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Optimal Finite Element Error Estimates for an Optimal Control Problem
governed by the Wave Equation with controls of Bounded Variation.
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This work discusses the finite element discretization of an optimal control problem for the linear wave
equation with time-dependent controls of bounded variation. The main focus lies on the convergence
analysis of the discretization method. The state equation is discretized by a space-time finite element
method. The controls are not discretized. Under suitable assumptions optimal convergence rates for the
error in the state and control variable are proven. Based on a conditional gradient method the solution
of the semi-discretized optimal control problem is computed. The theoretical convergence rates are con-
firmed in a numerical example.
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1. Introduction

In this paper we derive a priori error estimates for a finite element discretization of the following optimal
control problem governed by the linear wave equation:

(P)


minu∈BV (0,T )m

1
2‖yu− yd‖2

L2(ΩT )
+∑

m
j=1 α j‖Dtu j‖M(I) =: J(y,u)

subject to (W )


∂tty−∆y = f = ∑

m
j=1 u jg j in I×Ω

y = 0 on I×∂Ω

(y,∂ty) = (y0,y1) in {0}×Ω ,

where Ω ⊂ Rn, with n ∈ {1,2,3}, is a convex, polygonal/polyhedral bounded domain. For T ∈ (0,∞)
we denote I = (0,T ). The desired state yd is assumed to satisfy yd ∈ C1(I;L2(Ω)). The time depend-
ing controls u are given by u = (u1, · · · ,um) ∈ BV (0,T )m, and BV (0,T )m is endowed with the norm
‖u‖BV (I)m = ∑

m
j=1(‖u j‖L1(I)m + ‖Dtu j‖M(I)). Here M(I) is the space of Borel measures, endowed with

the total variation norm ‖ · ‖M(I). Further, let (g j)
m
j=1 ⊂ L∞(Ω)r {0} with pairwise disjoint supports

and α j > 0. The initial data is chosen as (y0,y1) ∈ H1
0 (Ω)×L2(Ω). Finally, we set ΩT := I×Ω .

In this work we focus on controls of bounded variation in time. By using the total variation norm
in (P), sparsity in the derivative of the controls is promoted, resulting in locally constant controls. This
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is in particular the case if the derivative of the optimal control is a linear combination of Dirac func-
tions. Optimal control problems with BV -controls are already analyzed for elliptic and parabolic state
equations in Casas and Kunisch [2017], Casas et al. [2017], Hafemeyer et al. [2019], Casas et al. [1998,
1999], Clason and Kunisch [2011].

Since our article deals with a priori error estimates of a finite element discretization for the control
problem (P), we briefly discuss previous works on error estimates for PDE control problems with BV -
controls. In Casas et al. [2017] the authors discretize the time-dependent BV−controls by cellwise
constant functions. The state equation is discretized by piecewise constant finite elements in time and
linear continuous finite elements in space. Based on this discretization approach, the authors show that
the optimal value of the cost functional and the states converge with an order of

√
τ in time and linear in

space. However, numerical experiments in Casas et al. [2017] indicate better results. In Hafemeyer et al.
[2019] the authors analyze a finite element discretization of an elliptic control problem with BV -controls
in a one dimensional setting. As in our case the controls are not discretized. The main contribution of
this work is the derivation of optimal error estimates for the control variable in the L1-norm. Their
analysis relies on the one dimensional setting and on structural assumption on the optimal adjoint state
which guarantee that the optimal control is piecewise constant and has finitely many jumps. In our work
we derive similar optimal error estimates also for the problem with a multi-dimensional wave equation
and our analysis relies partially on techniques developed in the former work.

Next we briefly address the difficulties in the derivation of finite element error estimates for optimal
control problems with PDEs and BV -controls. Standard techniques for the derivation of finite element
error estimates, see e.g. Casas and Tröltzsch [2012], cannot be applied due to the non-smoothness of
the cost functional and the non-reflexivity of BV (I). In the last years several papers concerning the
derivation of finite element error estimates for optimal control problems with measure-valued controls
appeared, see e.g. Pieper and Vexler [2013], Trautmann et al. [2018b]. Using the fact that for one
dimensional controls, BV (I) is isomorphic to M(I)×R, several techniques from these works are used
to derive error estimates for BV -controls. Finally, we mention that the literature on finite element error
estimates for optimal control problems governed by the wave equation is very limited. To our knowl-
edge the only existing work in this context is Trautmann et al. [2018b] which uses the space-time finite
element discretization developed and analyzed in Zlotnik [1994]. Our work also relies on this discretiza-
tion method for the state equation and its error analysis.
The main contribution of this work is the derivation of an optimal error estimate of the control variable
in the L1(I)-norm and of the state variable in the L2(ΩT )-norm. The state equation is discretized by a
space-time finite element method with piecewise linear and continuous Ansatz- and test-functions from
Zlotnik [1994]. The weak formulation of the discrete state equation is augmented with a stabilization
term involving the stabilization parameter σ . Stability of the method depends on the value of this pa-
rameter. Moreover, for certain values of this parameter the method is equivalent to wellknown time
stepping schemes, like the Crank-Nicolson scheme or the Leap-Frog scheme. The BV -controls are not
discretized. Due to fact that the controls are only time-dependent the problem under consideration can
be reformulated as a measure-valued control problem. Based on the optimality conditions of the con-
tinuous and discrete optimal control problem the error in the state variable in the L2(ΩT )-norm can be
represented in terms of the finite element error of the state and adjoint state equation in the L2(ΩT )-norm
resp. the L∞(I;L2(Ω)) as well as the error in the control variable in the L1(I)-norm. The convergence
rates for the finite element error of the state and adjoint state are obtained from Zlotnik [1994]. Under
the assumption that the continuous and time depending function

p̄1,i : t 7→ −
∫ T

t

∫
Ω

pgi dx ds,
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where p is the optimal adjoint state and p1,i is bounded by ±αi, is equal to αi at finitely many points in
I and that its derivatives do not vanish in these points (see (A1) and (A2)) it follows that the continuous
optimal control is piecewise constant and has finitely many jumps. To obtain this information about
the form of the optimal BV control, using p̄1,i, is particularly easy because we consider controls in
one dimension. Furthermore, it is proven that the optimal control of the discrete problem has the same
number jumps which are located close to the jumps of the continuous optimal control. Using these
properties the error of the optimal control in the L1(I)-norm is estimated in terms of the error of the state
variable in the L2(ΩT )-norm. Using a bootstrapping argument optimal rates for the error in the state and
control variable as well as for the optimal value of the cost are proven. These rates are confirmed by a
numerical example with known solution.
This work has the following structure. Section 2 summarizes several needed results on the regularity of
weak solutions of the wave equation. In section 3 the space-time finite element method from Zlotnik
[1994] is presented. Moreover, important stability results as well as a priori error estimates are stated.
Section 4 deals with the reformulation of the BV -control problem as a measure-valued control problem
and with the analysis of this problem. In particular, first order optimality conditions are derived. The
next section 5 is concerned with discretization of the control problem. It is based on the mentioned space-
time finite element method and the variational discretization concept. In section 6 the error estimates
for the optimal state and control variable as well as the optimal functional value are derived. Finally,
in section 7 a generalized conditional gradient method is introduced which applicable in the context of
controls which are not discretized. Based on this method a problem with known solution is solved and
the theoretical error estimates are confirmed.

2. Preliminaries on the Wave Equation

We consider Ω ⊂ Rd , d = 1,2,3 as convex, polygonal/polyhedral domain. Let {λk}k∈N be the non-
decreasing eigenvalues of the Laplace operator −∆ with homogeneous boundary conditions and let
{µk}k∈N be the corresponding system of eigenfunctions, which are orthonormal complete in L2(Ω),
and orthogonal complete in H1

0 (Ω). Hence, let us introduce for α > 0 the Hilbert spaces

Hα =
{

w ∈ L2(Ω)
∣∣∣‖w‖2

Hα := ∑k>1

(
λ
(k)
)α

〈w,µk〉2L2(Ω) < ∞

}
.

For α = 0,1 we get L2(Ω) respectively H1
0 (Ω). The convexity of Ω implies that H2 = H2(Ω)∩H1

0 (Ω).
In general holds Hα ↪→ Hβ for α > β . We denote the dual space of Hα by H−α . Next we introduce
the weak solution of the wave equation with the forcing function f , initial displacement y0, and initial
velocity y1.

DEFINITION 2.1 (Ladyjenskaya [1973], Chap.IV, Sec.4)
Let ( f ,y0,y1)∈L1(I;L2(Ω))×H1

0 (Ω)×L2(Ω). We call a function y∈C(I;H1
0 (Ω)) with ∂ty∈C(I;L2(Ω))

a weak solution of (W ) , if∫ T

0
−(∂ty,∂tη)L2(Ω)+(∇y,∇η)L2(Ω) dt = (y1,η(0))L2(Ω)+

∫ T

0
( f ,η)L2(Ω) dt (2.1)

for any η ∈ L1(I;H1
0 (Ω)) such that ∂tη ∈ L1(I;L2(Ω)), η |t=T = 0, and y satisfies the initial condition

y|t=0 = y0.

For the following existence and regularity results of weak solutions of the wave equation we refer to
[Zlotnik, 1994, Proposition 1.1., 1.3.]:
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THEOREM 2.2 For each ( f ,y0,y1) ∈ L1(0,T ;L2(Ω))×H1
0 (Ω)× L2(Ω) there exists a unique weak

solution y of (W ). Moreover, there exists a constant c > 0 such that the weak solution y satisfies

‖y‖C(I;Hα+1)+‖∂ty‖C(I;Hα )+‖∂tty‖Lκ (I;Hα−1) 6 c
(
‖y0‖Hα+1 +‖y1‖Hα +‖ f‖Lκ (I;Hα )

)
(2.2)

provided ( f ,y0,y1) ∈ Lκ(I;Hα)×Hα+1×Hα and

‖y‖C(I;Hα+2)+‖∂ty‖C(I;Hα+1)+‖∂tty‖C(I;Hα ) 6 c
(
‖y0‖Hα+2 +‖y1‖Hα+1 +‖ f‖W 1,1(I;Hα )

)
. (2.3)

provided ( f ,y0,y1) ∈W 1,1(I;Hα)×Hα+2×Hα+1 with 06 α , 16 κ < ∞.

Proof. The proof can be found in [Zlotnik, 1994, Proposition 1.3, Remark 1.2]. �

DEFINITION 2.3 Let us define the following continuous linear operators:

L : L2(ΩT )→ L2(ΩT ), f 7→ y( f ) and Q : H1
0 (Ω)×L2(Ω)→ L2(ΩT ), (y0,y1) 7→ y(y0,y1)

The function y( f ) denotes the weak solution of the wave equation with y0 = y1 = 0 and forcing function
f . The function y(y0,y1) denotes the weak solution of the wave equation with initial datum y0 and y1
and f = 0.

LEMMA 2.1 The adjoint operator L∗ : L2(ΩT )→ L2(ΩT ) of L is given by w 7→ p(w) where p(w) ∈
C(I;H1

0 (Ω))∩C(I;L2(Ω)) is the weak solution of the backwards in time equation

(W ∗)

 ∂tt p−∆ p = w in I×Ω

p = 0 on I×∂Ω

(p,∂t p) = (0,0) in {T}×Ω .
(2.4)

LEMMA 2.2 Let y be a weak solution of W for (y0,y1,0) and p of W ∗ for w. There holds∫ T

0
(y,w)L2(Ω) dt =

(
y0,
∫ T

0
w dt

)
L2(Ω)

−
(

∇y0,∇
∫ T

0
p dt

)
L2(Ω)

+(y1, p(0))L2(Ω).

Proof. This proven by testing (2.1) for p with ỹ = y− y0. �

3. Approximation of the Wave Equation

In the following we introduce the space-time finite element method for the discretization of the wave
equation. This method can be found in Zlotnik [1994]. We consider a mesh Th consisting of a finite
set of triangles (for d = 2) or tetrahedra (for d = 3) K with h = maxK∈Th ρ(K), where ρ(K) denotes
the diameter of K. We assume that the family of meshes (Th)h is admissible, shape regular and quasi-
uniform. Since Ω is polygonal and convex, we require that Ω =

⋃
K∈Th

K holds. We denote the space of
piecewise linear and continuous finite elements based on the triangulation by Th by Sh ⊂H1

0 (Ω)∩C(Ω)
and its nodal basis by(ϕi)

N
i=1.

3.1 Space-Time Finite Element Method

We discretize the time interval I uniformly with the time nodes 0 = t0 < ... < tM = T and the stepsize
τ = T/M. We denote the set of time nodes by wτ = {t0, ..., tM}. Then we introduce the space of
piecewise linear and continuous functions with respect to wτ by

Sτ :=
{

w ∈C(I)| w|[tk−1,tk] linear , 16 k 6M
}
.
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The standard hat functions form a basis em(tk) = δmk, m,k = 0, . . . ,M of this discrete space. Furthermore,
let us define the mesh operators ∂ twm =

wm−wm−1
τ

. Finally, we use the notation ϑ := (τ,h) with τ,h > 0.

DEFINITION 3.1 Let σ > 0. We call yϑ ∈ Ŝϑ := span{vh · vτ |vh ∈ Sh, vτ ∈ Sτ} a discrete solution of
(2.1) if yϑ satisfies:

∫ T

0
−(∂tyϑ ,∂tη)L2(Ω)− (σ − 1

6
)τ2(∇∂tyϑ ,∇∂tη)L2(Ω)+(∇yϑ ,∇η)L2(Ω) dt

= (y1,η(0))L2(Ω)+
∫ T

0
( f ,η)L2(Ω) dt (3.1)

for all η ∈ Ŝϑ with η(T ) = 0 and initial condition yϑ (0) := Rhy0, where Rh is the Ritz projection on Sh,
i.e.

(∇Rhy0,∇ϕ)L2(Ω) = (∇y0,∇ϕ)L2(Ω) ∀ϕ ∈ Sh.

REMARK 3.1 Here σ plays the role of a stabilization parameter. With an increasing value of σ the
method becomes more stable. For σ > 1/4 the method is unconditionally stable, see Zlotnik [1994].

LEMMA 3.1 Let yϑ ∈ Ŝϑ be a solution (3.1) for (y0,y1,0) and pϑ ∈ Ŝϑ a corresponding discrete solution
of W ∗ for w. There holds∫ T

0
(yϑ ,w)L2(Ω) dt =

(
Rhy0,

∫ T

0
w dt

)
L2(Ω)

−
(

∇Rhy0,∇
∫ T

0
pϑ dt

)
L2(Ω)

+(y1, pϑ (0))L2(Ω)

Proof. This is proven by testing (3.1) for pϑ with ỹϑ = yϑ −Rhy0. �

3.2 A Priori Error Estimates for the Space-Time Finite Element Method

Next we make an assumption on the relationship between τ and h which ensures stability of the method
for 06 σ < 1/4.

Assumption 1 Let ε0 ∈ (0,1] be arbitrary and fixed. Moreover, let c1 be the smallest constant in the
inverse inequality ‖∇ϕ‖L2(Ω) 6 c1h−1‖ϕ‖L2(Ω) for all ϕh ∈ Sh. Moreover, let a c2 be the constant in this
a priori estimate for the Ritz projection ‖w−Rhw‖L2(Ω) 6 c2h‖∇w‖L2(Ω). From now on it is assumed
that

1. σ > 1
4 −

c1h2(1−ε2
0 )

τ2 ,

2. σ >
1+ε2

0
4 −

c1h2

τ2 ,

3. |σ |τ2 6 2(c2h2 + τ2).

REMARK 3.2 This space-time finite element method is related to well-known time-stepping schemes.
For σ = 0 it is related to the explicit Leap-Frog-method and for σ = 1

4 to the Crank-Nicolson scheme,
see also [Trautmann et al., 2018a, Remark 5.1, 5.4]. A more detailed discussion can be found in Zlotnik
[1994].

Let us further define ‖u‖Cτ (I;L2(Ω)) := maxti∈wτ ‖u(ti)‖L2(Ω) for all u ∈C(I;L2(Ω)).
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LEMMA 3.2 The solution yϑ of (3.1) for ( f ,y0,y1) ∈ L1(I,L2(Ω))×H1
0 (Ω)×L2(Ω) satisfies the fol-

lowing inequality

‖yϑ‖C(I;L2(Ω)) 6 c
(
‖y0‖H1

0 (Ω)+‖y1‖L2(Ω)+‖ f‖L1(I;L2(Ω))

)
(3.2)

with a constant c independent of h, f , y0 and y1.

Proof. The result follows directly from [Zlotnik, 1994, Theorem 2.1, Remark 2.1]. �

THEOREM 3.2 The following error estimate holds

‖y− yϑ‖C(I;L2(Ω)) 6 c(h2 + τ
2)

α
3

(
‖y0‖Hα +‖y1‖Hα−1 +‖ f‖W α2 ,1(I;Hα1 )

)
(3.3)

for α1,α2 ∈ {0,1}, α1 +α2 = α−1 and α1 6 α2, provided ( f ,y0,y1) ∈W α2,1(I;Hα1)×Hα ×Hα−1.

Proof. The result follows directly from [Zlotnik, 1994, Theorem 4.1., 4.3.]. �

COROLLARY 3.1 The following error estimate holds

‖y− yϑ‖L2(ΩT )
6 c(τ2 +h2)

(
‖y0‖H3 +‖y1‖H2 +‖ f‖L1(I;H2)

)
.

Proof. This is shown by using that

‖y− yϑ‖L2(ΩT )
6 ‖y− iτ y‖L2(ΩT )

+‖iτ y− yϑ‖L2(ΩT )

where iτ : C(I;L2(Ω))→ Sτ ⊗L2(Ω) is the nodal interpolant. According to [Zlotnik, 1994, Theorem
4.1] we have

‖iτ y− yϑ‖L2(ΩT )
6 c‖iτ y− yϑ‖C(I;L2(Ω))

6 c‖y− yϑ‖Cτ (I;L2(Ω)) 6 c(τ2 +h2)
(
‖y0‖H3 +‖y1‖H2 +‖ f‖L1(I;H2)

)
.

Moreover, we have according to Theorem 2.2

‖y− iτ y‖L2(ΩT )
6 cτ

2‖y‖H2(I;L2(Ω)) 6 cτ
2
(
‖y0‖H3 +‖y1‖H2 +‖ f‖L2(I;H2)

)
.

This proves the assertion. �

4. Equivalent Problem (P̃)

In this section we introduce a specific isomorphism between BV (I)m ⊗{(g j)
m
j=1} and M(I)m ×Rm.

Based on this isomorphism (P) is equivalently formulated as a measure valued control problem. First
of all we prove existence and uniqueness of a solution to (P).

THEOREM 4.1 Problem (P) has a unique solution in BV (I)m.

Proof. Utilizing the fact, that the forward mapping is continuous from L2(I)m to L2(ΩT ), the proof can
be carried out along the line of [Casas et al., 2017, Theorem 3.1]. �
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Next we introduce several linear and continuous operators and discuss its properties. The operator
B : M(I)m×Rm→ L2(ΩT ) is given by

(v,c) 7→∑
m
j=1

(∫ t

0
dv j(s)−

1
T

∫ T

0

∫ t

0
dv j(s) ds+ c j

)
g j. (4.1)

The measures v j are the derivatives of the generated BV-function and c j are the mean values. Next, we
define the predual operator of B given by B∗ : L2(ΩT )→C0(I)m×Rm

B∗ : q 7→
(

w′1, . . . ,w
′
m,
∫ T

0

∫
Ω

qg1 dx dt, . . . ,
∫ T

0

∫
Ω

qgm dx dt
)

where w ∈ H2(I) solves
−w′′j =

∫
Ω

q(·,x)g j(x) dx− 1
T

∫ T

0

∫
Ω

q(t,x)g j(x) dx dt in (0,T )

w′j(0) = w′j(T ) = 0 with
∫ T

0
w j(t) dt = 0 for j = 1, . . . ,m.

(4.2)

PROPOSITION 4.2 The operator B∗ : L2(ΩT )→C0(I)×Rm is well defined and the predual of B, i.e. the
following holds ∫

ΩT

B(v,c)q dx dt = 〈(v,c),B∗(q)〉

for all (v,c) ∈M(I)m×Rm and for all q ∈ L2(ΩT ).

Proof. The equation (4.2) has a unique solution w j ∈H2(I), since
∫

Ω
q(·,x)g j dx− 1

T
∫ T

0
∫

Ω
q(t,x) dx dt ∈

L2(I) and has zero mean. Moreover, we have w′j ∈H1
0 (I) ↪→C0(I). Thus, the operator B∗ is well defined.

Moreover, there holds

〈(v,c),B∗(q)〉= ∑
m
j=1

∫ T

0
w′j dv j +∑

m
j=1 c j

∫ T

0

∫
Ω

qg j dx dt

= ∑
m
j=1

∫ T

0
−w′′j

∫ t

0
dv j dt +∑

m
j=1 c j

∫ T

0

∫
Ω

qg j dx dt

= ∑
m
j=1

∫ T

0

(∫
Ω

qg j dx− 1
T

∫ T

0

∫
Ω

qg j dx dt
)∫ t

0
dv j dt +∑

m
j=1 c j

∫ T

0

∫
Ω

qg j dx dt

=
∫ T

0

∫
Ω

q∑
m
j=1

(∫ t

0
dv j−

1
T

∫ T

0

∫ t

0
dv j dt + c j

)
g j dx dt =

∫
ΩT

B(v,c)q dx dt

for all (v,c) ∈ M(I)m×Rm and for all q ∈ L2(ΩT ). The use of integration by parts is justified by the
density of C∞

c (I) in H1
0 (I). �

PROPOSITION 4.3 Let w j ∈ H2(I), j = 1, · · · ,m be the solution of (4.2). Then there holds

w′j(t) =
∫ T

t

∫
Ω

q(s,x)g j(x) dx ds+
(t−T )

T

∫ T

0

∫
Ω

q(t,x)g j(x) dx dt.

PROPOSITION 4.4 The operator B : M(I)m×Rm→ BV (I)m⊗{(g j)
m
j=1} is an isomorphism.



8 of 28

Proof. The inverse of B is given by

B−1 : ∑
m
j=1 u jg j 7→

(
u′1, . . . ,u

′
m,

1
T

∫ T

0
u1 dt, . . . ,

1
T

∫ T

0
um dt

)
.

�
Next we introduce the operator D : M(I)m×Rm→M(I)m defined by (v,c) 7→ v. Its predual operator is
given by D∗ : C0(I)m→C0(I)m×Rm with D∗ : h 7→ (h,0). Finally, let us introduce Pi : M(I)m→M(I)
defined by v 7→ vi. The predual operator has the form P∗i : C0(I)→C0(I)m with P∗i : h 7→ (0, . . . ,h, . . . ,0).
Using B we can rewrite (P) into the equivalent problem

(P̃)

{
minv ∈M(I)m

c ∈ Rm

1
2‖S(v,c)− yd‖2

L2(ΩT )
+∑

m
j=1 α j‖v j‖M(I) =: J̃(v,c),

with S : M(I)m×Rm→ L2(ΩT ) defined by (v,c) 7→ L(B(v,c))+Q(y0,y1).

4.1 First-Order optimality condition of (P̃)

In the following a necessary and sufficient first-order optimality condition of (P̃) is presented as well as
sparsity results for the derivative of the optimal control. Let (v,c) be the unique optimal pair. We define
the quantities p = L∗(S(v,c)− yd) and p1 ∈C(I)m by

p1,i :=−
∫ T

t

∫
Ω

pgi dx ds

for i = 1, . . . ,m.

THEOREM 4.5 The pair (v,c) ∈M(I)m×Rm is an optimal control of (P̃) if and only if

p1,i ∈ αi∂‖vi‖M(I) i = 1, . . . ,m, (4.3)

p1(0) = 0. (4.4)

Equivalently it holds

〈v− vi, p1,i〉M(I),C0(I)+αi‖vi‖M(I) 6 αi‖v‖M(I) ∀v ∈M(I) and i = 1, . . . ,m (4.5)

and p1(0) = 0.

Proof. The proof of Theorem 4.5 is done along the lines of the proof of [Casas et al., 2017, Theorem
3.3]. By the convexity of (P̃) we have, that (v,c) ∈M(I)m×Rm is an optimal control of (P̃) if and only
if

0 ∈ ∂

(
1
2
‖S(v,c)− yd‖2

L2(ΩT )
+∑

m
j=1 α j‖v j‖M(I)

)
⊆ (M(I)m×Rm)∗.

Define the following function F(v,c) := 1
2‖S(v,c)− yd‖2

L2(ΩT )
for (v,c) ∈M(0,T )m×Rm. Its Gateaux

derivative has the form

DF(v,c)(v,c) = B∗L∗(S(v,c)− yd) ∈C0(I)m×Rm
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According to the theory of convex analysis, e.g. Ekeland and Témam [1999], we have

0 ∈ DF(v,c)(v,c)+∂
(
∑

m
i=1 αi‖vi‖M(I)

)
⊆ (M(I)m×Rm)∗. (4.6)

Using

∂
(
∑

m
i=1 αi‖PiD(v,c)‖M(I)

)
= ∑

m
i=1 αiD

∗P∗i ∂‖vi‖M(I) =

((
αi∂‖vi‖M(I)

)m
i=1

0

)
and (4.6) as well as Proposition 4.3 imply

p1,i ∈ αi∂‖vi‖M(I) ∀i = 1, . . . ,m, p1(0) = 0. (4.7)

�
The following proposition is a consequence of [Casas and Kunisch, 2014, Proposition 3.2.]:

PROPOSITION 4.6 Let (v,c) ∈M(I)m×Rm be an optimal control of (P̃), then for all i = 1, · · · ,m and
p1 = (p1,i)

m
i=1 given in (4.3) holds

a) ‖p1,i‖C0(I) 6 αi,

b)
∫ T

0 −
p1,i
αi

dvi =
∫ T

0 d|vi|= ‖vi‖M(I),

c) supp(v±i )⊆ {t ∈ I|p1,i(t) =±αi}, where vi = v+i − v−i is the Jordan decomposition of vi.

REMARK 4.1 Let us note that the boundary property of p1, i.e. p1(0) = p1(T ) = 0, and the continuity
of p1 imply with Proposition 4.6, c), that there exists a εi > 0 such that dist(supp(v±i ),{0,T})> εi.

5. The Variationally Discretized Problem

In this section we introduce a discretized version of (P̃) and discuss its properties. We use the concept of
variational discretization in which the control is not discretized. In particular, we consider the problem
(P̃semi

ϑ
):

(P̃semi
ϑ )

{
minv ∈M(I)m

c ∈ Rm

1
2‖Sϑ (v,c)− yd‖2

L2(ΩT )
+∑

m
j=1 α j‖v j‖M(I) =: Jϑ (v,c)

with Sϑ : M(I)m×Rm −→ L2(ΩT ) defined by (v,c) 7→ Lϑ (B(v,c))+Qϑ (y0,y1). Here Lϑ : L2(ΩT )→
L2(ΩT ) is defined by f 7→ yϑ ( f ), where yϑ ( f ) solves (3.1) for a source f and (y0,y1) = (0,0). The
operator Qϑ : H1

0 (Ω)×L2(Ω)→ L2(ΩT ) is defined by (y0,y1) 7→ yϑ (y0,y1), where yϑ (y0,y1) solves
(3.1) with (y0,y1) as initial datum and f = 0.

REMARK 5.1 We can represent the adjoint of Lϑ in the form w 7→ L∗
ϑ
(w)(t,x) = Lϑ (w ◦ φ̃)(φ̃(t,x))

with φ̃(t,x) = (T − t,x), and w ∈ L2(ΩT ). This is true since Lϑ ( f )(0) = 0 and L∗
ϑ
(w)(T ) = 0 and thus

Lϑ ( f ) and L∗
ϑ
(w) can be used in (3.1) as test functions for the forwards and backwards equation. Hence,

Theorem 3.3, Corollary 3.1, and Lemma 3.2 are valid for L∗
ϑ
(w) as well.

THEOREM 5.1 The problem (P̃semi
ϑ

) has a solution in M(I)m×Rm.

Proof. The existence of an optimal control for (P̃semi
ϑ

) can be similarly shown as in the proof of Theorem
4.1. �
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Note, that a BV-representation of the solutions (v,c), (vϑ ,cϑ ) of (P̃), respectively (P̃semi
ϑ

) are defined
by

u(t) :=
∫ t

0
dv(s)− 1

T

∫ T

0

∫ t

0
dv(s) dt+c, and uϑ (t) :=

∫ t

0
dvϑ (s)−

1
T

∫ T

0

∫ t

0
dvϑ (s) dt+cϑ . (5.1)

Next we define the quantities pϑ = L∗
ϑ
(Sϑ (vϑ ,cϑ )− yd) and

p1,ϑ , j :=−
∫ T

t

∫
Ω

pϑ g j dx ds for j = 1, . . . ,m,

which is continuously differentiable and piecewise quadratic in time.

THEOREM 5.2 The pair (vϑ ,cϑ ) ∈M(I)m×Rm is a optimal control of (P̃semi
ϑ

) if and only if

p1,ϑ ,i ∈ αi∂‖vϑ ,i‖M(I) i = 1, . . . ,m, (5.2)

p1,ϑ (0) = 0. (5.3)

Equivalently it holds

〈v− vi, p1,ϑ ,i〉M(I),C0(I)+αi‖vi‖M(I) 6 αi‖v‖M(I) ∀v ∈M(I), i = 1, . . . ,m, (5.4)

and p1,ϑ (0) = 0.

Proof. The proof is similar to Theorem 4.5. �

REMARK 5.2 Due to Theorem 5.2, we can show that Proposition 4.6 holds analogiously for (P̃semi
ϑ

).

6. A Priori Error Estimates

In this section error estimates of problem (P̃semi
ϑ

) for the optimal control, optimal state and optimal
cost functional value are presented. Under specific assumptions, we proof optimal rates for the optimal
control, state and cost. For reason of convenience, the following notation is introduced. For an opti-
mal control (vϑ ,cϑ ) ∈ M(I)m×Rm of (P̃semi

ϑ
) and the optimal control (v,c) ∈ M(I)m×Rm of (P̃) we

introduce the corresponding optimal states by yϑ := Sϑ (vϑ ,cϑ ) and y := S(v,c). Further, we define the
mixed state by ŷϑ := Lϑ (B(v,c))+Qϑ (y0,y1). The mixed adjoint state is chosen as p̂ϑ := L∗

ϑ
(y− yd).

In the proofs of following the Lemmata and Theorem, we use similar steps as in the proof of [Pieper
and Vexler, 2013, Theorem 4.4].

LEMMA 6.1 There holds 〈
p1,ϑ − p1,vϑ − v

〉
6 0 (6.1)

with (v,c) as the optimal control of (P̃) and (vϑ ,cϑ ) as an solution of (P̃semi
ϑ

).

Proof. Inequality (6.1) follows from monotonicity of the subdifferential. �

LEMMA 6.2 Consider optimal control (v,c) of (P̃), and (vϑ ,cϑ ) of (P̃semi
ϑ

), as well as their BV-representations
u, and uϑ . For the optimal states y and yϑ of problem (P̃), respectively (P̃semi

ϑ
), we have

‖yϑ − y‖L2(ΩT )
6 c‖y− ŷϑ‖L2(ΩT )

+ c‖uϑ −u‖
1
2
L1(I)m‖p− p̂ϑ‖

1
2
L∞(I;L2(Ω))

(6.2)

with a constant c > 0 depending on g.
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Proof. Lemma 6.1, the properties of B and B∗ and the fact that p1(0) = p1,ϑ (0) = 0 imply the following

0>
〈

p1,ϑ − p1,vϑ − v
〉
= 〈B∗(pϑ − p),(vϑ − v,cϑ − c)〉= (pϑ − p̂ϑ ,(uϑ −u) ·g)L2(ΩT )

+(p̂ϑ − p,(uϑ −u) ·g)L2(ΩT )

= (yϑ − y,Lϑ ((uϑ −u)g))L2(ΩT )
+(p̂ϑ − p,(uϑ −u) ·g)L2(ΩT )

= ‖yϑ − y‖2
L2(ΩT )

+ 〈yϑ − y,y− ŷϑ 〉L2(ΩT )
+ 〈p̂ϑ − p,(uϑ −u) ·g〉L2(ΩT )

.

From these calculations we obtained (6.2) by

‖yϑ − y‖2
L2(ΩT )

6 (y− yϑ ,y− ŷϑ )L2(ΩT )
+(p− p̂ϑ ,(uϑ −u) ·g)L2(ΩT )

6
1
2
‖y− yϑ‖2

L2(ΩT )
+

1
2
‖y− ŷϑ‖2

L2(ΩT )
+ c‖uϑ −u‖L1(I)m‖p− p̂ϑ‖L∞(I;L2(Ω)).

�

LEMMA 6.3 The sequence of the BV representatives (uϑ )ϑ of the optimal controls of (P̃semi
ϑ

) are
bounded in BV (I)m with respect to ϑ → 0.

Proof. At first, we show that

uϑ =
∫ t

0
dvϑ (s)−

1
T

∫ T

0

∫ t

0
dvϑ (s) ds+ cϑ = ûϑ + cϑ

is bounded in BV (I)m for ϑ → 0. Due to the optimality of uϑ , holds the inequality Jϑ (uϑ )6 Jϑ (0) for
all considered ϑ . Define yϑ := Sϑ (0,0) and y = S(0,0). Using Lemma 3.2 we have

‖yϑ‖C(I;L2(Ω)) 6 c
(
‖y0‖H1

0 (Ω)+‖y1‖L2(Ω)

)
.

Thus, the discrete states yϑ are bounded in L2(ΩT ). Hence {Jϑ (0)}ϑ is bounded in R. This implies that
Jϑ (uϑ ) is bounded and thus, (yϑ )ϑ and (Dtuϑ = vϑ )ϑ are bounded in L2(ΩT ), and M(I)m respectively.
Now it suffices to show that cϑ ∈ Rm is bounded in order to get the boundedness of (uϑ )ϑ in BV (I)m.
Assume that cϑ ∈ Rm is unbounded for ϑ → 0. It holds

∑
m
j=1 α j‖Dt ûϑ , j‖M(I) = ∑

m
j=1 α j‖Dtuϑ , j‖M(I) 6 Jϑ (uϑ )6 Jϑ (0)

and with the Poincare inequality for BV (I) functions ([Ambrosio et al., 2000, p. 152]), we get that (ûϑ )ϑ

is bounded in BV (I)m. Consider zϑ = yϑ − ỹϑ with ỹϑ = Lϑ (ûϑ ·g)+Qϑ (y0,y1). The BV boundedness
of (ûϑ )ϑ , and therefore the boundedness in L2(I)m, implies by Lemma 3.2 that (ỹϑ )ϑ is bounded in
L2(ΩT ). The boundedness of (ỹϑ )ϑ and (yϑ )ϑ lead to the boundedness of (zϑ )ϑ in L2(ΩT ). The
linearity of Lϑ (B(·, ·)), implies zϑ = Lϑ (B(0,cϑ )). Consider now pϑ := max16 j6m |cϑ , j|, with cϑ → ∞,
ξϑ := 1

pϑ
zϑ , and aϑ = cϑ

pϑ
. There exists a ϑ0 > 0 such that for all ϑ < ϑ0 the sequence aϑ is bounded by

definition in Rm. Thus, let us now consider ϑ 6 ϑ0 for all sequences in this proof. Hence, there exists a
subsequence of aϑ , which converges to some a. Denote this converging subsequence again by aϑ . The
linear structure of Lϑ (B(·, ·)) gives us ξϑ = Lϑ (B(0,aϑ )). Define by ξ ϑ the solution Lϑ (B(0,a)). Next
we show that Lemma 3.2 leads to ‖ξϑ −ξ ϑ‖L2(ΩT )

→ 0. Thus, we have

‖ξϑ −ξ ϑ‖L2(ΩT )
= ‖Lϑ (B(0,aϑ −a))‖L2(ΩT )

6 c|aϑ −a|Rm → 0.
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Define ξ by L(B(0,a)). Then we have

‖ξ −ξ ϑ‖C(I;L2(Ω)) = ‖L(B(0,a)−Lϑ (B(0,a))‖C(I;L2(Ω))→ 0

according to Theorem 3.2. With the boundedness of zϑ in L2(ΩT ), the unboundedness of |pϑ |, and the
definition of ξϑ = zϑ

pϑ
, we can deduce that ξϑ → 0 in L2(ΩT ). Hence, ξ ϑ = ξϑ +(ξ ϑ − ξϑ )→ 0 in

L2(ΩT ). Thus, we obtain that ξ = 0, which implies ∑
m
j=1 a jg j = 0. Because g j ∈ L∞(Ω)r {0} have

pointwise disjoint supports, we get that a j = 0, which is a contradiction. Thus, it is shown that cϑ is
bounded, and hence (uϑ )ϑ is bounded in BV (I)m. �
The next theorem states an a priori error estimate for the optimal state. Under additional assumptions
on the structure of optimal adjoint state an improved rate for the optimal state is proven. Furthermore,
an optimal convergence for the control in the L1(I)-norm is proven.

THEOREM 6.1 For yd ∈C1(I;L2(Ω)) and (y0,y1) ∈ H1
0 (Ω)×L2(Ω), the following a priori error esti-

mate holds

‖y− yϑ‖L2(ΩT )
6 c(h2/3 + τ

2/3)
(
‖y0‖H1

0 (Ω)+‖y1‖L2(Ω)+‖yd‖C1(I;L2(Ω))

)
. (6.3)

For yd ∈C1(I;H1
0 (Ω)), g ∈ (H2)m, and (y0,y1) ∈H3×H2, the following error rate hold

‖y− yϑ‖L2(ΩT )
6 c(h+ τ)

(
‖y0‖H3 +‖y1‖H2 +‖yd‖C1(I;H1

0 (Ω)))

)
. (6.4)

Proof. First we consider ‖p− p̂ϑ‖
1
2
L∞(I,L2(Ω))

in (6.2). By the regularity of B(v,c) ∈ L2(ΩT ), we get that

y− yd ∈C1(I;L2(Ω)) from Theorem 2.2. The error estimate in (3.3) with α1 = 0 and α2 = 1 implies
then

‖p− p̂ϑ‖
1
2
L∞(I;L2(Ω))

6 c(h2 + τ
2)

1
3 ‖y− yd‖

1
2
W 1,1(I;L2(Ω))

. (6.5)

Consider now the term ‖y− ŷϑ‖L2(ΩT )
in (6.2). Using (3.3) with α1 = 0 and α2 = 0 implies

‖y− ŷϑ‖L2(ΩT )
6 c(h2 + τ

2)
1
3

(
‖y0‖H1

0 (Ω)+‖y1‖L2(Ω)+‖B(v,c)‖L1(I;L2(Ω))

)
. (6.6)

Hence, Lemma 6.3, (6.2), (6.5) and (6.6) imply (6.3). Assume that yd ∈C1(I;H1
0 (Ω)), g ∈ (H2)m and

(y0,y1) ∈H3×H2 hold. By Theorem 2.2 we have y− yd ∈C1(I;H1
0 (Ω)). Using (3.3) with α1 = 1 and

α2 = 1, implies

‖p− p̂ϑ‖
1
2
L∞(I;L2(Ω))

6 c(h2 + τ
2)

1
2 ‖y− yd‖

1
2
W 1,1(I;H1

0 (Ω))
. (6.7)

Corollary 3.1 leads to ‖y− ŷϑ‖L2(ΩT )
= O(τ2 + h2). Hence, (6.7) and the convergence rate of ‖y−

ŷϑ‖L2(ΩT )
give us (6.4). �

LEMMA 6.4 Let p be the weak solution of W ∗ for w ∈ C1(I,Hγ) with γ = 0,1 and pϑ its discrete
counterpart. Then there holds∥∥∥∥Rh

∫ T

0
p dt−

∫ T

0
pϑ dt

∥∥∥∥
H1

0 (Ω)

6 c(h2 + τ
2)(γ+2)/3‖w‖C1(I,Hγ ).
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Proof. This follows directly from [Zlotnik, 1994, Theorem 4.1]. �
To avoid repetitions and increase readability, we introduce the following constant κ , which is used to
specify the convergence rates depending on the regularity of (yd ,y0,y1,g). To address the convergence
rate later, the following data dependent constant is defined

κ :=

{
2
3 , if yd ∈C1(I,L2(Ω)), (y0,y1) ∈ H1

0 (Ω)×L2(Ω), g ∈ L∞(Ω)m,

2, if yd ∈C1(I,H1
0 (Ω)), (y0,y1) ∈H3×H2, g ∈ (H2)m.

THEOREM 6.2 For the optimal control (v,c) of (P̃) and solutions (vϑ ,cϑ ) of (P̃semi
ϑ

) the following a
priori error estimates hold:

|J(v,c)− Jϑ (vϑ ,cϑ )|=
{

O(τ +h) , if κ = 2/3,
O
(
τ2 +h2

)
, if κ = 2, (6.8)

∣∣∣∣‖v‖M(I)m −‖vϑ‖M(I)m

∣∣∣∣={O
(
τ2/3 +h2/3

)
, if κ = 2/3,

O(τ +h) , if κ = 2.
(6.9)

The following proof is a modified version of the proof of [Pieper and Vexler, 2013, Theorem 4.2.].
Proof. Optimality leads to the following two inequalities

J(v,c)6 J(vϑ ,cϑ ) and Jϑ (vϑ ,cϑ )6 Jϑ (v,c).

This implies J(v,c)−Jϑ (v,c)6 J(v,c)−Jϑ (vϑ ,cϑ )6 J(vϑ ,cϑ )−Jϑ (vϑ ,cϑ ). So it remains to estimate
the error with respect to the cost functionals for a fixed (v,c), i.e. (v,c) and (vϑ ,cϑ ). From the cost
functionals of (P̃) and (P̃semi

ϑ
) follows the following identity

J(v,c)− Jϑ (v,c)

=−1
2
‖S(v,c)−Sϑ (v,c)‖2

L2(ΩT )
+(B(v,c),L∗(S(v,c)− yd)−L∗ϑ (S(v,c)− yd))L2(ΩT )

+(Q(y0,y1)−Qϑ (y0,y1),S(v,c)− yd)L2(ΩT )
(6.10)

Lemmata 2.2 and 3.1 imply

〈Q(y0,y1)−Qϑ (y0,y1),S(v,c)− yd〉L2(ΩT )

= (y1, p(0)− pϑ (0))L2(Ω)+

(
y0−Rhy0,

∫ T

0
S(v,c)− yd dt

)
L2(Ω)

+

(
∇(Rhy0− y0),∇

∫ T

0
p dt

)
L2(Ω)

+

(
∇Rhy0,∇

∫ T

0
pϑ − p dt

)
L2(Ω)

(6.11)

We set α = 1 for κ = 2/3 and α = 2 for κ = 2. Then we have according to Theorem 2.2 and 3.2

(y1, p(0)− pϑ (0))L2(Ω) 6 ‖y1‖L2(Ω)‖p− pϑ‖C(I;L2(Ω))

6 c(τα +hα)‖y1‖L2(Ω)‖S(v,c)− yd‖C1(I,Hα−1).
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Further we have(
y0−Rhy0,

∫ T

0
S(v,c)− yd dt

)
L2(Ω)

6 ‖y0−Rhy0‖L2(Ω)‖S(v,c)− yd‖L2(ΩT )

6 chα‖y0‖Hα‖S(v,c)− yd‖L2(ΩT )
.

Since S(v,c)− yd ∈C1(I;L2(Ω)) we have p ∈C(I,H2) according to Theorem 2.2 and thus(
∇(Rhy0− y0),∇

∫ T

0
p dt

)
L2(Ω)

=

(
Rhy0− y0,−∆

∫ T

0
p dt

)
L2(Ω)

6 c‖y0−Rhy0‖L2(Ω)‖p‖L2(I,H2)

6 chα‖y0‖Hα‖S(v,c)− yd‖C1(I,L2(Ω)).

Finally, we have according to Lemma 6.4(
∇Rhy0,∇

∫ T

0
pϑ − p dt

)
L2(Ω)

=

(
∇Rhy0,∇

(∫ T

0
pϑ −Rh

∫ T

0
p dt

))
L2(Ω)

6 c‖y0‖L2(Ω)‖
∫ T

0
pϑ −Rh

∫ T

0
p dt‖H1

0 (Ω) 6 c‖y0‖L2(Ω)(τ
α +hα)‖S(v,c)− yd‖C1(I,Hα−1).

For (B(v,c),y0,y1,yd) ∈ L2(ΩT )×H1
0 (Ω)×L2(Ω)×C1(I;L2(Ω)), the function S(v,c)− yd is an ele-

ment of C1(I;L2(Ω)) according to Theorem 2.2. If (g,y0,y1,yd) ∈ (H2)m×H3×H2×C1(I;H1
0 (Ω))

we get that S(v,c)− yd ∈C1(I;H1
0 (Ω)). Hence, the apriori estimate (3.3) implies

|(B(v,c),L∗(S(v,c)− yd)−L∗ϑ (S(v,c)− yd))L2(ΩT )
|= O(τα +hα). (6.12)

Inequality (3.3) and Corollary 3.1 imply 1
2‖S(v,c)−Sϑ (v,c)‖2

L2(ΩT )
= O(τα +hα). Thus, the assertion

is proven. �

6.1 Optimal Convergence Rates for the Optimal Controls of (P̃semi
ϑ

)

Under certain assumptions we show that the BV-representations uϑ of the optimal controls of (P̃semi
ϑ

)
converge with a specific rate in the L1−norm to the optimal control u of (P). Further, define the follow-
ing functions:

z(t) := ∂t p1(t) =
∫

Ω

L∗ (S (v,c)− yd)(t)g dx (6.13)

zϑ (t) := ∂t p1,ϑ (t) =
∫

Ω

L∗ϑ (Sϑ (vϑ ,cϑ )− yd)(t)g dx (6.14)

with (v,c) as the optimal control of (P̃) and (vϑ ,cϑ ) as optimal control of (P̃semi
ϑ

). Due to Proposition
4.6 and Remark 5.2, it holds that supp(vi)⊆ {t|zi(t) = 0} and supp(vϑ ,i)⊆ {t|zϑ ,i(t) = 0}.

LEMMA 6.5 The matrix G := (〈Lgi,Lg j〉L2(ΩT )
)m

i, j=1 ∈ Rm×m is symmetric and positive definite.

Proof. the matrix G is a Gramian-matrix, which is a consequence of the uniqueness of solutions of the
wave equation the fact that {gi}m

i=1 is a linear independent system. �
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THEOREM 6.3 uϑ converges weakly* in BV (0,T )m to the solution u for ϑ → 0.

Proof. Let (ϑn)
∞
n=1 = (τn,hn) be a null sequence such that (τn)

∞
n=1 ⊂ R+, (hn)

∞
n=1 ⊂ R+. Lemma 6.3

implies that (uϑn)
∞
n=1 is a bounded sequence in BV (I)m where (vϑn ,cϑn) are optimal controls of (Psemi

ϑn
).

The weak* compactness of closed and bounded sets in BV (I)m implies the existence of a subsequence
(uϑnk

)k which converges weakly* to some ũ ∈ BV (I)m. Hence, (uϑnk
)k converges in L2(I)m to ũ and

Dtuϑnk
= vϑnk

converges weakly* in M(I)m to Dt ũ. There exists a unique element (ṽ, c̃) ∈M(I)m×Rm

such that ũ =
∫ ·

0 dṽ(s)− 1
T
∫ T

0
∫ t

0 dṽ(s) dt + c̃. Due to the weak* l.s.c. of ‖ · ‖M(I) in M(I), we get

liminf
k→∞

∑
m
i=1 αi‖vϑnk ,i

‖M(I) >∑
m
i=1 αi‖Dt ũi‖M(I). (6.15)

Let us show that
lim
k→∞
‖Sϑnk

(vϑnk
,cϑnk

)− yd‖2
L2(ΩT )

= ‖S(ṽ, c̃)− yd‖2
L2(ΩT )

(6.16)

holds. Theorem 3.2, the stability of Lϑnk
, see Lemma 3.2 and the strong convergence of uϑk in L2(I)

lead to

‖Sϑnk
(vϑnk

,cϑnk
)−S(ṽ, c̃)‖L2(ΩT )

6 ‖Sϑnk
(vϑnk

,cϑnk
)−Sϑnk

(ṽ, c̃)‖L2(ΩT )

+‖Sϑnk
(ṽ, c̃)−S(ṽ, c̃)‖L2(ΩT )

6 c‖uϑk − ũ‖L2(I)m

+ c(h2
nk
+ τ

2
nk
)

1
3 (‖y0‖H1

0 (Ω)+‖y1‖L2(Ω)+‖B(ṽ, c̃)‖L1(I;L2(Ω)))

This leads to (6.16). With (6.15), (6.16) and Theorem 6.2 we get

J(v,c) = liminf
k→∞

Jϑk(vϑk ,cϑk)> J(ṽ, c̃).

The uniqueness of the optimal control of (P) leads to the desired result. �

COROLLARY 6.1 There holds uϑ → u in L2(I) for ϑ → 0.

Next we prove pointwise convergence of zϑ and ∂tzϑ .

LEMMA 6.6 For ϑ → 0 we have ‖zϑ − z‖L∞(I)m → 0.

Proof. By Theorem 2.2 and Definition 3.1, we have that zϑ ∈C(I) and z∈C1(I). Hence, ‖zϑ −z‖L∞(I)m

is well-defined. There holds that

‖zϑ − z‖L∞(I)m 6 csup
t∈I
‖L∗ϑ (Sϑ (vϑ ,cϑ )− yd)(t, ·)−L∗(S(v,c)− yd)(t, ·)‖L1(Ω)

6 c
[
‖L∗ϑ (Sϑ (vϑ ,cϑ ))−L∗(S(v,c))‖C(I;L2(Ω))+‖L

∗
ϑ (yd)−L∗(yd)‖C(I;L2(Ω))

]
. (6.17)

Next we show that ‖zϑ − z‖L∞(I)m → 0 holds. According to Theorem 3.2 we obtain

‖L∗ϑ (yd)−L∗(yd)‖C(I;L2(Ω)) 6 c(h2 + τ
2)

1
3 ‖yd‖L1(I;L2(Ω)). (6.18)

Furthermore, we have

‖L∗ϑ (Sϑ (vϑ ,cϑ ))−L∗(S(v,c))‖C(I;L2(Ω)) 6 ‖L
∗
ϑ (Sϑ (vϑ ,cϑ ))−L∗ϑ (S(v,c))‖C(I;L2(Ω))

+‖L∗ϑ (S(v,c))−L∗(S(v,c))‖C(I;L2(Ω)) (6.19)
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For the second term on the right hand side of (6.19), we have using Theorem 3.2:

‖L∗ϑ (S(v,c))−L∗(S(v,c))‖C(I;L2(Ω)) 6 c(h2 + τ
2)

1
3 ‖S(v,c)‖L1(I;L2(Ω)). (6.20)

For the first term on the right hand side of (6.19), we use the stability of Lϑ and L∗
ϑ

from Lemma 3.2 to
obtain

‖L∗ϑ (Sϑ (vϑ ,cϑ ))−L∗ϑ (S(v,c))‖C(I;L2(Ω)) 6 c‖Sϑ (vϑ ,cϑ )−S(v,c)‖C(I;L2(Ω))

6 c
(
‖Sϑ (vϑ ,cϑ )−Sϑ (v,c)‖C(I;L2(Ω))+‖Sϑ (v,c)−S(v,c)‖C(I;L2(Ω))

)
6 c‖uϑ −u‖L2(I)+‖Sϑ (v,c)−S(v,c)‖C(I;L2(Ω)). (6.21)

The strong convergence of uϑ to u in L2(I), see Corollary 6.1, and Theorem 3.2 imply that ‖L∗
ϑ
(Sϑ (vϑ ,cϑ ))−

L∗
ϑ
(S(v,c))‖C(I;L2(Ω)) converges to 0 for ϑ → 0. Hence, ‖zϑ − z‖L∞(I)m converges to 0 for ϑ → 0. �

LEMMA 6.7 There exists a constant c> 0 such that the following inequality holds for all f ∈L1(I;L2(Ω))

‖∂tL∗ϑ ( f )‖Cτ (I;L2(Ω)) 6 c‖ f‖L1(I;L2(Ω)). (6.22)

Proof. This follows directly from [Zlotnik, 1994, Theorem 2.1]. �

LEMMA 6.8 The following a priori error estimate

‖∂t(L∗( f )−L∗ϑ ( f ))‖Cτ (I;L2(Ω)) 6 (h2 + τ
2)

1
3 ‖ f‖W 1,1(I;L2(Ω))

holds for all f ∈W 1,1(I;L2(Ω)).

Proof. This follows directly from [Zlotnik, 1994, Theorem 4.2]. �

LEMMA 6.9 We have
‖∂t(zϑ − z)‖Cτ (I)m −→ 0 for ϑ → 0. (6.23)

Proof. Lemma 6.7 implies

‖∂t(zϑ − z)‖Cτ (I)m = ∑
m
`=1 sup

ti∈wτ

∣∣∣∣∂t

∫
Ω

(L∗ϑ (Sϑ (vϑ ,cϑ )− yd)(ti)−L∗(S(v,c)− yd)(ti))g` dx
∣∣∣∣

6 c‖∂t (L∗ϑ (Sϑ (vϑ ,cϑ )− yd)−L∗(S(v,c)− yd))‖Cτ (I;L2(Ω))

6 c‖∂t (L∗ϑ (Sϑ (vϑ ,cϑ )− yd)−L∗ϑ (S(v,c)− yd))‖Cτ (I;L2(Ω))

+ c‖∂t (L∗ϑ (S(v,c)− yd)−L∗(S(v,c)− yd))‖Cτ (I;L2(Ω))

6 c‖Sϑ (vϑ ,cϑ )−S(v,c)‖L1(I;L2(Ω))

+ c‖∂t (L∗ϑ (S(v,c)− yd)−L∗(S(v,c)− yd))‖Cτ (I;L2(Ω)) (6.24)

The first term on the right hand side of the last inequality converges to 0 for ϑ → 0, e.g. see (6.21).
Because yd and S(v,c) ∈C1(I;L2(Ω)) holds Lemma 6.8 implies that the last term in the last inequality
converges to 0 for ϑ → 0. This proves the assertion. �

LEMMA 6.10 We have
‖∂t(zϑ − z)‖L∞(I)m → 0 for ϑ → 0. (6.25)
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Proof. At first we define a cell-wise discretization of the derivative of z as follows

δtz := ∑
M
i=1

z(ti)− z(ti−1)

τ
1Ii , with Ii := (ti−1, ti), i = 1, · · · ,M. (6.26)

Then we proceed with

‖∂t(zϑ − z)‖L∞(I)m 6 ‖∂tzϑ −δtz‖L∞(I)m +‖δtz−∂tz‖L∞(I)m .

Using the disjoint supports of the characteristic functions in the definition of δtz leads to

‖∂tzϑ −δtz‖L∞(I)m =
m

∑
j=1

max
i=1,··· ,M

∣∣∣∣∣ z
j
ϑ
(ti)− z j

ϑ
(ti−1)

τ
−

z j(ti)− z j(ti−1)

τ

∣∣∣∣∣= ‖∂ t(zϑ − z)‖Cτ (I)m

which converges to 0 under the consideration of (6.23). Further, calculations show that

‖δtz−∂tz‖L∞(I)m =

∥∥∥∥∑M
i=1

(
z(ti)− z(ti−1)

τ
−∂tz(t)

)
1Ii(t)

∥∥∥∥
L∞(I)m

6

∥∥∥∥∑M
i=1

(
z(ti)− z(ti−1)

τ
−∂tz(ti)

)
1Ii(t)

∥∥∥∥
L∞(I)m

+
∥∥∥∑M

i=1 (∂tz(ti)−∂tz(t))1Ii(t)
∥∥∥

L∞(I)m

=
m

∑
j=1

(
max

i=1,··· ,M

∣∣∣∣ z j(ti)− z j(ti−1)

τ
−∂tz j(ti)

∣∣∣∣+ max
i=1,··· ,M

sup
t∈Ii
|∂tz j(ti)−∂tz j(t)|

)
.

In the last equation, we directly see that the first term converges to 0 due to [Anastassiou, 2017, Theorem
1.11]. The second term converges to 0 due to the uniform continuity of ∂tz(t) in I. Hence, the result
follows for ϑ → 0, which implies the claim. �

LEMMA 6.11 The convergence ‖p1,ϑ − p1‖L∞(I)m → 0 holds for ϑ → 0.

Proof. This follows directly from

‖p1,ϑ − p1‖L∞(I)m 6 c‖L∗ϑ (Sϑ (vϑ ,cϑ )− yd)−L∗(S(v,c)− yd)‖C(I;L2(Ω)),

which converges to 0 using the same steps as in Lemma 6.6. �
In order to proof a priori error estimates for the control in the L1(I)-norm and higher convergence rates
for the state variable we have to make the following assumption.

Assumption (A1) {t ∈ I||p1,i(t)|= α}= {t1,i, · · · , tmi,i} for mi ∈ N, with i = 1, · · · ,m.

(A2) ∂tzi(t j,i) 6= 0, for j = 1, · · · ,mi and i = 1, · · · ,m.

REMARK 6.1 The assumption (A1) enforces finitely many jumps for the optimal control of (P), i.e. it
holds supp(Dtui)⊆ {t1,i, · · · , tmi,i} for u ∈ BV (I)m.

LEMMA 6.12 Let (vϑ ,cϑ ) be an optimal control of (P̃semi
ϑ

). Under the assumptions (A1) and (A2)
above, there exists a δ > 0, and ϑ0 > 0 such that for all 0 < ϑ 6 ϑ0 holds

vϑ ,i = ∑
mi
l=1 ci

l,ϑ δt i
l,ϑ

with ci
l,ϑ ∈ R and t i

j,ϑ ∈ Bδ (t j,i),

where Bδ (t j,i) are pairwise disjoint for a fixed i = 1, · · · ,m with respect to the index j = 1, · · · ,mi and
with 0 < ϑ → 0. The coefficients in front of the Dirac measures of vϑ ,i, i.e. ci

l,ϑ for l = 1, · · · ,mi, are
possibly 0.



18 of 28

Proof. Let us begin with the case m = 1, m1 = 1, i.e. {t ∈ I||p1(t)|= α}= {t̃1}. First of all we know
that |p1(t)| 6 α for all t ∈ I holds and since p1 ∈ C1(I) as well as that t̃1 is an interior point follows
z(t̃1) =−∂t p1(t̃1) = 0. Moreover, due to (A2) there exists a δ > 0 and c1 > 0 such that |∂tz(t)|> c1 for
all t ∈ Bδ (t̃1) ⊂ I. Since ∂tz is continuous, ∂tz does not change its sign on Bδ (t̃) and hence z is strictly
monotone in Bδ (t̃1). Therefore t̃1 is the only root of z in Bδ (t̃1). Moreover, there exist t−, t+ ∈ Bδ (t̃1)
with z(t−)< 0 < z(t+). By Lemma 6.6 there exists a ϑ0 = (τ0,h0) such that zϑ (t−)< 0 < zϑ (t+) for all
ϑ < ϑ0. Since zϑ is continuous there exists a tϑ ∈ (t−, t+) such that zϑ (tϑ ) = 0 for all ϑ < ϑ0. Next we
show that there exists a ϑ̃0 6 ϑ0 such that tϑ is the only root of zϑ in Bδ (t̃1) for all ϑ < ϑ̃0. Lemma 6.10
implies existence of a ϑ̃0 < ϑ0 that ∂tzϑ is either strictly positive or strictly negative on Bδ (t1). Now let
t̂ϑ be a second root of zϑ in Bδ (t̃1). Then it holds

0 = zϑ (tϑ )− zϑ (t̂ϑ ) =
∫ tϑ

t̂ϑ
∂tzϑ (t) dt 6= 0.

Hence, there is no second root of zϑ in Bδ (t̃1). Next we show that t 6= tϑ and zϑ (t) = 0 imply the
existence of ϑ̂0 < ϑ̃0 such that |p1,ϑ (t)|< α for all ϑ < ϑ̂ and thus vϑ = c1,ϑ δtϑ with c1 possibly zero.
Such a t can only exist in IrBδ (t̃1). Due to Assumption 6.1 and the condition |p1,ϑ (t)|6 α for all t ∈ I
there exists a ε > 0 such that |p1(t)| < α − ε for all t ∈ I rBδ (t̃1). Lemma 6.11 implies the existence
of a ϑ̂0 < ϑ̃ with |p1,ϑ (t)| < α − ε/2 for all ϑ < ϑ̂0 and t ∈ I rBδ (t̃1). In the case of m = 1 and
{t ∈ I||p1(t)| = α} = {t̃1, · · · , t̃m1} with m1 > 1, we can find for each t̃i a δi > 0 with

⋂m1
i=1 Bδi(t̃i) = /0

and a ϑi such that there exists a t i
ϑ
∈ Bδi(t̃i) with vϑ |Bδi

(t̃i) = ci,ϑ δt i
ϑ

and vϑ |Ir∪m1
i=1Bδi

(t̃i)
= 0. Then choose

ϑ0 < mini=1,...,m1 ϑi. In the case of m > 1, one has to consider the same proof as above with respect to
an additional subindex i = 1, · · · ,m, and the smallest ϑ0 and δ used in the proofs of each component
i = 1, · · · ,m. �
From now on, we will assume that ϑ 6 ϑ0 holds with ϑ0 from Lemma 6.12. Furthermore, without loss
of generality, we assume that δ > 0 in Lemma 6.12 is considered to be small enough such that there
exists a δ̃ > 0 for which δ̃ < dist(Bδ (t j1,i),{0,T}), and δ̃ < dist(Bδ (t j1,i),Bδ (t j2,i)), j1, j2 = 1, · · · ,mi,
j1 6= j2 for i = 1, · · · ,m. Let us note that Remark 4.1 and Lemma 6.12 guarantee that such a δ̃ > 0 exists.
Under these assumptions, we can work with the following definition.

DEFINITION 6.4 Let us define the BV representations of the optimal controls of (P) and (Psemi
ϑ

) in a
more explicit form

ui = ci +∑
mi
j=1 ci

j

(
1(t j,i,T ](t)−

T − t j,i

T

)
, ui,ϑ = ci,ϑ +∑

mi
j=1 ci

j,ϑ

(
1(t i

j,ϑ ,T ]
(t)−

T − t i
j,ϑ

T

)
for i = 1, . . . ,m.

LEMMA 6.13 The following inequality holds

‖u−uϑ‖L1(I)m 6 c
(
∑

m
i=1

(
|ci− ci,ϑ |+∑

mi
j=1 |c

i
j| · |t j,i− t i

j,ϑ |+ |ci
j− ci

j,ϑ |
))

(6.27)

for some constant c which depends only on T .

We can prove (6.27) by using ‖1(t j,i,T ]−1(t i
j,ϑ ,T ]
‖L1(I) = |t j,i− t i

j,ϑ |.

LEMMA 6.14 For each t j,i there is a function f j,i ∈C∞
c (ΩT ), with j = 1, · · · ,mi and i = 1, · · · ,m, such

that the function

g j
i (t,x) :=

∫ T

t
L∗( f j,i)(s,x) ds ∈C0(I;L2(Ω)) (6.28)
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fulfills the properties

a) L∗( f j,i)(t,x) = hi, j(t) fi(x) for some hi, j ∈C∞
c (I), fi ∈C∞

c (Ω), and f j,i = fi∂tthi, j−hi, j∆ fi,

b) 06
∫ T

t hi, j(s) ds < 1 in [t j,i−δ − δ̃

2 , t j,i +δ + δ̃

2 ]rBδ (t j,i),

c)
∫ T

t hi, j(s) ds = 1 in Bδ (t j,i),

d) supp
(∫ T

t hi, j(s) ds
)
⊆ [t j,i−δ − δ̃

2 , t j,i +δ + δ̃

2 ]⊂⊂ I, i.e.
∫

Ω
g j

i dx ∈C0(I),

e) 〈 fi,gl〉L2(Ω) = δi,l ,

with δi,l = 0, if l 6= 0 and 1 else.

Proof. For all I j,i := [t j,i−δ − δ̃

2 , t j,i +δ + δ̃

2 ], j = 1, · · · ,mi and i = 1, · · · ,m, there exists p̃ j,i ∈C∞
c (I)

such that 06 p̃ j,i 6 1 with

p̃ j,i = 0 in I r I j,i, p̃ j,i = 1 in [t j,i−δ , t j,i +δ ]. (6.29)

Let us define hi, j = −∂t p̃ j,i. For each gi, i = 1, · · · ,m, we can find a fi ∈C∞
c (Ω) such that ( fi,gk)L2(Ω)

is 0 for i 6= k and 1 else. One can show that L∗( f j,i) = hi, j fi with f j,i := fi∂tthi, j−hi, j∆ fi holds. Hence,
g j

i , defined in (6.28), fulfills the desired properties a)-e). �

LEMMA 6.15 There exists a constant c > 0 independent of ϑ such that

|ci
j− ci

j,ϑ |6 c
(

τ
κ +hκ +‖y− yϑ‖L2(ΩT )

)
with j = 1, · · · ,mi and i = 1, · · · ,m. (6.30)

Proof. Let i = 1, · · · ,m, j ∈ {1, · · · ,mi} and consider from Lemma 6.14 the function g j
i =

∫ T
t hi, j fi ds =∫ T

t L∗( f j,i)ds. Hence, we have

ci
j− ci

j,ϑ =
∫ T

0

∫ T

t
hi, j(s) ds dDt(ui−uϑ ,i)(t) =

∫ T

0
hi, j(ui−uϑ ,i) dt

= ∑
m
l=1

∫ T

0
hi, j(ul−uϑ ,l)dt

∫
Ω

figl dx =
∫ T

0

∫
Ω

−∂tg
j
i

(
∑

m
l=1(ul−uϑ ,l)gl

)
dt dx (6.31)

Thus, it follows

ci
j− ci

j,ϑ =
∫ T

0

∫
Ω

−∂tg
j
i

(
∑

m
l=1(ul−uϑ ,l)gl

)
dt dx =

∫ T

0

∫
Ω

L∗( f j,i)(B(v,c)−B(vϑ ,cϑ )) dt dx

= (L∗( f j,i)−L∗ϑ ( f j,i),B(v,c)−B(vϑ ,cϑ ))L2(ΩT )
+(L∗ϑ ( f j,i),B(v,c)−B(vϑ ,cϑ ))L2(ΩT )

.

By Theorem 3.2 and the boundedness of (vϑ ,cϑ ) we obtain

(L∗( f j,i)−L∗ϑ ( f j,i),B(v,c)−B(vϑ ,cϑ ))L2(ΩT )

6 ‖L∗( f j,i)−L∗ϑ ( f j,i)‖L2(ΩT )
‖B(v,c)−B(vϑ ,cϑ )‖L2(ΩT )

= O(τ2 +h2).
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Moreover, there holds

(L∗ϑ ( f j,i),B(v,c)−B(vϑ ,cϑ ))L2(ΩT )
= ( f j,i,Lϑ (B(v,c))−Lϑ (B(vϑ ,cϑ )))L2(ΩT )

6 ‖ f j,i‖L2(ΩT )
‖Sϑ (v,c)−Sϑ (vϑ ,cϑ )‖L2(ΩT )

6 c‖Sϑ (v,c)−S(v,c)‖L2(ΩT )
+ c‖S(v,c)−Sϑ (vϑ ,cϑ )‖L2(ΩT )

6 c(τκ +hκ +‖y− yϑ‖L2(ΩT )
)

according to Theorem 3.2, and Corollary 3.1. �

LEMMA 6.16 There holds that

|t i
j,1− t i

j,ϑ |6 c
(

τ
κ +hκ +‖y− yϑ‖L2(ΩT )

)
with j = 1, · · · ,mi and i = 1, · · · ,m. (6.32)

Proof. Using that zi(t j,i) = zϑ ,i(t i
j,ϑ ) = 0 and zi = ∂t p1,i ∈C1(I) gives us zi(t i

j,ϑ )−zϑ ,i(t i
j,ϑ ) = zi(t i

j,ϑ ) =

zi(t j,i) + ∂tzi(ξ )(t j,i − t i
j,ϑ ) for some ξ ∈ Bδ (t j,i). In the proof of Lemma 6.12 we have shown that

|∂tzi(ξ̃ )|> 0 for all ξ̃ ∈ Bδ (t j,i) and therefore we have ∂tzi(ξ ) 6= 0. Then Lemma 3.2 and Theorem 3.2
imply

|t j,i− t i
j,ϑ |6 c‖zi− zϑ ,i‖L∞(I) 6 c‖z− zϑ‖L∞(I)m

6 c‖L∗(S(v,c)− yd)−L∗ϑ (Sϑ (vϑ ,cϑ )− yd)‖C(I;L2(Ω))

6 c‖L∗(S(v,c)− yd)−L∗ϑ (S(v,c)− yd)‖C(I;L2(Ω))+ c‖L∗ϑ (S(v,c)−Sϑ (vϑ ,cϑ ))‖C(I;L2(Ω))

6 c‖L∗(S(v,c)− yd)−L∗ϑ (S(v,c)− yd)‖C(I;L2(Ω))+ c‖S(v,c)−Sϑ (vϑ ,cϑ )‖L1(I;L2(Ω))

6 c(τκ +hκ +‖S(v,c)−Sϑ (vϑ ,cϑ )‖L2(ΩT )
). (6.33)

�

LEMMA 6.17 Let ϑ0 be small enough such that((
Lϑ0(gi),Lϑ0(g j)

)
L2(ΩT )

)
i, j={1,··· ,m}

> 0 holds.

Then we obtain
|ci− ci,ϑ |6 c(τκ +hκ +‖y− yϑ‖L2(ΩT )

). (6.34)

Proof. First, define the function h(t) = 1(t,T ]− T−t
T . The optimality conditions of the continuous and

discrete problem lead to

0 = p1,i(0) = ∑
m
l=1 cl

∫ T

0

∫
Ω

L∗ (L(gl))gi dx dt

+∑
m
l=1 ∑

ml
j=1 cl

j

∫ T

0

∫
Ω

L∗
(
L
(
h(t j,l)gl

))
gi dx dt +

∫ T

0

∫
Ω

L∗ (Q(y0,y1)− yd)gi dx dt

as well as in the discrete case to

0 = p1,ϑ ,i(0) = ∑
m
l=1 cl,ϑ

∫ T

0

∫
Ω

L∗ϑ (Lϑ (gl))gi dx dt

+∑
m
l=1 ∑

ml
j=1 cl

j,ϑ

∫ T

0

∫
Ω

L∗ϑ
(

Lϑ

(
h(t i

j,ϑ )gl

))
gi dx dt +

∫ T

0

∫
Ω

L∗ϑ (Qϑ (y0,y1)− yd)gi dx dt.
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By taking the difference of the last two terms we get

∑
m
l=1(cl,ϑ − cl)

∫ T

0

∫
Ω

L∗ (L(gl))gi dx dt = ∑
m
l=1 cl,ϑ

∫ T

0

∫
Ω

[L∗ (L(gl))−L∗ϑ (Lϑ (gl))]gi dx dt

+∑
m
l=1 ∑

ml
j=1(c

l
j− cl

j,ϑ )
∫ T

0

∫
Ω

L∗
(
L
(
h(t j,l)gl

))
gi dx dt

+∑
m
l=1 ∑

ml
j=1 cl

j,ϑ

(∫ T

0

∫
Ω

[
L∗
(
L
(
h(t j,l)gl

))
−L∗ϑ

(
Lϑ

(
h(t i

j,ϑ )gl

))]
gi dx dt

)
+
∫ T

0

∫
Ω

[L∗ (Q(y0,y1)− yd)−L∗ϑ (Qϑ (y0,y1)− yd)]gi dx dt. (6.35)

For the following we remark that ūϑ is bounded BV (I), see Lemma 6.3. Then we consider the first
term in (6.35) on the righthand side. The regularity of gl implies that L(gl) ∈C1(I;Hα) with α = 0,1
depending on κ according to Theorem 2.2. Thus, with (3.3), Lemma 3.2 and Corollary 3.1 it follows,

∑
m
l=1 cl,ϑ

∫ T

0

∫
Ω

[L∗ (L(gl))−L∗ϑ (Lϑ (gl))]gi dx dt 6∑
m
l=1 c‖L∗(L(gl))−L∗ϑ (Lϑ (gl))‖L2(ΩT )

6 c∑
m
l=1

(
‖L∗(L(gl))−L∗ϑ (L(gl))‖L2(ΩT )

+‖L(gl)−Lϑ (gl)‖L2(ΩT )

)
= O(τκ +hκ).

By Lemma 6.15 we obtain:

∑
m
l=1 ∑

ml
j=1(c

l
j− cl

j,ϑ )
∫ T

0

∫
Ω

L∗
(
L
(
h(t j,l)gl

))
gi dx dt

6 c∑
m
l=1 ∑

ml
j=1 |c

l
j− cl

j,ϑ |6 c
(

τ
κ +hκ +‖y− yϑ‖L2(ΩT )

)
(6.36)

Now we consider the third term on the righthand side of (6.35). The stability of L∗
ϑ

, see Lemma 3.2,
imply

∑
m
l=1 ∑

ml
j=1 cl

j,ϑ

(∫ T

0

∫
Ω

[
L∗
(
L
(
h(t j,l)gl

))
−L∗ϑ

(
Lϑ

(
h(t l

j,ϑ )gl

))]
gi dx dt

)
6 c∑

m
l=1 ∑

ml
j=1

∥∥∥L∗
(
L
(
h(t j,l)gl

))
−L∗ϑ

(
Lϑ

(
h(t l

j,ϑ )gl

))∥∥∥
L1(ΩT )

6 c∑
m
l=1 ∑

ml
j=1

∥∥∥L∗
(
L
(
h(t j,l)gl

))
−L∗ϑ

(
L
(

h(t j
j,l)gl

))∥∥∥
L1(ΩT )

+
∥∥∥L
(
h(t j,l)gl

)
−Lϑ

(
h(t l

j,ϑ )gl

)∥∥∥
L1(ΩT )

(6.37)

Again, by Theorem 2.2 we have L(h(t̃)gl) ∈C1(I;Hα) with α = 0,1 and any t̃ ∈ I. Hence, with (3.3)
we get

∑
m
l=1 ∑

ml
j=1 ‖L

∗ (L(h(t j,l)gl
))
−L∗ϑ

(
L
(
h(t j,l)gl

))
‖L1(ΩT )

= O(τκ +hκ).

Next we consider the following inequality

‖L
(
h(t j,lgl)

)
−Lϑ

(
h(t l

j,ϑ )gl

)
‖L1(ΩT )

6 ‖L
(
h(t j,l)gl

)
−Lϑ

(
h(t l

j,ϑ )gl

)
‖L1(ΩT )

+‖Lϑ

(
h(t j,l)gl

)
−Lϑ

(
h(t l

j,ϑ )gl

)
‖L1(ΩT )

. (6.38)
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Due to (3.3) and Corollary 3.1, the first term on the right hand side of (6.38) possess the asymptotic rate
O(τκ + hκ). By Lemma 3.2, and Lemma 6.16 we obtain for the second term an estimate in terms of
c(τκ +hκ +‖y− yϑ‖L2(ΩT )

). Finally, we consider the last term in (6.35). We have

∫ T

0

∫
Ω

[L∗ (Q(y0,y1)− yd)−L∗ϑ (Qϑ (y0,y1)− yd)]gi dx dt

6 c‖L∗ (Q(y0,y1)− yd)−L∗ϑ (Q(y0,y1)− yd)‖L2(ΩT )

+ c‖L∗ϑ (Q(y0,y1)− yd)−L∗ϑ (Qϑ (y0,y1)− yd)‖L2(ΩT )
. (6.39)

The first term converges in (6.39) with a rate (τκ +hκ) according to Theorem 3.2 since Q(y0,y1)−yd ∈
C1(I,Hα) with α = 0,1. The prescribed regularity of (y0,y1), Lemma 3.2 and the error estimates in
(3.3) give us an estimate in terms of order (τκ +hκ) of the last term in (6.39). Thus, we have

∑
m
l=1(cl− cl,ϑ )

∫ T

0

∫
Ω

L∗ (L(gl))gi dx dt 6 c(τκ +hκ +‖y− yϑ‖L2(ΩT )
). (6.40)

Next we recall the symmetric positive definiteness of the matrix G from Lemma 6.5. It holds

G(c− cϑ ) =

(
∑

m
l=1(cl− cl,ϑ )

∫ T

0

∫
Ω

L∗ (L(gl))gi dx dt
)m

i=1
.

Furthermore, we have

‖G(c− cϑ )‖Rm > λmin‖c− cϑ‖Rm > cλmin‖c− cϑ‖∞ > cλmin|ci− ci,ϑ | (6.41)

for i = 1, · · · ,m where λmin > 0 is the smallest eigenvalue of G. Using (6.41) and the convergence rates
in (6.40) gives us (6.34). �
From now on we assume that all assumptions in Lemma 6.17 hold.

COROLLARY 6.2 It holds that

‖u−uϑ‖L1(I) 6 c(τκ +hκ +‖y− yϑ‖L2(ΩT )
).

This corollary is a consequence of Lemma 6.13, 6.15, 6.16, 6.17. Next we state the main result of
this work.

THEOREM 6.5 The following convergence rates hold.

‖u−uϑ‖L1(I)m = O(τκ +hκ), |ci− ci,ϑ |= O(τκ +hκ), (6.42)

|t j,i− t i
j,ϑ |= O(τκ +hκ), |ci

j− ci
j,ϑ |= O(τκ +hκ) (6.43)

with j = 1, · · · ,mi, i = 1, · · · ,m. Furthermore, we have for the optimal states of (P̃) and (P̃semi
ϑ

)

‖y− yϑ‖L2(ΩT )
= O(τκ +hκ). (6.44)

Proof. In case of κ = 2
3 , we obtain by Theorem 6.1 that ‖y− yϑ‖L2(ΩT )

= O(τ
2
3 + h

2
3 ). By Corollary

6.2, and Lemma 6.15, 6.16, 6.17, the claimed result holds for this case. Consider now the case κ = 2 and
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with this assume that the needed regularity holds for our data. Using the inequality in (6.2), Corollary
3.1 and Corollary 6.2, we obtain for some ε > 0

‖yϑ − y‖L2(ΩT )
6 c‖y− ŷϑ‖L2(ΩT )

+ c‖uϑ −u‖
1
2
L1(I)m‖p− p̂ϑ‖

1
2
C(I;L2(Ω))

6 c(τκ +hκ)+ c‖uϑ −u‖
1
2
L1(I)m‖p− p̂ϑ‖

1
2
C(I;L2(Ω))

6 c(τκ +hκ)+ cε‖uϑ −u‖L1(I)m +
c

4ε
‖p− p̂ϑ‖C(I;L2(Ω))

6 c(τκ +hκ)+ cε‖yϑ − y‖L2(ΩT )
+

c
4ε
‖p− p̂ϑ‖C(I;L2(Ω)).

Consider a ε > 0 such that cε = 1
2 , then we have

‖yϑ − y‖L2(ΩT )
6 c(τκ +hκ +‖p− p̂ϑ‖C(I;L2(Ω))).

Then the a priori estimate (3.3) implies

‖p− p̂ϑ‖C(I;L2(Ω)) 6 c(h2 + τ
2)‖y− yd‖C1(I;H1

0 (Ω)).

So we have ‖yϑ − y‖L2(ΩT )
= O(τ2 + h2) and thus the same rate for the control in the L1(I)-norm.

Using the optimal rates of ‖yϑ − y‖L2(ΩT )
in (6.30), (6.32), and (6.34) implies the optimal quadratic

convergence rates for ci,ϑ , t i
j,ϑ and ci

j,ϑ . �

COROLLARY 6.3 For the BV representations of the optimal controls of (P̃) and (P̃semi
ϑ

) hold∣∣‖Dtu‖M(I)−‖Dtuϑ‖M(I)
∣∣= O(τκ +hκ) .

Furthermore, uϑ converges strictly in BV (0,T ) to u for ϑ → 0 with the convergence rate O(τκ +hκ).

Proof. The statements are a consequence of (6.8), (6.44), and Theorem 6.5. �

7. Numerical Experiments

In order to numerically verify the previously presented optimal error rates, an appropriate algorithm is
of particular importance due to the variational discretization of problem (P). Similarly as in Hafemeyer
et al. [2019], we introduce Algorithm 1 as modified version of the primal dual active point (PDAP)
algorithm, which has its origin in [Pieper and Walter, 2019, Algorithm 2]. The main difference, apart
from using a time-dependent hyperbolic equation, to the algorithm in Hafemeyer et al. [2019] is that we
consider m different controls. For this purpose define the map UA (λ ) := ∑`∈A λ`δ` for any finite set
A ⊂ I and λ ∈ R|A |. If a stopping criterion for Algorithm 1 is of interest, one can define an optimal
certificate Ψ(wk,ck). The optimal certificate is of the form

Ψ(v,c) = 〈B∗L∗ϑ (Sϑ (v,c)− yd),(v,c)〉+∑
m
i=1 αi‖vi‖M(0,T )

−min
(w,q)
〈B∗L∗ϑ (Sϑ (v,c)− yd),(w,q)〉+∑

m
i=1 αi‖wi‖M(0,T ). (7.1)

A straightforward proof can show that Ψ(ṽ, c̃) = 0 implies (5.2) with (ṽ, c̃) as optimal control of (P̃semi
ϑ

).
Furthermore, we have Jϑ (wk,ck)− Jϑ (vϑ ,cϑ )6Ψ(wk,ck), where the proof is similar to [Walter, 2016,



24 of 28

Algorithm 1: BV-PDAP Algorithm

Input: For i = 1, · · · ,m define A0,i ⊂ I with |A0,i|< ∞, λ0,i ∈ R|A0,i|,

w0 := (w0,i)
m
i=1 :=

(
UA0,i(λ0,i)

)m

i=1
∈M(0,T )m, c0 ∈ Rm, and k = 0:

Calculate:
1. t̂i = argmaxt∈I

∣∣∣∫ T
t
∫

Ω
L∗

ϑ
(Sϑ (wk,ck)− yd)gi dx ds

∣∣∣
for i = 1, · · · ,m.

2. Set Ak,i := supp(wk,i)∪{t̂i}, for i = 1, · · · ,m, Ak =
⋃m

i=1 Ak,i and compute
text

(λ ,c) = argmin
λ∈R|Ak |, c∈Rm

1
2

∥∥∥Sϑ

((
UAk,i(λi)

)m

i=1
,c
)
− yd

∥∥∥2

L2(ΩT )
+∑

m
i=1 αi‖UAk,i(λi)‖M(0,T ).

3. Define wk+1 =
(
UAk,i(λ i)

)m

i=1
, ck+1 = c; set k = k+1 and return to 1.

Lemma 12]. In the numerical experiment, that is considered below, we replace Jϑ (vϑ ,cϑ ) with J(v,c)
and use this for the abort criterion for the while-loop. In this experiment we will see that J(v,c) can
be calculated due to an constructed example that is using specific data for (P) which lead to an optimal
control that can be expressed explicitly and thus imply calculable costs J(v,c), see (7.4).

Since we want experimentally verify the optimality of our error rates, let us consider specific configu-
rations of our data with respect to (P), such that an explicit solution is a piecewise constant BV−function
with finitely many jumps. This example will fulfill all assumptions we need for the optimal error rates.
We use a construction procedure that can be found in Engel and Kunisch [2018]. Let us fix the following
data for d = 1,2,3 and m = 1:

Ω := (−1,1)d , I := (0,T ), g(x) :=
d

∏
i=1

cos(
π

2
xi) ∈C∞

0 (Ω), and

(y0,y1) = (0,0), ϕ(t,x) := β sin(
2`π
T

t)sin(
`π

T
t)

d

∏
i=1

cos(
π

2
xi)

with β = α
3π`
2T . Define the following control in BV (0,T ) by

u :=
∫ t

0
dDtu−

1
T

∫ T

0

∫
[0,s]

dDtuds+ c with c ∈ R.

Note that

Dtu = ∑
`−1
i=0 sign

(
sin
(

π
2i+1

2

))
δ T (1+2i)

2`
(7.2)

with
1
T

∫ T

0

∫ s

0
dDtuds = ∑

`−1
i=0 sign

(
sin
(

π
2i+1

2

))(
2(`− i)−1

2`

)
(7.3)

holds. With this we can now define the following desired state as yd = S(v,c)− (∂tt −4)ϕ . Finally, all
necessary data is set for (P). It can be shown that the optimal solution, with respect to the fixed data
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for (P), is u where p1(t) is of the form −
∫ T

t
∫

Ω
ϕ(x,s) · g(x) dx ds = β

2T
3π`

(
sin
(

π`t
T

)3
)

. By several
calculation steps can be shown

J̃(Dtu,c) =
T
8
(β 2a2

1 +a2
2)+α`, with a1 :=

dπ2

4
− 5`2π2

T 2 , a2 := 4
`2π2

T 2 β . (7.4)

Complete numerical discretization: In the following let us discuss the most important steps for the
complete discretization of Algorithm 1 related to the example above. For the full discretization it should
be ensured that the new jump position t̂i, for i = 1, · · · ,m, considered in step 1, can lie somewhere
between two time nodes in I and thus the support of the new iterated wk+1 has not to be restricted or
projected to the time nodes wτ . If we ignore this detail, the jump position is dependening on the grid
discretization, which can imply linear rates instead. Due to the finite support of each iterate wk, we can
write B(wk,ck) as follows:

B(wk,ck) =
(

∑t̃∈supp(wk)
λ t̃1[t̃,T ](t)−λ t̃(1− t̃

T )+ ck

)
g(x) =: fk(t)g(x). (7.5)

B(wk,ck) acts as forcing function in Lϑ and thus has to be projected on Sτ ⊗ Sh for the discretized
wave solution we introduced before. Considering the full discretization scheme for the discrete wave
solution in [Zlotnik, 1994, p.165], we need to project g on Sh which involves approximations of the
space integral by using a Gaussian quadrature rule for example. In particular, we used a Gaussian
quadrature of order 3. The projection formula for the time function fk(t) involves in [Zlotnik, 1994,
p.165, p.167] the integration of hat-functions with fk(t). This can be done without further discretization
of the involved time integrals. In particular, to obtaining Sϑ (wk,ck) in turns out, that we only need an
additional discretization step for the projection of g on the finite element space Sh.

Another difficulty is the discretization of the desired state yd = S(v,c)− (∂tt −4)ϕ . At first, let us
approximate S(v,c) by Sϑ (v,c), which we denote by S(c,v)

ϑ
, where B(v,c) is discretized as we discussed

before. For (∂tt−4)ϕ we are able to obtain an explicit formula which we projected on Sτ⊗Sh by using
Gaussian quadrature of order 5 for all time integrals and order 3 for all spatial integrals in the projection
steps of [Zlotnik, 1994, p.165, p.167]. Let us define the discretized function (∂tt −4)ϕ by ϕD

ϑ
. Hence,

we can use directly the full discretization scheme in [Zlotnik, 1994, p.165] for L∗
ϑ
(S(c,v)

ϑ
−ϕD

ϑ
),where

(y0,y1) is projected on Sh as zero function. Using the projected g function on Sh, defined by gh, and
the space-time function L∗

ϑ
(Sϑ (wk,ck)− yd), we can explicitly calculated

∫
Ω

L∗
ϑ
(Sϑ (wk,ck)− yd)gh dx,

which is a element of Sτ with Sϑ (wk,ck)− yd discretized as above. The last time integral in step 1 of
Algorithm 1 can now be calculated explicitly, for t ∈ I, by using the following formula:

∫ t

0
∑

M
`=0 v`e`(s) ds = ∑

ιτ (t)
`=1 τ

(
v`+ v`−1

2

)
+ vιτ (t)

t2
ιτ (t)
− t2 +2(tιτ (t)+1t− tιτ (t)+1tιτ (t))

2τ

+ vιτ (t)+1

t2− t2
ιτ (t)

+2(t2
ιτ (t)
− tιτ (t)t)

2τ

where v` ∈ R and ∑
M
`=0 v`e`(t) is an arbitrary element of Sτ . If t > 0, ιτ(t) is returning the high-

est index of all strictly smaller time nodes in wτ else it returns the index 0. Thus, we discretized∫ T
t
∫

Ω
L∗

ϑ
(Sϑ (wk,ck)− yd)g dx ds into a C1(0,T ) function, which we define by fϑ (t).

Step 1 is then executed as follows: First we determine the time derivative of fϑ . Since the deriva-
tive is an element of Sτ , we check where coefficients of the hat functions change their sign. At these
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node positions we can assume a local extremum and use it to determine a candidate for t̂. The ex-
act position of the extremum can be calculated as follows: The time derivative of fϑ has the form
∂t fϑ (t) = ∑

M
`=0 f`e`(t) for some f` ∈R. Let us observe a sign change in i ∈ {1, · · · ,M}. Hence, ∂t fϑ (t)

has a root in t̃ = fiti−1− fi−1ti
fi− fi−1

, where fi 6= fi−1 due to the sign change assumption. If there is no sign
change of all coefficients observed, then one can set a point t̂ from I randomly. Since there are only
finitely many coefficients to choose from, the corresponding number of extrema is finite. Step 1 is now
finished, if we take the candidate, which maximizes | fϑ |. In our numerical implementation, we consider
all possible extrema of fϑ . In practice, we have seen that adding several new jump points makes the
algorithm produce meaningful results faster.

In case of step 2 of Algorithm 1 we used a similar prox operator approach as described in Engel and
Kunisch [2018]. In particular, for fixed γ > 0 we consider the additional cost term γ/2‖(λl)l∈Ak‖

2
R|Ak |

in
the minimization problem of step 2 and use a prox-operator approach to obtain a equation that is equiv-
alent to the optimality condition of the problem in step 2. This equation is solved by a semi-smooth
Newton method. For more details consider Engel and Kunisch [2018], where the finite dimensionality
of the problem in step 2 has to be taken into account. It is assumed that for a small γ we obtain a solution
that approximates well the solution of the unregularized problem in step 2. In our numerical experiment
below, we will use for example γ = 10−10.
Experimental results: In our numerical experiment, we consider the following fixed data in the exam-
ple introduced before:

d = 2, I = (0,2), `= 2, α = 2.3 ·10−4, c = 0. (7.6)

The spatial mesh is discretized quasi-uniformly. In Figure 1 we present the numerically verified errors
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that are presented in Theorem 6.5 as well as the cost rates |J̃(v,c)− Jϑ (vϑ ,cϑ )| which are defined as
"J-Cost Error". In particular we define in Figure 1 the "State Error" by ‖ȳ− ȳϑ‖L2(ΩT )

, the "Jump Error"
by |t j,1−t1

j,ϑ |, the "Amplitude Error" by |c1
j−c1

j,ϑ |, the "Constant Error" by |c1−c1,ϑ |, and the "Control
L1-Error" by ‖ū− ūϑ‖L1(I), for j = 1,2 with respect to (7.2) and (7.6). We used (7.4) for J(v,c) and
considered (vϑ ,cϑ ) as solution of the full discretized BV-PDAP algorithm. Furthermore, Jϑ (v,c) is
calculated by all approximation steps used for Sϑ (v,c), yd , where the least squares part is calculated
under the consideration of the mass matrix in space and time, where we used Gaussian quadrature
of order 3 for the approximation of the mass matrix in space. On the x-axis in Figure 1, we see the
discretization level considered for ϑ , i.e. τ = 2−k and h = 2 ·

√
2 · 2−k with k = 3,4, · · · ,7. For each

discretization level ϑ we initialized the BV-PDAP algorithm with (w0,c0) = (2 · δ0.36,0). The semi-
smooth Newton algorithm is initialized with the data of the current iterate (wk,ck), where the initial λt̂
is defined by 1. The state error is calculated with respect to a reference state Sϑ (v,c) with τ = 2−10,
h = 2 ·

√
2 · 2−8, where we used a nodal-wise projection on a considered coarser mesh. The forcing

function B(v,c) in the reference state is discretized as we discussed above. Let us note that we have
used the cost difference |J̃(v,c)− Jϑ (vϑ ,cϑ )| as a termination criterion, in each discretization level ϑ ,
for the BV-PDAP algorithm. In detail, for each finer ϑ , we stopped Algorithm 1 if the cost difference
|J̃(v,c)− Jϑ (wk,ck)| is quadratically decreasing compared to the cost difference of the last coarser ϑ .

In Algorithm 1 step 1, we additionally considered in the numerical experiment all stationary points
of
∫ T

t
∫

Ω
L∗

ϑ
(Sϑ (wk,ck)−yd)gi dx ds and thus obtained in some iteration steps more than one new point

t̂i, for i = 1, · · · ,m. It turned out that this additional step accelerated the algorithm in finding an approx-
imation of our solution. Numerically, we observed that Diracs where clustering nearby. Therefore, in
an additional step to Algorithm 1 step 3, we merged all Diracs which where near to t̂i, i.e. if for t ∈ Ak,i

holds |t− t̂i|< ε , with e.g. ε = 0.09, then the corresponding amplitude of δt , in UAk,i(λ̄ ), is added to the
corresponding amplitude of δt̂i , in UAk,i(λ̄ ), for i = 1, · · · ,m, where δt is erased from UAk,i(λ̄ ). Further-
more, we observed that it is reasonable, after step 2, to remove all Diracs δti , t ∈ Ak,i, for i = 1, · · · ,m,
with small amplitudes λti related to δti , before defining the next iterated wk+1. For example, we erased
all Diracs with amplitude less than 10−5.
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