, we write RhŨ = (L̃R, ˜̀R) for the Ritz

projection, and denote by Hh = L2(Ωh)× L2(Γh) the tensor product space with inner product
(·, ·)Hh and norm ‖ · ‖Hh . We then decompose the error into

Uhn − Ũ(tn) = [Uhn −RhŨ(tn)] + [RhŨ(tn)− Ũ(tn)] =: θhn + ρn.

Using the Ritz projection, ρn has the desired error estimate

‖ρn‖L2(Ωh)×L2(Γh) ≤ Ch2‖U(tn)‖H2(Ω)×H2(Γ). (45)

To estimate the error in the second component, we consider the evolution of the discrete error

ch(∂̄θhn,Φ
h) + ah(θhn; Φh)

= ch(∂̄Uhn ,Φ
h)− ch(∂̄RhŨ(tn),Φh) + ah(Uhn ; Φh)− ah(RhŨ(tn); Φh)

= ch(∂̄Ũ(tn)−Rh∂̄Ũ(tn); Φh) + c̃h(∂̄Ũ(tn),Φh)− ch(∂̄Ũ(tn); Φh)

+ ηch(Ũ(tn)−RhŨ(tn); Φh) + c̃h(∂̄Ũ(tn)− Ũt(tn); Φh)

= (i) + (ii) + (iii) + (iv).

The first three terms can now be estimated as in the proof of Theorem 24, and for the fourth
term, we can use the explicit representation

∂̄Ũ(tn)− Ũt(tn) =

∫ tn

tn−1

∫ t

tn−1

Utt(s)ds dt.

Using a suitable test function Φh, the discrete entropy and entropy dissipation, the Poincaré
inequality, and the estimates for the Ritz projection finally leads to

∂̄Eh(θhn) + c1E
h(θhn)

≤ C ′
(
h4‖Ut(tn)‖2H2(Ω×H2(Ω) + h4‖U(tn)‖2H2(Ω×H2(Ω) + τ2‖Utt(ξn)‖2L2(Ω)×L2(Γ)

)
for some positive constants c1, C

′ > 0 and appropriate ξn ∈ (tn−1, tn). The result then follows
similarly as for the semi-discretization and by a discrete version of the Gronwall lemma. �
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Let us emphasize that our error estimates hold uniform in time. The basic tool that allowed
us to obtain this was the exponential stability provided by the entropy estimates.

6. Numerics

For illustration of the theoretical results, we present in this section some numerical tests. For
ease of presentation, we restrict ourselves again to two space dimensions and consider Ω to be
the unit circle. In all simulations, we chose the parameters dL = 0.01, d` = 0.02, γ = 2, and
λ = 4, and complement the system (1a)–(1c) with the initial data

L0(x, y) =
1

2
(x2 + y2) and `0(x, y) =

1

2
(1 + x).

We start by investigating the convergence of solutions for a sequence of uniformly refined meshes
starting from an initial triangulation consisting of 258 elements, and we choose T = 2 as a final
time and a time step of τ = 0.125. As approximation for the error we use the difference of
solutions obtained on two consecutive refinements, e.g., we use

L(T )− Lhn(T ) ≈ Lh/2n (T )− Lhn(T ) = 4L
to measure the various errors. In Table 6, we display the L2 errors for L and `, as well as the
observed convergence rate. In addition, we display the error in the entropy and the errors in
the H1-norm. The results confirm the convergence rates that were predicted by Theorem 29.

elements ‖4L‖L2 ‖4`‖L2 rate 4E(L, `) (4L,4`)H1×H1

1032 5.62e-03 2.45e-03 - 1.38e-04 1.65e-01
4128 1.50e-03 6.06e-04 1.91 9.77e-06 8.22e-02

16512 3.86e-04 1.51e-04 1.96 6.41e-07 4.09e-02
66048 9.72e-05 3.78e-05 1.99 4.06e-08 2.04e-02

264192 2.43e-05 9.46e-06 2.00 2.55e-09 1.02e-02

Figure 2. Errors and rates for the numerical experiments depending on the
number of triangles. The rate is calculated from two consecutive runs.

In a second test, we investigate the large time behavior of the system. To this end, we choose
T = 500 and τ = 0.5. We compute the discrete solutions for a sequence of uniformly refined
meshes and evaluate the entropy, to be more precise, we compute

Ẽ(Lh(tn), `h(tn)) =
1

2

(
λ‖Lhn − L∞‖2Ωh

+ γ‖`hn − `∞‖
)
,

which measures the distance of the discrete solution to the exact equilibrium state. This allows
us to evaluate at the same time the convergence to equilibrium and the approximation of the
equilibrium state. The corresponding results are displayed in Figure 3. As predicted by our
theoretical results, we observe exponential convergence. The numerical results also allow us to
estimate the constant present in the exponential decay which is approximately c0 = 0.045 here.
Furthermore, we can see that for time approximately larger than t = 250, the discretisation
error due to approximation of the equilibrium becomes dominant.
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Figure 3. Convergence of modified entropy error Ẽ(Lh(tn), `h(tn)) for different mesh
sizes. One can clearly see the exponential convergence with a mesh independent rate.
For large time, the discretization error due to the approximation of the equilibrium state
is dominant and leads to a saturation.

7. Extension to a system arising in asymmetric stem cell division

Let us now illustrate that the analysis and the discretisation presented for the model prob-
lem (3a)–(3c) can be extended more or less straight forward to more general volume-surface
reaction-diffusion systems which have the same key properties: (i) a mass conservation law,
(ii) a constant positive detailed balance equilibrium, and (iii) a quadratic entropy functional
and an appropriate entropy-entropy dissipation estimate which allows to obtain exponential
convergence to equilibrium.

We consider the following four species volume-surface reaction-diffusion system two volume
concentrations L and P and two surface concentrations ` and p as mentioned in the introduction

Lt − dL∆L = −βL+ αP, x ∈ Ω, t > 0, (46a)

Pt − dP∆P = βL− αP, x ∈ Ω, t > 0, (46b)

`t − d`∆Γ` = −dL∂nL+ χΓ2(−σ`+ κp), x ∈ Γ, t > 0, (46c)

pt − dp∆Γ2 = σ`− κp− dP∂nP, x ∈ Γ2, t > 0. (46d)

As before, we assume Ω is a bounded domain in two or three space dimensions with a smooth
boundary Γ = ∂Ω ∈ C3. We further assume that the boundary Γ = Γ1 ∪ Γ2 divides into two
disjoint subsets Γ1 and Γ2 where ∂Γ2 is again smooth, and we denote by χΓ2 the characteristic
function on Γ2. The mass transfer between the volume and the surface is governed by the
boundary conditions

dL∂nL = −λL+ γ`, x ∈ Γ, t > 0, (46e)

dP∂nP = χΓ2(−ηP + ξp), x ∈ Γ, t > 0, (46f)

dp∂nΓ2
p = 0, x ∈ ∂Γ2, t > 0. (46g)
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The system (46a)–(46g) is again complemented by appropriate initial conditions.
This problem represents the mass transfer between the concentrations L,P, ` and p as vi-

sualised in the right diagram in Figure 1 in Section 1. A variant of system (46), where two
of the reaction/desorption processes were considered irreversible with κ = η = 0, was studied
recently in [8] in order to describe the asymmetric localisation of Lgl during the mitosis of SOP
stem cells of Drosophila, [23, 25, 24]. The diffusion and reaction parameters are assumed to be
positive constants and we further assume that the system has a detailed balance equilibrium,
i.e. we require validity of the detailed balance condition

αλσξ

βγκη
= 1. (47)

Using this condition, one can show that the system (46a)–(46g) has very similar properties as
the model problem (3a)–(3c), and, therefore, the analysis of the previous sections can be carried
over to the system (46) almost verbatim. Let us sketch the necessary key steps in more detail:

(1) the system (46) has an inherent mass conservation law, i.e. the total mass is conserved
for all time:

M(t) :=

∫
Ω
L(t) + P (t)dx+

∫
Γ
`(t)dS +

∫
Γ2

p(t)dS = M(0) for all t > 0. (48)

(2) Together with the detailed balance condition (47), one can show as for the model problem
(3) that for any initial mass M0 > 0 there exists a unique positive constant detailed balance
equilibrium (L∞, P∞, `∞, p∞). Again, analytic formulas depending only on the initial M0 and
the parameters α, β, λ, γ, σ, and κ can be derived.

(3) The system (46) also has a quadratic relative entropy functional, which has the form

E(L,P, `, p)(t) =
1

2

(∫
Ω

1

L∞
|L(t)− L∞|2dx+

∫
Ω

1

P∞
|P (t)− P∞|2dx

+

∫
Γ

1

`∞
|`(t)− `∞|2dS +

∫
Γ2

1

p∞
|p(t)− p∞|2dS

)
. (49)

Let us not that, up to scaling with a constant, also the entropy for the model problem (3a)–(3c)
could be written in this way.

(4) The corresponding entropy dissipation functional reads

d
dtE(L,P, `, p)(t)

= − dL
L∞
‖∇L(t)‖2Ω − dP

P∞
‖∇P (t)‖Ω − d`

`∞
‖∇Γ`(t)|2Γ −

dp
p∞
‖∇Γ2p(t)‖2Γ2

− 1
βL∞
‖βL(t)− αP (t)‖2Ω − 1

γ`∞
‖γ`(t)− λL(t))2‖2Γ

− 1
κp∞
‖κp(t)− σ`(t) Γ2

2 − 1
ηP∞
‖ηP (t)− ξp(t)‖2Γ2

=: −D(L,P, `, p).

(5) Similar to Lemma 6, one can show an entropy-entropy dissipation estimate of the form

D(L,P, `, p) ≥ c0E(L,P, `, p) (50)

holds with a constant c0 only depending on the parameters and the domain. The proof is again
based on a Poincaré-type inequality.

Following the arguments of Section 2–Section 5 one can then establish the following results:
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(i) The convergence to equilibrium for the continuous problem

‖L(t)− L∞‖Ω + ‖P (t)− P∞‖Ω + ‖`(t)− `∞‖Γ + ‖p(t)− p∞‖Γ2 ≤ Ce−c0t for all t > 0.

(ii) The convergence to the discrete equilibrium for semi-discrete solutions

‖Lh(t)− Lh∞‖Ωh
+ ‖P h(t)− P h∞‖Ωh

+ ‖`h(t)− `h∞‖Γh
+ ‖ph(t)− ph∞‖Γh

2
≤ Ce−c0t,

as well as for the fully discrete solutions

‖Lhn − Lh∞‖Ωh
+ ‖P hn − P h∞‖Ωh

+ ‖`hn − `h∞‖Γh
+ ‖phn − ph∞‖Γh

2
≤ Ce−c0τn,

with constants c0, C independent of the meshsize h > 0 and the time step τ > 0.
(iii) Error estimates independent of time horizon and order optimal convergence under the

assumption of sufficiently regular solutions, i.e.,

‖Lh(t)− L̃(t)‖Ωh
+ ‖P h(t)− P̃ (t)‖Ωh

+ ‖`h(t)− ˜̀(t)‖Γh
+ ‖ph(t)− p̃(t)‖Γh

2
≤ Ch2

for the semi-deiscretization and

‖Lhn − L̃(tn)‖Ωh
+ ‖P hn − P̃ (tn)‖Ωh

+ ‖`hn − ˜̀(tn)‖Γh
+ ‖phn − p̃(tn)‖Γh

2
≤ C(h2 + τ)

for the full discretization with a constant C that is independent of the time horizon, of the
meshsize, and of the time step.

Some snapshot of the concentrations P (t) and L(t) are depicted in Figure 7.

Figure 4. Snapshots for L(t) and P (t) at t = 0, 0.13, 1.56, 3.0. A mesh with 4064
triangles and τ = 0.01 was used. The initial data were L0(x, y) = x sin(x + 1) +
0.5, P0(x, y) = (2−x) cos(x+ 1) + 0.5, `0(x, y) = 0.3(2− y) + 1, and p0(x, y) = 0.4y+ 1.

The evolution is driven by convergence to the constant equilibrium, but also some local effects
due to the mass transfer with the boundary can be seen.
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8. Summary

Volume-surface reaction-diffusion systems arise in many applications in chemistry, fluid dy-
namics, crystal growth, see e.g. [19, 20] and in particular in molecular-biology, where many
current models aim to describe, for instance, signaling pathways, see e.g. [21], or the evolution
of proteins, see e.g. [8].

As realistic models in biology are often large and the mathematical analysis accordingly
cumbersome, our general aims is to develop methods, which are robust in the sense that they
are based on a few fundamental properties, which are shared by many such models: i) conser-
vation of mass and non-negativity of solutions, ii) a positive equilibrium, and ii) exponential
convergence to equilibrium.

In this manuscript, we investigated volume-surface reaction-diffusion systems with a unique
constant detailed balance equilibrium. We identified an appropriate quadratic entropy func-
tional, characterized the entropy dissipation, and established an entropy-entropy dissipation
inequality, which follows by a Poincaré-type inequality. Combining these ingredients allowed us
to establish exponential convergence of solutions to the equilibrium.

For the discretization, we then investigated a finite element method and the implicit Euler
scheme. The fact that the equilibrium was constant enabled us to carry over all arguments
almost verbatim to the discrete level. In particular, exponential convergence to the discrete
equilibrium could be established for the semi-discretization and the fully discrete approxima-
tions. In addition, we conducted a full error analysis, including domain approximations, and
could establish convergence of optimal order uniform in time and with constants independent
of the meshsize and the time step. The theoretical findings were confirmed in numerical tests.

Although we confined ourselves here to simple model problem, our general arguments, in
particular the use of entropy estimates, can be applied to obtain similar results for a wide
class of surface-volume reaction-diffusion problems having a constant equilibrium. Big parts of
our analysis could even be extended to problems with non-constant equilibria. In particular,
quadratic entropy functionals of the form (49) can be constructed for a much wider class of prob-
lems with linear reaction dynamics, but these cannot be applied so easily on the discrete level.
Another possible direction of generalisation would be to consider complex balanced systems,
such as weakly reversible reaction networks. Such systems still feature a positive equilibria and
the entropy structure as well as exponential convergence to equilibrium, as recently established
for general first order reaction-diffusion networks in [26]. The formulation of an appropriate
discrete entropy and entropy dissipation will be direction of future research.
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