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Abstract

The fast reaction limit of a volume-surface reaction-diffusion system is rigorously investigated. We show
that as the reaction rate constant goes to infinity, the original system converges to a heat equation with
dynamical boundary condition. As a consequence, a dynamical boundary condition can be interpreted as a
fast reaction limit of a volume-surface reaction-diffusion system.
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1. Introduction and main results

In this paper, we will investigate the behaviour of the following reversible chemical reaction

U V
k

k

(1.1)

when the reaction rate constant k > 0 tends to infinity, where U is a volume-substance in Ω and V is
a surface-substance on ∂Ω. Here we assume that Ω ⊂ Rn is a bounded domain with smooth boundary
Γ := ∂Ω (e.g. Γ ∈ C2+ε for some ε > 0).

To set up a mathematical model for the reaction (1.1), we denote by u(x, t) the volume-concentration
of U and by v(x, t) the surface-concentration of V. The linear mass action volume-surface reaction-diffusion
system modelling (1.1) reads as 

ut − du∆u = 0, x ∈ Ω, t > 0,

du∂νu = −k(u− v), x ∈ Γ, t > 0,

vt − dv∆Γv = k(u− v), x ∈ Γ, t > 0,

(1.2)

with initial data u(x, 0) = u0(x), x ∈ Ω and v(x, 0) = v0(x), x ∈ Γ, where ∂ν is directional derivative
corresponding to the unit outward normal vector ν of Γ, and ∆Γ denotes the Laplace–Beltrami operator on
Γ, which will be specified later. The system (1.2) has the following conservation of the total mass∫

Ω

u(x, t) dx+

∫
Γ

v(x, t) dσ =

∫
Ω

u0(x) dx+

∫
Γ

v0(x) dσ for all t > 0.

Volume-surface reaction-diffusion (VSRD) systems are used to describe many realistic models. For ex-
ample, they are used in biology to model e.g. the exchange of proteins during stem cell division [1] or signing
networks [2, 3], in chemical and physical industries to model surface active agents (surfactants) [4], or also
in crystal growth [5].
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On the other hand, fast reaction limits for reaction-diffusion systems have recently attracted a lot of
interest. In a reactive system, it frequently happens that some reaction processes happen much faster the
other processes (e.g. diffusion processes or convection processes) and thus reach the (reaction) steady state
quasi immediately. In such a case, the fast reactions can be eliminated to obtain a reduced system. The
fast reaction limits of reactive systems occur commonly in chemical engineering and although applying such
approximation has been routinely done by chemical engineers since a long time, the mathematical theory
of fast reaction limits is usually missing. Recent however, a lot of mathematical attention has been paid to
rigorously prove fast reaction limit approximations (see e.g. [1, 6, 7, 8] and references therein).

In the present paper, we investigate the fast reaction limits k → +∞ for the VSRD system (1.2). We
prove that, as the reaction rate constant k → +∞, the solutions to (1.2) converge to solutions of a limit
equation, which in fact is a heat equation with a particular dynamical boundary condition (see e.g. [9]).
As a consequence, the dynamical boundary condition for the heat equation can be interpreted as the fast
reaction limit of a volume-surface reaction-diffusion system; see [10] for an alternative derivation. Up to the
best of our knowledge, [1] is the only existed result concerning fast reaction limits for VSRD systems.

A problem similar to this work was studied in [7] where the authors proved the fast reaction limit
for αU � βV with U and V are both volume-concentrations. We remark that because of the volume-
surface coupling of (1.2), the technique used in [7] is not applicable here. This difficulty will be resolved
in this paper by first applying an energy equation technique to prove the fast reaction convergence in
L2(0, T ;L2(Ω) × L2(Γ)), then exploiting the result that solutions of (1.2) and (1.3) converge to a common
equilibrium to show the fast reaction convergence in L2(0, T ;H1(Ω)×H1(Γ)). The main results of this paper
are stated in the following theorem.

Theorem 1.1. Denote by (uk, vk) the unique solution to system (1.2) subject to initial data (u0, v0) ∈
L2(Ω)× L2(Γ) and reaction rate constant k > 0. Then for k → +∞ there holds

(uk, vk)→ (w,w|Γ) in L2(0, T ;H1(Ω)×H1(Γ)),

where w is the unique weak solution to the following heat equation with dynamical boundary condition
wt − du∆w = 0, x ∈ Ω, t > 0,

du∂νw = −wt + dv∆Γw, x ∈ Γ, t > 0,

w(x, 0) = u0(x), x ∈ Ω,

w|Γ(x, 0) = v0(x), x ∈ Γ.

(1.3)

Proof. Here we sketch the proof of the main results based on some essential lemmas which will be proved
in the next section.

By Lemma 2.3 we have (uk, vk) ⇀ (w, z) weakly in L2(0, T ;H1(Ω) × H1(Γ)) with w|Γ = z and w is a
weak solution to the limit equation (1.3). The Lemma 2.4 shows the strong convergence in L2(0, T ;L2(Ω)×
L2(Γ)) of (uk, vk) → (w, z). Finally, by using Lemma 2.9, we obtain that the (uk, vk) → (w, z) strongly in
L2(0, T ;H1(Ω)×H1(Γ)). That completes the proof of the Theorem.

The remainder of this paper is structured as follows: In Section 2, we prove the main Theorem 1.1 by
proving the Lemmas 2.3, 2.4 and 2.9 consecutively. We also briefly discuss a related nonlinear problem in
the last Section 3.

2. Proof of Theorem 1.1

For the sake of brevity, throughout this paper, we denote by L2 = L2(Ω)×L2(Γ) andH1 = H1(Ω)×H1(Γ).
The inner product in L2 is defined by

〈(u, v); (ϕ,ψ)〉 :=

∫
Ω

uϕdx+

∫
Γ

vψ dσ

which deduces the norm ‖(u, v)‖L2 =
√
〈(u, v); (u, v)〉. For t > 0, we denote by Ωt = Ω× [0, t], Γt = Γ× [0, t]

and L2(Ωt) = L2(0, t;L2(Ω)), L2(Γt) = L2(0, t;L2(Γ)).
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Since the domain Ω is assumed to be smooth enough, Γ is Riemann manifold without boundary with
the natural metric inherited Rn, given in local coordinates by (gij)i,j=1,...,n−1. Hence we can define the
Laplace–Beltrami operator on Γ by

∆Γu = g−1/2
n−1∑
i,j=1

∂

∂yi

(
gijg1/2 ∂u

∂yj

)

where g = det(gij) and (gij) = (gij)
−1 as usual. Throughout this paper, we will use the following identity∫

Γ

(−∆Γu)v dσ =

∫
Γ

∇Γu∇Γv dσ

where dσ is the natural volume element on Γ, given in local coordinates by
√
gdy1 . . . dyn−1, and ∇Γ is the

Riemannian gradient. For more details of the Laplace–Beltrami operator, we refer the reader to [11].

2.1. Well Posedness and Limiting System

In this section we provide definitions and existence results for the system (1.2) and the limiting equa-
tion (1.3). We also establish the weak convergence of solutions of (1.2) to solutions of (1.3) when k →∞.

Definition 2.1. For fixed T > 0, a pair of functions (u, v) ∈ C([0, T ];L2) ∩ L2(0, T ;H1) is called a weak
solution to (1.2) if for all (ϕ,ψ) ∈ C1([0, T ];H1) satisfying ϕ(T ) = ψ(T ) = 0 we have

−
∫ T

0

〈(u, v); (ϕt, ψt)〉dt+

∫ T

0

a(u, v;ϕ,ψ) dt = 〈(u0, v0); (ϕ(0), ψ(0))〉 (2.1)

where

a(u, v;ϕ,ψ) = du

∫
Ω

∇u∇ϕdx+ dv

∫
Γ

∇Γv∇Γψ dσ + k

∫
Γ

(u− v)(ϕ− ψ) dσ. (2.2)

Proposition 2.1. For any (u0, v0) ∈ L2, the system (1.2) possesses a unique weak solution (u, v) in the
sense of Definition 2.1.

Proof. It’s easy to show that the bilinear a : H1 ×H1 → R is continuous and satisfies

a(u, v;u, v) ≥ α‖(u, v)‖2H1 − c‖(u, v)‖2L2

for some α, c > 0. The existence of a weak solution (u, v) to (1.2) then follows from standard theory of linear
parabolic problems (see e.g. [12, XVIII §3)]).

Similarly, we can show the existence of a unique weak solution to the limit equation (1.3). The proof of the
following Lemma is hence omitted.

Proposition 2.2. For any (u0, v0) ∈ L2, the equation (1.3) possesses a unique global weak solution w which
satisfies

(w,w|Γ) ∈ C([0, T ];L2) ∩ L2(0, T ;H1)

and, for all test functions ϕ with (ϕ,ϕ|Γ) ∈ C1([0, T ];H1) and ϕ(T ) = 0 we have

−
∫ T

0

〈(w,w|Γ); (ϕt, ϕt|Γ)〉dt+ du

∫ T

0

∫
Ω

∇w∇ϕdxdt

+ dv

∫ T

0

∫
Γ

∇Γw|Γ∇Γϕ|Γ dσ dt = 〈(u0, v0); (ϕ(0), ϕ|Γ(0))〉. (2.3)
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Later in this work, we will denote by (uk, vk) the unique weak solution to (1.2) corresponding to the
reaction rate constant k > 0. Thanks to (2.1), we have

‖(uk(t), vk(t))‖2L2 + 2du‖∇uk‖2L2(Ωt)
+ 2dv‖∇Γv

k‖2L2(Γt)
+ 2k‖uk − vk‖2L2(Γt)

= ‖(u0, v0)‖2L2 . (2.4)

for all t ∈ (0, T ]. The relation (2.4) gives us the following important a priori estimates

{uk}k>0 is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (2.5)

{vk}k>0 is bounded in L∞(0, T ;L2(Γ)) ∩ L2(0, T ;H1(Γ)) (2.6)

and
‖uk − vk‖L2(ΓT ) = O(k−1/2) as k → +∞. (2.7)

Combining (2.5), (2.6) and (2.7) allows us to have the following weak convergence result.

Lemma 2.3. There exist a function w ∈ L2(0, T ;H1(Ω)) and a function z ∈ L2(0, T ;H1(Γ)) such that

uk ⇀ w weakly in L2(0, T ;H1(Ω)) (2.8)

and
vk ⇀ z weakly in L2(0, T ;H1(Γ)) (2.9)

as k → +∞. Moreover, we have w|Γ = z and w is the unique weak solution to the heat equation with
dynamical boundary condition (1.3).

Proof. The existence of (w, z) and (2.8) and (2.9) follow from (2.5) and (2.6). We now verify that w|Γ = z
and w solves (1.3) in weak sense.

From (2.7) we have, as k → +∞, uk − vk → 0 strongly in L2(ΓT ) thus uk − vk ⇀ 0 weakly in L2(ΓT ).
It follows that, for any ξ ∈ L2(ΓT ), we have

lim
k→+∞

(uk − vk, ξ)L2(ΓT ) = 0. (2.10)

Since vk → z weakly in L2(0, T ;H1(Γ)), we have (vk, ξ)L2(ΓT ) → (z, ξ)L2(ΓT ). On the other hand, uk → w

weakly in L2(0, T ;H1(Ω)) then thus, uk|Γ → w|Γ weakly in L2(ΓT ) thanks to the Trace Theorem. Therefore,
(uk, ξ)L2(ΓT ) → (w, ξ)L2(ΓT ). Hence, it follows from (2.10) that (w − z, ξ) = 0 for all ξ ∈ L2(ΓT ), which
means w|Γ = z.

We will show that w is the solution to equation (1.3) subject to initial data (u0, v0). By choosing a test
function ϕ ∈ C1([0, T ];H1(Ω)) satisfying ϕ|Γ ∈ C1([0, T ];H1(Γ)) and ϕ(T ) = 0, it follows from (2.1) that

−
∫ T

0

〈(uk, vk); (ϕt, ϕt|Γ)〉dt+

∫ T

0

a(uk, vk;ϕ,ϕ|Γ) dt = 〈(u0, v0); (ϕ(0), ϕ|Γ(0))〉

or equivalently

−
∫ T

0

〈(uk, vk); (ϕt, ϕt|Γ)〉dt+ du

∫ T

0

∫
Ω

∇uk∇ϕdx dt

+ dv

∫ T

0

∫
Γ

∇Γv
k∇Γϕ|Γ dσ dt = 〈(u0, v0); (ϕ(0), ϕ|Γ(0))〉. (2.11)

Passing to limit in (2.11) as k → +∞ and recalling that uk ⇀ w weakly in L2(0, T ;H1(Ω)) and vk ⇀ w|Γ
weakly in L2(0, T ;H1(Γ)), we obtain

−
∫ T

0

〈(w,w|Γ); (ϕt, ϕt|Γ)〉dt+ du

∫ T

0

∫
Ω

∇w∇ϕdxdt

+ dv

∫ T

0

∫
Γ

∇Γw|Γ∇Γϕ|Γ dσ dt = 〈(u0, v0); (ϕ(0), ϕ|Γ(0))〉.

This verifies that w is the weak solution to the equation (1.3) and hence the proof of the lemma is completed.
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2.2. Strong convergence in L2(0, T ;L2)

Lemma 2.4. For any T > 0 we have

(uk, vk)→ (w, z) strongly in L2(0, T ;L2)

as k → +∞, where z = w|Γ.

Proof. First, from Lemma 2.3 we have uk ⇀ w weakly in L2(ΩT ) and vk ⇀ z weakly in L2(ΓT ), then

lim inf
k→+∞

(
‖uk‖2L2(ΩT ) + ‖vk‖2L2(ΓT )

)
≥ ‖w‖2L2(ΩT ) + ‖z‖2L2(ΓT )

thanks to lim inf(xn + yn) ≥ lim inf xn + lim inf yn, or equivalently

lim inf
k→+∞

‖(uk, vk)‖2L2(0,T ;L2) ≥ ‖(w, z)‖
2
L2(0,T ;L2). (2.12)

With the help of (2.12), to show (uk, vk)→ (w, z) strongly in L2(0, T ;L2) we only need to prove

lim sup
k→+∞

‖(uk, vk)‖2L2(0,T ;L2) ≤ ‖(w, z)‖
2
L2(0,T ;L2). (2.13)

We first note that, for any 0 < t ≤ T ,

lim inf
k→+∞

‖∇uk‖2L2(Ωt)
≥ ‖∇w‖2L2(Ωt)

and lim inf
k→+∞

‖∇Γv
k‖2L2(Γt)

≥ ‖∇Γz‖2L2(Γt)

thanks to the weak convergence (2.8) and (2.9). From (2.4), we have, for all t ∈ (0, T ],

‖(uk(t), vk(t))‖2L2 + 2du‖∇uk‖2L2(Ωt)
+ 2dv‖∇Γv

k‖2Γ ≤ ‖(u0, v0)‖2L2 .

Hence,

lim sup
k→+∞

‖(uk(t), vk(t))‖2L2 ≤ lim sup
k→+∞

(
−2du‖∇uk‖2L2(Ωt)

− 2dv‖∇Γv
k‖2L2(Γt)

)
+ ‖(u0, v0)‖2L2

≤ −2du lim inf
k→+∞

‖∇uk‖2L2(Ωt)
− 2dv lim inf

k→+∞
‖∇Γv

k‖2L2(Γt)
+ ‖(u0, v0)‖2L2

≤ −2du‖∇w‖2L2(Ωt)
− 2dv‖∇Γz‖2L2(Γt)

+ ‖(u0, v0)‖2L2

= ‖(w(t), z(t))‖2L2

(2.14)

for all t ∈ (0, T ]. The last equality is due to the fact that w is the solution to (1.3) and z = w|Γ. By using
Fatou’s lemma and (2.14) we have

lim sup
k→+∞

‖(uk, vk)‖2L2(0,T ;L2) ≤
∫ T

0

lim sup
k→+∞

‖(uk(t), vk(t))‖2L2 dt

≤ ‖(w, z)‖2L2(0,T ;L2)

and therefore obtain the desired inequality (2.13).

2.3. Convergence in L2(0, T ;H1)

In order to prove that (uk, vk)→ (w, z) strongly in L2(0, T ;H1), we first show that (1.2) and (1.3) share a
common unique equilibrium and both trajectories of (1.2) and (1.3) converge exponentially to this equilibrium
as t → +∞. Then combining these convergences to equilibrium with another energy equation method, we
will be able to show that (|∇uk|, |∇Γv

k|) → (|∇w|, |∇Γz|) strongly in L2(0, T ;L2), which combined with
(uk, vk)→ (w, z) strongly in L2(0, T ;L2) leads to the strong convergence (uk, vk)→ (w, z) in L2(0, T ;H1).
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2.3.1. Convergence to equilibrium

Lemma 2.5. Denote by M :=
∫

Ω
u0(x) dx +

∫
Γ
v0(x) dσ the initial mass. Then (1.2) and (1.3) obey the

conservations of mass∫
Ω

uk(x, t) dx+

∫
Γ

vk(x, t) dσ =

∫
Ω

w(x, t) dx+

∫
Γ

w(x, t) dσ = M

for all t > 0. Moreover, (1.2) and (1.3) possess a common equilibrium (u∞, v∞), which solves{
u∞ = v∞

|Ω|u∞ + |Γ|v∞ = M.

Proof. The proof relies on direct computations, so we omit it.

The convergence to equilibrium for (1.2) is the consequence of an entropy-entropy dissipation (EED) estimate
between the entropy functional defined by

E(f, g) = ‖(f, g)‖2L2

and its entropy dissipation defined by

Dk(f, g) = 2du‖∇f‖2L2(Ω) + 2dv‖∇Γg‖2L2(Γ) + 2k‖f − g‖2L2(Γ)

where f : Ω → R and g : Γ → R. The following EED estimate is the main tool in showing the convergence
to equilibrium.

Lemma 2.6. For k0 > 0 there exists λ0 > 0 such that for all k ≥ k0 and all measurable functions f : Ω→ R
and g : Γ→ R satisfying

∫
Ω
f dx+

∫
Γ
g dσ = 0 we have

Dk(f, g) ≥ λ0 E(f, g). (2.15)

Proof. By using the notation f = 1
|Ω|
∫

Ω
f(x) dx and g = 1

|Γ|
∫

Γ
g(x) dσ for the spatial averages of f and g,

the assumption
∫

Ω
f dx+

∫
Γ
g dσ = 0 can be rewritten as

|Ω|f + |Γ|g = 0.

First, we compute
E(f, g) = ‖(f, g)‖2L2 = ‖(f − f, g − g)‖2L2 + ‖(f, g)‖2L2

= E(f − f, g − g) + E(f, g).
(2.16)

By using the Poincaré inequalities

‖∇f‖2L2(Ω) ≥ CP (Ω)‖f − f‖2L2(Ω) and ‖∇Γg‖2L2(Γ) ≥ CP (Γ)‖g − g‖2L2(Γ)

for functions in H1(Ω) and H1(Γ), respectively, we have

1

2
Dk(f, g) ≥ du‖∇f‖2L2(Ω) + dv‖∇Γg‖2L2(Γ)

≥ duCP (Ω)‖f − f‖2L2(Ω) + dvCP (Γ)‖g − g‖2L2(Γ)

≥ min{duCP (Ω), dvCP (Γ)}E(f − f, g − g).

(2.17)

On the other hand, by using the trace inequality ‖∇f‖2L2(Ω) ≥ CT (Γ)‖f − f‖2L2(Γ) for functions in H1(Ω),
we get

1

2
Dk(f, g) ≥ duCT (Γ)‖f − f‖2L2(Γ) + 2k‖f − g‖2L2(Γ)

≥ 1

2
min{duCT (Γ), 2k0}‖f − g‖2L2(Γ)

≥ 1

2
min{duCT (Γ), 2k0}

(
‖f − g‖2L2(Γ) + ‖g − g‖2L2(Γ)

)
≥ 1

2
min{duCT (Γ), 2k0}‖f − g‖2L2(Γ)

=
1

2
min{duCT (Γ), 2k0}

(
|Γ|
|Ω|

+ 1

)
E(f, g)

(2.18)
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where we used |Ω|f + |Γ|g = 0 for the last equality. Now, by combining (2.16), (2.17) and (2.18) it yields
(2.15) with

λ0 = min{duCP (Ω), dvCP (Γ), 1/2duCT (Γ), k0}.

Proposition 2.7. The solution (uk, vk) to (1.2) obeys the following convergence to equilibrium

‖(uk(t), vk(t))− (u∞, v∞)‖2L2 ≤ e−λ0t‖(u0, v0)− (u∞, v∞)‖2L2 (2.19)

for all t > 0, where k ≥ k0 > 0 and λ0 is independent of t and k.

Proof. By defining f = uk − u∞ and g = vk − v∞, we have
∂tf − du∆f = 0, x ∈ Ω, t > 0,

du∂νf = −k(f − g), x ∈ Γ, t > 0,

∂tg − dv∆Γg = k(f − g), x ∈ Γ, t > 0,

with initial data f(x, 0) = u0(x) − u∞ and g(x, 0) = v0(x) − v∞. We calculate that f and g satisfies the
mass conservation, for all t > 0,

|Ω|f(t) + |Γ|g(t) = |Ω|f(0) + |Γ|g(0) = 0.

Therefore, we can apply Lemma 2.6 to have

Dk(f, g) ≥ λ0 E(f, g).

Note that, after direct computations, we have Dk(f, g) = − d
dtE(f, g). It then follows from Gronwall’s lemma

that
E(f, g)(t) ≤ e−λ0tE(f(0), g(0)) for all t > 0. (2.20)

The proof of the lemma is complete since (2.20) is equivalent to (2.19).

Proposition 2.8. The solution u to (1.3) satisfies the following convergence to equilibrium

‖w(t)− u∞‖2Ω + ‖w|Γ(t)− v∞‖2Γ ≤ e−λ1t(‖u0 − u∞‖2Ω + ‖v0 − v∞‖2Γ) (2.21)

for all t > 0 where λ1 is independent of t.

Proof. The proof is similar to Lemma 2.7 with slight modifications so we omit it here.

2.3.2. Strong convergence in L2(0, T ;H1)

Lemma 2.9. As k → +∞ we have

(uk, vk)→ (w, z) strongly in L2(0, T ;H1)

for all T > 0, where z = w|Γ.

Proof. We will first prove that

(|∇uk|, |∇Γv
k|)→ (|∇w|, |∇Γz|) in L2([0,+∞);L2).

From the energy equation (2.4), we have

‖(uk(t), vk(t))‖2L2 + 2du‖∇uk‖2L2(Ωt)
+ 2dv‖∇Γv

k‖2L2(Γt)
≤ ‖(u0, v0)‖2L2 . (2.22)

From the limit equation (1.3), we have

‖(w(t), z(t))‖2L2 + 2du‖∇w‖2L2(Ωt)
+ 2dv‖∇Γz‖2L2(Γt)

= ‖(u0, v0)‖2L2 . (2.23)
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Combining (2.22) and (2.23) yields

‖(uk(t), vk(t))‖2L2 + 2du‖∇uk‖2L2(Ωt)
+ 2dv‖∇Γv

k‖2L2(Γt)

≤ ‖(w(t), z(t))‖2L2 + 2du‖∇w‖2L2(Ωt)
+ 2dv‖∇Γz‖2L2(Γt)

.
(2.24)

Letting k → +∞ and t → +∞ in (2.24), and using (uk(t), vk(t)) → (u∞, v∞) independently of k and
(w(t), z(t))→ (u∞, v∞) as t→ +∞ we get

lim sup
k→+∞

(
2du‖∇uk‖2L2([0,+∞)×Ω) + 2dv‖∇Γv

k‖2L2([0,+∞)×Γ)

)
≤ 2du‖∇w‖2L2([0,+∞)×Ω) + 2dv‖∇Γz‖2L2([0,+∞)×Γ)

(2.25)

On the other hand, (2.22) implies that

{(|∇uk|, |∇Γv
k|)} is bounded in L2([0,+∞);L2),

thus
(|∇uk|, |∇Γv

k|) ⇀ (|∇w|, |∇Γz|) weakly in L2([0,+∞);L2). (2.26)

Therefore, we have

lim inf
k→+∞

‖(|∇uk|, |∇Γv
k|)‖2L2([0,+∞);L2) ≥ ‖(|∇w|, |∇Γz|)‖2L2([0,+∞);L2),

which, combined with (2.25), infers that

lim
k→+∞

‖(|∇uk|, |∇Γv
k|)‖2L2([0,+∞);L2) = ‖(|∇w|, |∇Γz|)‖2L2([0,+∞);L2). (2.27)

From (2.26) and (2.27), we get

(|∇uk|, |∇Γv
k|)→ (|∇w|, |∇Γz|) strongly in L2([0,+∞);L2).

This strong convergence, together with (uk, vk)→ (w, z) strongly in L2(0, T ;L2), gives us the main result

(uk, vk)→ (w, z) strongly in L2(0, T ;H1)

for all T > 0.

3. Discussion for a Nonlinear Problem

As a final remark to this paper, we consider the reversible reaction

αU βV
k

k

where U and V are volume- and surface-concentrations respectively, and the stoichiometric coefficients α, β
are positive. The system considered in the present paper is thus a special case of this reaction when α = β = 1.
By applying the mass action law, this reaction results the following nonlinear VSRD system

ut − du∆u = 0, x ∈ Ω, t > 0,

du∂νu = −αk(uα − vβ), x ∈ Γ, t > 0,

vt − dv∆Γv = βk(uα − vβ), x ∈ Γ, t > 0,

(3.1)

with suitable initial data. This system was proved to have a global weak solution which converges exponen-
tially to equilibrium in [13].
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Let the reaction rate constant k tend to infinity, it is expected at least formally, that (uk, vk)→ (w,w|Γ)
where w is a solution to the following heat equation with nonlinear dynamical boundary condition

wt − du∆w = 0, x ∈ Ω, t > 0,

du∂νw = α
β

(
−(wα/β)t + dv∆Γ(wα/β)

)
, x ∈ Γ, t > 0,

w(x, 0) = u0(x), x ∈ Ω,

w|Γ(x, 0) = v0(x)α/β , x ∈ Γ.

The analysis of this problem is much more involved compared to the linear case. The existence of solution
to the limit equation with β 6= α, up to the best of our knowledge, has not been shown in literature. The
fast reaction limit problem for (3.1) remains as an interesting open problem.
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