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Abstract In this paper, we consider optimal control problems governed by a linear
unsteady fluid-structure interaction problem. Based on a novel symmetric mono-
lithic formulation, we derive optimality systems and provide regularity results for
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1 Introduction

Fluid-structure interaction (FSI) problems have been extensively studied from
theoretical and numerical point of view in the last decade. More and more appli-
cations leading to optimal control, shape optimization, and parameter estimation
of FSI are regarded recently. At the same time, efficient gradient based optimiza-
tion algorithms for solving optimization problems governed by elliptic, parabolic,
or hyperbolic equations are developed and deeply analyzed in the literature. All
these algorithms are based on optimality systems containing appropriate adjoint
equations and building necessary optimality conditions for considered problems.
However, especially in the context of optimal control problems for unsteady FSI
problems no optimality systems based on rigorous analysis are avaliable in the
literature.

Optimization problems for unsteady FSI configurations are studied, e.g., in [6–
8,11,23,34], where different optimization algorithms are used, which are not based
on adjoint equations. In [10,26], adjoint equations are derived for one dimensional
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FSI configurations and in [36] for a stationary FSI problem. In [5,11,32], the au-
thors discretize the FSI problem in space and time and solve in each time step a
minimization problem by a gradient based algorithm, in order to estimate Young’s
modulus. In [31], the authors derive formally necessary optimality conditions for
an optimal control problem of a nonlinear time dependent FSI configuration us-
ing shape derivatives. Further results on optimal feedback control of FSI can be
found in [9,21,22] where corresponding Riccati equations are derived. In [25], the
authors apply reduced basis methods for a shape optimization problem in context
of arterial blood flow.

In this paper, we formulate a model optimal control problem governed by a
linear FSI problem, establish necessary optimality conditions, and analyze the
regularity of the optimal solutions. To this end, we propose a novel symmetric

monolithic formulation for the linear FSI problem. This formulation leads to an
adjoint equation with the same structure as the considered linear FSI problem,
which allows for a unified analytical and numerical treatment of the state and the
adjoint systems.

One of the main issues in the analysis as well as in the numerical solution of
FSI problems is the incorporation of coupling conditions between the equations
describing the behavior of the fluid and of the structure respectively. A correct
treatment of such conditions for the adjoint system is indispensable for a precise
description of the information transport across the interface between the fluid and
the structure, and as a consequence, for an accurate evaluation of the derivatives
required in gradient based optimization algorithms. In the framework suggested in
this paper, the coupling conditions in the adjoint systems have exactly the same
structure as for the state system. This is advantageous not only from the theoretical
point of view but especially allows to use the same discretization schemes and the
same practical solution algorithms for both the state and the adjoint systems.

The fact that the coupling conditions are directly incorporated in the varia-
tional formulation allows for a natural usage of Galerkin finite element discretiza-
tions is space and time. This is advantageous particularly for optimal control
problems, since the two approaches optimize-then-discretize, i.e., the discretiza-
tion of the optimality system from continuous level, and discretize-then-optimize,
i.e., discretization of the state equation and subsequent construction of the opti-
mality system on the discrete level, lead to the same discretization scheme, see,
e.g., [4]. We refer, e.g., to [27–30] for a priori numerical analysis and adaptivity for
Galerkin discretizations of parabolic optimal control problems. The application of
these techniques to the FSI problem under consideration is a topic for future work.

Usually in FSI models, the Navier-Stokes equations are coupled with a non-
linear hyperbolic equation. As the solid motion involves large stress-induced dis-
placements, the fluid domain is not stationary. To solve the resulting system the
Navier-Stokes equations can be transformed to a reference domain, see, e.g., [33,
39]. This leads to a highly nonlinear coupled system. As our goal is to focus on
the treatment of coupling conditions, we regard the linear FSI problem, where the
Stokes equations are coupled with a linear wave equation on a domain with fixed
interface, see a detailed description below. Although such a linear system neglects
several problem relevant phenomena, we belive that our results provide an im-
portant step towards tackling optimal control problems for nonlinear FSI models.
Such linear FSI configurations have been already analyzed in [12,13], wherein the
authors prove existence and regularity results. A further class of nonlinear FSI
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models with a fixed interface for fluid flow motion around a smooth elastic object
is analyzed in [2,3,20], where in [3,20] the authors even prove the existence of
strong solutions for smooth initial conditions. A similar result can be found in [19]
for a problem with a solid separating two fluid domains and periodic boundary
conditions. If a damping term in the wave equation is introduced, better regular-
ity results can be achieved, see [1,17]. Long-time behavior of the linearized FSI
problem is analyzed in [40].

In this article, we will analyze the following linear-quadratic optimal control
problem subject to a linear fluid-structure interaction problem:

min J(q, u, v) :=
γf
2

∫
I

‖v − vd‖2L2(Ωf) dt+
γs
2

∫
I

‖u− ud‖2L2(Ωs) dt+
α

2
‖q‖2Q

subject to 

ρf∂tv − ν∆v −∇p = Bfq in Ωf × I,
div v = 0 in Ωf × I,

ρs∂ttu− µ∆u = Bsq in Ωs × I,

ν∂nf v − pnf + µ∂nsu = 0 on Γi × I,
v = ∂tu on Γi × I,
v = 0 on Γf × I,
u = 0 on Γs × I,

u(0) = u0, ∂tu(0) = u1, v(0) = v0

qa ≤ q ≤ qb.

(1.1)

Thereby, Ω ⊂ Rd with d = 2, 3 is a domain separated in two disjoint Lipschitz
sub-domains Ωs and Ωf with Ω̄ = Ω̄s∪ Ω̄f as presented in Figure 1.1. Furthermore,
I = (0, T ) is a given time interval and Γ := ∂Ω denotes the outer boundary which
is split into two parts Γs := Γ ∩Ωs and Γf := Γ ∩Ωf , where we assume that Γs has
positive measure in Γ . The interface between Ωf and Ωs is denoted by Γi := Ωf∩Ωs.
Moreover, ns is the unit outward normal vector on Γi with respect to the region
Ωs and nf = −ns is the unit outward normal vector with respect to the region Ωs.

Γi

ΩfΓf

Γf

Γf

ΩsΓs Γs

Γs

Fig. 1.1 An exemplary domain Ω with fixed interface Γi
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On Ωf , the fluid is described via the Stokes equations and the structure on
Ωs behaves according to the linear wave equation where ρf , ρs, ν and µ are given
material parameters. We note, that all the results presented in this paper can be
extended the model problem, where the wave equations is replaced by the linear
Lamé system.

The variables v and p denote the velocity and pressure of the fluid and u denotes
the structure displacement on Ωs. At the interface Γi, the momentum has to be
conserved. Therefore, we demand the directional derivatives to coincide (dynamic
coupling condition)

ρfν∂nf v − pnf = −µ∂nsu on Γi × I.

Additionally, the fluid is not allowed to enter the structure domain (kinematic
coupling condition). For slow fluid flow, we can assume a no slip condition which
implies that structure and fluid velocity have to be equal. Therefore, we demand
at the interface

v = ∂tu on Γi × I.

At the outer boundaries Γf and Γs, we prescribe homogeneous Dirichlet boundary
conditions.

The control q is going to be either time dependent or distributed in space and
controlling the volume force through the linear operators Bf and Bs, see two the
configurations in Section 3 for details. In addition, the control variable is subject to
the control constrains with the bounds qa, qb ∈ R∪{±∞} and qa < qb. The variables
vd and ud are the given desired states and α > 0 is a given regularization parameter.
To enable observation on both or just on one sub-domain, the parameters γf , γs ≥ 0
can be chosen appropriately.

The rest of the paper is organized as follows. In Section 2, after a general
discussion of a linear FSI problem, we recall known existence and regularity re-
sults from the literature for this model in Subsection 2.1. In Subsection 2.2, we
introduce a novel symmetric monolithic formulation and adapt the results from
Subsection 2.1 to it. Section 3 is devoted to the optimal control problem. After
description of two model configurations, we discuss the existence of the optimal so-
lution in Subsection 3.1 before we prove our main results on the optimality system
in Subsection 3.2.

2 A linear FSI problem

To keep the notation as compact as possible we introduce the vector-valued spaces

V :=
{
ϕ ∈ H1(Ω)d

∣∣∣ ϕ = 0 on Γ
}
,

Vf :=
{
ϕ ∈ H1(Ωf)

d
∣∣∣ ϕ = 0 on Γf

}
, and Vs :=

{
ϕ ∈ H1(Ωs)

d
∣∣∣ ϕ = 0 on Γs

}
with trace zero on parts of the boundary. In addition, we will need the spaces of
divergence free functions

Vdiv := { v ∈ V | div v = 0 on Ωf } and Vf,div := { v ∈ Vf | div v = 0 on Ωf } .
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Thereby, the divergence condition is only demanded on the fluid domain Ωf . Fur-
thermore, we introduce the vector valued L2 spaces

H := L2(Ω)d, Hf := L2(Ωf)
d, and Hs := L2(Ωs)

d.

Finally, for the pressure variable, we introduce the following L2 space:

Lf :=
{
p ∈ L2(Ωf)

∣∣∣ (p, 1)f = 0
}
.

Here and in what follows, let

(u, v) := (u, v)Ω , 〈u, v〉i := 〈u, v〉Γi
,

(u, v)f := (u, v)Ωf
, (u, v)s := (u, v)Ωs

be the L2 inner products on Ω, its sub-domains Ωf and Ωs, and on Γi. Furthermore,
we use the following notation for inner products on the space-time cylinder:

((u, v)) =

∫
I

(u, v) dt, 〈〈u, v〉〉i =

∫
I

〈u, v〉i dt,

((u, v))f =

∫
I

(u, v)f dt, ((u, v))s =

∫
I

(u, v)s dt.

Monolithic formulations are well known for nonlinear FSI problems and they
are used for example in [14,35] to obtain robust numerical algorithms keeping er-
rors occurring from the coupling conditions small. Such formulations are usually
obtained by transforming a weak formulation of the FSI equations in a system of
first order in time by introducing a structure velocity variable. Then, the kinematic
coupling condition is enforced by choosing a smooth trial space for the common
velocity variable defined on the whole domain. Furthermore, due to a test func-
tion defined in the same space, the dynamic coupling condition is automatically
fulfilled. In the case of the here considered linear FSI problem (1.1), this leads
to a velocity v ∈ L2(I;V ), a pressure p ∈ L2(I;Lf), and a structure displacement
u ∈ L2(I;Vs) fulfilling the weak formulation

ρf((∂tv, ϕ))f + ν((∇v,∇ϕ))f − ((p,divϕ))f

+ρs((∂tv, ϕ))s + µ((∇u,∇ϕ))s = ((Bfq, ϕ))f + ((Bsq, ϕ))s ∀ϕ ∈ L2(I;V )
(2.1)

((v, ψ))s − ((∂tu, ψ))s = 0 ∀ψ ∈ L2(I;Hs)
(2.2)

((ξ,div v))f = 0 ∀ξ ∈ L2(I;Lf).
(2.3)

together with the initial conditions

u(0) = u0, v(0)
∣∣
Ωs

= u1, and v(0)
∣∣
Ωf

= v0. (2.4)

The velocity v now describes the fluid velocity on Ωf and the velocity of the
structure on Ωs.

For optimal control, this formulation has some drawbacks due to its asym-
metry, see Section 3.2.1 for details. Because of this, we favor a slightly different
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formulation which is motivated by an approach used by Johnson in [18] in the
contex of the wave equation. He suggests to introduce a velocity variable v which
fulfills

µ((∇v,∇ψ))s − µ((∇∂tu,∇ψ))s = 0 ∀ψ ∈ L2(I;Vs) (2.5)

instead of (2.2). As the resulting weak equations (2.1), (2.3), and (2.5) are sym-
metric and test and trial spaces coincide, the resulting linear FSI system is self
adjoint.

2.1 Known results from the literature

The stated linear fluid-structure interaction problem (1.1) was intensively studied
in [12] and [13] by Du, Gunzburger, and coworkers. The following proposition
taken from there ensures existence and uniqueness of a solution.

Proposition 2.1 (Theorem 2.5 in [12] and Theorem 2.2 in [13]) Assume that

ff , fs, u0, u1, and v0 satisfy

ff ∈ L2(I;V ∗f ), fs ∈ L2(I;Hs)

u0 ∈ Vs, u1 ∈ Vs, v0 ∈ Vf,div, v0
∣∣
Γi

= u1
∣∣
Γi
.

Then, there exists a unique ṽ ∈ H1(I;V ∗div) with

v = ṽ
∣∣
Ωf
∈ L2(I;Vf,div) ∩ L∞(I;Hf)

and u =

∫ t

0

ṽ(s)
∣∣
Ωs

ds+ u0 ∈ L∞(I;Vs) ∩W 1,∞(I;Hs)

satisfying the initial conditions v(0) = v0 in Hf , u(0) = u0 in Vs, and ∂tu(0) = u1 in

Hs as well as the coupling condition∫ t

0

v(s)
∣∣
Γi

ds = u(t)
∣∣
Γi
− u0

∣∣
Γi

in L2(I;H
1
2 (Γi)

d)

and almost everywhere in I

ρf(∂tṽ, ϕ)f + ν(∇v,∇ϕ)f + ρs(∂tṽ, ϕ)s + µ(∇u,∇ϕ)s

= (ff , ϕ)f + (fs, ϕ)s ∀ϕ ∈ Vdiv.

Furthermore, the solution fulfills the following a priori estimate:

‖v‖2L2(I;H1(Ωf)) + ‖v‖2L∞(I;L2(Ωf)) + ‖u‖2L∞(I;H1(Ωs)) + ‖∂tu‖2L∞(I;L2(Ωs))

≤ C
[
‖ff‖2L2(I;V ∗f ) + ‖fs‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H1(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H1(Ωf)

]
Remark 2.1 Clearly, the solution given by Proposition 2.1 fulfills also the following
space-time weak formulation:

ρf((∂tṽ, ϕ))f + ν((∇v,∇ϕ))f + ρs((∂tṽ, ϕ))s + µ((∇u,∇ϕ))s

= ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ L2(I;Vdiv). (2.6)
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Remark 2.2 The results in [2] and [20] indicate, that even for weaker initial con-
ditions there exists a unique solution solving the linear FSI problem. To prove
existence, the authors therein use maximal regularity results for the Stokes oper-
ator and hidden regularity results for the hyperbolic equation.

If the initial conditions and the right-hand side are smoother and fulfill com-
patibility conditions, then in [12,13] the authors provide an additional regularity
result.

Proposition 2.2 (Theorems 3.2 and 3.4 in [12] and Theorem 2.3 in [13])

Assume that ff , fs, u0, u1, and v0 satisfy

ff ∈ H1(I;V ∗f ), fs ∈ H1(I;Hs)

u0 ∈ Vs ∩H2(Ωs)
d, u1 ∈ Vs, v0 ∈ Vf,div ∩H2(Ωf)

d v0
∣∣
Γi

= u1
∣∣
Γi
.

Assume further that there exists a p0 ∈ H1(Ωf) such that

(p0nf − ν∇vT0 nf)
∣∣
Γi

= (µ∇uT0 ns)
∣∣
Γi
.

Then, there exists a unique triplet (v, p, u) with

v ∈ H1(I;Vf) ∩W 1,∞(I;Hf), p ∈ L2(I;Lf), u ∈W 1,∞(I;Vs) ∩W 2,∞(I;Hs)

satisfying the initial conditions v(0) = v0 in Hf , u(0) = u0 in Vs, and ∂tu(0) = u1 in

Hs as well the coupling condition

v
∣∣
Γi

= ∂tu
∣∣
Γi

in L2(I;H
1
2 (Γi)

d)

and almost everywhere in I

ρf(∂tv, ϕ)f − (p,divϕ)f + ν(∇v,∇ϕ)f

+ρs(∂ttu, ϕ)s + µ(∇u,∇ϕ)s = (ff , ϕ)f + (fs, ϕ)s ∀ϕ ∈ V,
(ξ,div v)f = 0 ∀ξ ∈ Lf .

Furthermore, the solution fulfills the estimates from Proposition 2.1 and the following

a priori estimates:

a) ‖∂tv‖2L2(I;H1(Ωf)) + ‖∂tv‖2L∞(I;L2(Ωf)) + ‖∂tu‖2L∞(I;H1(Ωs)) + ‖∂ttu‖2L∞(I;L2(Ωs))

≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
,

b) ‖p‖2L2(I;L2(Ωf)) ≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
.

Remark 2.3 As before, the solution given by Proposition 2.2 also fulfills the weak
space-time formulation

ρf((∂tv, ϕ))f − ((p,divϕ))f + ν((∇v,∇ϕ))f

+ρs((∂ttu, ϕ))s + µ((∇u,∇ϕ))s = ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ L2(I;V ),

((ξ,div v))f = 0 ∀ξ ∈ L2(I;Lf).
(2.7)
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Remark 2.4 In [12,13], the authors demand ff ∈ L2(I;Hf) in Proposition 2.1 and
ff ∈ H1(I;Hf) in Proposition 2.2. However, the proofs can directly be extended to
ff ∈ L2(I;V ∗f ) and ff ∈ H1(I;V ∗f ) as stated above.

Remark 2.5 The results in [12,13] are more general and also apply for Stokes flow
coupled with linear elasticity equations. Therefore, all the results presented in the
following are also extendable to formulations with stress tensors.

2.2 Novel symmetric weak formulation

Now, we would like to regard closer the symmetric weak formulation given by (2.1),
(2.3), and (2.5), which was already motivated at the beginning of this section. In
doing so, we consider the following system of equations where, for the remaining
part of this section, the control terms are replaced by right-hand sides ff and fs:

ρf((∂tv, ϕ))f + ν((∇v,∇ϕ))f − ((p,divϕ))f

+ρs((∂tv, ϕ))s + µ((∇u,∇ϕ))s = ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ L2(I;V ),

µ((∇v,∇ψ))s − µ((∇∂tu,∇ψ))s = ((g, ψ))s ∀ψ ∈ L2(I;Vs),

((ξ,div v))f = 0 ∀ξ ∈ L2(I;Lf).
(2.8)

Additionally, as before, the initial conditions given by (2.4) have to be fulfilled.
Note, that the volume force g appearing on the right-hand side of the equation
introducing the structure velocity has no physical interpretation but will occur
later in the adjoint equation, see Section 3.

The results in Section 2.1 enable us to prove existence and uniqueness of a
solution for this weak formulation.

Theorem 2.1 Assume that u0, u1, and v0 satisfy

u0 ∈ Vs ∩H2(Ωs)
d, u1 ∈ Vs, v0 ∈ Vf,div ∩H2(Ωf)

d, v0
∣∣
Γi

= u1
∣∣
Γi
.

and the right-hand sides ff , fs, and g fulfill

ff ∈ H1(I;V ∗f ), fs ∈ H1(I;Hs), g ∈ L2(I;Hs).

Assume further that there exists a p0 ∈ H1(Ωf) such that

(p0nf − ν∇vT0 nf)
∣∣
Γi

= (µ∇uT0 ns)
∣∣
Γi
.

Then, there exists a unique triplet (v, p, u) with

v ∈ L2(I;V ) ∩W 1;∞(I,H), v
∣∣
Ωf
∈ H1(I;Vf), v

∣∣
Ωs
∈ L∞(I;Vs),

u ∈ L∞(I;Vs) ∩H1(I;Vs), p ∈ L2(I;Lf),

which satisfies the initial conditions (2.4) and solves (2.8). Furthermore, the solution

fulfills the following a priori estimates:

a) ‖v‖2L∞(I;L2(Ω)) + ‖v‖2L2(I;H1(Ωf)) + ‖u‖2L∞(I;H1(Ωs))

≤ C
[
‖ff‖2L2(I;V ∗f ) + ‖fs‖2L2(I;L2(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H1(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H1(Ωf)

]
,
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b) ‖∂tv‖2L∞(I;L2(Ω)) + ‖∂tv‖2L2(I;H1(Ωf)) + ‖v‖2L∞(I;H1(Ωs)) + ‖∂tu‖2L2(I;H1(Ωs))

≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖H1(I;L2(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
,

c) ‖p‖2L2(I;L2(Ωf)) ≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
.

Proof Let f̂f := ff and f̂s := fs +
∫ t
0
g(s) ds. Due to the assumptions on the data,

we have f̂f ∈ H1(I;V ∗f ) and f̂s ∈ H1(I;Hs). Therefore, Proposition 2.2 ensures for
these right-hand sides and the given initial conditions existence of a unique triplet
(v̂f , p̂, û) solving (2.7). Next, we introduce a structure velocity v̂s by the setting
v̂s = ∂tû ∈ L∞(I;Vs). Thus, v̂s fulfills

µ((∇v̂s,∇ψ))s = µ((∇∂tû,∇ψ))s ∀ψ ∈ L2(I;Vs). (2.9)

Now we are prepared to introduce the global velocity v̂ by

v̂
∣∣
Ωf

= v̂f and v̂
∣∣
Ωs

= v̂s.

As v̂f ∈ L2(I;Vf) and v̂s ∈ L2(I;Vs), we get immediately v̂ ∈ L2(I;H). To obtain
v̂ ∈ L2(I;V ), we have to check that the weak partial derivatives ŵi with ŵi

∣∣
Ωf

:=

∂xi v̂f and ŵi
∣∣
Ωs

:= ∂xi v̂s constitute the weak partial derivatives ∂xi v̂ of v̂ for

i = 1, 2, . . . , d. To this end, let ϕ ∈ L2(I;C∞0 (Ω)d). We obtain by the definition of
the weak derivatives

((v̂, ∂xiϕ)) = ((v̂f , ∂xiϕ))f + ((v̂s, ∂xiϕ))s

= −((∂xi v̂f , ϕ))f − ((∂xi v̂s, ϕ))s + 〈〈v̂f , ϕnTf ei〉〉i + 〈〈v̂s, ϕnTs ei〉〉i
= −((ŵi, ϕ)) + 〈〈∂tû− v̂f , ϕnTs ei〉〉i = −((ŵi, ϕ))

where the last step holds, since the kinematic coupling condition is valid due to
Proposition 2.2. Therefore, it holds v̂ ∈ L2(I;V ).

It remains to prove that (v̂, p̂, û) solves the weak formulation (2.8). Due to the
construction of v̂s by (2.9), we directly get

ρs((∂ttû, ϕ))s = ρs((∂tv̂, ϕ))s ∀ϕ ∈ L2(I;Vs). (2.10)

If we enter (2.10) in the weak formulation (2.7), we immediately obtain with (2.9)
that the triplet (v̂, p̂, û) solves the weak formulation (2.8) with the right-hand sides
f̂f , f̂s and g = 0.

In what follows, we construct a solution to (2.8) with the original right-hand
sides ff , fs and g. We define ũ : I → Vs for almost all t ∈ I by

µ(∇ũ(t),∇ψ)s = (−g(t), ψ)s ∀ψ ∈ Vs. (2.11)

Standard elliptic theory guarantees the existence and uniqueness of ũ(t) together
with the estimate

‖ũ(t)‖H1(Ωs) ≤ C‖g(t)‖L2(Ωs) for almost all t ∈ I. (2.12)
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As g ∈ L2(I;Hs), integration in time of the above inequality immediately leads to
ũ ∈ L2(I;Vs). Further, integrating (2.11) in time twice implies

µ

((
∇
∫ t

0

ũ(s) ds,∇ψ
))

s

= −
((∫ t

0

g(s) ds, ψ

))
s

∀ψ ∈ L2(I;Vs).

Defining u := û+
∫ t
0
ũ ds, we directly obtain u ∈ L2(I;Vs). Since for ϕ ∈ L2(I;V )

it holds ψ = ϕ
∣∣
Ωs
∈ L2(I;Vs), we get for all ϕ ∈ L2(I;V ) the identity

µ((∇û,∇ϕ))s = µ((∇û,∇ϕ))s + µ

((
∇
∫ t

0

ũ(s) ds,∇ϕ
))

s

+

((∫ t

0

g(s) ds, ϕ

))
s

= µ((∇u,∇ϕ))s +

((∫ t

0

g(s) ds, ϕ

))
s

.

Together with the definition of f̂s, this implies that u, v := v̂, and p := p̂ solves
the first equation of (2.8). Furthermore, since û and v̂ solve the second equation
of (2.8) with g = 0, we obtain for all ψ ∈ L2(I;Vs)

µ((∇v,∇ψ))s − µ((∇∂tu,∇ψ))s = µ((∇v̂,∇ψ))s − µ((∇∂tû,∇ψ))s − µ((∇ũ,∇ψ))s

= −µ((∇ũ,∇ψ))s = ((g, ψ))s.

Therefore (v, p, u) solves the weak formulation (2.8) for the right-hand sides ff , fs,
and g.

It remains to prove the uniqueness. Let (v1, p1, u1) and (v2, p2, u2) be two so-
lutions fulfilling the weak formulation (2.8) and the regularities assumed in The-
orem 2.1. Define v̄ := v1 − v2, p̄ := p1 − p2, ū := u1 − u2. It holds

v̄
∣∣
Ωf

(0) = 0, v̄
∣∣
Ωs

(0) = 0, ū(0) = 0

and for almost all t ∈ I

ρf(∂tv̄(t), ϕ)f − (p̄(t),divϕ)f + ν(∇v̄(t),∇ϕ)f

+ρs(∂tv̄(t), ϕ)s + µ(∇ū(t),∇ϕ)s = 0 ∀ϕ ∈ V,
µ(∇v̄(t),∇ψ)s − µ(∇∂tū(t),∇ψ)s = 0 ∀ψ ∈ Vs,

(ξ,div v̄(t))f = 0 ∀ξ ∈ Lf .

Choosing the test functions ϕ = v̄(t), ψ = ū(t), and ξ = p̄(t), we get

ρf(∂tv̄(t), v̄(t))f − (p̄(t),div v̄(t))f + ν(∇v̄(t),∇v̄(t))f
+ρs(∂tv̄(t), v̄(t))s + µ(∇ū(t),∇v̄(t))s = 0,

µ(∇v̄(t),∇ū(t))s − µ(∇∂tū(t),∇ū(t))s = 0,

(p̄(t),div v̄(t))f = 0.

Because of the symmetry of the bilinear forms we obtain for almost all t ∈ I

1

2

d

dt
ρf‖v̄(t)‖2L2(Ωf)+ν‖∇v̄(t)‖2L2(Ωf)+

1

2

d

dt
ρs‖v̄(t)‖2L2(Ωs)+

1

2

d

dt
µ‖∇ū(t)‖2L2(Ωs) = 0.

Integrating this identity in in time and noting the initial conditions, we are led to

1

2
ρf‖v̄(t)‖2L2(Ωf) + ν

∫ t

0

‖∇v̄(s)‖2L2(Ωf) ds+
1

2
ρs‖v̄(t)‖2L2(Ωs) +

1

2
µ‖∇ū(t)‖2L2(Ωs) = 0
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for almost all t ∈ I. This implies v̄ = 0 and, as ū vanishes on Γs ⊂ Γ with |Γs| > 0,
also ū = 0. Thus we get in particular for almost all t ∈ I

(p̄,divϕ)f = 0 ∀ϕ ∈ V

and thus p̄ = 0 since p̄ ∈ Lf . Therefore the solution is unique.

According to Proposition 2.2, the solution (v̂f , p̂, û) of (2.7) fulfills the estimates

given in Proposition 2.2 with right-hand side f̂f := ff and f̂s := fs +
∫ t
0
g(s) ds.

As v̂s of the formulation (2.8) coincides to ∂tû the estimates for ∂tû from the
Propositions 2.1 and 2.2 are valid for v̂

∣∣
Ωs

= v̂s, too. Hence, we have

‖v̂‖2L∞(I;L2(Ω)) + ‖v̂‖2L2(I;H1(Ωf)) + ‖û‖2L∞(I;H1(Ωs))

≤ C
[
‖ff‖2L2(I;V ∗f ) + ‖fs‖2L2(I;L2(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H1(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H1(Ωf)

]
,

‖∂tv̂‖2L∞(I;L2(Ω)) + ‖∂tv̂‖2L2(I;H1(Ωf)) + ‖v̂‖2L∞(I;H1(Ωs))

≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
,

‖p̂‖2L2(I;L2(Ωf)) ≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
.

Due to the setting v = v̂ and p = p̂, these estimates directly transfer to v and p. To
estimate u := û+

∫ t
0
ũ(s) ds, ũ ∈ Vs given by (2.11) has to be bounded. By (2.12),

we get for almost all t ∈ I that

‖u(t)‖2H1(Ωs) =

∥∥∥∥û(t) +

∫ t

0

ũ(s) ds

∥∥∥∥2
H1(Ωs)

≤ C

[
‖û(t)‖2H1(Ωs) + T

∫
I

‖ũ(s)‖2H1(Ωs)ds

]
≤ C

[
‖û(t)‖2H1(Ωs) + ‖g‖2L2(I;L2(Ωs))

]
,

which implies

‖u‖2L∞(I;H1(Ωs)) ≤ C
[
‖û‖2L∞(I;H1(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
.

Furthermore, we get with ∂tû = v̂
∣∣
Ωs

for almost all t ∈ I

‖∂tu(t)‖2H1(Ωs) = ‖∂tû(t) + ũ(t)‖2H1(Ωs) ≤ C
[
‖v̂(t)‖2H1(Ωs) + ‖g(t)‖2L2(Ωs)

]
and consequently (limited through g ∈ L2(I;Hs))

‖∂tu‖2L2(I;H1(Ωs)) ≤ C
[
‖v̂‖2L2(I;H1(Ωs)) + ‖g‖2L2(I;L2(Ωs))

]
.

Together with the above estimates to for (v̂, p̂, û), we obtain the stated estimates
for (v, p, u). ut

Remark 2.6 If the right-hand side g lies in L∞(I;Hs), we also get an estimate for
‖∂tu‖L∞(I;H1(Ωs)) as in Proposition 2.2.
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In what follows, we analyze in which sense the weak solution of (2.8) fulfills
the original fluid-structure interaction problem and especially in which sense the
coupling conditions are fulfilled. To this end, we introduce the space H̃

1
2 (Γi) in the

spirit of [16, Definition 1.3.2.5] by

H̃
1
2 (Γi) =

{
v ∈ H

1
2 (Γi)

∣∣∣ ṽ ∈ H 1
2 (Γ )

}
,

where ṽ denotes the continuation of v on Γ by zero.

Theorem 2.2 Let the assumptions of Theorem 2.1 be fulfilled and let in addition ff ∈
L2(I;Hf) and (v, p, u) be the solution of (2.8). Then, the kinematic coupling condition

v
∣∣
Ωf

= v
∣∣
Ωs

is valid in the sense of L2(I;H
1
2 (Γi)

d) ∩ H
1
2 (I;L2(Γi)

d). Furthermore, the dynamic

coupling condition

ν∂nf v − pnf + µ∂nsu = 0

holds in L2(I; (H̃
1
2 (Γi)

d)∗).

Proof By Theorem 2.1, we have that v ∈ L2(I, V ) and v ∈W 1,∞(I;H) ⊂ H1(I;H).
Hence, the trace results in [24, Theorem 2.1] imply that the kinematic coupling

condition v
∣∣
Ωf

= v
∣∣
Ωs

holds on Γi in the space L2(I;H
1
2 (Γi)

d) ∩H
1
2 (I;L2(Γi)

d).

In the remaining part of the proof, derive validity of the stated dynamic cou-
pling condition. We choose in (2.8) test functions ϕ with ϕ

∣∣
Ωs

= 0 and ϕ
∣∣
Ωf
∈

L2(I;C∞0 (Ωf)
d) and get

((ρf∂tv, ϕ))f − ((div(ν∇v + p Id), ϕ))f = ((ff , ϕ))f ∀ϕ ∈ L2(I;C∞0 (Ωf)
d),

where div(ν∇v + p Id) is defined in the distributional sense. This is equivalent to

div(ν∇v + p Id) = ρf∂tv − ff in L2(I;C∞0 (Ωf)
d)∗.

As Theorem 2.1 yields v
∣∣
Ωf
∈ W 1,∞(I;Hf), we get by the assumption on ff that

ρf∂tv + ff ∈ L2(I;Hf). We immediately obtain, that

div(ν∇v + p Id) = ρf∂tv − ff in L2(I;Hf) (2.13)

and

‖div(ν∇v + p Id)‖L2(I;L2(Ωf)) ≤ ‖ff‖L2(I;L2(Ωf)) + C‖∂tv‖L2(I;L2(Ωf))

where the right-hand side is bounded according to Theorem 2.1. The same ap-
proach, but choosing ϕ

∣∣
Ωf

= 0 and ϕ
∣∣
Ωs
∈ L2(I;C∞0 (Ωs)

d) leads to

div(µ∇u) = ρs∂tv − fs in L2(I;Hs) (2.14)

and

‖div(µ∇u)‖L2(I;L2(Ωs)) ≤ ‖fs‖L2(I;L2(Ωs)) + C‖∂tv‖L2(I;L2(Ωs))
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where the right-hand side is again bounded according to Theorem 2.1. Thus, we
obtain that

ν∇v + p Id ∈ E(Ωf) :=
{
ϕ ∈ L2(I;Hf)

∣∣∣ ‖divϕ‖L2(I;L2(Ωf)) <∞
}
,

µ∇u ∈ E(Ωs) :=
{
ϕ ∈ L2(I;Hs)

∣∣∣ ‖divϕ‖L2(I;L2(Ωs)) <∞
}
.

According to [37, Ch. I §1 Theorem 1.1], the space L2(I;C∞0 (Ωf)
d) is dense in

E(Ωf) and L2(I;C∞0 (Ωs)
d) is dense in E(Ωs). Therefore, following [15, p. 114] or

[16, Theorems 1.5.3.10 and 1.5.3.11], we get

‖(ν∇v + p Id)Tnf‖
L2(I;(H̃

1
2 (Γi)d)∗)

≤ ‖ν∇v + p Id‖L2(I;L2(Ωf))

+ ‖ff‖L2(I;L2(Ωf)) + C‖∂tv‖L2(I;L2(Ωf))

‖(µ∇u)Tns‖
L2(I;(H̃

1
2 (Γi)d)∗)

≤ ‖µ∇u‖L2(I;L2(Ωs))

+ ‖fs‖L2(I;L2(Ωs)) + C‖∂tv‖L2(I;L2(Ωs)).

According to [15,16], this enables us to apply Gauß’ theorem in (2.8) to obtain

〈〈ν∂nf v − pnf , ϕ〉〉i + 〈〈µ∂nsu, ϕ〉〉i = ((div(ν∇v + p Id)− ρf∂tv + ff , ϕ))f

+ ((div(µ∇u)− ρs∂tv + fs, ϕ))s ∀ϕ ∈ L2(I;V ).

This immediately implies by (2.14) and (2.13) that

〈〈ν∂nf v − pnf + µ∂nsu, ϕ〉〉i = 0 ∀ϕ ∈ L2(I;V )

and thus the dynamic coupling condition is fulfilled in L2(I; (H̃
1
2 (Γi)

d)∗). ut

3 Optimal control problem

In the following, we regard the optimal control problem of a linearized FSI con-
figuration as introduced in the introduction

min J(q, u, v) :=
γf
2

∫
I

‖v − vd‖2L2(Ωf) dt+
γs
2

∫
I

‖u− ud‖2L2(Ωs) dt+
α

2
‖q‖2Q

subject to qa ≤ q ≤ qb and (1.1). Thereby, the initial data are assumed to fulfill the
conditions of Theorem 2.1 and for the desired states we require vd ∈ H1(I;V ∗f ) ∩
L2(I;Hf) and ud ∈ L2(I;Hs).

3.1 Existence and uniqueness of solutions

We analyze two concrete configurations for the considered control problem:
Configuration C1 Let the control space given by Q := (L2(Ω)d)N with N ∈ N
and let Bf : Q → H1(I;Hf) as well as Bs : Q → H1(I;Hs) be linear continuous
operators given for q = (q1, q2, . . . , qN ) ∈ Q by

Bfq =
N∑
i=1

gifq
i
∣∣
Ωf

and Bsq =
N∑
i=1

gisq
i
∣∣
Ωs
.
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Thereby, gis, g
i
f ∈ H1(I), i = 1, 2, . . . , N , are given functions. The admissible set

Qad is defined as

Qad =
{
q ∈ Q

∣∣∣ qa ≤ qi(x) ≤ qb, for almost all x ∈ Ω and i = 1, 2, . . . , N
}
.

Note, that the inequality in the definition of Qad has to be understood componen-
twise for qi ∈ L2(Ω)d.
Configuration C2 Let the control space given by Q := L2(I)N with N ∈ N and
let Bf : Q→ L2(I;Hf) as well as Bs : Q→ L2(I;Hs) be linear continuous operators
given for q = (q1, q2, . . . , qN ) ∈ Q by

Bfq =
N∑
i=1

qihi
∣∣
Ωf

and Bsq =
N∑
i=1

qihi
∣∣
Ωs
.

Thereby, hi ∈ Vdiv, i = 1, 2, . . . , N , are given functions. The admissible set Qad is
defined as

Qad =
{
q ∈ Q

∣∣∣ qa ≤ qi(t) ≤ qb, for almost all t ∈ I and i = 1, 2, . . . , N
}
.

The assumption that hi has to be divergence-free in Ωf is taken for simplicity
of the presentation. All results can be extended to hi ∈ V using a Helmholtz
decomposition.

Since for both configurations, Bfq ∈ L2(I;Hf) and Bsq ∈ L2(I;Hs), Propo-
sition 2.1 ensures the well-posedness of the so-defined control to state mapping
G : q 7→ (v(q), u(q)) with (v(q), u(q)) the solution of (2.6) for ff := Bsq and
fs := Bsq. The linearity of (2.6) and the estimate given in Proposition 2.1 im-
ply the continuity of G:

Lemma 3.1 The control to state mapping G : Q→ L2(I;Hf)×L2(I;Hs) is an affine

linear and continuous operator for both configurations C1 and C2.

Proof Let (v̂, û) be the solution of (2.6) for ff = fs = 0 and G0 : Q → L2(I;Hf) ×
L2(I;Hs) be the linear part of G defined by (2.6) with zero initial data for ff := Bsq

and fs := Bsq. Hence, the control to state mapping G : Q→ L2(I;Hf)× L2(I;Hs)
can be expressed as

(v(q), u(q)) = Gq = (v̂, û) +G0q.

Proposition 2.1 yields that (v̂, û) is bounded in L∞(I;Hf) × L∞(I;Vs) and G0 is
a bounded linear operator. Thus, the control to state mapping G is continuous in
both considered configurations. ut

By means of the control to state mapping G, the reduced cost functional j : Q→
R can be defined as

j(q) := J(q, u(q), v(q)) (3.1)

and the optimal control problem under consideration can for both configurations
be written in the compact form

min
q∈Qad

j(q). (3.2)

Theorem 3.1 For both configurations C1 and C2, the considered optimal control prob-

lem (3.2) admits a unique solution.
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Proof Standard arguments, see, e.g. [38, Theorem 2.14], guarantee the existence
of a unique optimal control q̄ ∈ Qad. ut

We emphasize that this existence result is also valid if the control is acting only
on the domain Ωs or Ωf and if reference solutions are only given on sub-domains.

3.2 Necessary optimality conditions

Since the reduced functional j is convex due to the (affine) linear-quadratic struc-
ture of the considered control problem, the necessary and sufficient optimality
condition for the optimal solution q̄ ∈ Qad of (3.2) reads as

j′(q̄)(δq − q̄) ≥ 0 ∀δq ∈ Qad. (3.3)

Based on this, we derive in the sequel an optimality system separately for
the configurations C1 and C2. In addition, we prove a priori estimates for the
optimal state and the corresponding adjoint solution. Thereby, we make use of
the self-adjoint formulation (2.8). Due to this symmetry, the derivation of an op-
timality system for configuration C1 is straight forward, see Section 3.2.3. For
configuration C2 however, this is not directly possible since for q ∈ Q = L2(I)N ,
the right-hand sides Bfq and Bsq do not fulfill the prerequisites of Theorem 2.1.
Therefore, an additional approximation step will be necessary, see Section 3.2.4.

3.2.1 Discussion of the adjoint equations for a non symmetric formulation

Before analyzing the adjoint equations of the weak formulation (2.8), we investi-
gate for a moment the optimal control problem with the state equation formulated
by (2.1), (2.2), and (2.3). For this formulation, the formal Lagrange approach leads
to the following adjoint equation:

−((ϕ, zvt ))f + ν((∇ϕ,∇zv))f + ((zp,divϕ))f

−((ϕ, zvt ))s − ((ϕ, zu))s = γf((v − vd, ϕ))f ∀ϕ ∈ L2(I;V ),

−((ψ, zut ))s + µ((∇ψ,∇zv))s = γs((u− ud, ψ))s ∀ψ ∈ L2(I;Vs),

−((ξ,div zv))f = 0 ∀ξ ∈ L2(I;Lf).

Here, zv
∣∣
Ωf

describes the solution of an adjoint Stokes equation and zv
∣∣
Ωs

the so-

lution of an adjoint linear wave equation. However, as the system (2.1), (2.2), (2.3)
is not symmetric, the adjoint equation is a Stokes-wave system with new coupling
conditions on Γi:

zv
∣∣
Ωf

= zv
∣∣
Ωs
, ν∂nf z

v − zpnf = 0, and µ∂nsz
v = 0.

In contrast to this, the advantage of the following optimality system lies in
the fact that the adjoint equation is again a linear FSI problem and all numerical
methods developed to solve the primal FSI problem can be utilized. Therefore, no
additional difficulty occurs in the implementation.
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3.2.2 Existence and regularity for the adjoint equation

For the symmetric weak formulation (2.8), we can derive the adjoint equation using
the formal Lagrange technique. As the coupling conditions do not occur explicitly,
but are embedded in the weak formulation, we obtain immediately the following
adjoint equation:

−ρf((ϕ, ∂tzv))f + ν((∇ϕ,∇zv))f + ((zp,divϕ))f

−ρs((ϕ, ∂tzv))s + µ((∇ϕ,∇zu))s = γf((v − vd, ϕ))f ∀ϕ ∈ L2(I;V )

µ((∇ψ,∇zv))s + µ((∇ψ,∇∂tzu))s = γs((u− ud, ψ))s ∀ψ ∈ L2(I;Vs)

−((ξ,div zv))f = 0 ∀ξ ∈ L2(I;Lf)
(3.4)

Later, we will prove that together with zero terminal conditions this is indeed the
correct adjoint equation appearing in the optimality system.

Due to the symmetry in (2.8), the adjoint equation is again a linear FSI prob-
lem. Therefore we can use the already proved results and we get the following
result on existence of a unique adjoint solution:

Theorem 3.2 Let vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf), ud ∈ L2(I;Hs), and the initial data

u0, u1, and v0 fulfill the assumptions in Theorem 2.1. Further, let q ∈ Q be given as

in configuration C1 or q ∈ Q∩H1(I)N be given for configuration C2 and let the triple

(v, p, u) be the corresponding solution of (2.8) with ff = Bfq, fs = Bsq, and g = 0.

Then, there exists a unique triple (zv, zp, zu) with

zv ∈ L2(I;V ) ∩W 1,∞(I;H), zv
∣∣
Ωf
∈ H1(I;Vf), zv

∣∣
Ωs
∈ L∞(I;Vs),

zu ∈ L∞(I;Vs) ∩H1(I;Vs), zp ∈ L2(I;Lf)

satisfying the terminal condition zv(T ) = 0, zu(T ) = 0 and the adjoint equation

(3.4). Furthermore, the adjoint solution triple (zv, zp, zu) fulfills the following a priori

estimates:

a) ‖zv‖2L∞(I;L2(Ω)) + ‖zv‖2L2(I;H1(Ωf)) + ‖zu‖2L∞(I;H1(Ωs))

≤ C
[
‖vd‖2L2(I;V ∗f ) + ‖ud‖2L2(I;L2(Ωs))

]
+ C

[
‖Bfq‖2L2(I;V ∗f ) + ‖Bsq‖2L2(I;L2(Ωs))

]
+ C

[
‖u0‖2H1(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H1(Ωf)

]
,

b) ‖∂tzv‖2L∞(I;L2(Ω)) + ‖∂tzv‖2L2(I;H1(Ωf)) + ‖zv‖2L∞(I;H1(Ωs)) + ‖∂tzu‖2L2(I;H1(Ωs))

≤ C
[
‖vd‖2H1(I;V ∗f ) + ‖ud‖L2(I;L2(Ωs))

]
+ C

[
‖Bfq‖2H1(I;V ∗f ) + ‖Bsq‖H1(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
,

c) ‖zp‖2L2(I;L2(Ωf)) ≤ C
[
‖vd‖2H1(I;V ∗f ) + ‖ud‖2L2(I;L2(Ωs)))

]
+ C

[
‖Bfq‖2H1(I;V ∗f ) + ‖Bsq‖2H1(I;L2(Ωs))

]
+ C

[
‖u0‖2H2(Ωs) + ‖u1‖2H1(Ωs) + ‖v0‖2H2(Ωf) + ‖p0‖2H1(Ωf)

]
.
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Proof Based on the assumptions on the control q, Theorem 2.1 ensures a solution
v ∈ H1(I;H), u ∈ L2(I;Vs) of (2.8) with ff = Bfq, fs = Bsq, and g = 0 Hence, the
right-hand sides of the adjoint equation ff := γf(v− vd) and g := γs(u− ud), fulfill
the required regularities

ff ∈ H1(I;V ∗f ) and g ∈ L2(I;Hs)

of Theorem 2.1. Furthermore, the initial conditions for the adjoint equation back-
wards in time zvT = 0 and zuT = 0 fulfill with zpT = 0 the assumptions on u0, v0, p0,
and u1 of Theorem 2.1. As after the transformation t 7→ −t, the considered adjoint
equation (3.4) coincides with the state equation (2.8), there exists a unique adjoint
solution (zv, zp, zu) due to Theorem 2.1. The estimates follow immediately from
Theorem 2.1, too. ut

3.2.3 Control distributed in space (Configuration C1)

Here, the control q ∈ Q = (L2(Ω)d)N acts as volume force through the linear
operators Bf and Bs as described in configuration C1. Since in this case Bfq ∈
H1(I;Hf) and Bsq ∈ H1(I;Hs), the weak formulation (2.8) is applicable for ff =
Bfq and fs = Bsq by Theorem 2.1. For the derivative of the reduced functional
given by (3.1), we directly obtain the following representation:

Lemma 3.2 Let the initial data u0, u1, and v0 fulfill the assumptions of Theorem 2.1

and let vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf) and ud ∈ L2(I;Hs). Let for given q ∈ Q the triple

(v, p, u) be the solution of (2.8) with ff = Bfq, fs = Bsq, and g = 0 guaranteed by

Theorem 2.1. Further, let (zv, zp, zu) be the solution of the adjoint equation (3.4) guar-

anteed by Theorem 3.2. Then, the directional derivative of the reduced cost functional

at q in direction δq ∈ Q is given by

j′(q)(δq) =
N∑
i=1

[
((gifδq

i, zv))f + ((gisδq
i, zv))s + α(qi, δqi)

]
.

Proof By Theorem 2.1, the control to state map G can be understood as mapping
from Q to L2(I;V )× L2(I;Lf)× L2(I;Vs). Similar to the proof of Lemma 3.1, let
(v̂, p̂, û) be the solution of (2.8) for ff = fs = g = 0 and let G0 : Q → L2(I,Hf) ×
L2(I;Lf) × L2(I;Hs) the linear part G given by (2.8) for zero initial data and
ff = Bfq, fs = Bsq, g = 0. Then G can be written for q ∈ Q as

(v(q), p(q), u(q)) = Gq = (v̂, p̂, û) +G0q.

Hence, we get directly

j′(q)(δq) = γf((v − vd, δv))f + γs((u− ud, δu))s + α

N∑
i=1

(qi, δqi) (3.5)

for all δq ∈ Q where (δv, δp, δu) = G0δq.
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Since (δv, δp, δu) solves (2.8) for the right-hand sides ff = Bfδq, fs = Bsδq, g = 0
and zero initial data, we get by testing this equation with (ϕ, ξ, ψ) = (zv, zp, zu) ∈
L2(I;V )× L2(I;Lf)× L2(I;Vs) the following identity:

ρf((δvt, z
v))f − ((δp,div zv))f + ν((∇δv,∇zv))f

+ρs((δvt, z
v))s + µ((∇δu,∇zv))s =

N∑
i=1

[
((gifδq

i, zv))f + ((gisδq
i, zv))s

]
µ((∇δv,∇zu))s − µ((∇δut,∇zu))s = 0

((zp,div δv))f = 0

Testing with (ϕ, ξ, ψ) = (δv, δp, δu) ∈ L2(I;V )×L2(I;Lf)×L2(I;Vs) in the adjoint
equation (3.4) yields

−ρf((δv, ∂tzv))f + ν((∇δv,∇zv))f + ((zp,div δv))f

−ρs((δv, ∂tzv))s + µ((∇δv,∇zu))s = γf((v − vd, δv))f
−((δp,div zv))f = 0

µ((∇δu,∇zv))s + µ((∇δu,∇∂tzu))s = γs((u− ud, δu))s

As the adjoint solution (zv, zp, zu) has zero initial conditions at t = T and as
(δv, δp, δu) has zero initial conditions at t = 0, the boundary terms vanish when
using integration by parts in time. If we insert the equations into each other we
obtain for any δq ∈ Q

γf((v − vd, δv))f + γs((u− ud, δu))s =
N∑
i=1

[
((gifδq

i, zv))f + ((gisδq
i, zv))s

]
.

Together with (3.5) this implies the assertion. ut

Combining the condition (3.3) and Lemma 3.2 implies the following represen-
tation and regularity for the optimal control q̄ in terms of the pointwise projection
PQad

on the admissible set Qad given by

PQad
: L2(Ω)d → L2(Ω)d, PQad

(r)(x) := max(qa,min(qb, r(x)))

for almost all x ∈ Ω, where the projection has to be applied componentwise for
r ∈ L2(Ω)d.

Lemma 3.3 Let the assumptions of Lemma 3.2 be fulfilled. Then, the optimal solution

q̄ ∈ Qad of the considered optimal control problem (3.2) for configuration C1 fulfills

for i = 1, 2, . . . , N :

q̄i
∣∣
Ωf

= PQad

(
− 1

α

∫
I

gif(t)z
v(t, ·) dt

)
, q̄i

∣∣
Ωs

= PQad

(
− 1

α

∫
I

gis(t)z
v(t, ·) dt

)
.

Thus, for the optimal control holds q̄
∣∣
Ωf
∈ (H1(Ωf)

d)N and q̄
∣∣
Ωs
∈ (H1(Ωs)

d)N .
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Proof The necessary optimality condition (3.3) can be written as

(∫
I

gifz
v dt, δqi − q̄i

)
f

+

(∫
I

gisz
v dt, δqi − q̄i

)
s

+ α(q̄i, δqi − q̄i) ≥ 0 ∀δqi ∈ Qad.

Using the projection PQad
, this can be expressed for i = 1, 2, . . . , N as

q̄i
∣∣
Ωf

= PQad

(
− 1

α

∫
I

gif(t)z
v(t, ·) dt

)
, q̄i

∣∣
Ωs

= PQad

(
− 1

α

∫
I

gis(t)z
v(t, ·) dt

)
.

Theorem 3.2 ensures zv ∈ L2(I;V ) and together with

‖PQad
(r)‖H1(Ω) ≤ ‖r‖H1(Ω)

we conclude that q̄i
∣∣
Ωf
∈ H1(Ωf)

d and q̄i
∣∣
Ωs
∈ H1(Ωs)

d. ut

The optimal solution q̄ ∈ Qad solves the optimality system presented in the
following theorem:

Theorem 3.3 Let the initial data u0, u1, and v0 fulfill the assumptions of Theorem 2.1

and let vd ∈ H1(I;V ∗f )∩L2(I;Hf) and ud ∈ L2(I;Hs). Then, the optimal solution q̄ ∈
Qad of the considered optimal control problem (3.2) for configuration C1 fulfills q̄

∣∣
Ωf
∈

(H1(Ωf)
d)N , q̄

∣∣
Ωs
∈ (H1(Ωs)

d)N and the following necessary optimality condition:

1. The optimal state (v̄, p̄, ū) = (v(q̄), p(q̄), u(q̄)) solves

ρf((∂tv̄, ϕ))f − ((p̄,divϕ))f + ν((∇v̄,∇ϕ))f

+ρs((∂tv̄, ϕ))s + µ((∇ū,∇ϕ))f = ((Bf q̄, ϕ))f + ((Bsq̄, ϕ))s ∀ϕ ∈ L2(I;V ),

µ((∇v̄,∇ψ))s − µ((∇∂tū,∇ψ))s = 0 ∀ψ ∈ L2(I;Vs),

((ξ,div v̄))f = 0 ∀ξ ∈ L2(I;Lf).

2. The optimal adjoint (z̄v, z̄p, z̄u) = (zv(q̄), zp(q̄), zu(q̄)) solves

−ρf((ϕ, ∂tz̄v))f + ν((∇ϕ,∇z̄v))f + ((z̄p,divϕ))f

−ρs((ϕ, ∂tz̄v))s + µ((∇ϕ,∇z̄u))s = γf((v̄ − vd, ϕ))f ∀ϕ ∈ L2(I;V ),

µ((∇ψ,∇z̄v))s + µ((∇ψ,∇∂tz̄u))s = γs((ū− ud, ψ))s ∀ψ ∈ L2(I;Vs),

−((ξ,div z̄v))f = 0 ∀ξ ∈ L2(I;Lf).

3. It holds for i = 1, 2, . . . , N that

q̄i
∣∣
Ωf

= PQad

(
− 1

α

∫
I

gif(t)z̄
v(t, ·) dt

)
, q̄i

∣∣
Ωs

= PQad

(
− 1

α

∫
I

gis(t)z̄
v(t, ·) dt

)
.
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3.2.4 Time-dependent control (Configuration C2)

In the following, the control q ∈ Q = (L2(I))N is controlling the volume force
through the linear operators Bf and Bs described in configuration C2. As Theo-
rem 2.1 does not guarantee existence of a unique solution of equation (2.8) for a
right-hand side ff = Bfq ∈ L2(I;Hf) and fs = Bsq ∈ L2(I;Hs) we can not directly
proceed as in Section 3.2.3. Therefore, we will make use of a smooth sequence in
Q ∩ (H1(I))N converging against the optimal solution. For smooth controls, the
symmetric formulation (2.8) can be utilized and a priori estimates for the adjoint
then lead to higher regularity also for the limit. Then, we are able to derive the
optimality system similar as for the configuration C1.

Lemma 3.4 Let the initial data u0, u1, and v0 fulfill the assumptions of Theorem 2.1

and let vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf) and ud ∈ L2(I;Hs). Let for a given control q ∈
Q ∩ (H1(I))N the triple (v, p, u) be the solution of (2.8) with ff = Bfq, fs = Bsq,

and g = 0 guaranteed by Theorem 2.1. Further, let (zv, zp, zu) be the solution of the

adjoint equation (3.4) guaranteed by Theorem 3.2. Then the directional derivative of

the reduced cost functional j at q in direction δq ∈ Q is given by

j′(q)(δq) =
N∑
i=1

[
((hiδqi, zv)) + α

∫
I

qiδqi dt

]
.

Proof Since for q ∈ Q∩ (H1(I))N it holds Bfq ∈ H1(I,Hf) and Bsq ∈ H1(I;Hs) we
proceed as in Lemma 3.2 to obtain

j′(q)(δq) =
N∑
i=1

[
((hiδqi, zv)) + α

∫
I

qiδqi dt

]

for all δq ∈ Q∩ (H1(I))N . By the density of (H1(I))N in (L2(I))N with respect to
the (L2(I))N topology, we obtain the assertion. ut

In the next lemma, we prove that the optimal control q̄ lies in Q ∩ (H1(I))N

such that the representation derived in Lemma 3.4 is also valid for q̄. Therefore,
we will introduce also for configuration C2 the pointwise projection PQad

on the
admissible set Qad given here by

PQad
: L2(I)→ L2(I), PQad

(r)(t) := max(qa,min(qb, r(t))) for almost all t ∈ I.

Lemma 3.5 Let the assumptions of Lemma 3.4 be fulfilled. Then, the optimal solution

q̄ ∈ Qad of the considered optimal control problem (3.2) for configuration C2 lies in

(H1(I))N .

Proof Let q̄ ∈ Qad be the optimal solution. We regard a smooth sequence qn ∈
Q ∩ (H1(I))N with qn → q̄ in Q. As in the proof of Lemma 3.2, according to
Theorem 2.1, we have that (vn, pn, un) = Gqn solves (2.8) with right-hand sides
ff = Bfqn, fs = Bsqn, and g = 0. The velocity and displacement have at least the
regularities vn ∈ H1(I;Hf) and un ∈ L2(I;Vs). Therefore, Theorem 3.2 guarantees
the existence of a unique adjoint solution (zvn, z

p
n, z

u
n) of (3.4) with vn − vd and

un − ud in the right-hand side. By Lemma 3.4, we have

j′(qn)(δq) =
N∑
i=1

[
((hifδq

i, zvn)) + α

∫
I

qinδq
i dt

]
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for all δq ∈ Q. Due to estimate a) in Theorem 2.1, the linearity of (2.8), and the
boundedness of hi in H, we get for m,n ∈ N the estimate

‖vn − vm‖2L2(I;H1(Ωf)) + ‖un − um‖2L2(I;H1(Ωs))

≤ C

[
N∑
i=1

‖hif(qin − qim)‖2L2(I;V ∗f ) +
N∑
i=1

‖his(qin − qim)‖2L2(I;L2(Ωs))

]

≤ C
N∑
i=1

‖qin − qim‖2L2(I).

Further, due to estimate a) in Theorem 3.2, the adjoint variables fulfill the estimate

‖zvn − zvm‖2L∞(I;L2(Ω)) + ‖zvn − zvm‖2L2(I;H1(Ωf)) + ‖zun − zum‖2L2(I;H1(Ωs))

≤ C

[
N∑
i=1

‖hif(qin − qim)‖2L2(I;V ∗f ) +
N∑
i=1

‖his(qin − qim)‖2L2(I;L2(Ωs))

]

≤ C
N∑
i=1

‖qin − qim‖2L2(I).

If we regard in (3.4) test functions ϕ ∈ L2(I;Vdiv) that are divergence free in the
fluid domain Ωf , we get the estimate

‖∂tzvn − ∂tzvm‖2L2(I;V ∗div)
≤ C

[
‖zvn − zvm‖2L2(I;H1(Ωf)) + ‖zun − zum‖2L2(I;H1(Ωs))

+ ‖vn − vm‖L2(I;L2(Ωf))

]
.

By combining the above estimates, we derive for the adjoint zvn − zvm the bound

‖∂tzvn − ∂tzvm‖2L2(I;V ∗div)
+ ‖zvn − zvm‖2L∞(I;L2(Ω)) ≤ C

N∑
i=1

‖qin − qim‖2L2(I).

As qn → q̄ in (L2(I))N , it holds ‖qin − qim‖2L2(I) → 0 for m,n → ∞. Thus, zvn is

a Cauchy sequence in H1(I;V ∗div) ∩ L∞(I;H) and therefore there exists the limit
z̃v ∈ H1(I;V ∗div) ∩ L∞(I;H) such that

zvn → z̃v in H1(I;V ∗div) ∩ L∞(I;H).

Since we assumed hi ∈ Vdiv and δqi ∈ L2(I), the product fulfills hiδqi ∈ L2(I;Vdiv).
This implies due to L2(I;Vdiv) ↪→ L2(I;H) and due to the convergence of zvn in
L∞(I;H) that

j′(qn)(δq) =
N∑
i=1

[
((hiδqi, zvn)) + α

∫
I

qinδq
i dt

]
→

N∑
i=1

[
((hiδqi, z̃v)) + α

∫
I

q̄iδqi dt

]
.

In addition, the directional derivative of the reduced cost functional j′(·)(δq) is
continuous as the the control to state mapping G : Q → L2(I;Hf) × L2(I;Hs) is
affine-linear and continuous accordingly to Lemma 3.1. Therefore, the convergence
qn → q̄ in Q implies in addition j′(qn)(δq)→ j′(q̄)(δq) and we obtain the identity

j′(q̄)(δq) =
N∑
i=1

[
((hiδqi, z̃v)) + α

∫
I

q̄iδqi dt

]
.
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As the optimal solution q̄ fulfills the necessary optimality condition (3.3), we get
the optimality condition

N∑
i=1

[
((hi(δqi − q̄i), z̃v)) + α

∫
I

q̄i(δqi − q̄i) dt

]
≥ 0 ∀δq ∈ Qad.

Using the projection PQad
on the admissible set Qad, this can be expressed as

q̄i = PQad
(ri) with ri = − 1

α

∫
Ω

hi(x)z̃v(·, x) dx, i = 1, 2, . . . , N.

The time regularity of the limit z̃v ∈ H1(I;V ∗div) and the assumed regularity of
h ∈ Vdiv imply

∂tr
i(t) = − 1

α
〈hi, ∂tz̃v(t, ·)〉Vdiv×V ∗div , i = 1, 2, . . . , N

for almost all t ∈ I and consequently that ri ∈ H1(I). Using the stability of the
projection

‖PQad
(r)‖H1(I) ≤ ‖r‖H1(I),

we obtain the asserted regularity q̄ ∈ (H1(I))N . ut

Then, the optimal solution q̄ ∈ Qad of the considered optimal control problem
in configuration C2 fulfills the following theorem:

Theorem 3.4 Let the initial data u0, u1, and v0 fulfills the assumptions of Theo-

rem 2.1 and let vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf) and ud ∈ L2(I;Hs). Then, the optimal

solution q̄ ∈ Qad of the considered optimal control problem (3.2) for configuration C2
fulfills q̄ ∈ (H1(I))N and the following necessary optimality condition:

1. The optimal state (v̄, p̄, ū) = (v(q̄), p(q̄), u(q̄)) solves

ρf((∂tv̄, ϕ))f − ((p̄,divϕ))f + ν((∇v̄,∇ϕ))f

+ρs((∂tv̄, ϕ))s + µ((∇ū,∇ϕ))f = ((Bf q̄, ϕ))f + ((Bsq̄, ϕ))s ∀ϕ ∈ L2(I;V ),

µ((∇v̄,∇ψ))s − µ((∇∂tū,∇ψ))s = 0 ∀ψ ∈ L2(I;Vs),

((ξ,div v̄))f = 0 ∀ξ ∈ L2(I;Lf).

2. The optimal adjoint (z̄v, z̄p, z̄u) = (zv(q̄), zp(q̄), zu(q̄)) solves

−ρf((ϕ, ∂tz̄v))f + ν((∇ϕ,∇z̄v))f + ((z̄p,divϕ))f

−ρs((ϕ, ∂tz̄v))s + µ((∇ϕ,∇z̄u))s = γf((v̄ − vd, ϕ))f ∀ϕ ∈ L2(I;V ),

µ((∇ψ,∇z̄v))s + µ((∇ψ,∇∂tz̄u))s = γs((ū− ud, ψ))s ∀ψ ∈ L2(I;Vs),

−((ξ,div z̄v))f = 0 ∀ξ ∈ L2(I;Lf).

3. It holds for i = 1, 2, . . . , N that

q̄i = PQad

(
− 1

α

∫
Ω

hi(x)z̄v(·, x) dx

)
.

Proof As q̄ ∈ Q∩(H1(I))N , one can choose in the proof of Lemma 3.5 the sequence
qn = q̄. This immediately implies that z̃v = z̄v. ut
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