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Abstract. Robust measures are introduced for methods to determine statistically uncorrelated or also statistically
independent components spanning data measured in a way that does not permit direct separation of these underly-
ing components. Because of the nonlinear nature of the proposed methods, iterative primal-dual based methods are
presented for the optimization of merit functions, and convergence of these methods is proved. Illustrative exam-
ples are presented to demonstrate the benefits of the robust approaches, including an application to the processing
of dynamic medical imaging.
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1 Introduction

The topics of this work focus on the low-dimensional representation of complex measured data. The
lowest dimensional representation is a type of average. More accurate representations add dimensions
beyond the average based upon subspaces in which the data vary the most. Choosing a basis for such
subspaces is driven by the priority that data coordinates with respect to this basis be statistically uncorre-
lated or even statistically independent. The particular interest here is to present methods for performing
these tasks which are robust against outliers in the measured data.

The most common type of average is the mean, which may be formulated variationally as the point
minimizing the sum of squared distances to data points. As discussed in [10], a more robust method
involves minimizing a merit function which does not grow as rapidly with respect to the data and would
thereby apply less weight to erroneous data points far from a natural average. Various notions of an
average based upon `1 measures are discussed in [8]. Based upon examples presented in Section 3, the
type of average selected for this work is the geometric median, which may be formulated variationally as
the point minimizing the sum of distances (not squared) to data points. The problem of determining the
geometric median has a long history. In the 1937 paper by Weiszfeld [15], three proofs concerning the
uniqueness of the geometric median are given, and one of these supplies an algorithm for its computa-
tion. We also refer to the recent annotated translation of that paper [13]. See also [4]. A shorter proof of
uniqueness is given in Section 6 which is based upon a strict convexity argument. Moreover, a possibly
novel characterization of a solution is provided in case data points are colinear. A primal-dual iteration
for computing the geometric median is proposed in Section 3, and the convergence of this scheme is
proved in Section 6. An alternative approach based upon the Chambolle-Pock algorithm [6] is presented
in the appendix, and its performance is compared to our approach.

Given a natural average or center of the measured data, one may then wish to determine the direc-
tion in which data points vary the most from the center. This direction is the most significant principal
component of the data. Principal components of lesser significance are sought similarly but within the
orthogonal complement to the more significant ones. Determining and analysing such components is
the subject of principal component analysis (PCA) [11]. The most common way of determining these
components is to select them as the eigenvectors of the covariance matrix of the data. The more signif-
icant components correspond to the larger eigenvalues of the covariance matrix since each eigenvalue
gives the variance of the data projected onto the corresponding eigenvector. As discussed in Section 4,
determining each eigenvector can be formulated variationally in terms of finding a best fit line through
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the data, where the line minimizes the sum of squared distances to data points. See [3] and [7] for `1
based alternatives to this criterion. Based upon examples presented in Section 4, this line is determined
here more robustly by minimizing the sum of distances (not squared) to data points. In other words,
analogous to defining an average as a geometric median point, a principal component is defined as a
geometric median line. In Section 4 an iterative scheme is proposed for computing this line. However,
since the merit function is not convex, uniqueness of minimizers cannot be expected. Nevertheless, con-
vergence of the scheme to a minimizer is proved in Section 7. This scheme, just as the scheme used for
computing the geometric median, is based on a primal-dual formulation of the optimality condition. For
a description of a greedy-algorithm to an `1 maximization approach to PCA we refer to [12].

Suppose that the data are rotated to an axis system aligned with principal components and that they
are then scaled along each new axis to normalize the respective variances to unity. When this rotation
and scaling is carried out by standard methods using `2 measures, the transformed data have a covari-
ance matrix equal to the identity. Then the data are said to have been sphered. In particular, the new
data coordinates are statistically uncorrelated. However, they are not necessarily statistically indepen-
dent [10]. (See, e.g., the example of Fig. 3 with m = 1 in (5.1) so that the data are sphered but the
coordinates do not satisfy the independence criterion (5.4).) It might then be postulated that the data can
be represented in a rotated axis system with respect to which coordinates are statistically independent.
Determining and analysing such a system is the subject of independent component analysis (ICA). In
case the postulate holds, coordinates of the sphered data represent weighted sums of statistically in-
dependent variables, and by the Central Limit Theorem [1] histograms of such coordinates tend to be
bell shaped. In order to identify the postulated rotation, it is standard to minimize the Gaussianity of
histograms of coordinates in the desired rotated system. The approach proposed by [10] is to determine
this rotation by maximizing a merit function which is known to be minimized by data with a Gaussian
distribution. It is also argued in [10] that one such merit function is more robust to data outliers than
another when it does not grow as rapidly with respect to the data. Such candidate merit functions are
considered in Section 5. The optimization method of [17] is robust against local extrema. The approach
proposed here for determining the desired rotation begins by targeting independence directly instead of
using the indirect measure of Gaussianity. The merit function proposed in Section 5 is motivated by
the observation that while sphered axes tend to be aligned with data clusters, independent axes tend to
separate clusters. See the examples presented in Section 5 for details. A fixed point iteration scheme
based on the primal-dual formulation of the optimality condition is proposed in Section 5 for computing
robust independent components, and the convergence of this scheme is proved in Section 8.

The paper is outlined as follows. In Section 2, standard `2 approaches to PCA and ICA are summa-
rized, particularly to establish the background used later for the presentation of more robust methods. In
Section 3 a robust method of data centering is proposed using the geometric median. In Section 4 a ro-
bust method for determining principal components is proposed using lines which are best fit in the sense
that the sum of distances (not squared) to the data points is minimized within the subspace orthogonal to
other components. In Section 5 a robust method for determining independent components is proposed
which maximizes separations among sphered data clusters. Due to the nonlinearity of the respective op-
timality conditions, iterative schemes are proposed in Sections 3 – 5 to solve the respective optimization
problems. Convergence of these schemes is proved in Sections 6 – 8. In Section 9 the proposed methods
are applied to a magnetic resonance image sequence to separate intensity changes due to physiologi-
cal motion from those due to contrast agent, and benefits of the robust methods are demonstrated with
respect to this realistic example. See also [14] and [16]. The paper ends with a summary in Section 10.

2 Summary of `2 Approaches to PCA and ICA

Let an unknown random vector z ∈ Rm be given with components {zi}mi=1 which will be called
sources. For example, the sources could be random variables associated with sounds produced indepen-
dently at a cocktail party. The sources are assumed to satisfy the following:

1. For 1 ≤ i 6= j ≤ m, zi and zj are statistically independent.
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2. No zi is normally distributed.

3. For 1 ≤ i ≤ m, the variance σ2i = E[(zi − E[zi])
2] of zi is positive.

Here, E denotes the expectation. Since the sources are statistically independent, they are uncorrelated
[10]. Let their positive definite diagonal covariance matrix be denoted by

C(z) = {E[zi − E[zi], zj − E[zj ]]}mi,j=1 = diag{σ2i }mi=1

which is unknown. Let a random vector y ∈ Rm be defined through a measurement process

y = Az (2.1)

modelled in terms of the mixing matrix A ∈ Rm×m. The components {yi}mi=1 of y will be called mea-
surements. For example, the measurements could be random variables associated with sounds recorded
by separate microphones at the cocktail party mentioned above. Under the assumption that the mixing
matrix is invertible, the goal is to determine a matrix W ∈ Rm×m such that the components {xi}mi=1 of
the random vector

x = Wy (2.2)

estimate the sources in the following sense. First, normalizing z = A−1y according toC(z)−
1
2 z removes

the ambiguity of unknown variances by setting the covariance matrix to the identity. Secondly, since the
order and sign of components inC(z)−

1
2 z is unknown, the alternative PC(z)−

1
2 z also satisfies the source

assumptions when P ∈ Rm×m is any matrix satisfying (Pqi,j)
2 = δi,j with {qi}mi=1 begin a permutation

of {i}mi=1. Thus, W estimates a product PC(z)−
1
2A−1, and the covariance matrix of x in (2.2) is the

identity.
Suppose that each random measurement variable yi is sampled directly to obtain n samples {yij}nj=1.

Implicitly underlying these are samples {zij}nj=1 of each random source variable zi. Define the sample
vectors yi = {yij}nj=1, zi = {zij}nj=1, i = 1, . . . ,m. According to the linear model in (2.1), the
matrices Y = {y1, . . . ,ym}T ∈ Rm×n and Z = {z1, . . . ,zm}T ∈ Rm×n are related by

Y = AZ (2.3)

By (2.2) the estimation X = {x1, . . . ,xm}T ∈ Rm×n of the sources satisfies

X = WY (2.4)

The matrix W is determined stepwise in terms of its singular value decomposition

W = UΛ−
1
2V T (2.5)

where U, V ∈ Rm×m are orthogonal and Λ ∈ Rm×m is positive definite and diagonal. Specifically, after
the data are centered

Yc = Y − Ȳ (2.6)

with

Ȳ = {ȳ1, . . . , ȳm}T, ȳi =
1

n

n∑
j=1

yij (2.7)

the product V TYc should rotate the data so that the new coordinate axes are aligned with the visually
natural axes of the cluster of data points {Y êj}nj=1, êj ∈ Rn, (êj)i = δi,j . After this rotation, the
product

Ys = Λ−
1
2V TYc (2.8)

should scale the data so that the variance along each new coordinate axis is unity. For this reason, the
data Ys are said to be sphered. The final orthogonal matrix U in (2.5) is chosen so that the components
of the random variable x in (2.2) are maximally independent in a sense made precise below.
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To determine the transformations V and Λ, the covariance matrix of the sphered data is required to
be the identity,

I = 1
nYsY

T
s = Λ−

1
2V T[ 1nYcY

T
c ]V Λ−

1
2 (2.9)

which is accomplished by determining the matrices V and Λ from the eigenspace decomposition of the
centered data,

1
nYcY

T
c = V ΛV T, V TV = I. (2.10)

The columns of V are the so-called principal components of the data Y . Analyzing this decom-
position is the subject of principal component analysis (PCA). For instance, the sampled data may be
filtered by projecting these data onto subspaces spanned by principal components. For this, assume that
the entries of Λ = diag{λi}mi=1 and V = {v1, . . . ,vm} are ordered according to λ1 ≥ λ2 ≥ · · · ≥ λm.
This means that the variance λi = 1

n‖Y
T
c vi‖2`2 of the data Yc along the axis vi is larger than the variance

λj along the axis vj for i < j. To select only the r < m components with respect to which the data
have the most variation, define the projected data YP ≈ Y by

YP = Y + V Λ
1
2PTPΛ−

1
2V T(Y − Y ) (2.11)

where the projector P ∈ Rr×m is defined with entries Pi,j = δi,j . Note that with (2.6), (2.8) and (2.10),
this result can be rewritten as YP = Y + 1

nYc(PYs)
T(PYs).

Next, the transformation U in (2.1) is determined so that the components of the random variable x in
(2.2) are independent. While the rows of the sphered data Ys are statistically uncorrelated, they are not
necessarily statistically independent [10]. A criterion is now sought for a final rotation of axes which
gives the desired independence. Since as seen in (2.1) measurements are sums of independent random
variables, the Central Limit Theorem suggests why the measurements tend to be normally distributed [1].
The matrix U is often chosen to reverse this effect, i.e., to make the components of x depart from being
normally distributed as much as possible. Here, the significance of the assumption that no component
zi be normally distributed can be seen, as otherwise the proposed measure of independence would not
bring a separation of sources in the following. For the required statistical constructions, let E[x] denote
the expectation of a random variable x. Since a normally distributed random variable n with mean 0 and
variance σ2 has moments

E[|n|m] = κmσ
m, κm =

{
(m− 1)!!, m even√

2
π (m− 1)!!, m odd

(2.12)

it follows that the Kurtosis K = K4,

Km(x) = E[|x− E[x]|m]− κmE[|x− E[x]|2]m/2 (2.13)

of n satisfies K(n) = E[|n|4] − 3E[|n|2]2 = 0. Hence, a parameter dependent random variable may
be made to depart maximally from being normally distributed by maximizing the square of its Kurtosis
with respect to parameters. Applying this criterion to the rows of

Xc = UYs (2.14)

the rows of U = {uT
i }mi=1 are determined as follows. Define

Ul = {u1, . . . ,ul}T, Ul ∈ Rl×m, l = 1, . . . ,m, U0 = {} (2.15)

and the projected data

Yl = (I − UT
l−1Ul−1)Ys, l = 2, . . . ,m, Y1 = Ys (2.16)

whose columns lie in Tl ⊂ Rm defined as the range of Yl. Note that

uT
l Yl = uT

l Ys − uT
l U

T
l−1Ul−1Ys = uT

l Ys, u ∈ Tl. (2.17)
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Given Tl, let the l-th column of UT be determined inductively by

ul =
ul
‖ul‖`2

, ul = argmax
u∈Tl

F

(
uTYl
‖u‖`2

)
, F (x) = K2(x). (2.18)

By (2.9) and (2.17) the second moment of uTYl/‖u‖`2 is

uT[YlY
T
l /n]u/‖u‖2`2 = uT[YsY

T
s /n]u/‖u‖2`2 = uTu/‖u‖2`2 = 1, u ∈ Tl. (2.19)

Thus, F in (2.18) is computed according to

F (x) =

[
1

n
‖x‖4`4 − 3

]2
for

1

n
‖x‖2`2 = 1. (2.20)

In this way the rows of U are determined sequentially so that the earlier components of x depart from
being normally distributed more than later components. Alternatively, all components of x may be
estimated with roughly equal quality by determining all rows of U simultaneously through maximizing∑m

l=1 F (uT
l Ys) under the conditions uT

i uj = δi,j , 1 ≤ i, j ≤ m. Once matrices U , Λ and V are
determined, the source samples are estimated according to (2.4) and (2.5).

The columns of V Λ
1
2UT are the so-called independent components of the data Y . Analyzing this

decomposition is the subject of independent component analysis (ICA). For instance, the sampled data
may be filtered by projecting these data onto subspaces spanned by independent components. Specif-
ically, to select the r < m desired independent components {q1, . . . , qr} ⊂ {1, . . . ,m}, define the
projected data YQ ≈ Y by

YQ = Y + V Λ
1
2UTQTQUΛ−

1
2V T(Y − Y ) (2.21)

where the projector Q ∈ Rr×m is defined with entries Qij = δqi,j . Note that with (2.6), (2.8), (2.10)
and (2.14), this result can be rewritten as YQ = Y + 1

nYc(QXc)
T(QXc).

In the calculations above it is implicitly assumed that the number of samples n is at least as large as
the number of sources m. Otherwise, the rank n of the covariance matrix 1

nYsY
T
s would be less than

its dimension m, and the diagonal matrix Λ in (2.10) would not be positive definite. In case n < m
does in fact hold, because so few samples have been collected, one might be inclined simply to replace
Y with Y T and thereby reverse the roles of time and space in the data. However, the data must possess
an ergodicity property for the results with transposed data to be roughly equivalent to those without
transposed data. Since such a property may not generally hold, the matrices above are determined
here as follows; see also [5]. With Y and Yc given by (2.6), define the singular value decomposition
Yc/
√
n = V Σ̂Ŷs/

√
n in terms of rotation matrices V ∈ Rm×m and Ŷs/

√
n ∈ Rn×n and a rectangular

matrix Σ̂ ∈ Rm×n for which Λ̂ = Σ̂TΣ̂ ∈ Rn×n is diagonal and positive definite. The matrices Λ̂ and
Ŷs are determined from the eigenspace decomposition Y T

c Yc = Ŷ T
s Λ̂Ŷs, ŶsŶ T

s = nI . Since the last
m − n rows of Σ̂ are zero, the last m − n columns Ṽ ∈ Rm×(m−n) of V = [V̂ , Ṽ ] may be neglected
to obtain Yc = V̂ Λ̂

1
2 Ŷs. The matrix V̂ ∈ Rm×n is determined from V̂ = YcŶ

T
s Λ̂−

1
2 /n. The sphered

data Ŷs are transformed by the rotation matrix Û ∈ Rn×n maximizing independence of the rows of
X̂c = Û Ŷs ∈ Rn×n. Note that with Λ = Σ̂Σ̂T it also follows that YcY T

c = V Σ̂[ŶsŶ
T
s ]Σ̂TV T =

nV ΛV T holds, giving (2.10). Let Ŷs be padded with m − n zero rows to obtain Ys = [Ŷs; 0] ∈ Rm×n.
With Σ = Λ

1
2 it follows from the singular value decomposition of Yc that Yc = V ΣYs holds, and

hence the counterpart Ys = (Λ†)
1
2V TYc to (2.8) holds, where Λ† denotes the pseudo-inverse of Λ. The

rotation matrix U = [[Û , 0]; [0, Ũ ]] ∈ Rm×m can be defined by supplementing Û with the rotation
matrix Ũ ∈ R(m−n)×(m−n) and otherwise padding with zeros, and Xc = UYs ∈ Rm×n can be defined
to give (2.14). However, according to Xc = UYs = [[Û , 0]; [0, Ũ ]][Ŷs; 0] = [X̂c; 0], the last m− n rows
of Xc are zero, contrary to the objective that the rows be independent. Thus, X̂c marks the end of the
calculation and X̂ = Û Λ̂−

1
2 V̂ TY gives the maximum number of independent components which can be

determined from the undersampled data. Finally, for projectors P,Q ∈ Rn×n, (2.11) and (2.21) become
YP = Y + 1

nYc(PŶs)
T(PŶs) and YQ = Y + 1

nYc(QX̂s)
T(QX̂s), respectively.
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3 `1 Approach to Centering

That `1 measures lead to statistically robust results may be highlighted by the following simple
example. Suppose samples Y = {yj}nj=1 = {0, 1, . . . , 1} ∈ Rn have been collected, where the first
measurement is clearly an outlier. The `2 mean of these data is given by

argmin
µ∈R

n∑
j=1

|yj − µ|2 = mean(y) = (n− 1)/n (3.1)

which is clearly influenced by the outlier. On the other hand, the `1 mean is given by

argmin
µ∈R

n∑
j=1

|yj − µ| = median(y) = 1 (3.2)

which is insensitive to the outlier.
For a generalization of this robust scalar mean to its counterpart for vectors, let the data Y =

{y1, . . . ,ym}T ∈ Rm×n, yi = {yij}nj=1, with columns Y êj , êj ∈ Rn, (êj)i = δi,j , be given as in
Section 2. Note that if the `1 mean were defined according to

argmin
µ∈Rm

n∑
j=1

‖Y êj − µ‖`1 =

{
argmin
µi∈R

n∑
j=1

|yij − µi|
}m
i=1

=
{

median{yij}nj=1

}m
i=1

(3.3)

then the solution would be unnaturally determined componentwise through decoupled minimizations.
By contrast, the following `1 mean for vectors [8], i.e., the geometric median [13],

Y = argmin
µ∈Rm

M(µ), M(µ) =

n∑
j=1

‖Y êj − µ‖`2 (3.4)

minimizes, in a natural way, the `1 norm of Euclidean distances between the data points and the selected
mean. The robustness of this measure in relation to the mean or median can be highlighted by the
following simple example, which is illustrated in Fig. 1a. Here the data are given by

(a) data, mean, median and geometric median (b) merit function M(µ1, µ2)

Figure 1: The mean, median and geometric median are compared in (a), where the data of (3.5) are shown with ·,
the mean with ×, the median with + and the geometric median with �. Shown in (b) is the landscape of the merit
function M in (3.4).

Y =

[
0 1

2 1 0
0 1

2 1 1

]
(3.5)

marked with · in Fig. 1a, and the point (0, 1) may be regarded as an outlier from points otherwise lying
on the line between (0, 0) and (1, 1). The componentwise mean of the data gives (0.375, 0.625) marked
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with × in Fig. 1a. Then the componentwise median gives (0.25, 0.75) as marked with + in Fig. 1a.
Finally, the measure defined in (3.4) gives the geometric median Y = (0.4996, 0.5004) marked with �
in Fig. 1a, where the smooth landscape for the merit function M is shown in Fig. 1b. Because of the
natural result obtained by the geometric median in Fig. 1a, (3.4) will be used here for the `1 vector mean.

To compute the `1 mean of (3.4) the following primal-dual iteration is used. For τ > 0 compute
iteratively Dl ∈ Rm×n and µl ∈ Rm by

Dl+1êj =
Dlêj + τ(µl − Y êj)
1 + τ‖µl − Y êj‖`2

, j = 1, . . . , n (3.6)

µl+1 =

n∑
j=1

(Dl − τY )êj
1 + τ‖µl − Y êj‖`2

/ n∑
j=1

−τ
1 + τ‖µl − Y êj‖`2

. (3.7)

The motivation for this iteration and its convergence analysis are given in Section 6. The `1-mean is
given by taking the limit,

Y = lim
l→∞

µl. (3.8)

After these calculations have been completed, the centered data are given be Yc = Y −Y , the counterpart
to (2.6) with (3.4) replacing (2.7).

4 `1 Approach to PCA

To present our approach we start with some preliminaries. Unless otherwise specified, it is as-
sumed that m ≤ n. With V and Λ in (2.10) given in terms of components as V = {v̂i}mi=1 and
Λ = diag{λi}mi=1, respectively, define

Vk = {v̂1, . . . , v̂k} ∈ Rm×k (4.1)

and the projected data

Yk = (I − Vk−1V T
k−1)Yc, k = 2, . . . ,m, Y1 = Yc. (4.2)

Let Sk = R(Yk) where R denotes the range. For convenience, it is assumed here that the data Yc
have maximal rank so that S1 = Rm. Then 0 = vT(I − Vk−1V

T
k−1)Yc = vTYk is equivalent to

v = Vk−1V
T
k−1v, which is equivalent to v = 0 exactly when V T

k−1v = 0. Hence,

Sk = R(Vk−1)
⊥, k = 2, . . . ,m, S1 = Rm. (4.3)

Before presenting the proposed robust measure for determining visually natural data axes, a motiva-
tion is given by reformulating the `2 eigenspace decomposition in (2.10) in terms of a least squares fit
of an axis system to the cloud of data points. Given Sk, let the k-th column of V and the k-th diagonal
entry of Λ be determined inductively by the regression

v̂k =
vk
‖vk‖`2

, vk = argmin
v∈Sk

H̃k(v), λk = ‖v̂Tk Yk/
√
n‖2`2 , k = 1, . . . ,m (4.4)

where

H̃k(v) =
n∑
j=1

∥∥∥∥ ( vvT

‖v‖2`2
− I

)
Ykêj

∥∥∥∥2
`2

, v 6= 0, H̃k(0) = ‖Yk‖2F. (4.5)

Since minimizing

H̃k(v̂) =
n∑
j=1

êTj Y
T
k (v̂v̂T − I)T(v̂v̂T − I)Ykêj =

n∑
j=1

êTj Y
T
k (I − v̂v̂T)Ykêj

=

n∑
j=1

[
|Ykêj |2 − |êTj Y T

k v̂|2
]

= ‖Yk‖2F − ‖Y T
k v̂‖2`2

(4.6)
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over v̂ ∈ Sk with ‖v̂‖`2 = 1 is equivalent to maximizing the Rayleigh quotient vTYkY T
k v/v

Tv =
‖Y T

k v‖2`2/‖v‖
2
`2

over the same set, v̂k in (4.4) is the eigenvector of 1
nYcY

T
c with the k-th largest eigen-

value λk = ‖v̂Tk Yc/
√
n‖2`2 = ‖v̂Tk Yk/

√
n‖2`2 as shown in (4.4).

We now aim for an appropriate `1-variant of (4.4) - (4.5). The proposed approach to determine
the orthogonal matrix V and the diagonal matrix Λ in (2.5) is to replace the sum of squared norms in
(4.5) with a sum of norms in (4.8) below. The approach is remniscent of (3.4) in the sense that while a
geometric median point is selected by (3.4), a geometric median line is determined by (4.7). As for (4.5),
let Vk be given by (4.1) and Yk by (4.2). Then given Sk according to (4.3), let vk and λk be determined
inductively by

v̂k =
vk
‖vk‖`2

, vk = argmin
v∈Sk

Hk(v), λk = ‖v̂Tk Yk/
√
n‖`1 , k = 1, . . . ,m (4.7)

where

Hk(v) =

n∑
j=1

∥∥∥∥ ( vvT

‖v‖2`2
− I

)
Ykêj

∥∥∥∥
`2

, v 6= 0, Hk(0) =

n∑
j=1

‖Ykêj‖`2 . (4.8)

The robustness of the `1 measure in Hk in relation to the `2 measure in H̃k is highlighted by the
following simple example, which is illustrated in Fig. 2. Here the data are given by

(a) data and `1 and `2 data axes (b) landscape of the merit function H1(θ)

Figure 2: The `1 (solid) and `2 (dotted) data axes are compared in (a), where the data of (4.9) are shown with
·. Shown in (b) is the landscape of the merit function H1(θ) = H1(v̂(θ)) in (4.8) with v̂(θ) = (cos(θ), sin(θ),
which is minimized at �.

Y =

[
0 1

2 1 0 1
0 1

2 1 1
2

1
2

]
(4.9)

marked with · in Fig. 2a. The points (0, 12), (1, 12) may be regarded as outliers from points otherwise
lying on the line between (0, 0) and (1, 1). The `2 data axes are given by (4.4) and are shown in Fig. 2a
as dotted line segments. The `1 data axes are given by (4.7) and are shown in Fig. 2a as solid line
segments. The landscape for the merit function H1(θ) = H1(v̂(θ)) of (4.8) with v̂(θ) = (cos(θ), sin(θ)
is shown in Fig. 2b, and the minimum is marked with �; see Remark 2 concerning the regularity of the
merit function.

The data axes defined by (4.7) are computed by the following scheme. For τ > 0 and ρ > 0 compute
iteratively Dlêj ∈ Sk, j = 1, . . . , n, and v̂l ∈ Sk with ‖D0êj‖`2 ≤ 1, j = 1, . . . , n, and ‖v̂0‖`2 = 1,

Dl+1êj =
(v̂lv̂

T
l − I)(τYkêj −Dlêj)

1 + τ‖(v̂lv̂T
l − I)Ykêj‖`2

, j = 1, . . . , n (4.10)

v̂l+1 =
vl+1

‖vl+1‖`2
with vl+1 = v̂l − ρ

n∑
j=1

(v̂T
l Ykêj)(τYkêj −Dlêj)

1 + τ‖(v̂lv̂T
l − I)Ykêj‖`2

. (4.11)
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The motivation for this iteration and its convergence analysis are given in Section 7. Then the k-th
components of V and Λ are given respectively by taking the limit,

vk = lim
l→∞

v̂l (4.12)

and setting
λk = Rk(vk). (4.13)

After these calculations have been completed for k = 1, . . . ,m, the `1 sphered data are given by Ys =

Λ−
1
2V TYc, the counterpart to (2.8).
Since the minimization problems (4.7) are performed over progressively smaller subspaces Sk, it

follows that λ1 ≥ λ2 ≥ · · · ≥ λm. Thus, as in Section 2, the `1-variation λi of the data Yc along
the axis vi is larger than the `1-variation λj along the axis vj for i < j. To select only the r < m
components with respect to which the data have the most `1-variation, define the projected data YP ≈ Y
by the counterpart to (2.11) where the matrices Y , V and Λ are now determined by `1 measures while
the projector P ∈ Rr×m is defined as before with entries Pi,j = δi,j .

In case the data are undersampled and n < m, the steps outlined in this section must be modified
as follows. Let Y and Yc be determined as described following (3.4). Then V̂ ∈ Rm×n is determined
by solving (4.7) but for k = 1, . . . , n where S1 is the range of Yc. With λk = Rk(vk), set Λ̂ =

diag{λk}nk=1. The sphered data are then given by Ŷs = Λ̂−
1
2 V̂ TYc ∈ Rn×n. Finally, for a projector

P ∈ Rn×n, (2.11) becomes YP = Y + V̂ Λ̂
1
2PTP Λ̂−

1
2 V̂ T(Y − Y ).

5 `1 Approach to ICA

While the Kurtosis has been used as a measure of Gaussianity in (2.18) to determine independent
components, an alternative measure of independence is proposed here which is more robust in the pres-
ence of outliers. This approach targets independence directly in a manner which can be illustrated in
terms of the example shown below in Fig. 3. Here the data are given by

(a) data and data axes by `1, K1, K4 and Ke (b) landscape of merit function ‖U(θ)Y ‖`1

Figure 3: The `1 (solid) and K2, K4 and Ke (dotted, i.e., identical) data axes where obtained by maximizing the
measures in (5.5). The results are compared in (a), where the data of (5.10) are shown with ·. Shown in (b) is the
landscape of the merit function ‖U(θ)Y ‖`1 which is maximized at �.

Y =

[
−1 . . . σ( i

m)| im |
k . . . 1 0 . . . . . . 0

0 . . . . . . 0 −1 . . . σ( i
m)| im |

k . . . 1

]
,

m = 20, k = 2
i = −m, . . . ,m

(5.1)
where σ(t) = sign(t). Let these data represent a realization of a random vector y ∈ R2 satisfying

P(y = Y êi) = P(y = Y êj) =
1

2m
, (êi)j = δij (5.2)
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where P denotes the probability. In order that the rotation dependent random vector

x(θ) = {xi(θ)}2i=1, x(θ) = U(θ)y, U(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(5.3)

satisfy the independence condition,

P(x1(θ) = α and x2(θ) = β) = P(x1(θ) = α) · P(x2(θ) = β), ∀α, β ∈ R (5.4)

a rotation angle θ = π/4 + kπ/2, k ∈ Z, must be chosen. For the determination of the proper rotation,
four different measures of independence are compared in Fig. 3,

‖U(θ)Y ‖`1 , K2
1 (U(θ)Y ), K2

4 (U(θ)Y ), and K2
e (U(θ)Y ), (5.5)

where Km is given by (2.13) and (see [10])

Ke(x) = E[exp(−|x− E[x]|2)/2]− 1/
√

1 + E[|x− E[x]|2] (5.6)

The data axes obtained by maximizing the last three measures in (5.5) are identical and are shown in
Fig. 7a as dotted line segments. The data axes obtained by maximizing the first measure in (5.5) are
shown in Fig. 7a as solid line segments. The landscape for the merit function ‖U(θ)Y ‖`1 of (5.5) is
shown in Fig. 7b and the maximum is marked with �. Only the first measure in (5.5) is maximized at a
desired angle as shown in the landscape of Fig. 7b. All other measures are maximized at a multiple of
π. On the basis of this example, the measure shown below in (5.8) is proposed to determine the rotation
matrix U of (2.14).

To achieve maximally independent rows of Xc = UYs, the rows of the orthogonal matrix U =
{ûT

i }mi=1 are determined as follows. Define Ul = {û1, . . . , ûl}T as in (2.15) and the projected data
Yl = (I − UT

l−1Ul−1)Ys, l = 2, . . . ,m, Y1 = Ys, as in (2.16). Let Tl = R(Yl) where R denotes the
range. For convenience, it is assumed here that the data Ys have maximal rank so that T1 = Rm. Then
0 = uT(I − UT

l−1Ul−1)Ys = uTYl is equivalent to u = UT
l−1Ul−1u, which is equivalent to u = 0

exactly when Ul−1u = 0. Hence,

Tl = R(UT
l−1)

⊥, l = 2, . . . ,m, T1 = Rm. (5.7)

Given Tl, let the l-th column of UT be determined inductively by

ûl =
ul
‖ul‖`2

, ul = argmax
u∈Tl

Gl(u) (5.8)

where

Gl(u) =
‖uTYl‖`1
‖u‖`2

, u 6= 0, Gl(0) = 0. (5.9)

In this way the rows of U are determined sequentially so that the earlier components of x are more
strongly separated from other later components. Alternatively, all components of x may be estimated
with roughly equal quality by determining all rows of U simultaneously through maximizing a sum of
functionals of the form (5.9) for each row under the constraint that U be orthogonal. Once matrices U ,
Λ and V are determined, the source samples are estimated according to (2.4) and (2.5).

The robustness of the measure Gl in (5.9) in relation to the measure F in (2.20) is highlighted by the
following simple example, which is illustrated in Fig. 4. Here the data Y are given by

Yx =

[
+1 +1 +1 +1 +1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0 0 0

]

Yy =

[
0 1
1 0

]
Yx, Yo =

[
3 −3
0 0

]
, Y =

[
Yx Yy Yo

] (5.10)
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(a) data and data axes by `1 and K1 (b) landscape of merit function ‖U(θ)Y ‖`1

Figure 4: The `1 (solid) and `2 (dotted) data axes are compared in (a), where the data of (5.10) are shown with ·.
Shown in (b) is the landscape of the merit function G1 in (5.9).

marked with · in Fig. 4a, and the points (±3, 0) may be regarded as outliers from points otherwise
lying at the diamond vertices {(0,±1), (±1, 0)}. The `2 data axes are given by (2.18) and are shown in
Fig. 4a as dotted line segments. The `1 data axes are given by (5.8) and are shown in Fig. 4a as solid line
segments, where the landscape for the merit function G1 of (5.9) is shown in Fig. 4b and the maximum
is marked with �.

The vectors defined by (5.8) are computed by the following scheme. For τ > 0 compute iteratively
ûk ∈ Tl with ‖û0‖`2 = 1,

ûk+1 =
uk+1

‖uk+1‖`2
with uk+1 = ûk + τ

[
Yl σ(Y T

l ûk)− ûk‖ûT
k Yl‖`1

]
(5.11)

where

σ(t) = sign(t) for t ∈ R, σ(v) = {σ(vj)}nj=1 for v = {vj}nj=1 ∈ Rn. (5.12)

The motivation for this iteration and its convergence analysis are given in Section 8. The l-th column of
UT is given by taking the limit,

ûl = lim
k→∞

ûk (5.13)

After these calculations have been completed for l = 1, . . . ,m, the `1 maximally independent data are
given by Xc = UYs, the counterpart to (2.14).

To select the r < m desired independent components {q1, . . . , qr} ⊂ {1, . . . ,m}, define the pro-
jected data YQ ≈ Y by the counterpart to (2.21) where the matrices Y , V , Λ and U are now determined
by `1 measures while the projector Q ∈ Rr×m is defined as before with entries Qij = δqi,j .

In case the data are undersampled and n < m, let V̂ ∈ Rm×n, Ŷs, Λ̂ ∈ Rn×n be given as described
at the end of Section 3. Then, the sphered data Ŷs are transformed by the rotation matrix Û ∈ Rn×n

maximizing independence of the rows of X̂c = Û Ŷs ∈ Rn×n. Thus, X̂ = Û Λ̂−
1
2 V̂ TY gives the

maximum number of independent components which can be determined from the undersampled data.
Finally, for a projector Q ∈ Rn×n, (2.21) becomes YQ = Y + V̂ Λ̂

1
2 ÛTQTQÛ Λ̂−

1
2 V̂ T(Y − Y ).

6 Convergence of the Iterative Scheme for the `1 Mean

The analysis of the scheme (3.6) – (3.7) begins by establishing basic properties for the minimization
problem (3.4), i.e., the determination of the geometric median. As indicated in Section 1, a proof of
uniqueness of the geometric median is provided here which is shorter than that found in [15] or [13] and
is based on strict convexity of the functional M . Also, a possibly novel characterization of a solution is
provided in case the columns of Y are colinear, which means that Y can be expressed in the form

Y = aeT + byT,where e = (1, . . . , 1)T, a, b ∈ Rm, e,y ∈ Rn. (6.1)
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Lemma 1 If the columns of Y ∈ Rm×n are not colinear, then M is strictly convex.

Proof: The mapping M is the sum of convex mappings and hence convex itself. If M is not strictly
convex then there are vectors µ1,µ2 ∈ Rm and µ = αµ1 + (1− α)µ2, with α ∈ (0, 1) such that

M(µ) = αM(µ1) + (1− α)M(µ2).

We claim that in this case the convex function α → M(αµ1 + (1 − α)µ2), α ∈ [0, 1] is the affine
mapping h(α) = αM(µ1) + (1 − α)M(µ2). If this is not the case, then, using convexity, there exists
α̃ ∈ (0, 1) such that for µ̃ = α̃µ1 + (1 − α̃)µ2 we have M(µ̃) < h(α̃). Assume at first that α̃ < α.
Then µ = βµ̃ + (1 − β)µ2 for some β ∈ (0, 1) and we have M(µ) ≤ βM(µ̃) + (1 − β)M(µ2) <
βh(α̃) + (1−β)M(µ2) = M(µ) which is a contradiction. The case α̃ > α can be treated analogously,
and thus α→M(αµ1 + (1− α)µ2), α ∈ (0, 1), is affine.

Let α̂ ∈ (0, 1) be such that µ̂ = α̂µ1 + (1− α̂)µ2 does not coincide with any of the columns Y êi.
Then we find the Hessian

∇2M(µ̂) =

n∑
i=1

1

‖µ̂− Y êi‖3`2

(
‖µ̂− Y êi)‖2`2I − (µ̂− Y êi)(µ̂− Y êi)T

)
, (6.2)

and hence for any x ∈ Rm

xT∇2M(µ̂)x =
n∑
i=1

1

‖µ̂− Y êi‖3`2

(
‖µ̂− Y êi)‖2`2 ‖x‖

2
`2 − (µ̂− Y êi)Tx)2

)
. (6.3)

Note that |(µ̂−Y êi)Tx| ≤ ‖µ̂−Y êi‖`2 ‖x‖`2 . If |(µ̂−Y êi)Tx| = ‖µ̂−Y êi‖ ‖x‖ for all i = 1, . . . , n,
then there exist bi ∈ R such that µ̂ − Y êi = bix, for i = 1, . . . , n. Thus there exists b ∈ Rn
such that Y = µeT − bxT which contradicts the assumption. Hence there exists at least one index
i such that |(µ̂ − Y êi)Tx| < ‖µ̂ − Y êi‖`2 ‖x‖`2 and thus xT∇2M(µ̂)x > 0. This contradicts that
α→M(αµ1 + (1− α)µ2) is affine at α̂.

Lemma 2 If the columns of Y ∈ Rm×n are colinear, then M is minimized (not necessarily uniquely)
by µ? = a + b · median (y). If the columns of Y are not colinear, there exists a unique µ? ∈ Rm
minimizing M .

Proof: Existence of a solution µ∗ ∈ Rm follows by standard subsequential limit arguments. If the
columns of Y are not colinear, uniqueness of the solution µ? follows from strict convexity of µ →
M(µ).

Suppose next that the columns of Y are colinear so that Y = aeT + byT. Set ν = ‖b‖`2 and
w = b+ νê1 where (ê1)i = δi1. Then the Householder transformation

U = I − 2
wwT

‖w‖2`2
(6.4)

is orthogonal and satisfies
Ub = −νê1 (6.5)

as well as ‖Ux‖`2 = ‖x‖`2 , ∀x ∈ Rm. Let an arbitrary µ ∈ Rm be represented as

µ = a+ xb+ b̃, x = (µ− a)Tb/‖b‖`2 , bTb̃ = 0 (6.6)

and note that
(Ub)T(U b̃) = bTUTU b̃ = bTb̃ = 0. (6.7)
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With (6.5) – (6.7), the merit function can be written as

M(µ) =
n∑
j=1

‖µ− a− byj‖`2 =

n∑
j=1

‖U(µ− a− byj)‖`2 =

n∑
j=1

‖U(b̃+ (x− yj)b)‖`2

=
n∑
j=1

[
‖U b̃‖2`2 + 2(x− yj)(Ub)T(U b̃) + |x− yj |2ν2

] 1
2

=
n∑
j=1

[
‖U b̃‖2`2 + |x− yj |2ν2

] 1
2

(6.8)

It follows that for γ = median(y),

M(µ) ≥ ν
n∑
j=1

|x− yj | ≥ ν
n∑
j=1

|γ − yj | = M(a+ γb) (6.9)

and hence M is minimized at a + γb. That the minimizer is not necessarily unique can be seen from
the case that n is even and the components of y are distinct. Then let the components of y be sorted in
ascending order, set p = n/2 and x = typ + (1 − t)yp+1 for t ∈ [0, 1], where γ = (yp + yp+1)/2. It
follows from

n∑
j=1

|x− yj | =

p∑
j=1

([typ + (1− t)yp+1]− yj) +

n∑
j=p+1

(yj − [typ + (1− t)yp+1])

= −
p∑
j=1

yj +
n∑

j=p+1

yj

(6.10)

that M has the same value M(a+ γb) at all points a+ b[typ + (1− t)yp+1], t ∈ [0, 1].

Lemma 3 The first-order necessary optimality condition for a minimizer µ? ofM over Rm is that there
be D? ∈ Rm×n satisfying,

µ? − Y êj = ‖µ? − Y êj‖`2D?êj , ‖D?êj‖`2 ≤ 1, j = 1, . . . , n,
n∑
j=1

D?êj = 0. (6.11)

Proof: The necessary optimality condition for a minimizer µ? is that 0 ∈ ∂M(µ?). By the chain-rule
(see, e.g., [2], p. 233), the subdifferential of M is given by the sum of the respective subdifferentials,

∂M(µ) =

n∑
j=1

∂‖µ− Y êj‖`2 . (6.12)

Thus, there exist d?j ∈ ∂‖µ? − Y êj‖`2 , j = 1, . . . , n, satisfying

n∑
j=1

d?j = 0, (6.13)

and

∂‖µ− Y êj‖`2 =


µ− Y êj
‖µ− Y êj‖`2

, µ 6= Y êj

B(0, 1), µ = Y êj ,
(6.14)

where B(0, 1) is the unit ball. Combining these facts we have

(µ? − Y êj) = ‖µ? − Y êj‖`2d?j , j = 1, . . . , n (6.15)
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The claim (6.11) follows with D? = {d?1, . . . ,d?n}.

Turning to the iteration (3.6) – (3.7) we observe that if convergence to a fixed point {D?,µ?} can be
guaranteed, then from (3.6) we have that

D?êj‖µ? − Yj‖`2 = µ? − Y êj , j = 1, . . . , n. (6.16)

From (3.7) we have
n∑
j=1

D?êj + τ(µ? − Y êj)
1 + τ‖µ? − Y êj‖`2

= 0. (6.17)

Combining (6.16) and (6.17) gives

0 =

n∑
j=1

D?êj + τD?êj‖µ? − Y êj‖`2
1 + τ‖µ? − Yj‖`2

=

n∑
j=1

D?êj . (6.18)

Moreover, if ‖D0êj‖`2 ≤ 1, j = 1, . . . , n, then the iterates {Dl} also satisfy this bound, and hence
‖D?êj‖`2 ≤ 1, j = 1, . . . , n. Thus {D?,µ?} must satisfy the necessary optimality condition (6.11).

Theorem 1 Suppose that the columns of Y ∈ Rm×n are not colinear so that (6.1) does not hold. Let
{D?,µ?} satisfy (6.11) with µ? 6∈ {Y êj}nj=1. Then {D?,µ?} is a fixed point for the iteration (3.6) -
(3.7) which is locally asymptotically stable for τ sufficiently large.

Proof: Using (6.11) and substituting Dl = D? on the right side of (3.6),

Dl+1êj =
D?êj + τ(µ? − Y êj)
1 + τ‖µl − Y êj‖`2

=
D?êj + τ‖µ? − Y êj‖`2D?êj

1 + τ‖µl − Y êj‖`2
= D?êj , 1 ≤ j ≤ n (6.19)

gives Dl+1 = D?. Using this result together with (6.11) and setting µl = µ? on the right side of (3.7),

0 =
n∑
j=1

D?êj + τ(µ? − Y êj) + +τ(µl+1 − µ?)
1 + τ‖µ? − Y êj‖`2

=
n∑
j=1

D?êj +
n∑
j=1

τ(µl+1 − µ?)
1 + τ‖µ? − Y êj‖`2

= (µl+1 − µ?)
n∑
j=1

τ

1 + τ‖µ? − Y êj‖`2

(6.20)

gives µl+1 = µ?. Thus, {D?,µ?} is a fixed point of the iteration (3.6) - (3.7). To establish the stability
of the fixed point, define

F j(d1, . . . ,dn,µ) =
dj + τ(µ− Y êj)
1 + τ‖µ− Y êj‖`2

, j = 1, . . . , n (6.21)

and

G(d1, . . . ,dn,µ) =

n∑
j=1

(dj − τY êj)
1 + τ‖µ− Y êj‖`2

/ n∑
j=1

−τ
1 + τ‖µ− Y êj‖`2

(6.22)

so that (3.6) – (3.7) is given by

Dl+1êj = F j(Dlê1, . . . , Dlên,µl), j = 1, . . . , n, µl+1 = G(Dl+1ê1, . . . , Dl+1ên,µl). (6.23)

The claimed stability will follow once it is shown that the Jacobian of this mapping evaluated at {D?,µ?} =
{d?1, . . . ,d?n,µ?} has spectral radius less than 1 in when τ is sufficiently large. For (6.21),

∂F j

∂d
(d?1, . . . ,d

?
n,µ

?) =
I

1 + τ‖µ? − Y êj‖`2
τ→∞−→ 0 (6.24)
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and
∂F j

∂µ
(d?1, . . . ,d

?
n,µ

?) =
τI

1 + τ‖µ? − Y êj‖
−

d?j + τ(µ? − Y êj)
[1 + τ‖µ? − Y êj‖`2 ]2

τ(µ? − Y êj)T

‖µ? − Y êj‖`2

τ→∞−→ 1

‖µ? − Y êj‖`2

[
I − (µ? − Y êj)
‖µ? − Y êj‖`2

(µ? − Y êj)T

‖µ? − Y êj‖`2

]
=: Aj

(6.25)
For (6.22),

∂G

∂dj
(d?1, . . . ,d

?
n,µ

?) =
n∑
i=1

I

1 + τ‖µ? − Y êi‖`2

/ n∑
j=1

−τ
1 + τ‖µ? − Y êj‖`2

τ→∞−→ 0 (6.26)

and

∂G

∂µ
(d?1, . . . ,d

?
n,µ

?) =

n∑
i=1

(d?i − τY êi)
[1 + τ‖µ? − τY êi‖`2 ]2

τ(µ? − Y êi)T

‖µ? − Y êi‖`2

/ n∑
j=1

τ

1 + τ‖µ? − Y êj‖`2

+

n∑
i=1

(d?i − τY êi)
1 + τ‖µ? − Y êi‖`2︸ ︷︷ ︸

=
∑n
i=1

−τµ?
1+τ‖µ?−Y ei‖`2

 n∑
j=1

−τ
[1 + τ‖µ? − Y êj‖`2 ]2

τ(µ? − Y êj)T

‖µ? − Y êj‖`2

/

[
n∑
k=1

−τ
1 + τ‖µ? − Y êk‖`2

]2

=
n∑
i=1

[d?i + τ(µ? − Y êi)]
[1 + τ‖µ? − Y êi‖`2 ]2

τ(µ? − Y êi)T

‖µ? − Y êi‖`2

/ n∑
j=1

τ

1 + τ‖µ? − Y êj‖`2

τ→∞−→
n∑
i=1

(µ? − Y êi)(µ? − Y êi)T

‖µ? − Y êi‖3`2

/ n∑
j=1

1

‖µ? − Y êj‖`2
=: B

(6.27)
Thus, the Jacobian satisfies

∂(F 1, . . . ,F n,G)

∂(d1, . . . ,dn,µ)
(d?1, . . . ,d

?
n,µ

?)
τ→∞−→


0 · · · 0 A1

...
. . .

...
0 0 An
0 · · · 0 B

 =: J (6.28)

The matrix B ∈ Rm×m is clearly symmetric positive semi-definite, and it will now be shown that its
spectrum lies in [0, 1). Suppose there is an x ∈ Rm satisfying

xT(µ? − Y êi) = ‖x‖`2‖µ? − Y êi‖`2 , i = 1, . . . , n. (6.29)

Then there exists α = {αi}ni=1 such that

µ? − Y êi = αix ⇒ Y = µ?eT − xαT (6.30)

violating the assumption that the columns of Y are not colinear. Thus, there can be no x satisfying
(6.29). This result implies strict inequality in the following estimate:

xTBx =
n∑
i=1

[xT(µ? − Y êi)]2

‖µ? − Y êi‖3`2

/ n∑
j=1

1

‖µ? − Y êj‖`2

<

n∑
i=1

‖x‖2`2‖µ
? − Y êi‖2`2

‖µ? − Y êi‖3`2

/ n∑
j=1

1

‖µ? − Y êj‖`2
= ‖x‖2`2 , ∀x ∈ Rm

(6.31)
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Thus, the spectral radius of B is less than 1. Let a rotation matrix P be chosen so that PTBP = Λ =
diag{λi}mi=1 where λi ∈ [0, 1). Then the matrix J in (6.28) satisfies

I · · · 0
...

. . .
...

0 I 0
0 · · · 0 P


T

J


I · · · 0
...

. . .
...

0 I 0
0 · · · 0 P

 =


0 · · · 0 A1P
...

. . .
...

0 0 AnP
0 · · · 0 Λ

 (6.32)

proving that the spectrum of J lies in [0, 1). Since the Jacobian in (6.28) is arbitrarily well approximated
by J when τ is sufficiently large, the spectral radius of the Jacobian must be less than 1 for τ sufficiently
large.

Remark 1 Computations demonstrate that the iteration (3.6) – (3.7) converges to a minimizer of M for
all τ > 0 and even when the condition µ? 6∈ {Y êj}nj=1 is violated. Furthermore, while the uniqueness
of the minimizer is not guaranteed when the non-colinearity condition is violated, the iteration is found
to converge to the median shown in Lemma 1 when τ is sufficiently small.

7 Convergence of the Iterative Scheme for `1 PCA

The analysis of the scheme (4.10) – (4.11) begins with establishing the existence of a minimizer
for Hk in (4.8). Recall the assumption in Section 4 that S1 = R(Yc) = Rm so that Sk = R(Yk) =
R(Vk−1)

⊥, k = 2, . . . ,m, as seen in (4.3). Also, define

Sk = {v̂ ∈ Sk : ‖v̂‖`2 = 1}. (7.1)

Lemma 4 For Hk in (4.8) there exists a minimizer v̂? over Sk which satisfies v̂? ∈ Sk.

Proof: Because of the properties of projections, it follows that ‖(v̂v̂T − I)Ykêj‖`2 ≤ ‖Ykêj‖`2 holds
∀v̂ ∈ Sk and ∀j. Thus, by (4.8), Hk(v) ≤ Hk(0) holds ∀v ∈ Sk. With (4.8) it follows that Hk is not
minimized in v = 0 if it can be shown that for some v̂ ∈ Sk and some j,

‖(v̂v̂T − I)Ykêj‖`2 < ‖Ykêj‖`2 . (7.2)

If no such j and v̂ were to exist, then the contrapositive of (7.2) and the properties of projections give

‖v̂v̂TYkêj‖2`2 = ‖Ykêj‖2`2 − ‖(v̂v̂
T − I)Ykêj‖2`2 = 0, ∀j ∈ {1, . . . , n}, ∀v̂ ∈ Sk. (7.3)

By (4.2), (4.3) and (7.3), v̂v̂TYk = v̂v̂T(I − Vk−1V T
k−1)Yc = v̂v̂TYc = 0. Multiplying this result by

v̂ 6= 0 gives 0 = (v̂Tv̂)=1v̂
TYc = v̂TYc. Yet v̂TYc = 0 contradicts the consequence of (4.3) that

the kernel of Y T
c or R(Yc)

⊥ is empty. Thus, Hk is not minimized at v = 0. According to (4.8), Hl is
constant along rays outside the origin. Therefore, the minimization can as well be carried out over Sk.
The claim follows since Sk is compact and Hk is continuous on Sk.

Lemma 5 The first-order necessary optimality condition for a minimizer v̂? ∈ Sk of Hk over Sk given
by Lemma 4 is that there exists D? ∈ Rm×n satisfying

(v̂?v̂?T − I)Ykêj = ‖(v̂?v̂?T − I)Ykêj‖`2D?êj , v̂?TD?êj = 0, ‖D?êj‖`2 ≤ 1,
j = 1, . . . , n

n∑
j=1

(v̂?TYkêj)D
?êj = 0.

(7.4)
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Proof: The necessary optimality condition for a minimizer v? is that 0 ∈ ∂Hk(v
?). By the chain-rule

(see, e.g., [2], p. 233), the subdifferential of Hk is given by the sum of the respective subdifferentials,

∂Hk(v) =
n∑
j=1

∂

∥∥∥∥∥
(
vvT

‖v‖2`2
− I

)
Ykêj

∥∥∥∥∥
`2

, v 6= 0. (7.5)

Thus, there exist b?j ∈ ∂v‖(vvT/‖v‖2`2 − I)Ykêj‖`2 |v=v? , j = 1, . . . , n, satisfying

n∑
j=1

b?j = 0, (7.6)

The respective subdifferentials are given according to

∂v

∥∥∥∥∥
(
vvT

‖v‖2`2
− I

)
Ykêj

∥∥∥∥∥
`2

=

[
∂v

(
vvT

‖v‖2`2
Ykêj

)]T
∂w‖w − Ykêj‖`2︸ ︷︷ ︸
w=vvTYkêj/‖v‖2`2

(7.7)

where

∂v

(
vvT

‖v‖2`2
Ykêj

)
=
vTYkêj
‖v‖2`2

I +
vêTj Y

T
k

‖v‖2`2
− 2vvT

‖v‖4`2
vTYkêj (7.8)

and

∂w‖w − Ykêj‖`2 =


w − Ykêj
‖w − Ykêj‖`2

, w 6= Ykêj

B(0, 1), w = Ykêj

(7.9)

with the unit ball B(0, 1). Let c?j be chosen so that

c?j ∈


(v̂?v̂?T − I)Ykêj
‖(v̂?v̂?T − I)Ykêj‖`2

, Ykêj 6= v̂?v̂?TYkêj

B(0, 1), Ykêj = v̂?v̂?TYkêj

(7.10)

and
b?j = [v̂?TYkêjI + v̂?êTj Y

T
k − 2v̂?v̂?Tv̂?TYkêj ]c

?
j . (7.11)

According to (7.10),

‖(v̂?v̂?T − I)Ykêj‖`2c?j = (v̂?v̂?T − I)Ykêj , j = 1, . . . , n. (7.12)

With (7.11) it follows for Ykêj 6= v̂?v̂?TYkêj ,

b?j =
[
v̂?TYkêjI + Ykêj v̂

?T − 2v̂?TYkêj v̂
?v̂?T

] (v̂?v̂?T − I)Ykêj
‖(v̂?v̂?T − I)Ykêj‖`2

= (v̂?TYkêj)
(v̂?v̂?T − I)Ykêj
‖(v̂?v̂?T − I)Ykêj‖`2

= (v̂?TYkêj)(I − v̂?v̂?T)
(v̂?v̂?T − I)Ykêj
‖(v̂?v̂?T − I)Ykêj‖`2

= (v̂?TYkêj)(I − v̂?v̂?T)c?j
(7.13)

and for Ykêj = v̂?v̂?TYkêj ,

b?j = [v̂?TYkêjI + v̂?êTj Y
T
k − 2v̂?v̂?Tv̂?TYkêj ]c

?
j = (v̂?TYkêj)(I − v̂?v̂?T)c?j . (7.14)

Define
d?j = (I − v̂?v̂?T)c?j . (7.15)

Combining (7.6), (7.13), (7.14) and (7.15) gives

0 =

n∑
j=1

b?j =

n∑
j=1

(v̂?TYkêj)d
?
j . (7.16)
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The claim (7.4) follows with D? = {d?1, . . . ,d?n}.

Turning to the iteration (4.10) – (4.11) we observe that if convergence to a fixed point {D?, v̂?} with
‖v̂?‖`2 = 1 can be guaranteed, then from (4.10) we have that v̂?TD?

j êj = 0 and

‖(v̂?v̂?T − I)Ykêj‖`2D?êj = (v̂?v̂?T − I)Ykêj , j = 1, . . . , n. (7.17)

According to (4.11), the fixed point v̂? satisfies

v̂?‖v?‖`2 = v? = v̂? − ρ
n∑
j=1

(v̂?TYkêj)(τYkêj −D?
l êj)

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
(7.18)

where v? is defined by the right side of (7.18). Applying (v̂?v̂?T − I) to both sides of (7.18) gives

0 = (v̂?v̂?T − I)
n∑
j=1

(v̂?TYkêj)(τYkêj −D?
l êj)

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
=

n∑
j=1

(v̂?TYkêj)
D?
l êj + τ(v̂?v̂?T − I)Ykêj

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
.

(7.19)
Combining (7.17) and (7.19) gives

0 =
n∑
j=1

(v̂?TYkêj)
D?êj + τ‖(v̂?v̂?T − I)Ykêj‖`2D?êj

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
=

n∑
j=1

(v̂?TYkêj)D
?êj . (7.20)

Moreover, if ‖D0êj‖`2 ≤ 1, j = 1, . . . , n, then the iterates {Dl} also satisfy this bound, and hence
‖D?êj‖`2 ≤ 1, j = 1, . . . , n. Thus {D?, v̂?} must satisfy the necessary optimality condition (7.4).

Theorem 2 Let {D?, v̂?} satisfy (7.4) with v̂? ∈ Sk and suppose

v̂?TYkêj 6= 0, (v̂?v̂?T − I)Ykêj 6= 0, j = 1, . . . , n. (7.21)

Then {D?, v̂?} is a fixed point of the iteration (4.10) – (4.11) which is locally asymptotically stable for
τ sufficiently large and for ρ sufficiently small.

Proof: Using (7.4) and substituting Dl = D? and v̂l = v̂? on the right side of (4.10),

Dl+1êj =
(v̂?v̂?T − I)(τYkêj −D?êj)

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
=
τ‖(v̂?v̂?T − I)Ykêj‖`2D?êj +D?êj

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
= D?êj (7.22)

gives Dl+1 = D?. Also by (7.4),

0 =

n∑
j=1

(v̂?TYkêj)D
?êj

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
1 + τ‖(v̂?v̂?T − I)Ykêj‖`2

=
n∑
j=1

(v̂?TYkêj)
D?êj + τ(v̂?v̂?T − I)Ykêj
1 + τ‖(v̂?v̂?T − I)Ykêj‖`2

= (v̂?v̂?T − I)
n∑
j=1

(v̂?TYkêj)
τYkêj −D?êj

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2

(7.23)

and hence

v? = v̂? − ρ
n∑
j=1

(v̂?TYlêj)(τYkêj −D?êj)

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
= v̂?

1− ρv̂?T
n∑
j=1

(v̂?TYlêj)(τYkêj −D?êj)

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2


(7.24)
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satisfies v? = v̂?‖v?‖`2 . Thus, settingDl = D? and v̂l = v̂? on the right side of (4.11) gives v̂l+1 = v̂?.
Therefore, {D?, v̂?} is a fixed point of the iteration (4.10) – (4.11).

To establish the stability of the fixed point, define

F j(d1, . . . ,dn,v) =
(vvT − I)(τYkêj − dj)
1 + τ‖(vvT − I)Ykêj‖`2

, j = 1, . . . , n (7.25)

and

G(d1, . . . ,dn,v) =
g(d1, . . . ,dn,v)

‖g(d1, . . . ,dn,v)‖`2

g(d1, . . . ,dn,v) = v − ρ
n∑
j=1

(vTYkêj)(τYkêj − dj)/‖v‖`2
1 + τ‖(vvT − I)Ykêj‖`2

(7.26)

so that (4.10) – (4.11) is given by

Dl+1êj = F j(Dlê1, . . . , Dlên, v̂l), j = 1, . . . , n, v̂l+1 = G(Dl+1ê1, . . . , Dl+1ên, v̂l). (7.27)

The claimed stability will follow once it is shown that the Jacobian of this mapping from the (n+1)-fold
Cartesian product (Sk)

n+1 into (Sk)
n+1 evaluated at {D?, v̂?} = {d?1, . . . ,d?n, v̂?} has only eigenvalues

with magnitude less than 1 when τ is sufficiently large and ρ is sufficiently small. For (7.25),

∂F j

∂di
(d?1, . . . ,d

?
n, v̂

?) =
I − v̂?v̂?T

1 + τ‖(v̂?v̂?T − I)Ykêj‖`2
τ→∞−→ 0 (7.28)

and

∂F j

∂v
(d?1, . . . ,d

?
n,v) =

{
vT(τYkêj − d?j )I + v(τYkêj − d?j )T

1 + τ‖(vvT − I)Ykêj‖`2

− (vvT − I)(τYkêj − dj)
[1 + τ‖(vvT − I)Ykêj‖`2 ]2

[(
vTYkêjI + vêTj Y

T
k

)T τ(vvT − I)Ykêj
‖(vvT − I)Ykêj‖`2

]T}
v=v̂?

τ→∞−→
v̂?TYkêjI + v̂?êTj Y

T
k

‖(v̂?v̂?T − I)Ykêj‖`2
− (v̂?TYkêj)

(v̂?v̂?T − I)Ykêj ê
T
j Y

T
k (v̂?v̂?T − I)

‖(v̂?v̂?T − I)Ykêj‖3`2
:= Aj

(7.29)

For (7.26),
∂g

∂di
(d?1, . . . ,d

?
n, v̂

?) = ρ
(v̂?TYkêi)I/‖v̂?‖`2

1 + τ‖(v̂?v̂?T − I)Ykêi‖`2
τ→∞−→ 0 (7.30)

and with ĝ? = g(d?1, . . . ,d
?
n, v̂

?) = v̂?,

∂G

∂di
(d?1, . . . ,d

?
n, v̂

?) =
1

‖ĝ?‖`2

(
I − ĝ

?ĝ?T

‖ĝ?‖`2

)
∂g

∂di
(d?1, . . . ,d

?
n, v̂

?)

= (I − v̂?v̂?T)
∂g

∂di
(d?1, . . . ,d

?
n, v̂

?)
τ→∞−→ 0.

(7.31)
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Also

∂g

∂v
(d?1, . . . ,d

?
n,v) =

I − ρ
n∑
j=1

(τYkêj − d?j )êTj Y T
k

1 + τ‖(vvT − I)‖`2

(
I − vvT

‖v‖2`2

)
1

‖v‖`2

+ρ

n∑
j=1

(vTYkêj)(τYkêj − dj)/‖v‖`2
[1 + τ‖(vvT − I)Ykêj‖`2 ]2

[(
vTYkêjI + vêTj Y

T
k

)T τ(vvT − I)Ykêj
‖(vvT − I)Ykêj‖`2

]T
v=v̂?

= I − ρ
n∑
j=1

(τYkêj − d?j )êTj Y T
k

1 + τ‖(ˆ̂v?v̂?T − I)Ykêj‖`2

[
1 +

τ(v̂TYkêj)
2

[1 + τ‖(v̂v̂T − I)Ykêj‖`2 ]‖(v̂v̂T − I)Ykêj‖`2

]
×

(I − v̂?v̂?T)

τ→∞−→ I − ρ

 n∑
j=1

(v̂?TYkêj)
2

Ykêj ê
T
j Y

T
k

‖(v̂?v̂?T − I)Ykêj‖3`2

 (I − v̂?v̂?T)

(7.32)
and

∂G

∂v
(d?1, . . . ,d

?
n, v̂

?) =
1

‖g?‖`2

(
I − g

?g?T

‖g?‖`2

)
∂g

∂v
(d?1, . . . ,d

?
n, v̂

?)

= (I − v̂?v̂?T)
∂g

∂v
(d?1, . . . ,d

?
n, v̂

?)

τ→∞−→ (I − v̂?v̂?T)

I − ρ n∑
j=1

(v̂?TYkêj)
2

Ykêj ê
T
j Y

T
k

‖(v̂?v̂?T − I)Ykêj‖3`2

 (I − v̂?v̂?T) =: B

(7.33)

Thus, the Jacobian satisfies

∂(F 1, . . . ,F n,G)

∂(d1, . . . ,dn,µ)
(d?1, . . . ,d

?
n,µ

?)
τ→∞−→


0 · · · 0 A1

...
. . .

...
0 0 An
0 · · · 0 B

 =: J. (7.34)

By the definition Sk = R(Yk) prior to (4.3), it follows from (7.29) thatAj : Sk → Sk, j = 1, . . . , n, and
from (7.33) that B : Sk → Sk. In the same way, it follows from (7.34) that J : (Sk)

n+1 → (Sk)
n+1. It

will be shown thatB : Sk → Sk has spectrum in (−1, 1). LetB be expressed asB = (I− v̂?v̂?T)−ρĈ
where

Ĉ = (I − v̂?v̂?T)C(I − v̂?v̂?T), C =

n∑
j=1

(v̂?TYkêj)
2

Ykêj ê
T
j Y

T
k

‖(v̂?v̂?T − I)Ykêj‖3`2
. (7.35)

Suppose there were a v ∈ Sk for which vTCv = 0. Then by (4.2) and (4.3), vTYk = vT(I −
Vk−1V

T
k−1)Yc = vTYc and with (7.21),

0 =

n∑
j=1

(v̂?TYkêj)
2 |vTYcêj |2

‖(v̂?v̂?T − I)Ykêj‖
≥ ‖vTYc‖2`2

[
min

1≤j≤n

(v̂?TYkêj)
2

‖(v̂?v̂?T − I)Ykêj‖

]
>0

, (7.36)

and vTYc = 0 would contradict the assumption that S1 = R(Yc) = Rm. Thus, there exist 0 < λmin ≤
λmax such that C satisfies

λmin‖x‖2`2 ≤ x
TCx ≤ λmax‖x‖2`2 , ∀x ∈ Sk. (7.37)

Let Sk = Uk ⊕Wk where Wk = span{v̂?}. Clearly, λ = 0 is an eigenvalue of B associated with the
eigenvector v̂? ∈Wk. Eigenvalues for eigenvectors in Uk will now be estimated. Let ρ be small enough
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that −1 < 1− ρλmax < 1− ρλmin < 1. Then for x ∈ Uk it follows with the definition of Ĉ and C that
xTBx = ‖x‖2`2 − ρx

TĈx = ‖x‖2`2 − ρx
TCx and

− ‖x‖2`2 < (1− ρλmax)‖x‖2`2 ≤ ‖x‖
2
`2 − ρx

TCx ≤ (1− ρλmin)‖x‖2`2 < ‖x‖
2
`2 . (7.38)

Thus, the spectrum of B : Sk → Sk lies in (−1, 1). Recalling that the dimension of Sk is m − k + 1,
let P ∈ Rm×(m−k+1) be chosen with orthonormal columns such that PTBP = Λ = diag{λi}m−k+1

i=1

where λi ∈ (−1, 1). Also set Z ∈ Rm×(m−k+1) with all zero entries. Further let I ∈ Rm×m and
0 ∈ Rm×m in (7.39) below denote the identity and the zero matrix respectively. Then the matrix J
satisfies 

I · · · Z
...

. . .
...

0 I Z
0 · · · 0 P


T

J


I · · · Z
...

. . .
...

0 I Z
0 · · · 0 P

 =


0 · · · 0 A1P
...

. . .
...

0 0 AnP
ZTZ · · · ZTZ Λ

 (7.39)

proving that the spectrum of J lies in (−1, 1). Since the Jacobian in (6.28) is arbitrarily well approx-
imated by J when τ is sufficiently large, its spectrum lies strictly within the ball of radius 1 for τ
sufficiently large and for ρ sufficiently small.

Remark 2 Computations demonstrate that the iteration (4.10) – (4.11) can converge to a minimizer
for Hk even when the condition (7.21) is violated. Such a case is illustrated in Fig. 2. Variations of
the example illustrated in Fig. 2, in which data points lie on the boundary of a rectangle instead of a
square, indicate an advantage to having sphered the data by `2 means according to (2.8) and (2.10)
before proceeding with the methods of Section 4.

8 Convergence of the Iterative Scheme for `1 ICA

The analysis of the scheme (5.11) begins with establishing existence of a maximizer for Gl in (5.9).
Recall the assumption in Section 5 that T1 = R(Ys) = Rm so that Tl = R(Yl) = R(UT

l−1)
⊥, l =

2, . . . ,m, as seen in (5.7). Also, define

Tl = {û ∈ Tl : ‖û‖`2 = 1}. (8.1)

Lemma 6 For Gl in (5.9) there exists a maximizer û? over Tl which satisfies û? ∈ Tl.

Proof: Choose a û ∈ Tl so that Gl(û) 6= 0. If no such û were to exist, then by (2.16) and (5.7),

0 = ûTYl = ûT(I − UT
l−1Uk−1)Ys = ûTYs = 0 (8.2)

would contradict the assumption that T1 = R(Ys) = Rm. Thus, Gl is not maximized at u = 0.
According to (5.9), Gl is constant along rays outside the origin. Thus, the maximization can as well be
carried out on Tl. The claim follows since Tl is compact and Gl is continuous on Tl.

Lemma 7 For any u ∈ Tl\{0} the directional derivative of Gl in the direction of w ∈ Tl is given by

∂Gl(u;w) =
1

‖u‖`2

 n∑
j=1

δj(u,w)Ylêj −
n∑
j=1

|êTj Y T
l u|

‖u‖`2
u

‖u‖`2

T

w (8.3)

where

δj(u,w) =

{
σ(êTj Y

T
l u), êTj Y

T
l u 6= 0

σ(êTj Y
T
l w), êTj Y

T
l u = 0

σ(t) = sign(t). (8.4)
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Proof: For u ∈ Tl\{0}, w ∈ Tl and t > 0 sufficiently small that u+ tw 6= 0,

Gl(u+tw)−Gl(u) =
n∑
j=1

|êTj Y T
l (u+ tw)| − |êTj Y T

l u|
‖u+ tw‖`2

−
n∑
j=1

|êTj Y T
l u|
‖u+ tw‖`2 − ‖u‖`2
‖u+ tw‖`2‖u‖`2

. (8.5)

For êTj Y
T
l u 6= 0 the terms of the first sum in (8.5) satisfy

lim
t→0+

|êTj Y T
l (u+ tw)| − |êTj Y T

l u|
t‖u+ tw‖`2

= lim
t→0+

(2têTj Y
T
l u+ t2êTj Y

T
l u)(êTj Y

T
l u)/t

(|êTj Y T
l (u+ tw)|+ |êTj Y T

l u|)‖u+ tw‖`2

= σ(êTj Y
T
l u)

êTj Y
T
l w

‖u‖`2

(8.6)

and for êTj Y
T
l u = 0,

lim
t→0+

|êTj Y T
l (u+ tw)| − |êTj Y T

l u|
t‖u+ tw‖`2

=
|êTj Y T

l w|
‖u‖`2

= σ(êTj Y
T
l w)

êTj Y
T
l w

‖u‖`2
. (8.7)

The terms of the second sum in (8.5) satisfy

lim
t→0+

‖u+ tw‖`2 − ‖u‖`2
t‖u+ tw‖`2‖u‖`2

= lim
t→0+

(2tuTw + t2‖w‖2`2)/t

‖u+ tw‖`2‖u‖`2(‖u+ tw‖`2 + ‖u‖`2)
=
uTw

‖u‖3`2
. (8.8)

Combining these calculations gives (8.3).

Lemma 7 is now used to prove Lemma 8. For the following, let σ(v) = {σ(vi)} where v = {vi}
and σ(t) = sign(t).

Lemma 8 The first-order necessary optimality condition for a maximizer û? ∈ Tl of Gl over Tl given
by Lemma 6 is

Ylσ(Y T
l û

?) = ‖Y T
l û

?‖`1û
? (8.9)

and the sets Y = {j : Ylêj = 0} and S = {j : u?TYlêj = 0} agree. As a consequence, ∃ε > 0 such
that

∇Gl(u) =
1

‖u‖`2

[
Ylσ(Y T

l u)−
‖Y T

l u‖`1
‖u‖`2

u

‖u‖`2

]
, ∀u ∈ B(û?, ε). (8.10)

Proof: Let û? ∈ Tl be a maximizer for Gl guaranteed by Lemma 6. By (8.3),

∂Gl(û
?;w) = lim

t→0+

Gl(û
? + tw)−Gl(û?)

t
≤ 0, ∀w ∈ Tl. (8.11)

By decomposing sums into indices in S and Sc,

∂Gl(û
?;w)

=

∑
j∈S

σ(êTj Y
T
l w)Ylêj +

∑
j∈Sc

σ(êTj Y
T
l û

?)Ylêj −
n∑
j=1

|êTj Y T
l û

?|û?
T

w

=
∑
j∈S
|êTj Y T

l w|+

∑
j∈Sc

σ(êTj Y
T
l û

?)Ylêj +
∑
j∈S

σ(êTj Y
T
l û

?)︸ ︷︷ ︸
=0

Ylêj −
n∑
j=1

|êTj Y T
l û

?|û?


T

w

=
∑
j∈S
|êTj Y T

l w|+ v?Tw

(8.12)
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where

v? =

n∑
j=1

σ(êTj Y
T
l û

?)Ylêj −
n∑
j=1

|êTj Y T
l û

?|û? = Ylσ(Y T
l û

?)− ‖Y T
l û

?‖`1û
?. (8.13)

Combining (8.11) and (8.12), it follows

∀i ∈ S |êTi Y T
l w| ≤

∑
j∈S
|êTj Y T

l w| ≤ 0, ∀w ∈ v?⊥. (8.14)

This implies the existence of {γj}j∈S (possibly zero) such that

Ylêj = γjv
?, ∀j ∈ S. (8.15)

Now with w = v?, combining (8.11), (8.12) and (8.15) gives

0 ≥
∑
j∈S
|γj |‖v?‖2`2 + ‖v?‖2`2 (8.16)

or v? = 0. With (8.13), the optimality condition (8.9) follows.
According to (8.15), S ⊂ Y holds. Since Y ⊂ S always holds, it follows that Y = S. Note that

Gl(u) =
1

‖u‖`2

n∑
j=1

|êTj Y T
l u| =

1

‖u‖`2

∑
j∈Yc

|êTj Y T
l u| (8.17)

is smooth for u ∈ B(û?, ε) for some ε > 0. As a result, Gl is smooth in B(û?, ε) and can be differenti-
ated directly to obtain (8.10).

Turning to the iteration (5.11) we observe that if convergence to a fixed point û? can be guaranteed,
then multiplying û?T by ‖u?‖û? = u? = û? + τ [Ylσ(Y T

l û
?)− û?‖û?TYl‖`1 ] gives

‖u?‖`2 = û?Tu? = 1 + τ [û?TYlσ(Y T
l û

?)− ‖û?TYl‖`1 ] = 1 (8.18)

where the last equality follows with (Y T
l û

?)Tσ(Y T
l û

?) = ‖û?TYl‖`1 . Since ‖u?‖`2 = ‖û?‖`2 = 1
holds, it follows that u? = û? and hence û? satisfies (8.9).

Theorem 3 Let û? ∈ Tl satisfy (8.9) where the set S = {j : êTj Y
T
l û

? = 0} is empty. Then û? is a
fixed point of the iteration (5.11) which is locally asymptotically stable for τ sufficiently small.

Proof: Setting ûk+1 = û? on the right side of (5.11) and using (8.9) shows that uk+1 = û?. Hence with
‖uk+1‖`2 = ‖û?‖`2 = 1 it follows that ûk+1 = uk+1 = û?, and thus û? is a fixed point. To establish
the stability of the fixed point, define

G(u) =
g(u)

‖g(u)‖`2
, g(u) = u+ τ [Yl σ(Y T

l u)− u‖Y T
l u‖`1 ] (8.19)

so that (5.11) is given by
ûk+1 = G(ûk). (8.20)

The claimed stability will follows once it is shown that the Jacobian of this mapping evaluated at û? has
spectral radius less than 1 when τ is sufficiently small. The Jacobian is given by

∂G

∂u
=

1

‖g(u)‖`2

(
I − g(u)gT(u)

‖g(u)‖2`2

)
∂g

∂u
(u) (8.21)
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where with {j : êTj Y
T
l u = 0} = ∅,

∂g

∂u
(u) = (1− τ‖Y T

l u‖`1)I − τu
n∑
j=1

σ(êTj Y
T
l u)êTj Y

T
l . (8.22)

It follows with (8.9) that g(û?) = û? and thus ‖g(û?)‖`2 = ‖û?‖`2 = 1. The Jacobian of G at û? is
symmetric and is given by

∂G

∂u
(û?) = (1− τ‖Y T

l û
?‖)(I − û?û?T). (8.23)

For v ∈ Rm it follows with 0 ≤ ‖(I − û?û?T)v‖2`2 = vT(I − û?û?T)v ≤ ‖v‖2`2 that the Jacobian
satisfies

0 ≤ vT∂G
∂u

(û?)v ≤ (1− τ‖Y T
l û

?‖`1)‖v‖2`2 < ‖v‖
2
`2 , ∀v ∈ Rm (8.24)

provided that 1 > τ‖û?TYl‖`1 . For any such τ the spectral radius of the Jacobian in (8.23) is less than
1.

Remark 3 Computations demonstrate that the iteration (5.11) converges to a maximizer for Gl even
when the condition S = {j : êTj Y

T
l û

? = 0} = ∅ is violated.

9 Application to DCE-MRI Sequences

In this section the proposed methods are applied to the dynamic contrast enhanced magnetic reso-
nance image (DCE-MRI) sequence

http://math.uni-graz.at/keeling/manuskripten/dcemri.mpg

to separate intensity changes due to physiological motion from those due to contrast agent. With such
a separation, unavoidable physiological motion may be removed in order to investigate tissues in a
stationary state. See also [14] and [16]. To focus on the period in which contrast agent arrives in the
imaged tissues, only the first 40 of 134 frames are used for the following decompositions. Each frame
consists of an image with 400× 400 pixels. Thus, in the notation of Section 2, the data are Y ∈ Rm×n
with m = 4002 � 40 = n. For a static display of the DCE-MRI sequence, representative stages are
shown in Fig. 5: exhale and inhale, with and without contrast agent. Specifically, with Ȳ , V,Λ given by
(2.7) and (2.10), the images of Fig. 5 are given by

Ȳ + V Λ
1
2eij , i, j = ±1, eij = (i, j, 0, . . . , 0)T (9.1)

and the images Ȳ and
v̂i = V êi, i = 1, 2, (êi)j = δij , (9.2)

are shown in Fig. 6. Brightness changes in relation to the background are seen throughout organs in
Fig. 6b, and this suggests that v̂1 represents intensity changes in the DCE-MRI sequence due to contrast
agent. On the other hand, brightness changes are seen mainly on the edges of organs in Fig. 6c, and this
suggests that v̂2 represents intensity changes in the DCE-MRI sequence due to physiological motion.
The image sequence is shown more dynamically in Fig. 7. The graphs in the left column are the time
courses v̂Ti Y , v̂Ti Ys, v̂

T
i Xc, i = 1, 2, for the raw, sphered and independent data, respectively, where Ys

and Xc are given by (2.8) and (2.14), respectively. The graphs in the right column are corresponding
plots in a phase plane. To determine the most significant independent components, all but the top two
principal components were discarded. Then V was replaced by its first two columns, Ys by its first two
rows and Λ by a diagonal matrix containing the largest two eigenvalues. Also, the independent images

V Λ
1
2UTQiXc, i = 1, 2, Qi = diag{êi}, (êi)j = δij , (9.3)

24

http://math.uni-graz.at/keeling/manuskripten/dcemri.mpg


(a) exhale without contrast agent (b) inhale without contrast agent

(c) exhale with contrast agent (d) inhale with contrast agent

Figure 5: Representative stages of the DCE-MRI sequence: exhale and inhale with and without contrast agent,
where these are defined by (9.1).

(a) `2 mean image Ȳ (b) `2 principal component v̂1 (c) `2 principal component v̂2

Figure 6: (a) Mean image and (b) - (c) the first two principal components of the DCE-MRI sequence obtained
by `2 methods. Intensity changes in the image sequence associated with contrast agent and with physiological
motion are conspicuously apparent in the component v̂1 and v̂2 respectively.
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(a) times courses v̂T
i Y , i = 1, 2, of raw data (b) raw data v̂T

i Y , i = 1, 2, in phase plane

(c) times courses v̂T
i Ys, i = 1, 2, of sphered data (d) sphered data v̂T

i Ys, i = 1, 2, in phase plane

(e) times courses v̂T
i Xc, i = 1, 2, of independent data (f) independent data v̂T

i Xc, i = 1, 2, in phase plane

(g) independent component 1 (h) independent component 2

Figure 7: Representation of components of raw, sphered and independent data for the DCE-MRI sequence. These
have been determined by `2 based methods.
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are shown in Figs. 7g and 7h. As explained in connection with Fig. 6, these can be associated re-
spectively with intensity changes in the DCE-MRI sequence due to contrast agent and to physiological
motion. Note that there are only small differences between Figs. 7c and 7e, between Figs. 7d and 7f,
between Figs. 6b and 7g and between Figs. 6c and 7h. Thus, the separation of intensity changes due to
physiological motion from those due to contrast agent is achieved here already with the sphered data.
Hence the transformation to independent data had little effect for this particular example. Recall from
Section 2 that the order and the sign of ICA components are not uniquely determined.

This separation will now be considered in the presence of outliers. As seen in the full DCE-MRI
sequence, an excessivley bright frame may appear suddenly. To simulate this effect, intensities of the
final frame of the sequence are increased by a constant factor. Then the same methods used for Fig. 7
are applied to the corrupted data, and the results are shown with the same format as used for Fig. 8. The
corrupted data may be seen at the final time shown in the graphs of the first column of Fig. 8. Also the
outlier is conspicuous in the phase plane graphs in the right column of Fig. 8. Finally, the images defined
by (9.3) with the corrupted data are shown in Figs. 8g and Fig. 8h. Since these clearly differ from their
counterparts in Figs. 7g and Fig. 7h, the presence of the single outlier has corrupted the separation of
intensity changes due to physiological motion from those due to contrast agent.

For comparison, the `1 based methods of Sections 3 – 5 are now applied to the corrupted data, and the
results are shown with the same format as used for Fig. 9. Now the matrices V̄ , Yc, V , Λ, Ys, and U are
understood as explained in Sections 3 – 5 as well as in Remark 2. As in the previous cases, all but the top
two principal components are discarded and the respective matrices are reduced correspondingly to have
only two rows or columns or both. Then (9.2) and (9.3) apply with these `1 based matrices. As before,
the corrupted data may be seen at the final time shown in the graphs of the first column of Fig. 9. Also
the outlier is conspicuous in the phase plane graphs in the right column of Fig. 9. Finally, the images
defined by (9.3) with the corrupted data are shown in Figs. 9g and Fig. 9h. Note the similarities between
Figs. 9e – 9h and their counterparts in Figs. 7e – 7h. On this basis, the `1 methods can be seen to have
successfully separated intensity changes due to physiological motion from those due to contrast agent in
spite of the outlier. With this separation, the data are projected onto the single independent component
of Fig. 9g using (2.21) to produce the following transformed DCE-MRI sequence manifesting contrast
changes free of physiological motion,

http://math.uni-graz.at/keeling/manuskripten/dcemri_ica.mpg.

10 Conclusion

In this work robust measures have been introduced for centering complex data in the presence of
outliers and for determining principal and independent components of such data. The approach to cen-
tering is to use the geometric median. The approach for determining principal components is to find best
fit lines through the data, where each line minimizes the sum of distances (not squared) to data points in
the subspace orthogonal to other components. The approach for determining independent components
is first to sphere the data so that the corresponding axes are aligned with clusters, and then to deter-
mine independent axes as those which separate sphered clusters as much as possible. This separation
is accomplished by maximizing an `1 counterpart to Rayleigh quotients. To optimize the respective
merit functions, iterative primal-dual based methods were proposed and their convergence was proved.
Illustrative examples were presented to demonstrate the benefits of the robust approaches. Finally, the
proposed methods were applied to a DCE-MRI sequence to separate intensity changes due to physiolog-
ical motion from those due to contrast agent, and benefits of the robust methods have been demonstrated
with respect to this realistic example.
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(a) times courses v̂T
i Y , i = 1, 2, of raw data (b) raw data v̂T

i Y , i = 1, 2, in phase plane

(c) times courses v̂T
i Ys, i = 1, 2, of sphered data (d) sphered data v̂T

i Ys, i = 1, 2, in phase plane

(e) times courses v̂T
i Xc, i = 1, 2, of independent data (f) independent data v̂T

i Xc, i = 1, 2, in phase plane

(g) independent component 1 (h) independent component 2

Figure 8: Representation of components of raw, sphered and independent data for the DCE-MRI sequence with
a single outlier introduced at the final time. These have been determined by `2 based methods.
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(a) times courses v̂T
i Y , i = 1, 2, of raw data (b) raw data v̂T

i Y , i = 1, 2, in phase plane

(c) times courses v̂T
i Ys, i = 1, 2, of sphered data (d) sphered data v̂T

i Ys, i = 1, 2, in phase plane

(e) times courses v̂T
i Xc, i = 1, 2, of independent data (f) independent data v̂T

i Xc, i = 1, 2, in phase plane

(g) independent component 1 (h) independent component 2

Figure 9: Representation of components of raw, sphered and independent data for the DCE-MRI sequence with
a single outlier introduced at the final time. These have been determined by `1 based methods.
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A Alternative Computation of the Geometric Median

The purpose of this section is to show that the Chambolle-Pock Algorithm [6] can be adapted for
computing the geometric median. This approach is subsequently compared with that of the primal-dual
algorithm of Section 3. Using elements of convex analysis [9], problem (3.4) may be reformulated as

min
~µ∈Rm×n

F (~µ) +G(~µ) (A.1)

where

F (~µ) =
n∑
j=1

fj(µj), fj(µj) = ‖µj − Y êj‖`2 , ~µ = {µj}nj=1, µj ∈ Rm (A.2)

and with the indicator function

IC(~µ) =

{
0, ~µ ∈ C
∞, otherwise

(A.3)

G(~µ) = IC(~µ), C = {~µ = {µj}nj=1 : µj1 = µj2 , 1 ≤ j1, j2 ≤ n}. (A.4)

The convex conjugate f∗j is given by

f∗j (δj) = sup
µ∈Rm

[
δTj µ− ‖µ− Y êj‖`2

]
= sup
µ∈Rm

[
δTj (µ− Y êj)− ‖µ− Y êj‖`2

]
+ δTj Y êj

= IB(δj) + δTj Y êj
(A.5)

where

B = {δ : ‖δ‖`2 ≤ 1}, IB(δ) =

{
0, δ ∈ B
∞, otherwise.

(A.6)

The convex conjugate F ∗ is given componentwise according to

F ∗(~δ) =

n∑
j=1

IB(δj) + δTj Y êj ,
~δ = {δj}nj=1 (A.7)

The primal problem (A.1) is reformulated as a saddle point problem according to

min
~µ∈Rm×n

[
max

~δ∈Rm×n
~δ : ~µ− F ∗(~δ)

]
+G(~µ) = min

~µ∈Rm×n
max

~δ∈Rm×n

 n∑
j=1

δTj (µj − Y êj)− IB(δj) + IC(~µ)


(A.8)

For the Chambolle-Pock Algorithm [6]
~δ
k+1

= (I + ς∂F ∗)−1(~δ
k

+ ς~νk)

~µk+1 = (I + ς∂G)−1(~µk − τ~δ
k+1

)

~νk+1 = ~µk+1 + θ(~µk+1 − ~µk)
0 < τς < 1, θ ∈ [0, 1] (A.9)

the operator (I + ς∂G)−1 is characterized by

~y(I + ς∂G)−1~z = PC~z or yj = y =
1

n

n∑
j=1

zj , ~y = {yj}nj=1, ~z = {zj}nj=1 (A.10)

and the operator (I + ς∂F ∗)−1 is characterized componentwise as

~y ∈ (I + ς∂F ∗)~z, ⇔ yj ∈ (I + ς∂f∗j )zj , ~y = {yj}nj=1, ~z = {zj}nj=1. (A.11)

Hence
yj − zj

ς
∈ ∂[IB(zj) + zTj Y êj ] (A.12)
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or equivalently ∥∥∥∥yj − zjς
− Y êj

∥∥∥∥
`2

+ IB(zj) + zTj Y êj =

fj

(
yj − zj

ς

)
+ f∗j (zj) =

(
yj − zj

ς

)T

zj

(A.13)

i.e.,
‖(yj − ςY êj)− zj‖`2 + IB(zj) = [(yj − ςY êj)− zj ]Tzj (A.14)

The case that ‖yj − ςY êj‖`2 = 0 holds gives zj = 0. On the other hand, setting zj = η(yj − ςY êj)
for |η| ≤ 1/‖yj − ςY êj‖`2 gives

|1− η|‖yj − ςY êj‖`2 = (1− η)η‖yj − ςY êj‖2`2 (A.15)

which is solved by

η =

{
1/‖yj − ςY êj‖`2 , ‖yj − ςY êj‖`2 ≥ 1

1, ‖yj − ςY êj‖`2 < 1
(A.16)

giving

zj =


yj − ςY êj
‖yj − ςY êj‖`2

, ‖yj − ςY êj‖`2 ≥ 1

yj − ςY êj , ‖yj − ςY êj‖`2 < 1

= PB(yj − ςY êj) (A.17)

Finally, the Chambolle-Pock Algorithm can be written as µl,νl ∈ Rm, Dl ∈ Rm×n
Dl+1êj = PB(Dlêj + ς(νl − Y êj)), 1 ≤ j ≤ n
µl+1 = µl − τ/n

∑n
j=1Dl+1êj

νl+1 = µl+1 + θ(µl+1 − µl)
PB(ν) =

{
ν/‖ν‖`2 , ‖ν‖`2 > 1

ν, ‖ν‖`2 ≤ 1

(A.18)
The parameters satisfy θ = 1 and 0 < ς, τ < 1 with τ � 1 to accelerate convergence of µl to
the geometric median. This faster convergence gives the one-dimensional median in case the data are
colinear as formulated in (6.1).

As can be seen in Fig. 10, the primal-dual scheme (3.6) – (3.7) has been found to converge faster than

(a) convergence for temporal geometric median (b) convergence for spatial geometric median

Figure 10: Convergence histories for the computation of the temporal and spatial geometric medians of the DCE-
MRI data of Section 9 according to the primal-dual scheme (3.6) – (3.7) and the Chambolle-Pock scheme (A.18).
In both (a) and (b) convergence of the primal-dual scheme is shown with solid curves while the convergence of
the Chambolle-Pock scheme is shown with dashed curves. In (a) the geometric median is computed with respect
to time, where components of the result correspond to spatial intensities. In (b) the geometric median is computed
with respect to space, where components of the result correspond to temporal intensities.

the Chambolle-Pock scheme (A.18). Shown in Fig. 10 are convergence histories for the two schemes

32



during their computation of the temporal and spatial geometric medians of the full data set cited in Sec-
tion 9. In both graphs of Fig. 10 convergence of the primal-dual scheme is shown with solid curves
while the convergence of the Chambolle-Pock scheme is shown with dashed curves. Numerical parame-
ters have been chosen to provide the most rapid convergence obtainable with the respective schemes. In
Fig. 10a the geometric median is computed over 134 times points, and the 4002 components of the result
correspond to spatial intensities. In Fig. 10b the geometric median is computed over 4002 spatial points,
and the 134 components of the result correspond to temporal intensities. Note that the spatial geometric
median is not used in Section 9, but it is addressed here for comparison purposes since some authors
tend to reverse the role of space and time as discussed at the end of Section 2. The presentation of the
spatial geometric median also highlights the general trend that the differences in speed between the two
schemes increases rapidly with the number of points over which the geometric median is computed. On
the basis of the results shown in Fig. 10, the primal-dual scheme (3.6) – (3.7) has been proposed in this
work instead of the Chambolle-Pock scheme (A.18).
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