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Abstract. A new class of cost functionals for optimal control of quantum systems which
produces controls which are sparse in frequency and smooth in time is proposed. This
is achieved by penalizing a suitable time-frequency representation of the control field,
rather than the control field itself, and by employing norms which are of L1 or measure
form with respect to frequency but smooth with respect to time.

A mathematical framework is developed which yields existence of optimal controls
and necessary optimality conditions of the resulting nonsmooth, nonconvex optimization
problem. The framework covers the important systems of physical interest, including
(infinite-dimensional) Schrödinger dynamics on multiple potential energy surfaces as
arising in laser control of chemical reactions.

Numerical simulations demonstrate that the optimal controls, unlike those obtained
with the usual L2 or H1 costs, concentrate on just a few frequencies, even in the infinite-
dimensional case of laser-controlled chemical reactions.

1 Introduction

This paper is motivated by application problems of current interest in quantum control,
which range from steering chemical reactions [BKZB08] over creating excited or ion-
ized states [HRG13] to faithfully storing and manipulating bits of quantum information
[SKS+14].

We propose a new class of cost functionals for the optimal control of quantum systems
which result in controls with a very simple time-frequency structure. This is achieved
via two key ideas.

First, we do not penalize the time profile of the field amplitude but a suitable time-
frequency representation of it. While such representations are a familiar tool to interpret-
ing or analyzing a given field in quantum control and signal analysis, they here acquire
center stage already in the design of the controls.

Second, we capitalize on recent advances in the optimal control theory of elliptic and
parabolic systems built upon the basic idea [Sta09, HSW12] of sparsity-enhancing L1 or
measure-norm costs. More specifically, we exploit the idea of function-valued measures
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to achieve directional sparsity in parabolic control [KPV14]. The novelty as compared
to the latter advances is that in quantum control, unlike in parabolic control, the target
for sparsity should not be the field amplitude, but its frequency structure.

These ideas result in constrained non-smooth optimization problems of the form

Minimize
1

2
〈ψ(T ),Oψ(T )〉+ α||u||M over controls u : Ω× [0, T ]→ C (1)

subject to
i∂tψ = (H0 + (Bu)(t)H1)ψ, ψ(0) = ψ0. (2)

Here H0 is the Hamiltonian of the quantum system, B is a ‘synthesis operator which
assembles the control field from a time-frequency representation u(ω, t), and || · ||M is
an L1 or measure norm with respect to frequency but a smoothness-promoting norm
with respect to time. A prototypical choice is

(Bu)(t) =

∫
Ω
u(ω, t) eiωt dω, (3)

where Ω ⊂ R is a region of admissible frequencies, and

||u||M =

∫
Ω
||u(ω, ·)||H1(0,T ) dω. (4)

Note that the control, a priori, can use an arbitrary selection or superposition of the
available continuum of frequencies, with each frequency possessing its own time profile.
Equations (3)–(4) replace the standard approach in quantum optimal control initiated
by [PDR88] to penalize just the L2 or H1 norm of the field amplitude (see [IK07, vWB08,
HMMS13] for mathematical results).

Numerical simulations presented in Section 5 below show that, unlike controls obtained
from standard L2 or H1 costs, the optimizers concentrate on just a few frequencies, even
when the quantum dynamics is a full infinite-dimensional Schrödinger dynamics.

The plan of this paper is as follows. In the next section we give an overview of im-
portant examples of quantum dynamics with controls, and derive the coupling operators
for atomic excitation problems and for laser-guided chemical reaction dynamics from
first principles. This serves to explain basic structural features of the coupling operators
such as ‘forbidden transitions’ and the oscillatory nature of the controls to readers who
are less familiar with quantum control systems. In Section 3 we introduce our measure-
norm sparsity-enhancing costs within a general functional-analytic framework, and give
several examples. In particular, while the choices (3)–(4) lead to frequency-sparsity with
global time profiles, appropriate modifications lead to frequency-sparsity with local time
profiles. Section 4 is devoted to the mathematical analysis of the non-smooth optimal
control problem (1)–(2). We establish uniqueness of mild solutions to the state equation,
existence of optimal controls, and necessary optimality conditions on the optimizers, in-
cluding the interesting result that optimizers have compact frequency support. Finally,
in Section 5 we numerically calculate optimal controls and compare them to those ob-
tained from the usual L2 or H1 penalization of the field amplitude. Specifically, we
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present a 3-level example which arises in atomic excitation problems, and an example
of Schrödinger dynamics on two potential energy surfaces as arising in laser-controlled
chemical reaction dynamics.

2 Quantum dynamics with controls: physical examples

The evolution equations in quantum control problems typically have the structure

i∂tψ(t) =

(
H0 +

L∑
`=1

v`(t)H`

)
ψ(t), (5)

where the state ψ(t) belongs to some Hilbert space H, H0 and the H` are (bounded or
unbounded) self-adjoint operators on H, and the v`(t) are real-valued scalar amplitudes
of components of applied electric or magnetic fields. The operator H0 is the Hamiltonian
of the system in the absence of fields, and the H` describe the system-field coupling.

In the mathematical control theory literature, problems of above form have been
previously considered, but important features of the models and their behaviour fall out
of thin air. This is particularly the case for

- the assumed structure of the control terms

- specific choices in model simulations

- and the highly oscillatory nature of optimal controls, unfamiliar from elliptic and
parabolic problems.

On the other hand, in the physics literature on quantum control, the origin of these
features is implicitly understood, but not written down. To help bridge the gap between
these discourses, we give here an overview of examples from atomic physics, quantum
information theory, and quantum chemistry. Moreover we derive the coupling operators
for atomic excitation problems and for laser-guided chemical reaction dynamics from
first principles.

We note first that equation (5) already contains two important approximations which
are valid in many situations of interest. First, quantum fluctuations of the field ampli-
tudes can be neglected, that is to say we are dealing with classical fields and do not need
to move to the much more complicated framework of quantum field theory. Second, the
spatial wavelength of the applied fields is much larger than the localization length of the
state ψ(t), so that it is sufficient to assume that the field strengths depend on time only.
This is often called ‘dipole approximation’.

We now give four examples of (5), all of which are of significant physical interest.

Example 2.1. (Spin of a spin 1/2 particle in a magnetic field) This is the simplest
control system of physical interest. It arises as a basic example in NMR, and more
recently as a model of a single qubit in quantum information theory (see [SKS+14]
for a recent careful experimental realization of this system and [BCG+02] for rigorous
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mathematical results). It already exhibits surprisingly many features of complex systems.
The spin at time t is a unit vector in the Hilbert space H = C2. The general evolution
equation of a spin in a time-dependent magnetic field B : R→ R3 is

i∂tψ(t) = −γB(t) · S ψ(t) = −γ
3∑
`=1

Bα(t)Sα ψ(t) (6)

where the component operators Sα of the spin operator S are given by ~/2 times the
Pauli matrices, i.e. in atomic units (~ = 1)

S1 =
1

2

(
0 1
1 0

)
, S2 =

1

2

(
0 −i
i 0

)
, S3 =

1

2

(
1 0
0 −1

)
.

The factor γ depends on the type of particle (electron, proton, neutron, nucleus) and can
be positive or negative. A typical control problem consists of taking B3 time-independent
and comparatively large, and B1 and B2 as time-dependent controls which are small (in
NMR experiments, the control is several orders of magnitude smaller). This gives a
system of form (5),

i∂tψ = (H0 +
2∑
`=1

B`(t)H`)ψ, with H0 = −γB3S3, H1 = −γS1, H2 = −γS2. (7)

Denoting the two eigenvalues of H0 by E1, E2, this system can be written in the follwoing
elegant form

i∂tψ =

(
E1 0
0 E2

)
ψ +

(
0 v∗(t)
v(t) 0

)
ψ (8)

with complex-valued control v(t) = −2γ(B1(t) + iB2(t)). The basic case of a time-
harmonic control field

v(t) = Aeiωt (9)

is exactly soluble, as done in a classical paper by Rabi [Rab37]. This allows to understand
mathematically the emergence of oscillatory controls and Bohr frequencies. The Bohr
frequency of a transition between two quantum states is the eigenvalue difference; the
time-harmonic control with this frequency, when applied over a time window of suitable
length, achieves a 100 % transfer; and it is the only time-harmonic control (9) which
achieves a 100 % transfer.

Example 2.2. (Electronic states of atoms in laser fields) A standard reference in the
physics literature is [Sho90]. Consider an atom with N electrons of charge −1 and a
nucleus of charge Z = N clamped at the origin. The electronic state of the atom is
described by a function belonging to the Hilbert space

H = {ψ ∈ L2((R3 × Z2)N ) |ψ antisymmetric}. (10)

That is to say electronic states are functions ψ = ψ(x1, s1, . . . , xN , sN ) which depend
on the position coordinates xi ∈ R3 and the spin coordinates si ∈ Z2 of all the elec-
trons. The requirement that ψ be antisymmetric means that ψ must change sign under
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simultaneous permutation of position and spin coordinates of any two electrons, i.e.
ψ(x1, s1, . . . , xi, si, . . . , xj , sj , . . . , xN , sN ) = −ψ(x1, s1, . . . , xj , sj , . . . , xi, si, . . . , xN , sN )
for all i < j. The ‘exact’ (non-relativistic, Born-Oppenheimer) Hamiltonian of the sys-
tem is given, in atomic units ~ = 1, electron mass m = 1, electron charge e = −1,
by

H0 = −1

2
∆ + V (x1, . . . , xN ), (11)

where ∆ is the Laplacian on R3N and V is a many-body Coulomb potential composed
of electron-nucleus attraction terms and electron-electron repulsion terms,

V (x1, . . . , xN ) = −
N∑
i=1

Z

|xi|
+

∑
1≤i<j≤N

1

|xi − xj |
. (12)

An applied electric field can be described by a function E : R→ R3, with E(t) denoting
the electric field vector at time t. (Here quantum fluctuations of the field as well as its
spatial dependence are neglected, as discussed above.) The coupling term between the
electronic state and the field is given by

−E(t) ·D (13)

with the dipole operator

D(x1, . . . , xN ) =
N∑
i=1

e xi. (14)

In atomic units, the electron charge has the value e = −1 but we have inserted the
charge here to make apparent the simple physical origin of D: for a general system of
N pairs of opposite charges in R3, the electric dipole moment is defined as the sum
of charge times distance of each pair. Thus for N electrons of charge e located at the
points x1, . . . , xN , and one nucleus of charge −Ne located at the origin (or equivalently
N protons of charge −e at the origin), the electric dipole moment is exactly given by
the right hand side of (14). The overall evolution equation is

i∂tψ(t) =

(
−1

2
∆ + V (x1, . . . , xN )− E(t) ·D(x1, . . . , xN )

)
ψ(t). (15)

This has the form (5), as is immediate by denoting the components of E(t) and xi with
respect to some orthonormal basis of R3 by E`(t) and xi` (` = 1, 2, 3) and noting that

−E(t) ·D = E(t) ·
N∑
i=1

xi =

3∑
`=1

E`(t)H`, with H` =

N∑
i=1

xi`.

In control problems, the infinite-dimensional state equation (15) is often replaced by pro-
jecting onto finitely many eigenstates ψ1, . . . , ψd of H0 and neglecting the coupling with
the rest of the system. To derive the resulting model, denote the orthogonal projector
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by P , the span of the eigenstates by H′, and the projection of ψ onto H′ respectively its
orthogonal complement H⊥ by ψ′ and ψ⊥. We have from eq. (15) that

i∂tψ
′(t) = (H0 + P (E(t) ·D)P )ψ′(t) + P (E(t) ·D)ψ⊥(t),

and discarding the last term yields the reduced model

i∂tψ
′(t) = (H0 − P (E(t) ·D)P )ψ′(t). (16)

By expanding ψ′(t) = a1(t)ψ1 + · · ·+ad(t)ψd, this is equivalent to an evolution equation
in Cd. Assuming for simplicity that the field is unidirectional, i.e. E(t) = v(t)E0 for
some unit vector E0 and a scalar amplitude v, and denoting the eigenvalues of H0

corresponding to the states ψ1, . . . , ψd by E1, . . . , Ed, we obtain

i∂t


a1

a2
...
ad

 =



E1 0 · · · 0
0 E2 · · · 0
...

...
0 · · · Ed

+ v(t)


0 µ12 · · · µ1d

µ∗12 0 · · · µ2d
...

...
...

µ∗1d µ∗2d · · · 0




a1

a2
...
ad

 , (17)

with the coupling matrix elements

µmn = 〈ψm,−E0 ·Dψn〉.

Note that the diagonal elements of the coupling matrix vanish, by the following sim-
ple argument: the Hamiltonian H0 commutes with the parity operator P given by
(Pψ)(x1, s1, . . . , xN , sN ) = ψ(−x1, s1, . . . ,−xN , sN ), so the ψn can be chosen to be
eigenstates of P, i.e. either even or odd functions. But in both cases |ψ|2 is an even
function, whereas the dipole term −E0 ·D is odd, and so

µnn = 〈ψn,−E0·Dψn〉 =
∑

s1,...,sN∈Z2

∫
R3N

E0·
N∑
i=1

xi |ψ(x1, s1, . . . , xN , sN )|2 dx1 · · · dxN = 0.

The same reasoning shows that the off-diagonal element µmn vanishes whenever ψm and
ψn have the same parity. This is a simple example of an optical selection rule.

Example 2.3. (Vibrational states of a molecule in an electric field) The central quantum
mechanical model treats the nuclei as nonrelativistic quantum particles and makes the
Born-Oppenheimer approximation, that is to say one assumes that the electrons, on
account of their much lighter mass, can always be assumed to be in the ground state
with respect to the nuclear positions. Mathematically, this corresponds to the ansatz

Ψ(R, x1, s1, . . . , xN , sN , t) ≈ Φ(R, t)ψ
(R)
0 (x1, s1, . . . , xN , sN ) (18)

where R = (R1, . . . , RM ) ∈ R3M is the vector of position coordinates of the nuclei and
(as in Example 2.2) the xi ∈ R3 and si ∈ Z2 are position respectively spin coordinates
of the electrons. The governing nuclear Schrödinger equation for M atoms with nuclear
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masses m1, . . . ,mM and nuclear charges Z1, . . . , ZM in an electric field E : R → R3 is
the following equation for the nuclear wavefunction Φ ∈ H = L2(R3M ):

i∂tΦ(t) =
( M∑
α=1

(− 1

2mα
∆Rα + E0(R)− E(t) · µ(R)

)
Φ(t). (19)

The potential E0 : R3M → R is typically called potential energy surface (PES) in the
context of the nuclear Schrödinger equation. Not just the PES, but also the coupling
potential µ : R3M → R3 can be derived from the stationary electronic Schroedinger equa-
tion with nuclei clamped at R1, . . . , RM . While the derivation of the PES in the absence
of an electric field is just the familiar Born-Oppenheimer approximation discussed in
many texts, the derivation of µ appears to be unknown in the mathematical literature,
so we include it here. Let N be the number of electrons, i.e. N =

∑M
α=1 Zα (that the

overall system of electrons and atomic nuclei is charge-neutral), let He` be the Hilbert
space of antisymmetric electronic wavefunctions introduced in Example 2.2, and let He`

be the associated electronic Hamiltonian

H
(R)
e` = −1

2
∆ + V (R)(x1, . . . , xN ) (20)

where, as in Example 2.2, ∆ is the Laplacian on R3N , but the potential is given, instead
of the atomic potential (12), by the analogous molecular potential

V (R)(x1, . . . , xN ) = −
N∑
i=1

M∑
α=1

Zα
|xi −Rα|

+
∑

1≤i<j≤N

1

|xi − xj |
+

∑
1≤α<β≤M

ZαZβ
|Rα −Rβ|

. (21)

The electronic Hamiltonian (20) depends parametrically on the nuclear coordinates R,
through the appearance of the latter in V . The potential energy surface E0(R) appearing

in the nuclear Schrödinger equation is the lowest eigenvalue of H
(R)
e` , and the coupling

potential is the dipole moment function constructed with the help of the associated
lowest electronic eigenstate:

µ(R) =
〈
ψ

(R)
0 , D(R)ψ

(R)
0

〉
He`

, (22)

where ψ
(R)
0 ∈ He` is the (normalized) lowest eigenstate of He` and D(R) is the dipole

operator associated with the joint system of electrons and atomic nuclei,

D(R)(x1, . . . , xN ) =
N∑
i=1

exi −
M∑
α=1

eZαRα. (23)

Here, as noted before, the electronic charge e has the value −1 in atomic units.

Example 2.4. (Laser-guided chemical reactions) Our last model is of central interest
in photochemistry, but to our knowledge has not hitherto been considered at all in the
mathematical literature. A careful mathematical account in the absence of control fields
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and for smooth interaction potentials is given in [Teu03]. The model is a combination of
the variant (17) of Example 2.2 (finitely many electronic states coupled to a laser field)
and Example 2.3 (atomic nuclei moving in the potential energy surface corresponding
to the lowest electronic eigenstate). The typical situation in laser control of chemical
reactions is the following (see Figure 3a in the numerics section). The system starts in a
stationary state of electrons and nuclei. The laser then induces a transition to a different
electronic state. As a result the nuclei now see a different potential energy surface with
respect to which they are no longer in equilibrium; for instance the new surface may
no longer contain a barrier to a desired target position. Once the nuclei have moved
barrier-free to the target position, the laser induces a transition back to the original
surface so as to also put the electrons in the target state. Mathematically, this situation
can be modelled by generalizing the ansatz (18) to a finite number of electronic states.
Confining ourselves for simplicity to two states, one assumes

Ψ(R, x1, s1, . . . , xN , sN , t) ≈ Φ1(R, t)ψ
(R)
1 (x1, s1, . . . , xN , sN )

+ Φ2(R, t)ψ
(R)
2 (x1, s1, . . . , xN , sN ), (24)

where Φ1, Φ2 ∈ L2(R3M ), ||Φ1||2 + ||Φ2||2 = 1, and ψ
(R)
1 , ψ

(R)
2 are normalized eigenstates

of the electronic Hamiltonian (20)–(21). This leads to the following Schrödinger equation
in the Hilbert space H = L2(R3M ;C2)

i∂t

(
Φ1

Φ2

)
(t) =

(
M∑
α=1

− 1

2mα
∆ +

(
E1(R) 0

0 E2(R)

)

+

(
E(t) · µ11(R) E(t) · µ12(R)
E(t) · µ12(R)∗ E(t) · µ22(R)

))(
Φ1

Φ2

)
, (25)

with the dipole moment functions

µij(R) =
〈
ψ

(R)
i ,−D(R)ψ

(R)
j

〉
He`

. (26)

3 Cost functionals and functional analytic setting

The primary goal of optimal control theory from the point of view of applications is
to identify time profiles v` : [0, T ] → R of the control fields which achieve a suitable
goal, such as transfer of the system from one eigenstate of H0 to another, and are
convenient to implement experimentally. A general introduction to quantum control
from a mathematical perspective is given in [D’A08]. Overviews of optimal quantum
control from the application point of view are given in e.g. [WG07] and [HTK+12].
The theoretical work up to now has focused on simple cost functionals like the L2 norm
of the control field (or variants thereof like the L1 or H1 norm). But we may ask the
question: Why L2 (or variants thereof)?
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In fact, while L2 at first sight looks like a relevant choice, we will argue in this paper
that it is not a very good choice. This is due to the fact that the L2 norm squared
is proportional to the total field energy expended. The ensuing controls lack a simple
structure, they are notoriously difficult to interpret, and have experimentally undesir-
able features. This is discussed in detail in Section 5. Instead, we will argue that
it pays off to use more sophisticated costs which are adapted to the subtle nature of
quantum dynamics. As we will see, such costs naturally deliver controls which are, at
the same time, sparse in frequency, picking out the system’s Bohr frequencies without
any special ansatz, while at the same time having slowly varying amplitude envelopes,
thereby sharing an important feature of laser pulses designed by experimentalists which
are commonly and successfully used in the laboratory rather than by optimal control.

We first state the general class of costs we propose, including its functional analytic
setting. Subsequently we give examples. The simplest example of such a cost which yields
nice frequency-sparse controls, and which motivated the general setting, is described in
Example 3.1 below.

3.1 General setting

For the quantum system

i∂tψ(t) =
(
H0 +

L∑
l=1

Bu(t)lHl

)
ψ(t)

ψ(0) = ψ0

(27)

we consider the optimal control problem

min
ψ,u

J(ψ, u) =
1

2
〈ψ(T ),Oψ(T )〉H + α‖u‖M s.t. (27)holds. (28)

The functional J consists of the term 1
2〈ψ(T ),Oψ(T )〉H which describes the expectation

value that needs to be minimized, and a cost term of the form α‖u‖M which contains a
measure norm explained below and forces the solution to be sparse in a suitable sense.

We make the following very general functional-analytic assumptions on the operators
and fields appearing in (27)–(28). These assumptions cover all the physical examples
from Section 2, except for the infinite-dimensional version of Examples 2.3 and 2.4, which
have an unbounded coupling operator.
1. Dynamics. Assume that the Hamiltonian H0 is any self-adjoint operator on a

Hilbert space H with domain D(H0). The initial condition ψ0 may be any element of
H. The coupling operators H` are assumed to be bounded self-adjoint operators on H.
We use the vector operator notation v · H̃ =

∑L
l=1 vl(−iHl), v · H̃∗ =

∑L
l=1 vl(−iHl)

∗,
〈χ1, H̃χ2〉H = (〈χ1,−iHlχ2〉H)Ll=1 ∈ RL for v ∈ RL and χ1, χ2 ∈ H.

For the admissible class of controls u and control operators B` specified below, we
will show that eq. (27) possesses a unique mild solution in the state space of continuous
paths in the Hilbert space, C([0, T ];H).
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2. Target constraint. The observable O specifying the target constraint can be
any bounded linear operator on H. Typically O is the orthogonal projection onto the
subspace we want to reach. If O is a projection, the target constraint contribution
1
2〈ψ(T ),Oψ(T )〉H to the cost lies in the interval [0, 1/2]. The value 0 correspond to a
100% achievement of the control objective, and the value 0.5 to a 0% achievement.
3. Control space, cost, measure norm. The control field u is assumed to belong

to a measure space of form
M(Ω;U), (29)

where Ω is a locally compact space (typically a closed interval of admissible frequencies),
and U is a separable Hilbert space of time-dependent functions (admitting general Hilbert
spaces can be useful to obtain nice optimality conditions, see Example 3.3). The space
(29) is the space of Borel measures u on Ω with values in U of finite mass norm ||u||M.
The mass norm of the measure u is the second term in the cost functional J in (28).

The space (29) is the dual of the space C0(Ω;U) of continuous functions on Ω with
values in U which can be uniformly approximated by functions with compact support.
The duality pairing is given by

〈u, ϕ〉M,C0 =

∫
Ω
〈u′(ω), ϕ(ω)〉U d|u|(ω) (30)

(see [Mez09]) where u′ is the Radon–Nikodym derivative of u with respect to the total
variation measure |u| (see [Lan93, VII Thm. 4.1]). Note that the inner product in the
integral is the Hilbert space inner product in U . This duality will be very useful.

4. Control operator. The control operator is assumed to be a bounded linear
operator B : M(Ω;U)→ Lp(0, T ;RL), for some 1 < p ≤ ∞. Moreover we assume that B
has a bounded linear predual operator B∗ : Lq(0, T ;RL)→ C0(Ω;U), by which we mean
a bounded linear operator such that 〈B∗f, u〉C0,M = 〈f,Bu〉Lq ,Lp for all f ∈ Lq(0, T ;RL)
and all u ∈M(Ω;U).

Existence of a bounded linear predual operators implies the weak-∗–weak(-∗) continu-
ity of B. That is, weak-∗ convergence of un to u in M(Ω;U) implies weak convergence
of Bun to Bu in Lp(0, T ;RL) if p <∞, and weak-∗ convergence if p =∞.

Note that the operator B∗ depends on the Hilbert space structure of U , see examples
below. Since B∗ appears in the optimality system, the freedom to choose U can be used
to generate nice optimal controls.

All spaces — possibly containing complex valued objects — are equipped with a real
Banach or Hilbert space structure. That is, linear always means R-linear and the scalar
product is real-valued and R-bilinear.

3.2 Examples

We now list some examples for choosing the frequency domain Ω, the Hilbert space U of
time-dependent functions, and the control operator B. The first example is the prototype
for generating sparse controls. It motivated the general functional analytic setting pro-
posed above, and naturally incorporates physically relevant controls containing finitely
many pulses of particular frequencies [BTS98, ABY+, TLBR04, SSBK10, RSD+11].
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Example 3.1. (Time-smoothness with frequency-sparsity) Here u will be a time-frequency
representation of the laser field amplitude and B will generate the corresponding field.
The control u can a priori contain arbitrary and arbitrarily many active frequencies, each
with its own smooth envelope. This can be modelled mathematically as follows. Let Ω
be a closed subset of R+, U = H1

0 (0, T ;C), and p = ∞. For u ∈ L1(Ω;H1
0 (0, T ;C)) we

define B to be the synthesis operator

(Bu)(t) = Re

∫
Ω
u(ω, t)eiωtdω. (31)

By approximation, the expression can be extended to measure-valued controls. This ex-
tension is important in practice, because it allows sharp concentration on a small number
of frequencies, and has the following mathematically rigorous integral representation:

(Bu)(t) = Re

∫
Ω
u′(ω, t)eiωt d|u|(ω), (32)

where u′ is the Radon–Nikodym derivative of u with respect to |u|.
We remark that this setting naturally contains the physically motivated finite-dimensional

ansatz spaces of [ABY+, TLBR04, SSBK10] in which a finite number of frequencies can
be switched on or off by few-parameter modulation functions: the field

v(t) =
n∑
j=1

vn(t) cos(ωnt+ φn)

corresponds to Bu with B as in (32) and

u(ω, t) =

n∑
j=1

δ(ω − ωn)eiφnvn(t).

We allow U to contain complex-valued functions. This allows phase shifts in the
different frequencies without leaving the linear setting.

The predual operator B∗ is the solution operator of the second-order boundary value
problem

∂2

∂t2
u(ω, t) = f(t)e−iωt, u

∣∣∣
t=0

= u
∣∣∣
t=T

= 0, (33)

i.e. B∗f = u. The equations (33) are not coupled for different ω. The operator B∗ is
continuous and has the additional regularity B∗f ∈ C0(Ω;H2∩H1

0 ). Here it is important
that Ω is closed. Otherwise B might not be weak-∗–weak(-∗) continuous.

Frequency constraints can easily be achieved by restricting Ω. The framework also
allows for discrete Ω containing frequencies which are selected in advance by some other
method, compare [LSTT09, KHK10]. An advantage of our appproach as compared to
the latter works is that no a priori knowledge of suitable frequencies is needed.
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Example 3.2. (Dual Gabor transform) In this example we design the control operator
B and the Hilbert space U so that the predual operator B∗ has a nice form. We take
Ω ⊂ R+, U = L2(0, T ;C), and define B by

(Bu)(t) = Re

∫
Ω

∫ T

0
k(s, t)u′(ω, s) ds eiωt d|u|(ω), (34)

where k : [0, T ]2 → R is a smooth symmetric kernel. Roughly, this operator corresponds
to a ‘pre-processing’ of the envelopes, with only smoothed envelopes entering the equa-
tion. The predual operator B∗ becomes the Gabor transformation

(B∗f)(ω, t) =

∫ T

0
f(s)k(t, s)e−iωs ds, (35)

which is a useful time-frequency representation of the control field.

Example 3.1 above with U = H1
0 led to a time-frequency representation u = B∗f

which is global in time. That is, it has a global window equal to the Green’s function G
of the one-dimensional boundary value problem (33),

(B∗f)(ω, t) =

∫ T

0
f(s)G(t, s)e−iωs ds. (36)

On the other hand, Example 3.2 leads to a time-frequency representation which is local
in time, but the definition of B is somewhat complicated. Can one choose a better space
U such that the control operator B can be defined as the simple synthesis operator
of Example 3.1, but results in a local-in-time predual B∗ as in Example 3.2? In fact,
Example 3.2 can be brought into this form, see Example 3.3.

Example 3.3. (Time-locality with frequency-sparsity) Let Ω and B be as in Exam-
ple 3.1. Furthermore let K : L2(0, T ) → L2(0, T ) be the compact operator given by
convolution with a Gaussian kernel k,

(Kf)(t) =

∫ T

0
k(t, s)f(s) ds. (37)

Then K is injective and self-adjoint and has an unbounded inverse A : D(A) → L2.
Define U := Uk := D(A1/2) with the induced scalar product 〈u, v〉U = 〈A1/2u,A1/2v〉L2 .
Then Uk is a Hilbert space and the predual operator B∗ of B is

(B∗f)(ω, t) =
(
K2(fe−iω·)

)
(s).

This construction also works for window functions other than a Gaussian.
The equivalence to Example 3.2 follows since the dual of the mapX : C0(Ω;L2(0, T ;C))→

C0(Ω;Uk) defined by (Xϕ)(ω) = Kϕ(ω) is an isometric isomorphism between the control
spaces that preserves the image unter the corresponding control operators.
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Our next example shows that our setting also covers interesting cases when U does
not contain time-dependent functions.

Example 3.4. (Sparse Fourier transform) Let Ω ⊂ R+, U = C, and let B be the Fourier
synthesis operator, that is to say

(Bu)(t) = Re

∫
Ω
u(ω)eiωtdω

(
= Re

∫
Ω
u′(ω)eiωt d|u|(ω)

)
. (38)

The predual operator is, up to a constant factor, the Fourier transform of functions
restricted to [0, T ],

(B∗f)(ω) =

∫ T

0
f(t)e−iωt dt.

An alternative approach to achieving sparsity of a time-global frequency decomposition
via an L2 cost combined with iterative ‘frequency sifting’ is given in [RBKM+06].

Example 3.5. (Time-frequency-sparse Gabor transform) Let Ω ⊂ R+ × [0, T ] be a
subset of time-frequency space, U = C, and

(Bu)(t) = Re

∫
Ω
u′(ω, s)gω,s(t) d|u|(ω, t) (39)

for the ansatz function
gω,s(t) = k(t, s)eiω(t−s) (40)

with a Gaussian kernel k. This defines a suitable extension of the control operator from
Example 3.2 to measures in the time-freqeuency plane. With this control operator, each
Dirac measure u = δω,t corresponds to a Gaussian wave packet centered at time t with
frequency ω. The predual of the control operator is given by

(B∗f)(ω, t) =

∫ T

0
gω,t(s) f(s) ds.

These examples by no means exhaust our framework, but are meant to give an idea
of its flexibility.

4 Theory of the optimal control problem

In this section we will study the optimal control problem (28). We first show well-
posedness of the problem. In contrast to [KPV14] the main difficulty does not lie in the
low regularity of the control since we assume sufficient smoothing of the control operator.
It rather lies in the bilinearity of the state equation together with the low regularity of the
state. Subsequently we derive necessary optimality conditions. We shall show that the
support of the optimal measure can be influenced. Proposition 4.7 is the natural analog
of Theorem 2.12 in [KPV14]. Differences arise due to the bilinearity of the equation and
the non-trivial control operator. We shall also note interesting relationships between
the choices for B and U . Throughout this section we will stay in the setting of mild
solutions. This suggests to develop a derivation of the necessary optimality conditions
which only requires integral manipulations and no further regularity discussion for the
primal and dual state are necessary.
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4.1 Existence of solutions to the state equation

In this section we study existence of mild solutions of (27) and compactness properties of
the corresponding solution operator. Throughout this subsection we will consider mild
solutions for the control field v ∈ L1(0, T ;RL). Thus we study ψ ∈ C([0, T ];H) which
for the field v, satisfies

ψ(t) = G(t)ψ0 +

∫ t

0
G(t− s)v(s) · H̃ψ(s) ds. (41)

Here G is the unitary group generated by the skew-adjoint operator −iH0. We need the
following version of [BMS82, Theorem 2.5]. It provides existence of solutions of (41) as
well as their differentiability in the direction of the control.

Proposition 4.1. Let v ∈ L1(0, T ;RL). Then (41) possesses a unique solution ψ ∈
C([0, T ];H). Furthermore the mapping F : L1(0, T ;RL)→ C([0, T ];H) defined by F (v) =
ψ is continuously differentiable. The derivative is given by F ′(v)(δv) = ψ′ where ψ′ solves
the equation

ψ′(t) =

∫ t

0
G(t− s)v(s) · H̃ψ′(s) ds+

∫ t

0
G(t− s)δv(s) · H̃ψ(s) ds. (42)

For fixed v one can define the evolution operator G : { (s, t) | 0 ≤ s ≤ t ≤ T } by
G(t, s)ψ(s) = ψ(t). Using the evolution operator one can reformulate (42) as

ψ′(t) =

∫ t

0
G(t, s)v(s) · H̃ψ(s) ds, (43)

see e.g. [LY95, Chapter 2]. We will also look at solutions of the mild adjoint equation,

ϕ(s) = G(T − s)∗ϕT +

∫ T

s
G(t− s)∗v(s) · H̃∗ϕ(t) dt. (44)

The solution of this backwards-in-time equation satisfy ϕ(s) = G(t, s)∗ϕ(t).
The next lemma addresses the norm preservation of solutions. In contrast to the

result of the preceding proposition it makes explicit use of the self-adjointness of the
Hamiltonian and the coupling operators. Since we work in the setting of mild solutions
the usual proof of norm preservation does not hold since the state is not differentiable in
a suitable sense. One can overcome this difficulty by approximation arguments. We will
give a proof based on a primal-dual argument that stays in the setting of mild solutions.

Lemma 4.2. The solution ψ of (41) satisfy ‖ψ(t)‖= 1 for all t ∈ [0, T ].

Proof. We will show the time reversibility of the time evolution, that is

ψ0 = G(t, 0)∗ψ(t) (45)

for all t ∈ [0, T ]. Then we obtain

‖ψ(t)‖2 = 〈G(t, 0)ψ0, ψ(t)〉 = 〈ψ0,G(t, 0)∗ψ(t)〉 = ‖ψ0‖2 = 1.
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To show (45) we define ϕ(s) = G(t, s)∗ψ(t). Then ϕ solves

ϕ(s) = G(t− s)∗ψ(t) +

∫ t

s
G(r − s)∗v(r) · H̃∗ϕ(r) dr. (46)

We show that ψ = ϕ. For the difference we obtain, using the group property of G and
the skewadjointness of H̃,

ψ(s)− ϕ(s) = G(s)ψ0 +

∫ s

0
G(s− r)v(r) · H̃ψ(r) dr

−G(t− s)∗ψ(t)−
∫ t

s
G(r − s)∗v(r) · H̃∗ϕ(r) dr

= G(s)ψ0 +

∫ s

0
G(s− r)v(r) · H̃ψ(r) dr

−G(t− s)∗
(
G(t)ψ0 +

∫ t

0
G(t− r)v(s) · H̃ψ(r) dr

)
−
∫ t

s
G(r − s)∗v(r) · H̃∗ϕ(r) dr

= −
∫ t

s
G(r − s)∗v(r) · H̃

(
ψ(r)− ϕ(r)

)
dr.

Therefore we obtain

‖ψ(s)− ϕ(s)‖ ≤
∫ t

s

L∑
l=1

|v(r)l|‖Hl‖‖ψ(r)− ϕ(r)‖ dr.

Applying Gronwall’s inequality to f(s) = ‖ψ(t− s)−ϕ(t− s)‖ yields ψ(s) = ϕ(s) for all
s ∈ [0, t]. Thus we have

ψ0 = ϕ(0) = G(t, 0)∗ϕ(t) = G(t, 0)∗ψ(t)

which is (45).

Next we establish the following compactness property for mild solutions.

Proposition 4.3. Let (vn)n be a sequence in L1(0, T ;RL) such that vn ⇀ v. Then the
corresponding solutions ψn of (41) satisfy ψn → ψ in C([0, T ];H), where ψ is the mild
solution corresponding to v.

Proof. The proof is split up into three steps. First we will show existence of a pointwise
weak limit for all t ∈ [0, T ] for some subsequence of (ψn)n using the Arzelà–Ascoli
theorem. Then we prove that this pointwise limit is the mild solution corresponding to
the limit field. Then the uniform strong convergence of the original sequence (ψn)n is
established.
Step 1. Let χ ∈ H. We need to verify the boundedness and equicontinuity assump-

tions of the Arzelà–Ascoli theorem for the family t 7→ 〈χ, ψn(t)〉. The boundedness
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follows from Lemma 4.2 which gives 〈χ, ψn(t)〉 ≤ ‖χ‖. For the equicontinuity we observe
that, for t′ > t,

ψn(t′)− ψn(t) = (G(t′ − t)− I)ψn(t) +

∫ t′

t
G(t′ − s)vn(s) · H̃ψn(s) ds. (47)

This gives

|〈χ, ψn(t′)− ψn(t)〉| ≤ ‖(G(t′ − t)∗ − I)χ‖‖ψn(t)‖+

∫ t′

t
‖vn(s)‖RL‖H̃‖‖ψn(s)‖ds

≤ ‖(G(t′ − t)∗ − I)χ‖+ ‖H̃‖
∫ t′

t
‖vn(s)‖RL ds.

Since G is strongly continuous and (vn)n is equiintegrable as weakly converging sequence
in L1, we can for every ε > 0 find a δ > 0 such that |t′ − t| < δ implies

|〈χ, ψn(t′)− ψn(t)〉| < ε.

for all n ∈ N. The Arzelà–Ascoli theorem then gives the existence of a limit aχ ∈
C([0, T ];R) and the uniform convergence 〈χ, ψn(t)〉 → aχ for some subsequence still
denoted by (ψn)n. To prove pointwise weak convergence of ψn(t) it remains to show the
existence of ψ ∈ L∞(0, T ;H) such that aχ = 〈χ, ψ(t)〉 for all χ ∈ H. Set ψ(t) =

∑
ι aχιχι

for some orthonormal basis (χι). Then for χ =
∑

ι bιχι we have

〈χ, ψ(t)〉 =
∑
ι

bιaχι = lim
n→∞

〈
∑
ι

bιχι, ψn(t)〉 = aχ(t).

Thus,
ψn(t) ⇀ ψ(t) (48)

for all t ∈ [0, T ].
Step 2. We will now show that ψ is the mild solution for the control field v. Let

χ ∈ H. We know

〈χ, ψn(t)〉 = 〈χ,G(t)ψ0〉+

L∑
l=1

〈χ,
∫ t

0
G(t− s)vn(s)l(−iHl)ψn(s) ds〉 (49)

for all n ∈ N and t ∈ [0, T ], and will pass to the limit n→∞ to obtain

〈χ, ψ(t)〉 = 〈χ,G(t)ψ0〉+

L∑
l=1

〈χ,
∫ t

0
G(t− s)v(s)l(−iHl)ψ(s) ds〉. (50)

For the term on the left-hand side of (49) we use (48). For each summand of the second
term on the right we define χ̃l(s) := (−iHl)

∗G(t− s)∗χ. Then

〈χ,
∫ t

0
G(t− s)vn(s)l(−iHl)ψn(s) ds〉 =

∫ t

0
vn(s)l〈χ̃l(s), ψn(s)〉ds.
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We have 〈χ̃l(s), ψn(s)〉 → 〈χ̃l(s), ψ(s)〉 pointwise in s by (48), and also 〈χ̃l(s), ψn(s)〉 ≤
‖H̃‖‖χ‖. Together with the assumption (vn)l ⇀ (v)l in L1(0, T ) this implies (vn)l〈χ̃l, ψn〉⇀
(v)l〈χ̃l, ψ〉 in L1(0, T ), see [FL07, Proposition 2.61]. Thus (50) holds. Since χ was arbi-
trary, the tested equation (50) implies

ψ(t) = G(t)ψ0 +
L∑
l=1

∫ t

0
G(t− s)v(s)l(−iHl)ψ(s) ds

for all t ∈ [0, T ], i.e. ψ ∈ C([0, T ];H) is a mild solution of (27) for the control field
v ∈ L1(0, T ;RL).

Step 3. Since ψn and ψ are solutions of (41) we have ‖ψ(t)‖ = 1 = ‖ψ(t)‖ by
Lemma 4.2. Thus for every t ∈ [0, T ], weak convergence ψn(t) ⇀ ψ(t) and convergence of
the norms inplies strong convergence ψn(t)→ ψ(t) inH. By (47) we have for t′, t ∈ [0, T ],

‖ψn(t′)− ψn(t)‖ ≤ ‖(G(t′ − t)− I)ψn(t)‖+ ‖H̃‖
∫ t′

t
‖vn(s)‖RL ds

≤ ‖(G(t′ − t)− I)ψ(t)‖+ ‖(G(t′ − t)− I)‖‖ψn(t)− ψ(t)‖

+ ‖H̃‖
∫ t′

t
‖vn(s)‖RL ds.

Pointwise strong convergence ψn(t)→ ψ(t), in addition to the arguments in the first step
of the proof, then restults in the following weak version of equicontinuity: For t ∈ [0, T ]
and ε > 0 there exists a δ > 0 and an N ∈ N such that for all t′ with |t′ − t| < δ we
have ‖ψn(t′) − ψn(t)‖ < ε. In particular, it implies that ψn(tn) → ψn(t) for convergent
sequences tn → t.

We can now conclude the proof with a contradition argument. Suppose uniform
convergence ψn → ψ does not hold. Then there is an ε > 0 and a subsequence still
denoted by (ψn)n and a sequence (tn)n in [0, T ] with

‖ψn(tn)− ψ(tn)‖ > ε

for all n ∈ N. Extracting another subsequence we can assume tn → t for some t ∈ [0, T ].
Then

‖ψn(tn)− ψ(tn)‖ ≤ ‖ψn(tn)− ψn(t)‖+ ‖ψn(t)− ψ(t)‖+ ‖ψ(t)− ψ(tn)‖.

Since the three terms on the right converge to zero for n→∞ by equicontinuity of (ψn)n,
pointwise convergence ψn(t) → ψ(t) and continuity of ψ, we obtain a contradiction.
Therefore the uniform convergence ψn → ψ in C([0, T ];H) holds.

Remark. We emphasize that we did not make use of compact embeddings to obtain this
compactness result. Instead we used the Arzelà–Ascoli theorem. In the second step of
the proof we made heavy use of the separability of the coupling into a time dependent
control function and a spatial coupling operator.
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4.2 Existence of optimal controls

We will now prove the existence of solutions to problem (28).

Theorem 4.4. There exists a solution (ψ̄, ū) ∈ C([0, T ];H)×M(Ω;U) of (28).

Proof. Let (ψn, un) be a minimizing sequence,

lim
n
J(ψn, un) = inf J(ψ, u). (51)

Sice O is bounded and α > 0, the sequence (un) in M(Ω;U) is bounded. There-
fore, and because M(Ω;U) = C(Ω;U)∗ is the dual of a separable Banach space, the
sequence (un)n has a weak-∗ convergent subsequence still denoted by (un)n with limit
ū ∈M(Ω;U). The weak-∗–weak(-∗) continuity of B implies Bun converges to Bū weakly
in Lp(0, T ;RL) for some p > 1 and thus also for p = 1. By Proposition 4.3 the corre-
sponding sequence of states (ψn)n satisfies ψn(T )→ ψ̄(T ). Thus the first summand of J
converges, 〈ψn(T ),Oψn(T )〉 → 〈ψ̄(T ),Oψ̄〉. The second summand of J is weak-∗ lower
semi-continuous as it is a norm in a dual space. Thus we obtain limn J(ψn, un) ≥ J(ψ̄, ū).
Together with (51) this implies the claim.

4.3 Necessary optimality conditions

For theoretical and numerical purposes we will use the reduced form of (28),

min
u
j(u). (52)

Here j(u) = J(ψ(u), u), where ψ(u) denotes the solution of (27) for the control u.
The reduced cost functional can be split into two parts. A nonlinear differentiable

part
f(v) = 〈ψ(T ),Oψ(T )〉H (53)

with v = Bu, and a nondifferentiable convex part

g(u) = α‖u‖M.

In the next lemma we will see that the derivative of the differentiable part f is given
by

f ′(v) = 〈ϕ, H̃ψ〉H
where ϕ is the mild solution of the dual equation

i∂tϕ(t) = (H0 + v(t) · iH̃)ϕ(t),

ϕ(T ) = Oψ(T ).
(54)

Using the evolution operator this can be rewritten as

ϕ(t) = G(T, t)∗Oψ(T ). (55)

Under suitable assumptions, the representation (53) of f ′ can be derived using a Lagrange
functional approach, see [PDR88, vWBV10]. We will give a short proof in the setting
of mild solutions.
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Lemma 4.5. Let v, δv ∈ L1(0, T ;RL), and let ψ, ψ′ and ϕ be the corresponding solutions
of (41), (42) and (55), respectively. Then the mapping f : L1(0, T ;RL)→ R defined by

f(v) =
1

2
〈ψ(T ), ψ(T )〉

is continuously differentiable with derivative

f ′(v)(δv) =

∫ T

0
δv(t) · 〈ϕ(t), H̃ψ(t)〉H dt. (56)

Proof. Proposition 4.1 and the product rule give continuous differentiability of f and

f ′(v)(δv) = 〈Oψ(T ), ψ′(T )〉. (57)

Using (43) and (55) we obtain

〈Oψ(T ), ψ′(T )〉H = 〈Oψ(T ),

∫ T

0
G(T, t)δv(t) · H̃ψ(t) dt〉H

=

∫ T

0
δv(t) · 〈G(T, t)∗Oψ(T ), H̃ψ(t)〉H dt

=

∫ T

0
δv(t) · 〈ϕ(t), H̃ψ(t)〉H dt.

We can now derive the following optimality condition, compare [KPV14].

Proposition 4.6. Let ū be a minimizer of problem (52), and let ψ̄, ϕ̄ ∈ C([0, T ];H) be
the corresponding solutions of (41) and (55) for the control field Bū. Then

α‖ū‖M = −〈B∗〈ϕ̄, H̃ψ̄〉H, ū〉C0,M. (58)

and
‖B∗〈ϕ̄, H̃ψ̄〉H‖C0 ≤ α. (59)

Proof. Since we can split our functional into a sum of a nonconvex and a nonsmooth part,
the result can be deduced from the very general differential calculus of Clarke [Cla90].
Because this calculus is somewhat intricate and not common knowledge beyond the
mathematical control theory community, and because of the importance of the optimality
system, we prefer to give a more elementary proof.

Let ū be a minimizer of problem (52) and let ψ̄ and ϕ̄ be the corresponding solutions
of (41) and (55). We first show the variational inequality

g(ū)− f ′(Bū)(Bu−Bū) ≤ g(u). (60)

Since ū is optimal, we have

1

h

(
j(ū+ h(u− ū))− j(ū)

)
≥ 0
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for u ∈ M(Ω;U) and h ∈ (0, 1). Using the decomposition j = f ◦ B + g and convexity
of g, this implies

1

h

(
f(Bū+ h(Bu−Bū))− f(Bū)

)
+ g(u)− g(ū) ≥ 0.

Since f is differentiable, taking the limit h→ 0 yields (60).
Testing (60) with u = 0 and u = 2ū gives

g(ū) + f ′(Bū)(Bū) = 0. (61)

Substituting (61) into (60) gives

−f ′(Bū)(Bu) ≤ g(u) (62)

for all u ∈M(Ω;U).
Using Lemma 4.5 on the derivative of f , equation (61) gives

g(ū) = −〈〈ϕ̄, H̃ψ̄〉H, Bū〉Lq ,Lp = −〈B∗〈ϕ̄, H̃ψ̄〉H, ū〉C0,M

which proves (58). For (62) we obtain

−〈B∗〈ϕ̄, H̃ψ̄〉H, u〉C0,M ≤ α‖u‖M.

Testing this inequality with u = −δω(B∗〈ϕ̄, H̃ψ̄〉H)(ω) for some ω ∈ Ω yields

‖(B∗〈ϕ̄, H̃ψ̄〉H)(ω)‖2U ≤ α‖(B∗〈ϕ̄, H̃ψ̄〉H)(ω)‖U

which gives (59).

Remark. Proposition 4.6 provides only a necessary condition for local optimality. Due to
the nonlinear structure of the problem (28), we expect that there also exist non-optimal
critical points of j, as well as local optima that are not global.

Proposition 4.6 implies the following interesting restrictions on the support and direc-
tion of the optimal measure.

Proposition 4.7. Let ū, ψ̄ and ϕ̄ be as in Proposition 4.6. Then we have

supp|ū| ⊂ { ω ∈ Ω | ‖(B∗〈ϕ̄, H̃ψ̄〉H)(ω)‖U = α }, (63)

−αū′(ω) = (B∗〈ϕ̄, H̃ψ̄〉H)(ω), |ū|-almost everywhere. (64)

Proof. Writing equation (58) as an integral yields∫
Ω

(
α+ 〈(B∗〈ϕ̄, H̃ψ̄〉H)(ω), ū′(ω)〉U

)
d|ū|(ω) = 0. (65)

For the integrand we obtain by the Cauchy–Bunyakovsky–Schwarz (CBS) inequality,
using ‖ū′(ω)‖ = 1 and (59),

α+ 〈(B∗〈ϕ̄, H̃ψ̄〉H)(ω), ū′(ω)〉U ≥ α− ‖(B∗〈ϕ̄, H̃ψ̄〉H)(ω)‖U ≥ 0. (66)
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Therefore (65) yields
α+ 〈(B∗〈ϕ̄, H̃ψ̄〉H)(ω), ū′(ω)〉U = 0

for |ū|-almost all ω ∈ Ω. For those ω the CBS inequality in (66) was sharp. This implies
(64) and

‖(B∗〈ϕ̄, H̃ψ̄〉H)(ω)‖U = α

for |ū|-almost all ω ∈ Ω. Since ω 7→ ‖(B∗〈ϕ̄, H̃ψ̄〉H)(ω)‖U is continuous this implies
(63).

The relation (63) for the support of the optimal measure gives us the following corol-
lary.

Corollary 4.8. Let ū be a local minimizer of (52). Then supp|ū| is compact.

Proof. Since B∗〈ϕ̄, H̃ψ̄〉 ∈ C0(Ω;U) we know that there is a compact set K ⊂ Ω such
that B∗〈ϕ̄, H̃ψ̄〉 ≤ α/2 for all ω 6∈ K. Using (63) this implies supp|ū| ⊂ K. Therefor
supp|ū| is compact as a closed subset of the compact set K.

This corollary is of significant physical interest. It says that although the frequency
domain Ω might be unbounded, optimal solutions will always have bounded support.
Controls from experiments, of course, always have this property, because arbitrarily fast
oscillations are not realizable. But it is nice to know that such oscillations do not occur
in our theoretical controls, as well.

For specific control operators B, equation (64) implies additional regularity for ū′(ω).
For example, in the case of the control operator from Example 3.1 we obtain the regu-
larity ū′(ω) ∈ H2(0, T ). Additional regularity with respect to ω ∈ Ω is an open problem
even in the simpler case of linear optimal control problems.

5 Numerical results

In this section we apply the framework for sparse time-frequency control to different
quantum systems. First we will describe our numerical approach. This includes a short
discussion of the discretization and the regularization of the optimal control problem.
Then we will present two examples. The first example is the control of the finite-
dimensional system from Example 2.2. It serves to illustrate the basic effects of sparse
control of quantum systems. The second example addresses controlling the system of one
dimensional Schrödinger equations from Example 2.4. The focus in this more challenging
example will be the effect of different control spaces on the resulting optimal controls.

5.1 Numerical approach

Our numerical approach relies on the following three steps. First, we discretize the mea-
sure space by a finite sum of Dirac measures with values in a finite-dimensional Hilbert
space. Then, we Huber-regularize the corresponding finite-dimensional nonsmooth prob-
lem. Finally, we solve the resulting smooth optimization problem with a quasi-Newton
method.
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The first step depends on Ω, of course. In our examples we always have Ω ⊂ Rk for
k ∈ {1, 2} and Ω is an interval or the product of two intervals. We fix a uniform (tensor)
grid Ωh and choose measures supported at those points as our ansatz space. Those
measures can always be written as finite sums of Dirac measures. In this discrete setting
the measure norm reduces to an `1 norm for the coefficients from U multiplying the Dirac
measures. To obtain a discrete problem we also need to discretize the Hilbert space U
and the quantum system. In our examples we have U = H1

0 (0, T ;C) or U = L2(0, T ;C)
where we use piecewise linear finite elements on a uniform grid with the appropriate
discrete norms, or U = C were we do not need to discretize. The discrete Hilbert space
is denoted by Uh. The control operator Bh maps discrete controls to piecewise linear
function. The discretization of the quantum system depends heavily on the system
at hand. We approximate the time evolution of the discretized quantum system by a
generalized Suzuki–Trotter method, see [HL15]. Together we obtain a finite-dimensional
optimization problem that is non-smooth and non-convex.

To deal with the nondifferentiability of the norm at the origin we Huber-regularize
this non-smooth problem. We replace the norm of U in the `1(Uh) norm by the function
h : U → R given by

h(z) =

{
‖z‖U − θ

2 , if ‖z‖U > θ,
1
2θ‖z‖

2
U , if ‖z‖U ≤ θ,

for some regularization parameter θ. The function h has the following two important
properties: it is smooth, and the derivatives of h and the derivatives of the norm of
U have the same behavior outside of a small neighborhood of zero. The first property
makes the optimization problem smooth. The second property preserves the possibility
of strongly peaked solutions. The smoothness, however, comes at the cost of relaxing
the support condition from Proposition 4.7. Instead of (63) we obtain

‖(B∗〈ϕ̄, H̃ψ̄〉H)(ω)‖U < α⇒ |u|({ω}) ≤ θ

for all ω on the grid. In our numerical examples the regularization parameter θ is chosen
at least two orders of magnitude smaller than max|u|({ω}). Therefor we will in slight
abuse of notation refer to the superlevel set { ω | |u|({ω}) > θ } as the support of u. In
the next section we will see the effect of θ on the support of the optimal control.

We solved the resulting smooth problem with a quasi-Newton method. Since the
dimension of the control space can become quite large with our approach we chose the
memory efficient L-BFGS method, see [NW06]. For the numerical realization gradients
for the discretized problems were used. The optimization method was terminated as
soon as the `2(Uh) norm of the gradient relative to the largest gradient was below a
tolerance of 10−5.

As expected from Proposition 4.7 the support of the optimal measure will depend on
the cost parameter α. For large α the support will be small while the observation term
will be large. The reverse holds for small α. We are interested in a compromise where
α is chosen such that we obtain a small support while still achieving about 95% of the
control objective, i.e. 1

2〈ψ(T ),Oψ(T )〉H ≤ 0.025. An automated choice of α would be
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helpful to obtain useful cost parameters for a variety of problems. This might be done
in future work.

The result of this nonlinear optimization problem also depends on the initial guess for
the control. For small α, the initial guess uh0 for the control uses a fixed element ũh0 in Uh
for all ω ∈ Ωh with a phase θω randomly chosen from a uniform distribution on [0, 2π12[,
uh0,ω = eiθω ũh0 . For larger α, where such a generic initial guess leads to convergence of
the method to suboptimal critical points near the origin, we use optimal solutions for
smaller α as initial guess.

An alternative approach to Huber-regularization could be to add an L2(Ω;U) regu-
larization term to the cost functional and then apply a semi-smooth Newton method to
this problem [KPV14]. This approach would have the advantage of preserving a support
property and therefore decreasing the degrees of freedom, but it lies beyond the scope
of this paper. The strategy used here is easier to implement since standard optimization
methods can be applied, and suffices to illustrate the qualitative behavior of resulting
optimal controls.

5.2 Three level system

As our first example we chose a typical finite-dimensional projection of an atom in a
laser field, see Example 2.2. We use the matrices

H0 =

−2 0 0
0 −1 0
0 0 2

 , H1 =

0 0 1
0 0 1
1 1 0


This corresponds for instance to a 1s, 2s, and 3p state. As explained in Section 2, the
transition 1s→ 2s is forbidden since the states have equal parity. On the other hand the
transitions 1s→ 3p and 3p→ 2s are allowed. The control objective is to reach the third
eigenstate starting from the ground state. The initial condition and the observation
operator are given by ψ0 = (1, 0, 0) and O = diag(1, 1, 0). We use a frequency band
Ω = [2, 5] discretized with 100 grid points. The expected transition frequencies ω1 = 3
and ω2 = 4 are contained in Ω. We chose a time horizon of T = 100 and a time grid
with 4096 points. The time horizon was chosen to allow for sufficiently many oscillations
with the transition frequencies. We chose a cost parameter of α = 0.1.

In Figure 1a we show the optimal field for the control space M(Ω;H1
0 (0, T ;C)) with

the control operator B given by (32). Figure 1b shows an optimal field corresponding to
the L2(0, T ;R) regularized problem as proposed in [PDR88]. At first sight both fields do
not seem to have a clear structure. Looking at the achievement of the control objective
we report that the observation term for the L2 control (2.0∗10−11) is much smaller than
the term for the measure control (7.8∗10−7). Both observation terms are way below the
critical threshold of 2.5∗10−2 corresponding to 95% achievement of the control objective.
The great advantage of the measure space control is that we can decompose the field
into simple components.

Figure 1d shows the absolute value of the coefficients of the optimal measure in the
time-frequency plane. We see that only two frequencies have a visible contribution. They
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Figure 1: In (a) the optimal control field for the measure space case inM(Ω;H1
0 (0, T ;C))

and in (b) the optimal field for the Hilbert space case in L2(0, T ;R) are plotted.
In (c) we see the two main contributions of the field in (a). In (d) we give the
absolute values of the coefficients of the optimal measure in the time-frequency
plane.
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Figure 2: In (a), the norms ‖ū‖U (solid) and the regularization parameter θ (dashed) are
plotted. In (b), the norms ‖(B∗〈ϕ, H̃ψ〉)(ω)‖U (solid) and the cost parameter
α (dashed) are plotted.

correspond to the two Bohr frequencies ω1 and ω2.
Figure 1c shows the decomposition of the optimal field in the two contributions of those

frequencies. These two fields have a clear structure. The profile in time looks smooth and
both fields are switched on during the whole time interval. This is consistent with the
choice U = H1

0 (0, T ;C), which promotes smoothness and non-locality in time. The field
for the first transition reaches its maximum before the field for the second transition.
This corresponds to the intuitive understanding that we have to induce the transition
between the levels one and three before the transition between the levels three and two.

In fact, unlike all previous control-theory-based forcing fields that we are aware of for
this basic system, the field obtained here bears considerable resemblance to the simple
and intuitive few-parameter pulses which have been used by laser physicists for a long
time. Compare, in particular, the two pulses in Figure 9 of [BTS98], whose achievement
of the control objective was beautifully demonstrated experimentally.

Finally, the structure of the phase also looks very clear, except possibly for some
oscillations at the boundaries. Those boundary effects are not desired in applications.
However, numerical experiments show that we still achieve the control objective reason-
ably well after approximating the phase by a constant or an affine linear function. These
approximations corresponds to a global phase shift and a global phase and frequency
shift, respectively. Even neglecting the phase altogether resulted in reasonable control
objectives.

In Figure 2 we can see that our optimal control is consistent with the necessary
optimality conditions given in Propositions 4.6 and 4.7. We plotted ‖B∗〈ϕ̄, H̃ψ̄〉H‖U and
‖ū‖U against frequencies. We see that ‖B∗〈ϕ̄, H̃ψ̄〉H‖U is below α for all frequencies,
and ‖ū‖U is below θ if ‖B∗〈ϕ̄, H̃ψ̄〉H‖U is strictly smaller that α. The latter is consistent
with the effect of Huber regularization with θ > 0, where the support condition is not
satisfied exactly.
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Figure 3: In (a), the two potential energy surfaces. In (b), the initial state (solid) and
the coefficients for the observable (dashed).

In this example, we obtain a small support of the desired size two and a very small
expectation value 7.8 ∗ 10−7 for a cost parameter α = 10−1. For the second example we
will see that a small support and a small expectation value are conflicting goals, which
makes the choice of a good parameter α more important.

5.3 Schrödinger dynamics on two potential energy surfaces

In this second example we consider a Schrödinger system on two potential energy surfaces
as arising in the laser control of chemical reactions, see Example 2.4. The spectral gap
between the two potential energy surfaces varies depending on the position of the nuclear
wave function and therefore a much larger variety of frequencies is potentially useful for
succesful control. We also expect an additional time structure in the controls due to
the movement of the densities in space. Therefore it is much more challenging to obtain
simple controls for this example. We focus on a comparison between controls generated
for different choices of Ω, U and B.

For simplicity we limit ourselves to one active coordinate, i.e. space dimension d = 1.
The potential energy surfaces are plotted in Figure 3a. The control objective is to reach
the potential well on the right starting from the potential well on the left. The initial
state ψ0 is a Gaussian located in the lower well. The observation operator O is the
projection on the complement of functions with support on the lower surface on the
right of the potential barrier.

The energy differences between the two potential energy surfaces measured at the local
minima of the lower surface are around 0.074 and 0.048. Therefor we expect optimal
controls to contain the two frequencies ω1 ≈ 0.074 and ω2 ≈ 0.048. We chose a time
horizon of T = 3000 and a time grid with 2048 points. The time horizon was chosen
large enough to allow for sufficiently many oscillations with the Bohr frequencies ω1 and
ω2, and for sufficient movement of the wave function in space. For the discretization
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in space we use a simple finite difference scheme on the domain [−4, 4] with 256 grid
points.

For this problem we compare the resulting optimal fields for different choices of the
frequency domain Ω, the Hilbert space U of admissible time profiles, and the control op-
erator B. We also compare them to the optimal fields for the classical Hilbert space cost
functional with L2(0, T ;R) or H1

0 (0, T ;R) norm. In particular we choose the following
setups.

• Time-smoothness with frequency-sparsity. Ω = [1/30, 1/10], U = H1
0 (0, T ;C),

B as in Example 3.1. The frequency band Ω contains the expected transition fre-
quencies ω1 and ω2. It is discretized with 100 grid points. We discretize U with
linear finite elements. The time grid corresponds to the grid of the time stepping.
This results in 100 · 2 · 2048 = 409600 real degrees of freedom.

• Dual Gabor transform. Ω = [1/30, 1/10], U = L2(0, T ;C) and B as in Ex-
ample 3.2, with the Gaussian kernel k suitably adapted to generate homogeneous
Dirichlet boundary conditions. We discretize Ω and U as before. For the evaluation
of B we explicitly construct the matrix K corresponding to the kernel k.

• Sparse Fourier transform. Ω = [1/30, 1/10], U = C, B the Fourier synthesis
operator, see Example 3.4. The frequency band Ω is discretized with 100 grid
points. This results in 2 · 100 = 200 real degrees of freedom.

• Time-frequency-sparse Gabor transform. Ω = [1/30, 1/10] × [0, T ], U = C,
B as in Example 3.5. The time-frequency cylinder Ω is discretized by a tensor
grid. In frequency direction we use a regular grid with 100 grid points. In time
direction we use a grid of 14 points. This results in 100 · 14 · 2 = 2800 real degrees
of freedom.

• Standard L2 cost. This means we directly minimize over v ∈ L2(0, T ;R) the
funtional J(ψ, v) = 1

2〈ψ(T ),Oψ(T ))〉 + α||v||2L2 . We use linear finite elements on
the time grid of the time stepping method. This results in 2048 real degrees of
freedom.

• Standard H1 cost. As in the previous example, B = I, but now v ∈ H1(0, T ;R),
and the L2 norm in the cost functional is replaced by the H1 norm. Again this
results in 2048 real degrees of freedom.

For the simulations we chose α such that probability to end up in the desired subspace
is near the value of 95%.

In Figure 4 we plotted the fields generated by the optimal controls, their Fourier
coefficients, time-frequency representation, and the absolute value of the coefficients of
the optimal measure arranged in the time-frequency plane. We see that the structure of
optimal controls heavily depends on the different cost functionals. In the following we
will discuss the most significant differences and similarities.

From the second and third column of Figure 4 we see that all the fields, except for
the H1

0 (0, T ;R) field, have two Bohr frequency regions around ω1 and ω2 that stand
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Figure 4: Different optimal controls in different representations for Schrödinger dynamics
on 2 PES. Rows: cost functionals, control operators. Columns: time, frequency
and time-frequency representation. In the rightmost column, the absolute
values of the optimal measures are plotted in the time-frequency plane.
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out. The regions correspond to the transitions up from the first well and down into the
second well, respectively. This is the expected and desired behavior. The H1

0 (0, T ;R)
field, on the other hand, mostly has low frequency components. In this case the wave
packet stays on the first surface and is forced over the potential barrier into the upper
well instead of inducing transition to the second surface. This shows that the choice of
the control cost term can have an influence on the control mechanism triggered by the
field. Since for this example the transitions between surfaces are of chemical interest,
the use of the H1

0 (0, T ;R) norm as a cost is useless.
In the third column of Figure 4 we see that the other controls all show a particular time

structure in their frequency content. It corresponds to the expected pump-dump picture,
which means that we first induce the transition up from the lower well with frequency ω1

and then down into the upper well with frequency ω2. The time lag between the peaks
for the frequencies ω1 and ω2 corresponds to the time it takes the wave package to travel
on the upper surface between the positions of the two wells on the lower surface. The
Gabor ansatz corresponds closest to pump-dump picture of two pulses separated in time
and frequency. The other controls fill the whole time interval, the basic time-frequency
control, the Fourier control and the L2 control basically performing two pump-dump
sequences. The Gabor ansatz is the only approach that seems to be least dependent on
the chosen time horizon.

The controls generated using the measure space setting all show a well-defined time-
frequency structure. In comparison the time-frequency representation of the L2(0, T ;R)
control looks very complicated and difficult to analyze. It also contains unwanted low
frequency components. It is interesting that the space M(Ω;H1

0 (0, T ;C)) leads to more
active frequencies compared to the approach with space M(Ω;L2(0, T ;C)) with the
Gabor synthesis operator.

We will now take a closer look at the support of the different optimal controls.
In Figure 5 we plotted the achievement of the control objective against the size of

the support for different control spaces for varying cost parameter α. The vertical line
marks the value of 2.5∗10−2 corresponding to a probability of 95%. The figure illustrates
the conflicting goals of minimizing the cost versus achieving the control objective. In
contrast to the first example we do not obtain almost perfect achievement of the control
objective for the desired support size two. Using the control spacesM(Ω;H1

0 (0, T ;C)) or
M(Ω;Uk) leads to good achievement of the control objective for relatively small support.
This is because those approaches separate frequency and time degrees of freedom. In the
former sparsity is favored while we still have enough flexibility in time. For Example 3.2,
we achieve a remarkably low number of three contributing frequencies. Two of those
frequencies lie on neighboring grid points, which could well be a consequence of an
unadapt discretization. If we increase the cost parameter to a point where the size of
the support actually is forced to become two, we see that that control goal is not achieved
in a satisfactory way anymore.

The Fourier and Gabor approaches lead to larger but still reasonably small supports.
This is remarkable because the size of the support directly corresponds to the number of
active degrees of freedom. Both approaches need way less degrees of freedom compared to
the other approaches. We are, however, more interested in a simple frequency structure
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Figure 5: For different control spaces and cost terms, the size of the support of optimal
measures is plotted against the corresponding expectation value. The vertical
line marks the expectation value corresponding to a probability of 95% to
achieve the control goal.

than in a low number of degrees of freedom. The size of the support corresponds to
those degrees of freedom which contribute to the frequency structure. The Gabor ansatz
does not exploit a separation of time and frequency structure. Since the shape of the
pulses is fixed beforehand, it cannot adapt to the problem at hand, leading to additional
active coefficients.

For the Fourier ansatz, additional frequencies become active to obtain some time
structure of the resulting field.

6 Conclusion

In summary, measure valued costs imposed on time-frequency representations of the elec-
tric field as introduced in this paper produce far simpler, sparse, and physically more
intuitive controls than the standard L2 and H1 costs. We hope that the measure-space,
time-frequency approach will reduce the current gap between numerical controls on the
one side and experimental implementation and physical intuition on the other. The
flexibility of the approach can, in principle, be exploited to construct controls suited to
concrete experimental setups.
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