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ABSTRACT. The explicit convergence to equilibrium for reaction-diffusion systems arising
from chemical reaction networks is studied. The reaction networks are assumed to satisfy
the detailed balance condition and have no boundary equilibria. We use the so-called
entropy method in which an entropy-entropy dissipation estimate is derived utilizing the
structure of conservation laws. As a consequence, the convergence to equilibrium for
solutions follows with computable convergence rates. The applications of the approach
are demonstrated in two cases: a single reversible reaction involving arbitrary number of
chemical substances and a chain of two reversible reactions arising from enzyme reactions.

1. INTRODUCTION

In this paper, we study the convergence to equilibrium for a class of reaction-diffusion
systems arising from chemical reaction networks by using the so-called entropy method.

The considered reaction-diffusion systems describe networks of chemical reaction with
mass action law kinetics under the assumption of a detailed balance condition. In particular,

we consider I chemical substances A1, ..., A; reacting in R reversible reactions of the form
kr,b
a{.A1+...+oz§A1 p ,BIAl—F-i-B;A]
’T,f
for r = 1,2,..., R with the nonnegative stoichiometric coefficients a” = (of,...,a}) €

({0}U[1,00)) and B" = (87, ..., B%) € ({0}U[1,00))! and the positive forward and backward
reaction rate constants k, y > 0 and k,; > 0. The corresponding reaction-diffusion system
for the concentration vector ¢ = (cy,...,cr) : Q2 x Ry — [0, 4+00)! reads as

0
5C= div(DVe) — R(c), in Q,
Ve-v =0, on 012, (1.1)
c(z,0) = co(z), for z € Q,
where 2 C R” is a bounded domain with smooth boundary 02 and normalized volume, i.e.
|Q] =1, D = diag(d;i(x), . ..,dr(z)) is the positive definite diffusion matrix and the reaction
vector R(c) represents the chemical reactions according to the mass action kinetics, i.e.
R oo
R(c) = Z (kr,fcar - kr,bcﬁr) (" —B") with c* = Hcf"
r=1 i=1
By denoting m = codim(span{a”—3" : r = 1,2,..., R}), there exists a matrix Q € R™*!
such that QR(c) = 0 for all states ¢. Thus, we have the following conservation laws for

(1.1)
/ Qc(t)dx = / Qcodx orequivalently Qc(t) =M :=Q¢y
Q Q
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for all t > 0 where € = (¢, ...,¢1), with &G = [, ¢;(2)dz, is the spatial average concentration
vector and M € R denote the vector of positive initial masses.

The large time behaviour of solutions to reaction-diffusion systems if a highly active
research area, which poses many open problems, in particular for nonlinear problems. Clas-
sical analytical methods include e.g. linearisation techniques, spectral analysis, invariant
regions and Lyapunov stability arguments.

More recently, the so-called entropy method is proved to be very useful in showing ex-
plicit convergence to equilibrium for reaction diffusion systems. The basic idea of the entropy
method consists of studying the large-time asymptotics of a dissipative PDE model by look-
ing for a nonnegative convex entropy functional £(f) and its nonnegative entropy dissipation
functional

d
D(f) = —ZE(®)
along the flow of the PDE model, which is well-behaved in the following sense: firstly, all
states with D(f) = 0, which also satisfy all the involved conservation laws, identify a unique
entropy-minimising equilibrium f, i.e.

D(f)=0 and conservation laws <= f = fo,

and secondly, there exists an entropy entropy-dissipation (EED for short) estimate of the
form

D(f) 2 @(E(f) —€(fx)),  @(2) 20,  ®(2) =0 < z=0,

for some nonnegative function ®. We remark, that such an inequality can only hold when
all the conserved quantities are taken into account. Moreover, if ®'(0) # 0, one usually gets
exponential convergence toward fo in relative entropy £(f) — £(fw) with a rate, which can
be explicitly estimated.

The entropy method is a fully nonlinear alternative to arguments based on linearisation
around the equilibrium and has the advantage of being quite robust with respect to variations
and generalisations of the model system. This is due to the fact that the entropy method
relies mainly on functional inequalities which have no direct link to the original PDE model.
Generalised models typically feature related entropy and entropy-dissipation functionals and
previously established EED estimates may very usefully be re-applied.

The entropy method has previously been used for scalar equations: nonlinear diffusion
equations (such as fast diffusions [CV03, PD02], Landau equation [DV00]), integral equa-
tions (such as the spatially homogeneous Boltzmann equation [TV99, TV00, Vil03]), kinetic
equations (see e.g. [DVO01, DV05, FNS04]), or coagulation-fragmentation equations (see
e.g. [CDF08, CDF08a]). For certain systems of drift-diffusion-reaction equations in semi-
conductor physics, an entropy entropy-dissipation estimate has been shown indirectly via a
compactness-based contradiction argument in [GGH96, GH97, Gro92].

A first proof of EED estimates for systems with explicit rates and constants was estab-
lished in [DF06, DF07, DF08] in the case of particular reversible reaction-diffusion equations
with quadratic nonlinearities.

In this paper, we shall generalise the entropy method to detailed balance reaction-diffusion
systems with arbitrary mass action law nonlinearities and, as a consequence, show explicit
exponential convergence to equilibrium for (1.1). The analysis in this work uses the detailed
balance condition, which also allows to assume (without loss of generality due to a suitable
scaling argument) that

kr,f:kr,b:kr>0 forallr:l,Z,...,R.
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The key quantity of our study is the logarithmic entropy (free energy) functional

1
c) = Z/Q(cilogci — ¢+ 1) dx,
i=1

which decays monotone in time according to the following entropy dissipation functional

2 R . . . .,
D(c) = ——5 Z/ ‘V;Z‘ dx+2kr/g(ca —c?)(loge™ —logcP )dz > 0.
v r=1

For a fixed positive initial mass vector M € R, denote by c., the detailed balanced
equilibrium of (1.1) with mass M, that is the unique vector of positive constants co, > 0,
which balances all the reaction rates, i.e.

c"‘rchor, forall r=1,2,...,R

oo
and satisfies the mass conservation laws
Qco =M.

The key step of the entropy method in order to prove exponential convergence to equi-
librium of (1.1) is the following EED estimate

|D(c) > M(€(c) - E(cwr)) | (1.2)

for all ¢ € L*(£2;]0, +00)!) obeying the mass conservation Q€ = M.

Once such a functional inequality is proved, applying it to solutions of the reaction-
diffusion system and a classic Gronwall inequality yields exponential convergence in relative
entropy with rates, which can be explicitly calculated. By applying moreover a Csiszar-
Kullback-Pinsker type inequality one obtains L!-convergence to equilibrium of solutions to
(1.1) with the rate e=*™M*/2 as t — +o0.

In [MHM14], by using a convexification argument, the authors proved that such a Apg > 0
always exists for system (1.1) under the detailed balance condition and gave an explicit
bound of Ay in the case of the quadratic reaction 2X = Y. However, because of the
convexification argument, obtaining estimates on Apg seems difficult in the case of more
than two substances, e.g. for systems like

aA + B.Az = ’)/.Ag or A1+ Ay = Az + Ay

Inspired by ideas from [FLT14, DF08, DF14, FL], this work aims to propose a constructive
way to prove the EED estimate (1.2). The main novelty of our method is that, by extensively
using the structure of the mass conservation laws, the proof relies on elementary inequalities
and has the advantage of providing explicit estimates for the convergence rate Anp.

In the following we shall sketch the main ideas of our method to prove (1.2) by dividing
the proof into four steps, which are designed as a chain of estimates, which at the end of
the day allows to take into account the conservation laws, which are crucial to the validity
of (1.2):

Step 1: We use an additivity property in order to split the right hand side of (1.2) into
two parts

£(c) —E(ew) = (£(0) = £(®) + (£(8) — Elexs)).

where the first part £(c) — £(T) can be controlled by D(c) by using the Logarithmic
Sobolev Inequality and the second part £(€)—&(cs) contains only spatially averaged
terms.
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Step 2: We estimate D(c) and £(€) — £(cs) in terms of quadratic forms, since the asso-
ciated quadratic structures are significantly easier to deal with. By using capital
letters as short hand notation for the square roots of various quantities, i.e. C; = \/c;
and Cj o = /Ci o0, We have

T

c —CP

I R
1 2
§D(c) 2 ; 2d; min [[VCill72¢0) + 2; Ky L@’

and
2

£() — E(ca) < Kgg; (ﬁ _ cz,oo>

Step 3: In order to be able to use the constrains provided by the conservation laws, we
bound the reaction term of D(c) below by a reaction term of the corresponding
spatial averages:

M-

2D(e)

R . )
2 min |V Cil[Fa(0y + 23 kv €2~ CP
r=1

L2(9)
I R - 8 2
o
> 5 (L 1vC -3 (€ )
=1 r=1

where C = (C,...,Cr) with C; = [, C(x)da.

S
Il
_

Step 4: As a final step, we are left to find a constant K; > 0 such that

! R g2 ! — 2
K (Z ”VCiH%z(Q) + Z (Ca -c’ ) ) > K1K, Z (\/ C? — Ci,oo) . (13)
i=1 r=1 i=1

To prove this claim, we will employ a change of variable, which allows to quantify
the conservation laws in terms of deviations around the equilibrium values, i.e.

C? =Cl M+ ), i €[~1,+00). (1.4)
While the non-negativity of the concentration vector ¢ provides a natural lower
bound p; > 1, the conservation laws QC2 = QC?Z impose also certain upper
bounds on the new variable ;.

Then, the proof of (1.3) distinguishes two cases: i) when all C? are strictly
bounded away from zero and ii) when at least one C7, is "small”. In the first case,
using the ansatz (1.4), (1.3) yields a finite dimensional inequality in terms of the
new variables p1, . .., p; under the constraints of the conservation laws. In the latter
case, we are able to quantitatively estimate that if some Cfo is much smaller than e.g.
its equilibrium value, then such a state is far away from equilibrium in the sense
that the left hand side of (1.3) is always bounded below by a positive constant,
which is derived by again using the conservation laws. Thus, one obtains (1.3) by
choosing a suitable K; after observing the fact that the right hand side of (1.3) is
naturally bounded above by a constant.

We remark that the Steps 1., 2. and 3. can be proved without using the conservation
laws. Hence, we are able to prove these three steps in full generality. Step 4., however de-
pends on the structure of conservation laws defined by the matrix Q of left zero-eigenvectors.
Hence the matrix Q is in general case is not explicit given. This prevents an entirely explicit
proof of this step in the general case. However, for a specific model, in which Q is explicitly
known, Step 4. can be made entirely explicit, as we shall illustrate in terms of two example
systems below.
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Before stating our main results, let us remark that the question of global existence of
(classical, strong or weak) solutions to (1.1) is far open in general. This is due to the lack
of sufficiently strong a-priori estimates (maximum/comparison principles do no longer hold
except for special systems) in order to control nonlinear terms.

Recently, Fischer [Fisl5] proved the global existence of so-called "renormalised solution”
for (1.1). All the estimates presented in our paper hold for renormalised solution. Indeed,
its shown in [Fis15] that ¢;logc; € L2 ([0, +00); LY(Q)) for all i = 1,2,..., I, which makes

the entropy functional £(c) well defined.

In this paper, we will detail the proposed strategy for two important specific models: the
general single reversible reaction with arbitrary number of substances

041./41+...+Oq./4]’:rﬁ131—‘y—...—l—/@JBJ (15)

and a chain of two reversible reactions, which generalises the Michaels-Menton model for
catalytic enzyme kinetics (see e.g. [Mur02])

A1+ Ay = Az = Ay + As. (1.6)

Note that with respect to the general system (1.1), it is more convenient and usual to
change of notation for the single reversible reaction (1.5) by splitting the concentration
vector c into a left- and a right-concentration vector, i.e.

c=(c1,...,¢c1) = (a,b) = (ay,...,a5,b1,...,a7).

which allows a clearer presentation of the proof.
At first, the reaction-diffusion system modelling (1.5) reads as

dra; — div(dai(z)Va;) = —a;(a® — bP), 1=1,2,...,1, z€q,

dibj — div(dy ;(x)Vb;) = —B(a* —bP),  j=1,2,...,J, zeQ, (1.7)
Va; - v=Vb; -v=0, i=1,....0, 5=1,....J, x € 00
where a = (a1,...,ar) and b = (by,...,b;) denote the two vectors for left- and right-hand
side concentrations and a = (a,...,ar) € ([1,00))! and B8 = (B,...,85) € ([1,00))! the

positive vectors of the stoichiometric coefficients assossiated to the single reaction (1.5).
Moreover, a® = []_, a2 and b® =[], b7
This system (1.7) possesses the following I.J mass conservation laws

@ b
a; B

from which exactly m = I'+.J —1 conservation laws are linear independent. That means the
matrix Q in this case has the dimension Q € RUH/=1DxI+J)  See Lemma 3.1 for an explicit
form of Q. After choosing and fixing I 4+ J — 1 linear independent components from the
IJ conserved initial masses (M; ;) € RY, we denote by M = (M; ;) € RTt/~1 the vector
of initial masses corresponding to the selected I + .J — 1 coordinates of (M; ;) € RY/. The

detailed balanced equilibrium (@uo, bao) € REFY of (1.7) is defined by

M, i=1,....0,j=1,...,J, (1.8)

@i o0 bjoo _ - -
P + Bj *Mi,j VZ—1,2,...,I, Vj—l,Q,...,J,

a% = b2 .

Theorem 1.1 (Explicit convergence to equilibrium). Let M € Rf“]_l be a fixed positive
initial mass vector corresponding to I + J — 1 linear independent conservation laws (1.8).
Denote by (ax,boo) the detailed balanced equilibrium of (1.7).
Then, for any nonnegative (a,b) € L' (Q; [0, oo)l‘”) satisfying the mass conservation
laws (1.8), we have
D(a,b) > Mu(€(a,b) — E(ao, b))
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where the constant Ay > 0 can be explicitly estimated in terms of the initial mass M,
the domain ), the positive stoichiometric coefficients o, 3 and the diffusion coefficients
da,i,l SZSI andd;hj,l S] S J.

Consequently, the solution to (1.7) obeys the following exponential convergence to equi-
librium

I J
Z lai(t) = aicoll7r () + Z 16;() = bjooll 21 (0
i=1 j=1

< Corep(€(a(0),b(0)) = E(as, beo))e M
where Cogp is the constant in a Csiszar-Kullback-Pinsker inequality in Lemma 2.4.

Secondly, the reaction-diffusion system modelling (1.6) reads as

Orer — div(dy (z)Ver) = —ciea + ¢, T €,
Orca — div(de(z)Ves) = —cica + ¢, T €,
Ores — div(ds(x)Ves) = crea + cqe5 — 2¢3, T €, (1.9)
Oreq — div(da(x)Vey) = —cacs + cs, x €, '
Ores — div(ds(x)Ves) = —cqcs + cs, T €,
Ve, -v =0, 1=1,2,...,5, x € 0N.
The mass conservation laws of (1.9) are
GHm+a =M, Vie{l,2} and Vje{4,5) (1.10)

and among these there are precisely m = 3 linear independent conservation laws, thus
Q € R3*®. In the following, we denote by ¢ = (ci,...,cs) the concentration vector and by
(M; ;) = (My,4, My 5, M4, Ms5) € R* the initial mass vector. Note that the initial mass
vector M is fixed once its three linear independent coordinates are fixed, then by a fixed
initial mass vector (M; ;) € Ry we mean that the three linear coordinates are given and
the remaining coordinates are subsequently calculated. The detailed balanced equilibrium
Coo € R to (1.9) is defined by

Ci,oo T C3,00 + Cj o0 = M; j, Vi € {1, 2} and Vj € {4, 5},

C1,00C2,00 = €3,00;

C4,00C5,00 = C3,00-
Theorem 1.2 (Explicit convergence to equilibrium). Let M € R be a fized positive initial
mass vector corresponding to 3 linear independent conservation laws of (1.9). Denote by
Coo the detailed balanced equilibrium of (1.9).

Then, for any nonnegative measurable function ¢ = (c1,...,c5) € L* (Q; [0, —l—oo)5) satis-
fying the mass conservation laws (1.10), we have

D(c) =2 Am(&(e) = E(e))

where Ay > 0 is a positive constant. which can be explicitly estimated in terms of the initial
mass M, the domain  and the diffusion coefficients d;, 1 =1,2,...,5.

As a consequence, the solution ¢ = (c1,...,c¢5) to (1.9) converges exponentially to the
equilibrium defined by its initial mass,

5
D lleit) = cimllti (@) < Corp(E(e(0)) = E(ex))e ™Mb Wt > 0,
=1

where Cogp is the constant in the Csiszar-Kullback-Pinsker inequality.
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The rest of this paper is organized as follows: In Section 2, we give the details of the
mathematical settings and the method containing the mentioned four steps. Also in this
section, the Steps 1., 2. and 3. will be proved rigorously and explicitly in the general
case. The proofs of Theorems 1.1 and 1.2 are presented in Sections 3 and 4 respectively.
Finally, we discuss the further possible applications of our method and some open problems
in Section 5.

2. MATHEMATICAL SETTINGS AND A GENERAL APPROACH

In this section, we first recall the mathematical settings of the reaction network and then
we give the details of the proposed method.

2.1. Mathematical settings. For convenience to the reader, we will adopt the notations
from [MHM14]. Counsider I species Ay, ..., A; reacting via R reactions according to the
mass-action law of the form:

afAr+ . oA s BlAL .+ BT AL (2.1)
for r = 1,2,...,R, where R € N, a” = (af,...,a%) € ({0} U[1,40))! and B" =
(BY,...,B7) € ({0} U[1,+00))! are the vectors of nonnegative stoichiometric coefficients,

and k,p, k. are the the backward and forward reaction rate coefficients.
Denote by c(t,z) € R! the vector of concentrations, then the reaction-diffusion process
is modeled by the semilinear parabolic PDE system

%c =div(DVe) —R(c) inQ and Ve-v=0 1in 09, (2.2)

subject to nonnegative initial data c(x,0) = co(z),z € Q, where Q C RY is a bounded
domain with smooth boundary 02 which has the outward normal unit vector v. Note that
without loss of generality, we can rescale the spatial variable such that the volume of €2 is
normalised, i.e.

|2 = 1.
The diffusion matrix is diagonal D(x) = diag(d;(z));=1,.... 1 and positive definite. We assume
moreover that the diffusion coefficients satisfy

di,min < dz((E) < di,maz Va € Q, Vi=1,2,...,1. (23)
The reaction vector R, given by the reactions (2.1), is of the mass-action type
R o
R(c) = Z (kr’fco‘r - kr,bcﬂr) (" —B") with c¢* = H et (2.4)
r=1 i=1

To determine the mass conservation laws for (2.2), we arrange the stoichiometric coefficients
a” = (af,...,a%) € ({0} U1, +00))! and 8" = (B7,...,87) € ({0} U[L, +00))! as columns,
which gives the stoichiometric matrix

W=((8"—a")=1,..r) €R¥ (2.5)

which is also called Wegscheider matrix. Note that according to the mass action law, now
we can write R(c) in the form

R(c)= -W'K(c), where K(c)=[K.(c) =k ;c® —k.sc? |1 g (2.6)

The range rg(W ") is called the stoichiometric subspace and due to (2.6) we have R(c) €
rg(W ). We now can determine the mass conservation laws as follows: for m = dim ker(W),
the codim of W, we choose a matrix Q € R™*! such that rankQ = m and QW' =0, i.e.,
the rows of Q form a basis of ker(W). Since R(c) € rg(W ), we have

QRc=0 for all c € RY. (2.7)
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By denoting

€= (a,....7) withs = / os()da (2.8)
Q
and using the no-flux boundary condition for ¢ on 9f), we end up with the conservation laws
d
—/Qc(t)dac:@]])/ Vc-udS—/@R(c)dsz (2.9)
dt Jo o9 Q
or equivalently
Qc(t) =Qc(0) =M eR™ (2.10)

for all ¢ > 0, where we M denote the initial mass vector.

For physical consideration, we are only allowed to consider nonnegative concentrations
as solutions. Thanks to [Piel0], we only have to check that the nonlinear reaction vector
R(c) satisfy a quasi-positivity condition, that is, if R(c) = (Ry(c),..., Rr(c))T then

Ri(cla---7ci—1307ci+1a---7cl)ZO VZZI,Q,I with Cl,...,Ci_l,Ci_;'_l,...,C[20,

which is naturally satisfied by mass action law reactions of the form

R
Ri(e) = > ke (e =) (o] = 57)
r=1
fort=1,2,...,1. Thus, we have

Lemma 2.1 (Nonnegativity). [Piel0] If the initial concentration vector cq is nonnegative,
then the solution vector c(t) remains nonnegative for all t > 0.

Definition 2.1 (Equilibrium). Fiz an positive initial mass vector M € R". A state c* €
[0, +00)! is called a homogeneous equilibrium (or equilibrium) for (2.2) if

R(c*)=0 and Qc" =M.

To study the large time behaviour of (2.2), we impose the following crucial assumptions:

(A1) System (2.2) satisfies a detailed balance condition, that is, there exists an equilibrium
Coo € (0,+00)! such that

Vr=1,2,...,R: ky e = ke

This equilibrium c, is called a detailed balanced equilibrium.

(A2) There is no boundary equilibrium, that is (2.2) does not possess an equilibrium
belonging to 9[0, +oc)!. Therefore any equilibrium co = (¢1,00, - - -, €r.00) | to (2.2)
satisfies ¢; oo > 0 for all i =1,2,..., 1.

Remark 2.1.
o The assumption (A1) allows to rescale the system such that we can assume k, ; =
krp = ky for all =1,2,...,R. Thus, the reaction rate constant of each reaction

18 equal to the reaction rate constant of the reverse reaction. This helps us to see
that the free energy functional, or the logarithmic entropy functional (see (2.11)) in
other words, is a Lyapunov functional, that is it is decreasing along the trajectory
of the system (2.2) as time is increasing.

o The assumption (A2) is a natural structural assumption in order to prove an entropy-
entropy dissipation estimate like state above. In fact, for general systems featuring
boundary equilibria, the behaviour near a boundary equilibrium is unclear and can
prevent global exponential decay to an asymptotically stable equilibrium as can be
seen in example systems. See Remark 2.2 for an example of a system having a
boundary equilibrium.
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Lemma 2.2 (Uniqueness of detailed balanced equilibrium). [GGH96, Lemma 3.4] If the
system (2.2) satisfies (A1), then (2.2) has a unique detailed balanced equilibrium.

We define the entropy functional

1
E(c) = Z/Q(ci loge; — ¢; + 1)dz, (2.11)

which decays monotone in time according to the following entropy dissipation functional

I ; 2 R ks T i T
D(c)ig(C)Z/le(I)VCZ dI+Zkr[2(ca 7cﬁ )(logca 710gcﬁ )d$20
=1 r=1

Z (2.12)

Lemma 2.3 (L!'-bounds). Assume that the initial data co are nonnegative and satisfies
E(Ty) < +00. Then,

Proof. Integrating (2.12) over (0,t) leads to
1
Z/ (ci(z,t) loge;(z,t) — ¢i(x,t) + 1) dz < E(CTq) vt > 0.
i=17%

By using the elementary inequalities zlogz — x + 1 > (/o — 1)2 > %x —1forallz >0, we
get

I
1
QZ/ci(x,t)dasSS(ﬁ)—i—I.
=179

This, combined with the nonnegativity of solutions, completes the proof of the Lemma. [

The following Csiszar-Kullback-Pinsker type inequality shows that the convergence of
equilibrium in L'(€2) follows from the convergence of the relative entropy £(c) — £(cs) to
zero. For a generalized Csiszér-Kullback-Pinsker inequality, we refer to the paper [AMTUO1].
Here, we give an elementary proof using only the natural bound inheriting from Lemma 2.3.

Lemma 2.4 (Csiszar-Kullback-Pinsker type inequality). For all ¢ € L'(; [0, +00)!) such
that Qc = Qco and ¢; < K for allt=1,2,...,1 with some K > 0, we have

I
&(c) —&(cx) = Cokp Z llei = Cirooll 10

i=1
where the constant Coxp depends only on the domain Q and the constant K.

Proof. By using the additivity of the relative entropy (see [MHM14, Lemma 2.3]), we have

I T _
E(c) — €(ex) = Z /Q c;log %dm + Z <ci log C.c —C + ci7w> . (2.13)
i=1 v i=1 v

i
,00
Using the classical Csiszar-Kullback-Pinsker inequality, we have

/ cilog i > Colles — EiHil(Q) (2.14)
Q Ci
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for all i = 1,2,...,1, where the constant Cy depends only on the domain 2. On the other
hand, by applying the elementary inequality zlog(z/y) —z +y > (v — \/y)? we obtain

Zi(ﬁ*@fji% (2.15)

By combining (2.13)—(2.15), we obtain

I I
_ 1 _
E(c) = E(eo) = Co Y llei = @ill7a () + 1K > (@ = cico)?
i=1

i=1

I
> min{Co; 1/4K} Y (Iles =il oy + e = iocllingey )

i=1
1 I
2 5 min{Co; 1/4K} > llei = cioollZi(ays
i=1
which is the desired inequality with Coxp = %min {CO; &} 0

The following entropy-entropy dissipation estimate is established in [MHM14].

Theorem 2.5. [MHM14] Assume that (2.2) satisfies the assumption (A1) and (A2). For
a given fized positive initial mass vector M € R, there exists a positive constant Ay > 0
such that

D(c) = Am(€(c) — £(coo))

for allc € LY (9]0, +00)!) satisfying Q€ = M, where c, is the detailed balanced equilibrium
of (2.2) corresponding to M.

We emphasise that, though this Theorem gives the existence of Ap; > 0, it seems difficult
to extract an explicit estimate of A\pg except in some special cases, e.g. a quadratic system
arising from the reaction 2X = Y. The main reason is that the method used in [MHM14]
to prove this result is crucially based on a convexification argument, which appears very
hard (if not impossible) to make explicit for general systems.

In this paper, we propose a constructive way to prove the EED estimate based on the
structure of the conservation laws. The method applies elementary estimates and has the
advantage of a better computability of the rates and constants of convergence to equilibrium.
Before detailing our approach, let us remark about the assumption (A2) on the absence of
boundary equilibria.

Remark 2.2 (Boundary equilibrium). The validity of Theorem 2.5 may fail if the system
(2.2) has a boundary equilibrium. For example, for the single reversible reaction 2A = A+B
with normalised reaction rate constants ky = ky = 1, we consider the following system

a; — div(6,(z)Va) = —a® + ab, xeN, t>0,
by — div(dy(2)Vb) = a? — ab, xeQ, t>0,
dy,a = 0,b=0, r eI, t>0,
a(x,0) = ap(x), b(z,0) = by(z), x € Q.

(2.16)
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This system has one mass conservation law
/(a(m,t) + bz, t))dx = / (ao(z) + bo(x))dz =M >0 vt > 0.
Q Q

It is easy to see that the system possesses a positive detailed balance equilibrium (al,,bl,) =

(%, %) and a boundary equilibrium (a?,,b%) = (0,M). Moreover, we have the entropy
functional

S(a,b):/(aloga—a—I—l)dﬂc—l—/(blogb—b—i—l)dx
0 Q

and the entropy dissipation functional

2 2
D(a,b) = /Q&l(;v)'v;'dx +/Q(5b(x)|v:|dsc —|—/Qa(a —b)(loga — logb)dx.

By defining Z = {(a,b) € R% : a + b = M}, we can compute

lim D(a,b) =0
Z>(a,b)—(a?,,b2,)

and
(E(a,b) — E(al,,bl)) = Mlog2 > 0.

lim
Z3(a,b)— (a2, ,b2.) 007 70

Then, there does not exist a global constant M\ > 0 such that
D(av b) > AM(E(av b) - g(al bl ))

o0 Yoo

for all functions a,b: Q — Ry satisfying [, (a(z) 4 b(x))dx = M.

So, in general, if (2.2) has a boundary equilibrium then we cannot expect global exponen-
tial convergence to equilibrium but only local convergence, that is, if a trajectory starts from
a neighbourhood of the positive equilibrium, then it converges exponentially to equilibrium
as time goes to infinity. Interestingly, it is conjectured in the case of ODE reaction systems
that even if the system possesses boundary equilibria, a trajectory starting from a positive
initial state will always converge to the unique positive equilibrium as time goes to infinity.
The reader is referred to [CDSS09] for a discussion of more general systems.

2.2. A constructive method to prove the EED estimate. Though the Theorem 2.5
provides the existence of Ay > 0 satisfying the entropy-entropy dissipation estimate, it does
not seem to give an explicit estimates for Apy when the reaction network has more than two
substances, for example,

aA+B=~C or A+ A= A3+ Ay

Inspired by the works [DF08, DF14, FLT14, FL], we propose a general approach to prove
an entropy-entropy dissipation estimate using only the mass conservation laws and which
allows explicit estimates of the rates and constants of convergence to equilibrium for a given
general reaction-diffusion system of the form (1.1).

By recalling the crucial EED estimate

D(c) = Am(&(c) — E(cx)), (2.17)

we observe that the right hand side is zero if and only if ¢ = c,, while the left hand side
is zero for all constant states c¢* € (0, +00)! satisfying (¢*)* = (c¢*)? ¥r=1,2,..., R and
such a ¢* identifies with co if and only if Qc* = M. Hence, it the EED estimate (2.17)
has crucially to take into account all the conservations laws.

The following notations and elementary inequalities are useful in our proof:
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L2(Q)-norm:
For the rest of this paper, we will denote by | - || the usual norm of L?*(Q),

12 = / (@) ? d.

Spatial averages and square-root abbreviation:
For a function f : © — R, the spatial average is denoted by (recall the domain
normalisation || = 1)

7= /Q /(@) da.

Moreover, for a quantity denoted by small letters, we introduce the short hand
notation of the same uppercase letter as it’s square root, e.g.

C; =+/ci, and C; o0 = \/Cico-
Additivity of Entropy: see e.g. [DF08, DF14],[MHM14, Lemma 2.3]

£(c) — E(cx) = (E(c) = £(T)) + (£(C) — E(co0))

I I _
= Z/ ¢; log gdx + Z (cl- log i
=179 Ci i=1 Ci,00

(2.18)

—C; + Ci,oo> .

An elementary inequality:
2
(a—b)(loga —logb) > 4 (f - \/5) .
An elementary function:
Consider ® : [0, +00) — [0, 400) defined as (and continuously extended at z = 0,1)

O(z) =

zlogz —z+1

(vVz -1

Then, ® is increasing and lim ®(z) = 1 and lim ®(z) = 2.
z—0 z—1

Remark 2.3 (Explicit constants). We remark that though the approach proposed here allows
to explicitly estimate the rate of convergence, the issue of optimal convergence rate goes
beyond the method. Therefore, in several places, we will introduce some explicit constants
K; in the sense that K; can be estimated explicitly, but sometimes we don’t give unnecessary
long expression of K; to improve the readability.

The method of proving the EED estimate (2.17) contains four steps designed as a chain of
estimates, which allows to enter the conservation laws in a final step. Among the four steps,
Step 1., Step 2. and Step 3. can be proved for general systems since their proofs do not
rely on the structure of the conservation laws. In Step 4., which crucially uses the mass
conservation laws defined in (2.10) an explicit constructive proof can be done for a given
system (see the examples in Section 3 and Section 4) but for a general system it is unclear
how to prove Step 4. since the choice of the matrix @Q is not unique n the general case.
Nevertheless, we will see in Section 3 and Section 4 that once the conservation laws are
explicitly known, we can finish the proof of Step 4. and thus complete the proof of (2.17).

Step 1 (Use of the Logarithmic Sobelev Inequality):
The idea of this step is to divide the relative entropy £(c) — £(cs) into two parts,
where the first part is controlled by the diffusion using the Logarithmic Sobolev
Inequality and the second part contains only spatial average of concentrations, which
have the advantage of obeying the conservation laws as well as having the natural
bounds in Lemma 2.3.



CONVERGENCE TO EQUILIBRIUM FOR REACTION-DIFFUSION SYSTEMS 13

We use the additivity of entropy (2.18)
£(c) —&(cx) = (E(c) = £()) + (£(C) — E(ex))

I I
, o 2.19
:Z/cilogczdm—i—Z(Cilog G —ci—l—ci,oo) (2.19)
=179 G i=1 Cioo
To control the first integrals, we use the Logarithmic Sobolev Inequality
(|2 )
/ di(x)7|vcl| dr > C’sz(di)/ ¢; log gda:
Q C; Q Ci
and estimate
1 1 _
iD(c) > 3 min{Crsi(d1),...,Crsi(dr)}(E(c) — E(T)).
Thus, it remains to prove that
1
5D(c) = K1(E(C) — €(coo)) (2.20)

2
for an explicit constant K.

Step 2 (Transformation into quadratic terms):
To prove (2.20), we first estimate D(c) below and £(¢) —E€(cs ) above in terms of L?-
distance of the square roots C; of the concentrations ¢;. The associated quadratic
forms are significantly easier to handle than the logarithmic terms. For D(c) we
estimate

! 12 - r r r r
D(c) :Z:/Qdiwc_l| dx+Zkr/Q(Ca —cP)(loge™ —logc? )dx
i=1 v r=1

C

(2.21)

1 R
>N 4di i VG + 4k, |G — €7
i=1 r=1

by recalling C; = \/¢;, di(%) > dimin, C = (C1,Cs,...,Cr)" and the elementary
inequality (a — b)(loga — logb) > 4(y/a — V/b)>.
For the second terms on the right hand side of (2.19), we use the function

zlogz— 241

NV

which is non-decreasing to estimate

—Cz‘“im):g@( “ )(m-mﬁ

I

(@)~ £(ex) = 30 lon

=1

I — 2
< KzZ( C? _Ci,oo)

i=1
K
Ky = max {@ < )} , (2.23)
i=1,...,1 Cioo

where we used Lemma 2.3 that all ¢; < K :=2(E(¢g) +I) >0foralli=1,...,1I.
From (2.21) and (2.22), we now want to find an explicit constant K; > 0 such that

I R ) 2 1 — 2
23 diminIVCi? + 23k, [ C2 - cﬂrH > KKy Y (ﬁ - cmo) . (229
=1 r=1 =1

Ci
Ci, 00 Ci, o0

(2.22)

with
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Step 3 (Reaction dissipation term and reaction dissipation term of averages):

The left hand side of (2.24) represents the coupling between diffusion and reaction
of the system. In order to be able to use the constrains provided by the conservation
laws, we shall bound it below by a reaction term of spatially averaged concentrations.
More precisely, by denoting C = (C1,...,C7) T, we have

Lemma 2.6 (Reaction terms of averages). There exists an explicit constant Kg > 0
such that

I .
2" dimin |V +22k [co” B2 > Kg(z [\ze? ||2+Z( -c’ )2) (2.25)
=1 r=1

We postpone a proof of this Lemma to the end of this section in order to con-
tinue presenting the main ideas of our strategy. It’s worth noticing that comparing
o [DF08], in which the nonlinearity has a quadratic form and allowed to exploit
certain L2-orthogonality structures, Lemma 2.6 is more complicated due to the
arbitrary order of the nonlinearity. In the proof of Lemma 2.6 at the end of this sec-
tion, we introduce new ideas, which are motivated by [FL] and consist of a domain
decomposition to overcome the difficulties caused by the nonlinearity. This idea
is also applicable to volume-surface reaction-diffusion systems, see [FLT14]. Now,
combining (2.24) and (2.25), our goal now is to find an explicit K7 > 0 satisfying

I R o g 2 K1K2 I — 2
Siwer+ 3 (e -e”) 2 By (V- o) (2.26)
=1 r=1 =1

with K is defined in (2.23) and K3 is in (2.25).

Step 4 (Express averages in terms of the equilibrium):

Before continuing, we remark that while the previous three steps can be proved in
the general case without details of the structure of the conservation laws, this step is
rather a proof of concept how to proceed to complete the proof of the EED estimate
for a specific model, whose conservation laws are explicit given (see Lemmas 3.1 and
4.1 for example of two specific models).

To prove (2.26), we use the ansatz

C?2=C? (1+p)?* forall i=1,...1I (2.27)

or equivalently o
C?=CL(1+p)?
with 1 = (1,1,...,1)T € Rf and g = (u1,...,p7) . By recalling that C? = ¢
and C2, = c.., and Q€ = Qc, = M, we have the following algebraic constrains
between 1, ..., 1y,
QCZ(1+p)?=QC2
or equivalently
QCL (1’ +2p) =0. (2.28)

By denoting §;(x) = C’ (x)—C; forxz € Q,i =1,...,I and by using (2.27), it follows
from [|6;]|> = C2 — C;” that

2
G-y L o1+ ) - IR (2:29)

fw

where we denote R(C. (\/ 2+C; ) Jforalli =1,...,1. We observe that R(C;)

becomes unbounded when C’i2 approaches zero. This possibility prevents the use of
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the ansatz (2.29) in cases where C? is small. Therefore, we have to distinguish two
cases where C? is either ”big”, say C2 > 2, or "small”, says C? < 2. We remark

that a good value for the constant € > 0 can be explicitly computed in specific
models (See (3.37) in Section 3 or (4.18) in Section 4).

(i) C2>eforalli=1,...,1.
In this case, we have

B 1
OZ)_\/CT-Z-FCi

Thus, we can estimate the left hand side of (2.26) as follows, for all 6 € (0, 1),

I R - N 2
SIvelr+y (€ -T7)
i=1 r=1

—_

<- vi=12...,1

9

)

I R I
> Cp Y 16l° +6 3| TT (Cooo(1 + i) = 16l R(C)) ™
=1 r=1 Li=1
I 72
~ T (oot + i) — 181 R(C2) ™
=1
I R . R R 12
> Cp Y [6IP+ 0 [CX (1 + )~ CL 1+ |
i=1 r=1
I
—00(EK) Y (6,2
=1
R - - 2
Z{ (1+ p)™ —C§O(1+u)ﬁ} (2.30)

if we choose 6 € (0,1) such that 0C(e, K) < Cp where C(e, K) is a constant
explicitly depends on € and K. On the other hand, with the ansatz (2.27), the
right hand side of (2.26) becomes

I 2
K1K2 =53 K1K2 2

=1 i=1

By using (2.30) and (2.31), we obtain the desired inequality (2.26) provided
the following finite dimensional inequality holds

R . . . 12 KKy~ 5 o
oy (o arw L 2 TEE N cht (22)

r=1 =1

under the constrains posed by the conservation laws Q C2_(u? + 2u) = 0.

To prove (2.32), we seem to need explicit forms of the mass conservation laws
represented by Q, which should be known in a specific model but is unclear
in the general case. We will give a proof of (2.32) in Lemma 3.3 for a single
reversible reaction and in Lemma 4.3 for a chain of reversible reactions in which
the conservation laws are explicitly known.

(ii) C? < &2 for some ig € {1,...,I}.
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In this case, we first bound the right hand side of (2.26) above by using the

boundedness of averaged concentrations ¢; < K for all ¢ = 1,...,I in Lemma
2.3,
K1 Ky & 7 KK, & AKK K.
14 = 1402 35 150
c? ¢, ) < (02+0300) < SRMIR2 933
Kg;(l,m oy (@ R

To bound the left hand side of (2.26), we consider two subcases due to different
roles of the diffusion.

» (When the diffusion is dominant.) If ||§;<||> > C(e,io) for some i* €

{1,...,I}, where C(g,1ip) is an explicit constant in terms of € and i (see
(2.36)). Then, the left hand side of (2.26) is bounded below by

I R i .
Sivelr+y (¢ - )2 > Cpllo-
i=1 r=1

Then, (2.26) follows from (2.33) and (2.34) by choosing K7 > 0 such that
K3CPC(€, io)

> > CpCle, ip). (2.34)

K <
'S AKK,
» (When the diffusion is inefficient)
If ||6;]|? < C(e,ip) for all i = 1,...,I. Therefore, we can estimate
Tl =CZ— |62 > C2 — Cleig) Vi=1,2,...,1. (2.35)

Recall that we have also CTQO < 2. At this point, by using the mass

conservation laws Q C2 = M > 0, we should be able to show that, there
exists 1 < 5% < I such that

07]2* > C*(Ea i07M)

for an explicit constant C*(e, 49, M). Now, by choosing

C*(e,1
C(E,io) < ¥7
we obtain from (2.35) that

@22@_

Combining this and the fact that the system (2.2) does not have boundary
equilibria, this leads to the following bound

SIS e > (e -y
= Z =t it

> K*(E,i0>

(2.36)

where K*(e,4) is an explicit constant. This inequality, together with
(2.33), implies (2.26) if we choose

Kl < K3K*(57 ZO)
4K K,

For the rest of this section, we give a proof of Lemma 2.6 in Step 3.
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Proof of Lemma 2.6. We first prove that

2 R 2
c* — P H ZKZ(CQ —Cﬁ) (2.37)
r=1

for an explicit constant k > 0. Then, (2.25) follows by choosing

K3 = min {z_ﬂllln {dz mzn} } :

1
Y diminl VG
i=1

The proof of (2.37) introduces pointwise deviations of the concentrations around their spatial
averages, which are as follows: for all i = 1,2,..., I, we define

8i(z) = Ci(x) — O, for z € Q. (2.38)
Thanks to the non-negativity of C; and Lemma 2.3, we have that §; € [~V K; +00). Fixing
a constant L > /K > 0, we can decompose € as
Q=S5uUst, (2.39)
where
S={zxeQ:|6)| <L, Vi=12,... 1} (2.40)
We will prove (2.37) on both S and S+. On S we have, for all v € (0,2),

R i} . 2 R I I gr
W;erc —C LQ(S):kaT ];[ (Ci + ) 1;[1 (C: + )

r=1

2

L2(S)

>’y mln {k}ZHC fCﬁ’

L2(5) -7C(L ZH5HL2(S)a (2.41)

where C(L) is a constant which does not depend on S. On the other hand, by using the
Poincaré inequality,

IVFI? > Crllf = FI? > Crllf = Fli2s)s (2.42)
we have
I I

Zldz min||VCi ||2 >Cp I{nn {dz mm}zl |0 H2 > Cp Hllln {dz mm}zl |0 ||L2

(2.43)
From (2.41) and (2.43), if we choose v € (0, 2) such that 4yC(L) < Cp ‘_r{lin I{di’mm}’ then

we have

2

>’y min {k}ZHC -

I
Zdi,mm||vci||2
=1

=1,.., L2(8)
(2.44)
To estimate (2.37) in S+, we note that
L={reQ: 6&(x)>L forsome i=1,2...,T}. (2.45)
Hence,
|5+ —Z|{zeﬂ di(x) > LY = Z|{z€ﬂ 82(z) > L*}|
= (2.46)

I
1 2 1 2
f Z |6 || - L2OP min {dz mzn} Zdz mlnch H .
i=1 =1,.
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By making use of the following a priori bounds C; < \/CTZ < VK from Lemma 2.3, we can
estimate the right hand side of (2.37) in S+ as follows

2

r

R .
>|er - < C(VEK)|S*|
L2(54)
r=1
C(VE) : :
di min i 2.4¢ .
— L2Cp vinlflin I{di,min} ; 7 Ivel (use (2.46)) (247)
1 Jd
<1 Zdi,mmHVC’iHQ,
i=1
if we choose L to be big enough, e.g. L? > #\/{Xdz} By combining (2.44) and
i=1,...,0° T
(2.47) we obtain (2.37) with £ = 2 min{1, ~ _min R{kr}}. O

3. A SINGLE REVERSIBLE REACTION - PROOF OF THEOREM 1.1

In this section, we will follow the strategy in Subsection 2.2 to show the explicit conver-
gence to equilibrium for a single reversible reaction of the form

041./414-0{2./42—}—...—1—041./4[‘:,6161+ﬁ262+...+ﬁJBJ

for any I, J > 1. The stoichiometric coefficients a;, 8; > 1 fori=1,...,Tand j=1,...,J.
For the sake of convenience, the forward and backward reaction rate constants are assumed
to be one kf = kp = 1.

As mentioned before, this problem was left as an open problem in [MHM14] whenever
I+J > 3. The reaction is assumed to take place in reaction vessel, i.e. in a bounded domain
Q C R",n > 1 with sufficiently smooth boundary 99 (e.g. 99 € C?*¢ for some € > 0). The
mass action reaction-diffusion system reads as

Ora; — div(d, i (z)Va;) = —ay (aa — b'8> , t>0,2€Q,i=1,...,1,

Oub; — div(d; ()Vh)) = B (a® =), >0, 2€Q j=1,....J 3.1)
Oya; = 0,b; =0, t>0,2€09, i=1,...,1,j=1,...,J,
a;(x,0) = a;0(x), bj(x,0) =bjo(x), zeQ,i=1,...,1, j=1,...,J,
where d, ;(x),dp, ;(z) are diffusion coefficients satisfying
min < dgi(2), dp j(2) < dpmas VeeQ,i=1,...,1, j=1,...,J, (3.2)
a = (a1,az,...,ar), b = (by,ba,...,by) are vector concentrations, & = (a1, @g,...,ar) €
[1,4+00)! and B = (B1, B2, --,B1) € [1,+00)” are vectors of stoichiometric coefficients and
we recall the notation
I J
aa:Ha?" and bﬁ:Hbfj.
i=1 j=1

The aim of this section is to follow the strategy proposed in Section 2 to show the
explicit convergence to equilibrium for the system (3.1). To do that, we first derive the
mass conservation laws for (3.1), which are essential in our strategy. Then, (3.1) is shown to
satisfy the assumptions (A1) and (A2), that is (3.1) satisfies the detailed balance condition
and has no boundary equilibrium. Theorem 1.1 shows the main result of this section.

Lemma 3.1 (Mass conservation laws). The system (3.1) obeys I+ J —1 linear independent
mass conservation laws.
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Then, with respect to the general formulation, we have the matriz Q is defined as
Q = [vlv s, U, W2, .. 7w1}—r € R(I+J_1)X(I+J)
where v; and w; are defined in (3.6) and (3.7) below.

Proof. Recall the equations for a;,
Ora; — div(d,,i(z)Va;) = —ay (aa - bﬁ) (3.3)
and for b;,
yb; — div(dy ;(z)Vb;) = B; (aa - bﬁ) . (3.4)
Then, by dividing (3.3) by «; and (3.4) by 3;, summation and integration over  yields,
thanks to the homogeneous Neumann boundary condition,
d (ai(x,t) N bj(z,t)

dt Jq a; Bj

)da:zO Vit > 0.

Hence, after introducing the nonnegative partial masses M; ; := fQ (a’;i(x) + b’gi(x)) dx, we
i J

observe that system (3.1) obeys the following I.J mass conservation laws

ai(t) bt )
ip+-§):Mm VES0Vi=1,... . IVj=1,...,J (3.5)
i J

where we recall the notation for spatial average, e.g. a; = fﬂ a;i(z)dx. Fix I+ J — 1 laws

ar by .
Y%y —1,2,...,1,
ar B I J

and o
% b i =2.3,...,J
— -_— = i1, 1= 4,9,...,d.
a; B !

We first show that other laws can be implied from these I + J — 1 laws due to

a b by ar
%y ﬁfj = (Mi,l - 1> + <M1,j - Zl> =M1+ My — M,
J

a; B 1
and then prove that these I + J — 1 laws are linear independent. Indeed, it is equivalent to
prove that the set of vector (vy,...,v, we,...,ws) is linear independent in R/*/~1 where
<1O 010 0) 1<45< (3.6)
vy = T Uy ey Uy Ty Uy e ey ) S)=d .
/ aq 53’
I+j
and
1 1 )
w; =(0,...,0,—,0,...,0,—,0,...,0, 2<i< 1. (3.7)
Q; B
N
K3
I+1
This fact follows from direct computations so we omit it here. O

Remark 3.1. [t follows from the Lemma 3.1 that the initial mass vector M is fized once
its I +J — 1 coordinates My ; with 1 < j < J and M; 1 with 2 <1 < I are fized. Therefore,
from now on, by a fixed initial mass vector M we mean that those coordinates are fized.
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Remark 3.2. Similar to Lemma 3.1, we can also divide the equation for a; by a; and the
equation for ai by ay for 1 <i# k <1 and obtain

d i(¢, t, .
/(“( 7)ol x)>dw:O VE>0, 1<i#k<I, (3.8)
dt Jqo Q; ay,
which leads to the following mass conservation laws
7 tv ta .
/(a( z) _ x)>dx ik VE>0, 1<i#k<I, (3.9)
Q QG Qf

with

Nix ;:/ <a"’°(m) - “’“*O(x)> dz.
Q Q; Ak

It’s also useful to observe that
N = M; ; — My 5, Vi<j<J (3.10)

Lemma 3.2 (Unique constant positive equilibrium).
For any fized positive initial mass vector M, the system (3.1) possesses a unique equilibrium
(@oos boo) € (0,4+00) 7 solving

. b
Bioo f Jhoe _ Nyso i=1,.,0 5 =1,...,J,

@; B; (3.11)
a® =b°.
Consequently, system (3.1) satisfies the assumption (A1) and (A2).
Proof. From (3.11) and (3.10) we have
Bioo  Bloo o — My = Nig (3.12)
Q5 (6751
and thus
I 1 a;
a; a Qg
[[eii =atie <az‘Nz‘,1 + aal,w> ; (3.13)
i=1 =2 1

which is a strictly monotone increasing function in a;j o. From (3.11), we deduce similarly
that bj o = B; M1 ; — %01,00 > 0 and thus

J J B; Bi
[T =11 (ﬁjMLj - ajlal,oo) , (3.14)

Jj=1 Jj=1

which is a strictly monotone decreasing function in a1 .. Thus, when setting equal (3.13)
and (3.14), there exists a unique positive solution a1 ~ and consequently a unique positive
equilibrium (@eo, boo)-

It’s obvious that the assumption (A1) holds. To prove that (A2) holds we assume that
@iy,00 = 0 for some 1 < ig < I. Then, on the one hand a, = 0. On the other hand, from
(3.11), bjpo = Mio,j >0for j=1,2,...,J, thus

J
/Bv
vl =7 >0
j=1
This contradicts to a = bfc. Thus a; o > 0 forall ¢ =1,2,...,1. Similarly, b;. > 0 for
all j =1,2,...,J. Therefore, the system (3.1) has no boundary equilibrium. |
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The entropy functional for system (3.1) writes as

I J
E(a,b) = Z/Q(ai loga; —a; + 1)dx + Z/Q(bj logb; —b; + 1)dz
i=1 j=1

and the entropy dissipation writes as

|Val / |Vb |2 / 8 a
D(a,b) 0,i(z) ——dx + ———dz + —b”)log —dx.
Z/ Z Q( ) & bP

Proof of Theorem 1.1. We follow the strategy in Section 2 to prove this Theorem. Notice
that now the mass conservation laws are explicitly known (Lemma 3.1), we can we can
proceed the points that were postponed in Step 4. of the strategy. For convenience of the
reader, we recall the main steps.

m Step 1 (Use of the Logarithmic Sobelev Inequality). Thanks to the additivity of
the entropy, we have

£(a,b) = E(aco, b)) = (£(a,b) — £(a, b)) + (£(a, b) — E(aco, b))

T J
a; b;

= E a;log —dx + E /b-log:jdac
i—1/9 @i j=1"9 T

I —_
_ b _
+Z<ai Jrazoo)JrZ(b logbjooijrbjm).
=1 j=1
By using the Logarithmic Sobolev Inequality, we get
1 . =
5D(a.b) > 5 min {Cusy (o). Cosi(dh )} (S(a.b) — £(@,B)). (3.15)
Now, it is left to find K7 > 0 such that
1 _
iD(a, b) > K1(é(a,b) — £(ao, b)) (3.16)

m Step 2 (Transform terms into quadratic terms). By using V/f = Vf/2y/f and
(a —b)(loga — logb) > 4(y/a — v/b)?, we can estimate

I J
SD(a,b) > 2pin | Y IVAIP+ D IVB|? | +2|A% - BP|,

i=1 j=1
where we recall 4; = \/a;, B; = \/bj, A= (A1,...,A;) and B = (By,...,By). On the
other hand, by using the increasing function

zlogz —z+1

I Ve

we can estimate

018~ ela b = 0 () (7 - v+ oo () (V- i)
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where we have used aﬁ-,b? < K thanks to Lemma 2.3 and the constant K3 is defined by

K K
Ky :max{(b () , P <>}
i, 4,00 bj,oo

Thus, to prove (3.16) is equivalent to prove for a suitable K,

I J
2dmin (Z IV AN+ IIVBj||2> +2/|A% - B|]?

i=1 j=1

> K K> (z]:( A2 Ai,oo)Z + zj: (\/B?’ - Bj,oo)Q) (3.17)

i=1

Step 3 (Reaction dissipation term and reaction dissipation term of averages).
It follows from Lemma 2.6 that

I J
2dmin (Z IV AN+ IIVBj||2> +2/|A% - B|]?

i=1 j=1
I J e a2
ZK3<Z ||VA2~H2+ZHVBJ-||2+<A - B ) > (3.18)
i=1 j=1

for an explicit K3 > 0. Then (3.17) follows from (3.18) provided

I J e 2
Z||VA¢||2+Z||VBJ-||2+(A —BB)
i=1 j=1

J

> K[l([;z (i (\/Ig _ Ai,oo>2 +y° (\/sz - Bj,oo)2> (3.19)

i=1 j=1

for a suitable K7 > 0.
Step 4 (Express averages in terms of the equilibrium). We introduce the ansatzs

A7= A (1 +pm)® and  BI =B} (1+§)° (3.20)
with p;,& € [—1,400) for ¢ = 1,...,] and j = 1,...,J. With these ansatz, (3.19)

becomes

I J - a2 KK
S IVAIR+ Y IVE P+ (AT - B7) > ==
i=1 j=1

3 \io

I J
(S atnt + Y528 G21)
j=1

By using the deviations

§i(x) = Aij(z) —A; VxeQ, and n;(z)=Bj(z)—B; VzeQ,

we have
16,2 = 47 - &;” = (\/I?_I%) (@+&) (3.22)
thus
A=yam - Ly - @l (3.23)
\/A:?+E
with
Q(A;) = S — (3.24)
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Similarly, we have

Bj = Bjoc(1+&) = Q(B))lln; 1> (3.25)
From (3.24) we see that Q(A;) (respectively Q(B;)) becomes unbounded when If (re-
spectively BJQ) approaches 0. It makes the ansatz (3.23) and (3.25) not useful in the case

If and Bif are small. Therefore, in the following, we consider two cases: If and F? are
either “big” or “small”.
(i) A712252 andF?2€2 foralli=1,...,1, j=1,...,J.
We remark that € can be computed explicitly (see (3.37)).
In this case we have Q(A4;) and Q(B,) a bounded as

1 1 1 1

i) = < < —, andsimilarly Q(B;) < -

N R N e
forallt=1,2,..., T and 5 =1,2,...,J. We note also that

|62 =42 - A <A=m <K and |n*=BZ-B; <K.
Hence, by using (3.23) and (3.25), we obtain

S L N2
(a*-B") - (HAJ“ ~-1I3 )

i=1 j=1

ij

g
= (H (Aijoo (14 pi) + Q(AN16:]1%)

i=1

2
(Bj,oo(]- + &) + Q(B;)|In; |2)ﬁj>

|
W-E%

I

i=1 j=1

O(e. K) (Z 15,12 +§ ||m|2)
- (A2 4w - BL+6P%) —C@K) (Z 15,12 +i ||77j||2>-

(3.26)

’:]u

2
BY (1+¢) )

Therefore, by choosing § < CpC(e, K)~! with Cp is the Poincaré inequality, we can
estimate

I J a2
SOIVAR+ Y IVE |2 + (A% - B)
i=1 j=1

> S IV S VB P - 0C(e. K Zna ||2+Z||m\|2

1=1 j=1
+0(A% (1+p)* - B (1+£)")2

>0 (A% (14"~ BL(1+ 5)5)2 . (3.27)
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Therefore, (3.21) follows from (3.27) provided the following

(A;z<1+u>°‘—B§o<1+s>ﬂ)2zKlKQ(ZAmul Z &) ()

for a suitable K7 > 0. This inequality is a consequence of Lemma 3.3 with

COK3
K,

K, < (3.29)

where ( is defined as (3.54).

(i) A2<5 orBQ<€2forsomez—1 LI g=1,...,J.
Without loss of generality, we can assume that Aifo < €2 for some 1 < 49 < I. In this
case, we observe that the right hand side of (3.19) is bounded above. Indeed,

S (5 (VA i) X (VB - ) ) a0

=1 3

thanks to the natural bounds of @; < K and E < K in Lemma 2.3. This gives us a
hint to prove (3.19) by showing that the left hand side of (3.19) is bounded below by
a positive constant. Therefore, we will consider two subcases due to the contribution
of the diffusion represented by the values of ||;|% and ||n;]|*.

» (When the diffusion is dominant.)

If [|6;+]|> > = for some 1 < i* < I or |[n;||* > = for some 1 < j* < J.
i

In this case, thanks to the Poincare inequality ||Vf||2 > Cp|f — fl?, the left
hand side of (3.19) obviously bounded below

I J o 2
SIVALR+ Y IVE |2+ (A% - B”) = cp ( A7) > 22 (3.81)
i=1 j=1 o

By combining (3.31) and (3.30), we obtain (3.19) whenever
c
pe’K (3.32)

K
'S danl 1 J)KK2

» (When the diﬁusion is inefficient.)
If (|62 < == for all i = 1,...,1 and |jn;]|> < £ for all j = 1,...,J. By
iQ

using the mass conservation (3.5),

E i =M . (3.33)
i, B 0
we have
_ az E
B? = B; (Mio,j - az) > B; ( i0. %) ) (3.34)
forall j=1,...,J. Hence, forall j=1,...,J,

Lj + 162.

10

B; =B~ |n;|* = B;Mi, ; — (3.35)
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Now, we can estimate the left hand side of (3.19) as follows:

I J
SOIVAL+ SV + (A - B%)
i=1 =1

2

\V; V;

—

5
© 2|
[y ?
' |

N | =
—]

FRC

$ =
:Q\j <.

7= =1 (3.36)
5j +1, % - 2
> H 5]M10J - o € H A
j=1 to i=1,i#io
J B
ﬁ' +1 a;
2 H {@Mloj - Ja‘ H M;y
j=1 o i=1,i#io
J B
1 ﬁij il
> _ 9.
2311|175

if e fulfills
—1
o, B M, ! J
2 < mi i LioFjMio,j MO s
€% < min 12};}{ 26, + 1) } i_ll_i[#io il 1;[ M, ;) (3.37)

Therefore, (3.19) follows from (3.30) and (3.36) provided

K3 B 10,
K < SKKQ(IJrJ)Jl_[ [ = ]] ' (3:38)

Now, by combining (3.29), (3.32) and (3.38), we can conclude Step 4. that we have
proved (3.19) with either

(0K
K>
if A?>e*and B >¢* Vi=1,...,I,Vj=1,...,J, or

Ky =

. CPE K ﬁ BJ
K, = j 4V io,g
VTR L0 (T + J)KK2 SKK(I+J) 11 [ 2 ]

—_

Jj=

if AZ < e? for some 1 <ig <.J or

T )
Op&‘ o; M, ‘
K. = : t 4,50
L= {4ﬁJO(I+J)KK2 SKK2 I+J 1:[1[ } }

if?%gg for some 1 < jo < J.
From (3.15) and (3.16) we obtain the desired entropy-entropy dissipation estimate

D(a,b) > Mu(€(a,b) — E(as, b))

with
1 . )
AMm = 5 min {Hinjn{CLsz(da,i), Crsi(dp,j)}; 2K1} -
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The exponential convergence to equilibrium for solution to (3.1)

I J
Z lai(t) = aicoll7r () + Z 165(t) = bj.coll71(0)
i=1 =1

< Coiep(£(a(0),b(0)) — £(auo, boo))e M

follows from the entropy-entropy dissipation estimate, the classic Gronwall’s lemma and
the Ciszar-Kullback-Pinsker inequality

I J
&(a,b) — &(ac, b)) > Corp (Z lai(t) = @icoll7 () + Z [[b;(t) — bj,OO”%l(Q))'
=1

i=1

O

Lemma 3.3. With p; and n; are defined in (3.20), we can find an explicit constant ¢ > 0
such that

I J
(A% (1 +w™-BL+ 5)")2 > <<Z AL+ B?,ooai). (3.39)
i=1 j=1

Proof. The proof of (3.39) relies on relations between fp; and ¢; arising from mass con-
servation laws (3.5) and (3.9). We first observe that p; and &; are bounded above for all

i=1,....,0and j =1,...,j. Indeed, from the mass conservation
_ 7 12 nR2
a; bj . 2 B]'
— + =+ =M, ,; or equivalent] — + = =M,
a; P " A B; "
we have
A7 (L4 w)?  BF  (1+§)?
+ = M;;
a; Bj
Hence
A7 (L4 )* < aiM
which implies that
o M; s
j2z3 S -1+ # = li,max-
1,00
Similarly, &; is bounded above as
B, M,
fj < -1+ # = gj,max-
7,00
From (3.9), for all 1 < i,k < I, we have
@G Ok _ o oo Ghoo
; g Lk o g

thus o -
Qk (Az2 - A?,oo) = oy (A% - Aim) .
Hence, by recalling A? = A? (1 + 1;)? from (3.20) we get
R A7 o (17 + 215) = G AR o (UE + 2pur).

Then, we can write y; in terms of uy as follows

o aiAz,oo Mk + 2
Mg ak?Azz,oo 122 + 2

> fue =2 R () pe-
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Thanks to w; € [—1, thimaz) and pr € [—1, tk maz), there exist Cpin > 0 and Chyep > 0 such
that

aiA%ooMk+2
0 < Crin < Ri(1 : < < .
min X k(,uz)akAzoo L T 9 = max —+00

Similarly, from the conservation laws

bj- E _ bj,oo B bk,oo and E n E Q4,00 bj,oo

E_E ﬂj Br 7] E‘_ Q; 5;‘

we can write

B} 2 = 2
&= (B;;-:oo ?;12> & = Pp(&)&  and = (AZQOO fii2> & = —Qy(1i)&;

with
Cmin S Pk:(fj)aQ](,u/l) S Cma:v~
Now we can estimate the right hand side of (3.39) as follows

ZAlOOM’L Z */u‘le Rl u’l +€1ZB Pl )

3.40
< 072rm.L§1 (Ql(,ul)2 Z Aioo + Z 32 ) ( )
=1 j=1

<G&
with

J
Cl = maT ( max Z A o T Z sz,oo> . (341)
j=1
To deal with the left hand side of (3.39), first we use A% = B2 to have

(A2 +w*-BLa+ef) =A% (4w —a+e°) B4

and then prove that

e B 2
(@+m*-1+8°) =g (3.43)
or equivalently
I J 2
([0 +mo - [T +60" ) = et (3.44)
i=1 j=1

To prove (3.44), we first try to eliminate the nonlinearities raised by «; and j5; on the left
hand side and then use the relations between p; and &; to reduce the left hand side into
only one variable £;. By recalling

i = R (pi) pee and & = Pr(&5)ék and pi = —Q;(1i)&;

in which the functions Ry (p:), Px(§;) and Q;(u;) are always positive, we see that y; and
tr (resp. & and &) always have the same sign while p; and &; always have the opposite
sign. Therefore, we consider two cases depending on the sign of uq, that is —1 < pu; <0
and pq > 0.
» If =1 < py <0, then we have —1 < p; < Oforalli=2,...,1 and & > 0 for all
j=1,...,J. Then,

0<(I4+p) <(A+m) and (145 >(1+¢)>0 (3.45)
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thanks to o;,8; > 1 foralli=1,..., T and all j =1,...,J. It follows from (3.45)

that
I J J I
JCRONEES | CRRSEIES | CRESERS | (RVAS
i=1 j=1 j=1 i=1
JJ )
> [[+&) - I+ m).
j=1 i=1

Since 1 +¢; > 1forallj=1,...,J,

J
H1+§J (1+&).

On the other hand, since —1 < u; <0 foralli=1,...,I, we have

I

I
I+ ) =T+ ) mH (1+ )
=2

=1
- H(l + i)
i=2

V

|
—
—
+
=

|
=
[ V]

L=~

=
+
=

IV v

—(1+ ).
d (3.4

By combining (3.46), (3.47) an 8) we obtain

I J
H1+ul H1+§ BJ
i=1 j=1

>& —p1 > 0.

(3.46)

(3.47)

(3.48)

(3.49)

» If 11 > 0, then we have p; > 0 for all ¢ = 2,..., ] and —1 < & < 0 for all

j=1,...,J. Applying similar arguments to the former case, we get

1 J
[T +m) =TI +¢)”
i=1 j=1

::~

J
> TT+ )™ H 14¢;)%
=1

1
Z(1+M1)—(1+§1)
=wm —& >0

From the results (3.49) and (3.50) of the two cases, we have

-
I

I J

[T+ =TI +6)% ] = | =&l
i=1 j=1
thus,
I J 2
(H 1+ m)™ = [ +¢)” ) > —&* = 1+ Q1)) & > Gt
i=1 j=1
with

CZ = (1 + Cmin)Q .

(3.50)

(3.51)

(3.52)

(3.53)
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From (3.40), (3.42) and (3.43), we can finish the proof of this Lemma with

A2a A2a 1 in 2
= 2042: — OOI( *f' ) — (3.54)
! Cmaw (Cmaz Ei:l Ai,oo + Ej:l Bj,oo)
thanks to (3.41) and (3.53). O

4. ENZYMES REVERSIBLE REACTIONS - PROOF OF THEOREM 1.2

In this section, we demonstrate the strategy in Section 2 for a chain of two reversible
reactions modelling, for instance, reversible enzymes reactions. More precisely, we consider
the enzyme reversible reaction of the form

Al + A2 = A3 = A4 + A5 (41)

where all the reaction constants are assumed to be one. In [BCDO07] and [BP10], this
reaction were studied in the context of performing a quasi-steady-state-approximation, i.e.
the releasing speeds from As to Ay + As and from Az to A4 + As are infinitely fast.

As in the previous section, we assume the reaction to occur in a bounded domain 2 C R"
with smooth boundary 0€2. By applying the mass action law, the corresponding reaction-
diffusion system of (4.1) reads as

Oper — div(dy(2)Ver) = —ciea + ¢, re, t>0,

Opea — div(da(x)Ves) = —cica + ¢, e, t>0,

Oreg — div(ds(x)Ves) = creg + cacs — 2¢3, 2 €8, >0,

Opcq — div(da(z)Veq) = —cacs + cs, z€eQ, t>0, (4.2)
Ores — div(ds(2)Ves) = —cqcs + cs, reQ, t>0,

dyc; =0, 1=1,2,...,5, €9, t>0,
¢i(0,) = ¢; (), 1=1,2,...,5, xz€q,

where 0 < dpin < di(2) < dpazr < 400 for all x € Q and ¢ = 1,2,...,5, are positive
diffusion coefficients.

The rest of this section is organized as follows: We first derive the mass conservation laws
for (4.2), which play an essential role in our strategy. Later, we show that (4.2) satisfies
the assumptions (A1) and (A2). Finally, we apply the strategy in Section 2 to show the
explicit convergence to equilibrium for (4.2). For the sake of convenience, we will denote by
¢ = (c1,c¢o,3,c4,c5) and recall the spatial average

c = / ci(z)dx.
Q
We begin with

Lemma 4.1 (Conservation laws). Fori € {1,2} and j € {4,5}, we have

[ elent) + st + exta)ds = [ (enle) + (o) + caplelds = My (03)
Q Q
for allt > 0. Among these four conservation laws, there are exactly three linear independent
laws.

Then, with respect to the general formulation, the matriz Q can be defined as

101 10
0 1] eR3>5,
1 0
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Remark 4.1. We denote by M = (My,4, My 5, M2 4, Ms5) € Ri the vector of initial mass.
Note that M is fized once three of its four coordinates are fixed. Hence, from now on, by a
fized initial mass M we mean that three of its coordinates are fized.

It’s also useful to notice that from the mass conservation laws (4.3), we obtain

/(cl(m,t) — oz, t))dx = / (c1,0(x) — c20(x))dr =: N12, (4.4)
Q

Q

and

/ (ca(m,t) — o5 (2, 1)) dw = / (ca0(x) — es.0(x))dr = Nus. (4.5)
Q

Q

Lemma 4.2 (Detailed balanced equilibrium). For any given positive initial mass M € R4 |
there exists a unique equilibrium Coo = (€1,00,C2,00, - - -, C5,00) 10 (4.2) satisfying

C1,00C2,00 = €3,00;
C4,00C5,00 = C3,005 (46)
Cisoo + Cjoo + €300 = Myy, Vi€ {1,2}, Vj €{4,5}.

Consequently, the system (4.2) satisfies the assumptions (A1) and (A2).

To prove the convergence to equilibrium, we again consider the entropy

E(e) = ;/ﬂ(q loge; — ¢; + 1)dx (4.7

and its entropy dissipation

C4Cp

5 |VC1‘|2 C1C2
D(c) = Z d;(x) dx + (c1ea — c3)log —= + (c4c5 — c3) log — | dz.  (4.8)
=179 ‘ Q 3

@ C3

Proof of Theorem 1.2. We follow the steps in the strategy in Section 2 to prove this Theo-
rem.

m Step 1 (Use of the Logarithmic Sobelev Inequality). By using the additivity of
the entropy we have

€(c) = () = (E(e) = £(2)) + (£(0) — E(ex))

5 5 _
:Z/ cilogcldx—kZ(cilog ¢
=179 Ci i=1 Ci,o0

It follows from the Logarithmic Sobolev Inequality that

—C + Ci,oo) .

L) > L min {Crsi(@)}(Ee) - £@)).

2 — 21<i<5
It remains to find K7 > 0 such that
1
SD(e) 2 Ki(E(e) — E(exo)). (49)
v

m Step 2 (Transform terms into quadratic terms). By the identification V/f = 27
and the inequality (a — b)log(a/b) > 4(v/a — vb)? we have, with C; = \/c;,
5
1
5D(€) = 2dpin D IVC? +2||C1Cy — Cs|* + 2| CaCs — Cs*. (4.10)

i=1
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On the other hand, thanks to the function ®(z) = (zlogz — 2z + 1)/(y/z — 1)?, we obtain

5

2
E(@) — E(cos) S K2 Y ( CcZ - ci,oo> (4.11)

i=1

K
Ky = max {‘I) ( )} .
1<i<5 Ci, o0

From (4.10) and (4.11), we get (4.9) if

with

5 5 2
2dmin Y |VCi|* +2[|C1Cy — Cs|* +2||CaCs — Cs|* > K1 K2 Y (,/Ci2 - cm) . (4.12)

=1 i=1

m Step 3 (Reaction dissipation term and reaction dissipation term of averages).
By applying Lemma 2.6, there is an explicit constant K3 > 0 such that

5
2dmin Z ||VC’1||2 + 2“01C2 — C3||2 + 2”0405 — C’g”2

i=1

5
> Ks (Z [VCi||? + |C1Cs — Cs|* + ||C4C5 — 032> (4.13)

i=1
Therefore, (4.12) follows from (4.13) provided
5 R — J— R — p—
Y_IVCil? +[[C1C2 — Csl* + |[CaCs — Ca* 2

=1

KKy & (

2
C2—Cinn) . (414
o CF-Cin) - (1)

A
=1

m Step 4 (Express averages in terms of the equilibrium). We consider the ansatz
C? =C7 (14 m)? (4.15)
for p; € [—1;+00), and define the deviation to average
§i(z) = Ci(x) — C;, for x €9, (4.16)

for each i = 1,2,...,5. It follows from ||§;|* = CT—Q—@? that

Ci = Cic(l4 ) = QCHFHI2,  with  Q(Cy) (4.17)

- 1
VCI+ T
foralli=1,2,...,5. We see that Q(C;) becomes unbounded when Cif approaches zero.

Therefore, we consider the following two cases when CTQ is either "big” or ”small”. We
choose two constants € > 0 and 1 > 0 such that

1 M My 4 My 5 M3
2 X i M M e Mo 15 | MigMys Mys 118
[ 4m1n{ 1,4, 1,5 2,J7M274+2’ 4M2,4 ) 16 ( )
and
1
n S gmin {M1’4;M1}5;M2’5}. (419)

(i) C2>¢e2fori=1,2,...,5.
In this case we have that Q(C;) < 1/e for all i =1,...,5. By applying the Poincaré
inequality |V f||*> > Cp|f — f||?, we bound the left hand side of (4.14) as follows,
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with 6 € (0,1),

5
Z IVCi||* + 6 [(C1C2 — Cs)* + (C4Cs — Cs)?]

i=1

5
> Cp > N10il” + 0(Ch00Ca.00(1 + 1) (1 + p2) = Cs 00 (1 + p13))?
i=1

+ 0(C.00C5 00 (1 + p1a) (1 4 p5) — C3.00 (1 + p13))?

5
—00(e, M) |18l

1=1
> 9[(01,0002,000 )1+ p12) — a1+ 13))?
+ (C47OOC5,DO(1 + ,11,4)(1 =+ ,LL5) — C37oo(1 + /Lg))z (4.20)

for 6 satisfying < min{1; CpC(e, M)~ 1}.
Thanks to Lemma 4.3, there exists ( > 0 such that

(C1,00Ca,00 (L4 p11) (1 + p12) — C,00(1 + p13))?
+ (C1.00C 00 (1 + pa) (1 + p5) — Cs.00(1 + p3))?

zci(@—ci,m>2. @)

Then (4.14) follows from (4.20) and (4.21) by choosing

COK3
K; < . 4.22
1< 98 (4.22)
(ii) There exists C2 < & for some ig € {1,2...,5}.
In this case, we will first bound the right hand side of (4.14) above as
5 2
K\ Ky — 10K, Ko K
C? —Cy o | < ——F—. 4.23
ey (Var-an) <2 (42

i=1

Then, we will bound the left hand side of (4.14) below. To do that, we will encounter
two smaller cases due to the contribution of diffusion and reaction terms.
» (When the diffusion is dominant.)
|6: (|2 > n for some i* € {1,2,...,5}. We then can estimate

5
D IVGCi|? + (C1C2 — Cs)* + (C4C5 — C3)* = Cpn.
i=1
Hence, (4.14) follows from (4.23) if we choose

< K3Cpn
1 > .
10K K,

(4.24)

» (When the reaction is dominant.)
105> < n for all i = 1,2,...,5. We recall CZ < e* for some 49 € {1,2,...,5}
and remark that the roles of C1,Cy, Cy and C5 in (4.14) are the same. There-
fore, we investigate two situations: ¢p = 1 and iy = 3.
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. . =2 _ 9
¢ When ip = 1, we imply first that C] < C? < &2
Then, from the mass conservation

C24+C?+02 =M, and C?+C2+C3 =M,
we get
C3+C2 > My —é and  C3+C2> M5 —¢. (4.25)
—_——— —
=1 w2

Without loss of generality, we assume that M; 4 > M5 thus w; > wo.
From (4.25) we have the following table

Case Cig CT% Cig
O | Ci=% |<9|<%
I | Ci<g |>%>%
(I [ <Cf<5 |29 | <%

In cases (I) and (III), we both have C2 > 2 and, thus

2

—2 =3 wy — 2 M5 —¢e?—2
Ty = CF — ||6s)% > 21— 2L 1

2 2

We can then estimate

ZIIVCH2 (C1Ca — T3)2 + (C4Ts — Cs)?

— — 1—2 —
> (C,Cy — T5)% > 5c -~
M5 —e?—2 M
> LS TE A 2y, > LS (4.26)
2 ’ 4
thanks to (4.18) and (4.19).
In case (II), we have
—2 = M4 —e?—2
Ci=1 |l 2 =222

and similarly
C; M1 5 6 - 2’17

We continue with

ZIIVC||2 (C1Cs — Ts)* + (C4Ts — Ts)?

S — —2—2

> — — > —

25 (ClAg 0405) 0405 ClCQ (4.27)
Mig—e? =20 (M5 —¢e?—2 1

> (M4 —¢ 771( 1,5 e? 77) . 552]\42’4

> My 4 My 5

32
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thanks again to (4.18) and (4.19). Combining (4.26) and (4.27), we have

Z||vc||2 (C1Cy — Cs)* + (CsTs — Cy)?

> mi Mys My 4M; 5
> min { —2; =2
4 32

(4.28)

in the case ig = 1.

o When ig = 3, we imply first that 6?% <02 <g2
Without loss of generality, we can assume that M; 4 is the biggest com-
ponent of M. Thus,

02 02+M14_M24>023

and o o
CZ = C52 +Mig—Mis> C52.

By using the mass conservation 0722 + C? + C’ig = M> 5, we get
C?-FC?Z M2,5 —52,

hence
—5 Mg,g, — 52 M2,5 — 52
022 > — or Cg > —
If CF > M25=" then OF > M25=2" 1 follows that
—2 —_— M2’5 — 5
i =CF - [l > =22== —,
and
—=2 -5 M2’5 — &
Ty =3~ 6] = =225 —y

‘We then can estimate

5
Z [VCi||? + (C1Cy — C3)* 4 (C4C5 — C3)?

_ 1_9_o _
> (C,Cy — Ty)? > 50303 -

1 M25 —82 2 2 225

- ’ —p) —e2> 2 42
=3 ( 2 ”) 64 (4.29)

due to (4.18) and (4.19).

— 2
Similarly, if C2 > MQ% we can prove by using the same arguments
above that

2
_ M3,

Z IVCi||> + (C1Cy — C3)? 4 (C4Cs — C3)? > = (4.30)

Now from (4.28), (4.29) and (4.30), we get that if ||§;||* < nforalli =1,2,...,5
then

Z V]2 + (C1Cy — C3)% + (C4C5 — Cs)?

| Mys My aM, s M3
> 5 Daths 225 (g5
—mm{ 47 32 64 (4.31)
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From (4.31) and (4.23) we obtain (4.14) by choosing

K3 | Mis My My s M3
K< — - : = : . 4.32
L= 10K Ko mm{ 4 32 64 (4.32)
At this point, we can conclude Step 4 by combining (4.22), (4.24) and (4.32),
Ky . Cpn 1 My My M5 M3
K< 22 g, <o, 5 Maths, F2s L

1=K, mm{g "10K° 10K M) T4 0T 32 64

O

Lemma 4.3 (Proof of (4.21)). Let pi1, ..., us be defined as in (4.15). Then there exists an
explicit constant ¢ satisfying

(ChooCa,00(1 + 1) (1 + pi2) = Cs 00(1 + M3))2
+ (CaoeCr o0 (14 pa) (1 + p15) — C oo (1 + p13))°

5 2
i=1

Proof. This inequality is similar to (3.39). However, as we mentioned, due to the different
structure of mass conservation laws, we need to use a different proof.
We first prove that

(4.33)

(1 ) (L4 pr2) = (U p3))” + (U pa) (L pi5) = (1 + i)
1 , , (4.34)
Z7 (1 = p3)* + (3 — p5)?) -
Since o o
we have
C} oo (1] +2m1) = C3 o (13 + 2012). (4.36)

Due to pi,p2 € [—1,400) it follows that p; and ps always have a same sign. Similarly,
14, s always have a same sign. From

C2+C3+C2=M;5=C} +C3 +C2 (4.37)
we get
CF oo (1 + 211) + CF oo (3 + 2p13) + CF oo (3 + 2p15) = 0. (4.38)
This relation helps us to determine the sign of pg via the signs of pq and ps. We therefore
consider four cases based on the signs of 1 and ps.
(i) p1 > 0and ps > 0. It follows that pe > 0, py > 0 and from (4.38) that —1 < ps < 0.
Then

[T+ p1) (X + p2) = (L4 pa)l = (L4 p1) (1 + p2) — (14 ps)

>
> (L4 p1) = (L4 ps) = p1 — pz >0, (4.39)
thus
(14 ) (1 + p2) = (1 + p3)]” > (11— p13)* (4.40)
Similarly,
[(1+ pa) (X + ps) — (14 p3)]* = (k3 — p1s5)*. (4.41)

Combining (4.40) and (4.41) leads to (4.34).
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(ii) =1 < p; <0and —1 < ps < 0. In this case, we have —1 < g < 0and —1 < py < 0.
Tt follows from (4.38) that pz > 0. Thus, we can estimate

(L ) (T + p2) = (U4 pa)| = (14 pa) = (L4 pa) (1 + pio)

=1+ ps) = 1+ p1) = p2(1+ ) (4.42)
>p3—p1 =0
and similarly
(L4 pa)(X + ps) = (L4 pa)| = pg — ps = 0. (4.43)

From (4.42) and (4.43) we get (4.34).

(i) 1 > 0 and —1 < ps < 0. It follows that ug > 0 and —1 < py < 0. However,
from these we couldn’t determine the sign of us. Hence, we have two consider two
sub-cases.

» If g > 0 then we get first (4.43). Secondly, the triangle inequality leads to

(U ) (14 p2) = puaf + (1 pa) (1 + pas) = (1 + pe)|
> (1 + ) (1 + p2) — (1+ pua) (1 + ps3)
2 (T4 p) (L4 p2) = (1 + pa)(1 + ps) (4.44)
> (14 pm) = (1+ps)
=p1 — ps = 0.
By combining this with (4.43), we get (4.34).
» If —1 < p3 <0 then we get (4.39) immediately. Similar to (4.44), we obtain
(Ut p) (1 o) = pra| + [(1 4 pa) (1 + pas) = (1+ pa)|
> ps — p1 > 0.

Hence (4.34) follows from (4.39) and (4.45).
(iv) —1 < pg <0 and ps > 0. This case is similar to case (iii) thus we omit the proof.

We have proved (4.34), which means that the left hand side of (4.33) is bounded below
by

(4.45)

1
LHS of (4.33) > 205 o« (1 — ps)* + (13 — p15)°) (4.46)
where we used the equilibrium criterion C3 o = C1,66C2,00 = C4,00C5,00. Hence, in order to
show (4.33), it suffices to prove that

5
C3 oo (11— p13)* + (n3 — p5)?) 2 4C Y CF o opi?. (4.47)
i=1

To prove (4.47), we first observe that, thanks the mass conservation laws Cif—i—Cig—i—CTz = M,;
for i € {1,2}, j € {4,5} and C? = C? (1 + p1;)?, we get y; is bounded above
—1 < py < fiymaz < +00 foralli=1,...,5.

J

We then compute ps and py in terms of py and ps respectively to reduce the right hand
side of (4.47) to an expression of yy, s and p5. From the mass conservation (4.36) we have

(CIQ,OO H1 + 2
pio =

= R(ui, 4.48
3. N2+2> p (1, pr) pi1 (4.48)

where, by using —1 < p; < 14 maz,

C12 M1+ 2
0< szn <R ) = > < Cmaz <+
(15 pr2) 022700 Lo + 2
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for some constants Ci,;, and Ci,q: which can be explicitly computed. Similarly,

Cg oo M5 + 2
Mg = ’ Wy =: P g, s ) L 4.49
4 (Cz,oo J27 +2 5 ( 4 5) 5 ( )

with

Cg us + 2
5,00 M5 < Cmax < 400
Cloca+2 7

Using (4.48) and (4.49), we can bound the right hand side of (4.47) above by

0< szn < P(N47ﬂ5) =

4CZ Pkt < Culpd 4 13+ 1) (4.50)
with
Cl = 4C max {012,007 022,00072naw7 CS 00’ 04 Ooczfmz’ CV5 oo} (451)
By using (4.50), it is sufficient to prove (4.47) provided
C3 oo (11— p3)* + (3 — p5)?) = Q{13 + 13 + pd). (4.52)

We now solve s in terms of p; and ps from (4.38) as

C’12c>o,u1+2 CSQMN5+2
S (i ¢ (= - - 4.
H3 (C?%,oo ) H1 C2 s+ 2 s Q1 (1, p3)pr — Qa(ps, 13)ps  (4.53)

in which
0 < Chin < Ql(ﬂl;,u3)7Q2(,U5a,U3) < Craz < +00.
From (4.53), we estimate

Cf
C oo (11 = p3)* + (n3 — p5)*) > Cg
2

- 202

mazx
2

2C’2

((Ql#l - Q1M3)2 + (Qap3 — Q2M5)2)

(@1 + Q2)ps — (Qup1 + Qopus))?

(@1 + Q2+ 1)%u

CB,oo(2Cmin + 1)2 2
=7 ac2 s

max

Hence, the left hand side of (4.52) can be estimated as follows

03,00 ((Ml — p3)* 4 (s — M5)2)

1
> 3+=C3 — p3)® + (u3 — ps)?
2 4072mw U3 973,00 ((/il 3) (3 — ps) ) (4.54)

n{ 300 O3 oo p (WT+ 13+ pd).

>

mi 602

max

NG

That means we have proved (4.52) with

C2 _ (20 im +1)?
Clzlmin{ 3,00( ) ;C:ioo ’

4 6C2,,.
thus from (4.50) and (4.51), we have proved (4.33) with
= G

4max{0100, C anaw C3 o) C4OO maz’ C oo}
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5. FURTHER APPLICATIONS AND OPEN PROBLEMS

5.1. Further applications. In this paper, we exploit the entropy method to show the
convergence to equilibrium for chemical reaction networks of chemical substances reacting
in a bounded domain 2 C R™. More precisely, we propose a constructive method to prove
an EED estimate, which is the main ingredient of the entropy method.

We point out that the proposed method works also for reaction networks where the
chemical substances exist on different domains. For example, for a bounded domain 2 C R™,
we consider a reversible reaction

aldl = BV
where U is a domain-chemical substance inside 2 and V is a surface-chemical substance on
09, and the reaction is assumed to happen on 9. The corresponding (volume-surface)
reaction-diffusion system reads as

uy — dyAu =0, reN, t>0,
duOyu = —a(u® —v?), r e, t>0, (5.1)
v — dyApqu = B(u® —v?), red, t>0, '

u(0,2) = up(x), v(0,2) = vo(x),

in which v : Q@ x Ry — R, is the volume-concentration of ¢ and v : 9 x Ry — R, is the
surface-concentration of V, and Ayq is the Laplace-Beltrami operator which presents the
diffusion of V along 9. The system (5.1) possesses the mass conservation

/u(x,t)dx—!—/ v(x,t)dS = uo(x)da:+/v0(x)d5 =M>0
Q a0 Q r

and thus has a unique positive equilibrium (uq, Vo) satisfying

=
[Qtioo + [T|veo = M.
To show the convergence to equilibrium for (5.1), we consider the entropy functional

E(u,v) = /(ulogu —u+1)dr + /(vlogv —v+1)dS
Q r
and its entropy dissipation
2 2 [}
D(u,v) =dy ﬂdw + du/ MdS + /(ua — %) log U—BdS.

Q u r v r v

The aim is to prove an EED estimate of the form
D(u,v) > A (E(u,v) — E(too, Voo)), (5.2)

for all (u,v) satisfying the mass conservation [, u(x)dz + [ v(z)dS = M.

The EED estimate (5.2) can be proved by applying the method proposed in Section 2 with
only few changes, e.g. the Poincaré inequality HVfH%Q(Q) >Cp|f — f||2L2(Q) is replaced by
the Trace inequality HVfH%Z(Q) >Cr|f - f||2L2(8Q). The reader is referred to [FLT14] for
more details.

5.2. Open Problems. There are many open problems connecting the problem considered
in this paper. We list here the two problems we find the most interesting;:
1. (How to choose the conservation laws in the general case?)
As mentioned in the introduction, the conservation laws Q€ = M depends on the
choice of the matrix Q, which has rows forming a basis of ker(W), where W is the
Wegscheider matrix. The choice of Q is not unique and in fact, there are infinitely
many matrices like Q. The question is: can we have a procedure or a method to
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choose such a matrix Q, which is suitable for our method and allows to complete
the proof of step 4 in the general case?

2. (How to get optimal convergence rate?)
We made it clear in this paper (see Remark 2.3) that although we obtain an explicit
bound for the convergence rate, the convergence rate in this work is non-optimal.
The question of optimal convergence rate using the entropy method is left for future
investigation.
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