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1 Introduction

In this paper we consider the following shape optimization problem:
. a 2
min j(q) = A1(q) — A2(q) + 3 lall ey -

where Aj(q) and A2(q) are the two smallest eigenvalues of a linear partial differential operator
corresponding to a transmission problem over a domain €2, which is parametrized via the function
q. A precise formulation including a functional analytic setting is presented in Section 2.

As the eigenfunctions and eigenvalues of a partial differential operator depend on the shape of the
underlying domain, it is possible to optimize functionals depending on the eigenvalues with respect
to the shape of the domain. Marc Kac once asked whether it is possible to hear the shape of a drum,
cf. [26]: Given all the eigenvalues of the Laplacian with homogeneous Dirichlet boundary conditions
over some domain, is it possible to reconstruct the domain? Although the set of eigenvalues contains
information such as the area or the diameter of the domain, the original question itself has a negative
answer as has been shown in [17].

Some other questions concerning the eigenvalues are the question which domain minimizes the
n-th smallest eigenvector among all domains in R? with a given volume. The well-known Faber-
Krahn inequality states that the unique minimizer (up to sets of capacity zero) for n = 1 is the ball.
As proven by Krahn and Szegd, cf. [28] and [35], for n = 2 the solution consists of two balls of the
same volume. For general n > 3, the optimal domain is not known so far, cf. [23]. Furthermore, if
additional constraints like connectedness or even convexity are imposed on the admissible domains,
then little is known so far. Some numerical approximations to some of these domains can be found
in [4] and [34].

In most cases homogeneous Dirichlet boundary conditions are being investigated, the cases of
Neumann and Robin boundary conditions are less extensively studied, for an overview we refer
to [16].

Beside the Laplacian there is ongoing research concerning the eigenvalues of Schriédinger’s oper-
ator, where the eigenfunctions have a physical interpretation as energy levels of quantum particles;
but beside this physical meaning there are also some mathematical questions interesting on its ow.
An overview, including further references, can be found in [24]. In the context of nonlinear equations
we would like to mention the p-Laplacian, cf. [31].

The choice of the cost functional may be motivated as follows. It is well-known that in the case of
a sufficiently smooth domain, the eigenvalues with multiplicity one are Fréchet-differentiable with



respect to smooth domain perturbations, whereas eigenvalues with a higher multiplicity are only
Gateaux-differentiable, cf. [22|. This irregularity is also responsible for some physical effects. In the
context of musical instruments, for example, it is possible to hear some undesired interferences if
some of the lower eigenvalues are too close to each other. For a more detailed investigation onto
that topic we refer to [14].

In order to solve the problem we use domains which can be parametrized as the graph of a
function, cf. [20, 21, 29, 37]. We use a transformation approach, cf. [27], to formulate the partial
differential equation on a fixed reference domain. This allows for the usage of the standard control
theoretic approach as presented in [40] to prove existence of an optimal solution.

The main contributions of this paper are the following. First, within Subsection 2.5 we prove some
general regularity results for the transmission problem. These results just rely on the regularity of
the domain and the right hand side of the equation and are not restricted to eigenvalue equations.
Second, we also show how to apply the transformation approach onto this transmission problem and
how to prove the existence of an optimal solution. At third, within Subsection 3.2 we prove some
stability estimates for the derivative of eigenfunctions with respect to domain perturbations. These
results may be used for a-priori error estimation for finite-element discretizations of the transformed
problem. To the best of our knowledge, such results are not yet considered in the literature.

The paper is organized as follows.

In Section 2 we give a detailed introduction on the problem under consideration, transform the
problem onto a reference domain and prove the existence of an optimal solution. We prove general
regularity and differentiability results and show that, given sufficient regularity, the first derivative
of the reduced cost functional can be represented as a boundary integral. In addition, we show that
the optimal control and the associated eigenfunctions possess some higher regularity. We finish that
section with the computation of the second derivatives of the eigenvalue and eigenfunctions.

In Section 3 we first review some known results on the stability of eigenfunctions with respect to
the domain and then prove some new results on the stability of the derivative of the eigenfunction
with respect to domain perturbations.

In Section 4 we finally present a possible finite-element discretization of the transformed problem
where we discretize the control, the state, the transformation as well as the domain.

The following notation will be used within this paper. For p € [1,00], k,n € N and 2 € R" let
LP(Q) and W*P(Q) denote the usual Lebesgue spaces with norm [l For s €N, s=k+o
with k = |s] € No, o0 € (0,1) and p € (1,00), let W*P(2) be the space of all functions u € W*P(Q)
with

HUH%S,I)(Q) = ||UHZ{;[/IC,ZJ(Q) + |u’€{/sm(ﬂ) < 00,

where

0%u(x) — 0%u(y)[”
ulf oy = E </ / | dzdy | .
| |W e |oo|=k QJQ |x - y|n+gp Y

For an arbitrary domain Q2 C R", let (-,-)q denote the L2-scalar product over Q. If the domain is
clear, we may skip the subindex.



2 The problem

2.1 Problem formulation

In this section we first describe the shape optimization problem under consideration, the exact
definition of the cost functional to be minimized will be given in (10). Let ¢ € Q = ngr(I) with
I = (0,2m) be the control variable. The exact definition of the control space is given as

1, = G (D) 12,

per

equipped with the standard H?-norm, where

o = {v e C%(D)] v™(0) = o™ (27) ¥n € NO} .

per
The domain under consideration is now defined as
Qq = {(z,y) ER2‘ —2<uz,y<2} c R?,

i.e. €, is the interior of a square with side length 4, centered at the origin and sides parallel to the
axes. We divide €}, into an inner, star-shaped domain,

Qg0 = {(fr,y) ER?|r <1+4q(p), r = Va2 +y?, ¢ = arg(x +iy)} ,
and an outer domain,
Qg1 = Qq\%a
see Figure 1. In order to exclude a possible degeneracy of the domain €, we fix € > 0 and define
Q' ={qeQlaly) > —1+2Vpe T and Qo C A} (1)

As H?(I) — CYY2(1), (1) is well-defined. Now let d > 0 be a constant which shall remain fixed

Fq,O FO

Qq,l 0

Figure 1: The original domain €, Figure 2: The transformed domain 2

throughout this paper and let L: H}(Q,) — H~'(Q,) be the partial differential operator such that



for u € H}(Q,) and f € H~(,) the equation Lu = f shall be a formulation for u being the unique
weak solution to

—dAu=f in Qg 0, —Au=f inQy1,
[ul, =0 on I'y g = 090, u=0 onT,=0Q,, (2)
dOpug,— = Opug+ on I'yp,

where [u], is defined as follows. For x € I'y¢ let

U (@) = Jim u(y) g () = Jim u(y) 3)
yeQg 1 y€Qq,0

be the function values when approaching Iy o from either €, 1 or € ¢ in a nontangential way, cf. [13],
and let

[U’]q = Uq,+ — Uq,—;
be the jump of u over I'yo. It can easily be derived that the weak formulation of (2) reads as
(Vu, Vo)g | +d(Vu,Vo)g = (f,v)g, Yo € Hy (). (4)

As HE(Q,) is compactly embedded into L?(,), it follows that L~!is a compact and self-adjoint

operator on LQ(Qq). Hence, for each fixed ¢ € @ad, the spectral theorem yields the existence of a
sequence (A;);cy C RT with 0 < A; < Xy < ... (counted with multiplicity) and

lim \; = oo,
i—>00

and a sequence of eigenfunctions (u;),cy C H}(Qq) with

and eigenfunctions to different eigenvalues are orthogonal with respect to the L%-scalar product. In
order to compute the i-th eigenvalue for general i € N one may use the following lemma, a proof
can be found in the survey article [7], Chapter 7.

Lemma 2.1. Let V and H be two real Hilbert spaces with dense and continuous embedding V — H.
Let a: V xV — R and b: H x H — R be two symmetric and continuous bilinear forms. Let a(-,")
be V-elliptic, i.e. there exists a > 0 such that a(v,v) > « ||1)H%/ for allv € V, and let b(-,-) define a
scalar product on H. Fori € N, let V) denote the set of all subspaces of V of dimension i. Then
the i-th eigenvalue corresponding to the equation

a(u;, v) = A b(u;, v) Yv eV,
18 given via

A\; = min max a(v, v)
Ecv(®) veE b(v,v)

, (6)

where the minimum with respect to the subspace is attained for E being the subspace spanned by the
first i eigenfunctions, and the mazrimum with respect to the element of that subspace is attained for
v being an eigenfunction to ;.



Now let
Hg =1+ (d - 1>XQq,O’

with xq,, being the characteristic function of €1 o, and

aq(u,v) = (Vu,,quv)Qq ) (7)

bg(u,v) = (u,v)q, -

Then the weak formulation of (5), including a normalizing condition for u;, reads as

aq(ui, v) = X bg(ui,v) Yv € H&(Qq),
{bq(ui,ui) =1. (9)

From now on we consider the variational problem. The problem under consideration is now given
via

o «

min j(q) = A1(g) — Aa(q) + ) HQH%IQ(I) ) (10)
q€Q

subject to (6) and (9), where « > 0 is a given constant.

Remark 2.2. With X\;(q) for i € N and ¢ € Q*® we will always denote the i-th eigenvalue for a given
control ¢, which can be computed via (6).

In order to prove the existence of a solution to (10) we will at first show that j is uniformly
bounded from below. This follows from the fact that A2(q) is uniformly bounded from above for

q € @ad, which is a direct consequenceof the following lemma.

Lemma 2.3. Let i € N, then there exists ¢ = c¢(i) > 0 such that A\;(q) € (0,¢] for all ¢ € @ad.

Proof. As all the eigenvalues are known to be positive we just have to prove the upper bound. Let
A; denote the i-th eigenvalue for the Laplacian on €2, which does not depend on ¢. Using Lemma 2.1
it follows that

Ai(g) = min maXM
Eev(® veE  (v,v)

<max{1l,d} min max (v, Vo)
Ecv(®) veE  (v,v)
= max {1,d} \;. O
Remark 2.4. The eigenvalues for the Laplacian on a rectangle can be computed exactly. For example,
on the square D = (—2,2) x (—2,2) the set of eigenvalues is given by {7{—2 (m? + n?) ‘ m,n € N}.
Lemma 2.3 ensures that

lim  j(q) = oc.
”(IHHQ([)‘HX’

It follows that there exists C' = C () such that we can restrict the search for a minimum onto the
set

Q' ={a€Qllallmum < C}. (11)

As within the beginning of Subsection 2.2 we have to assume that the constant C' is sufficiently
small, it is reasonable to assume that Q*d C @ad, i.e. the elements of Q24 are not degenerated in
the sense of (1). Before we continue in proving the existence of a solution to (10) we will apply a
transformation argument.



2.2 Transformation of the problem

In order to solve (10) we will use a transformation T to transform the equation (9) onto a partitioned
reference domain, see Figure 2. Let Q0 = (), let () be the open unit circle centered at the origin
and let Q1 = Q\Qp. Let F be the weak solution to

—AF =0 inQy, je{0,1},
F=0 onl =0, (12)
F=¢gn onIy= 0,

where n shall always denote the outer unit normal with respect to €g. Let Tr = Id+F be the
transformation, it now holds that

Qg5 = Tr(2),

for j € {0,1}. Tt can be shown that for C from (11) sufficiently small, TF is a bijection from Q,
onto Q for all ¢ € Q2.

Remark 2.5. With F(q) we will always denote the solution to (12) for a given control ¢ € Q9.

Lemma 2.6. Let q,p € Q* with corresponding transformations F and E, respectively. Then it
holds that

Fy = Flo, € H*(Q) = W2*(Q) = C"'/*(y), (13)

Fy = Flg, € W Q) — CH2(n), (14)
Fewh=(Q)=C"(Q), and [|F||yr00y < e llall garzsery » (15)
IF = Elly,00(0) < e llg = pll grevery - (16)

Proof. The regularity results for Fy and Fy, (13) and (14), follow with [19], Theorem 9.1.20, [18]
and embedding theorems. As Fy and Fj are both continuous and coincide on the boundary I'g due
to (12) it follows that F' is continuous on €, its regularity can be seen as follows. Let x,y € Q. If
either z,y € Qy or z,y € Q, then the regularity result within (15) follows from the regularity of
Fy and Fy. Now, without loss of generality, let x € Qq, y € 21 and let z € I'g be the intersection of
the line segment Ty with Iy, |z — y| = |x — 2| + |2z — y|. In addition, let Lo and L; be the Lipschitz
constants of Fy and FY, respectively. Then it holds that

[F(z) = F(y)| < [F(z) — F(2)| + [F(2) — F(y)|
< Lolz—z|+ Li|z —yl
<max{Ly, L1} (Jz — z| + |z — y|)
=max{Lg, L1} |z —y|.

From the regularity results cited above it follows that ¢ € C%¢(I) is sufficient for Fy and Fy to be

Lipschitz, and Lo and L; continuously depend on ||q[|c1.(s). Because of H32+e(1) — CY4(T) we
end up with

[F'(z) = F(y)| < cellgllgrarzeery 2 = 91,

which proves (15). The last assertion, (16), follows with (15) and the fact that ¢ — F'(¢) is linear. [



For given ¢ € Q! with F' = F(q) and transformation T it is now possible to transform (9) onto
the reference domain, which then reads as

(Vui(q), pAp - Vo) = Xi(q) (ui(q),vyr) Vo € Hy(Q),
(17)
(ui(q), wi(g)yr) = 1,
with =1+ (d — 1)xq,, where xq, is the characteristic function of Q,
= det (DTF),
e D). (18)
In what follows we will use the following abbreviations,
a(F)(u,v) = (Vu, pAp - Vo) , (19)
b(F)(u,v) = (u,vyF), (20)

such that (17) can be rewritten as

{ a(F)(ui(q),v) = Xi(q) b(F)(ui(q),v) Vv € H3 (),
1

Remark 2.7. Let u;(q) denote the i-th eigenfunction for given ¢ € Q*! and i € N, which can be
computed via (17).

The transformed problem now reads as

. . _ @ 2
qglégd](q) = A1(q) — Aa(q) + b) HQHHZ(I) J (21)

subject to (12), (6) and (17).

2.3 On the existence of eigenfunctions

Although the existence of real eigenvalues and eigenfunctions for the original equation (2) is well-
known, here we give rigorous proofs for their existence in the transformed setting (17).

Definition 2.8. For given ¢ € Q* and F = F(q), let L = L,: H}(Q) — H1() be the differential
operator related to the bilinear form (19),

Lu = —div(pAp - Vu).

Furthermore, let L™1: H=1(Q) — H(Q) be the inverse of L with respect to the scalar product
induced by the bilinear form b(F)(-,-), i.e. w = L~!f is defined as the unique solution to

(Vu, pAr - Vo) = (f,v77) g1 Yo € HY(Q). (22)

Lemma 2.9. Let g € Q*, then the operator L™ from Definition 2.8 is compact from L?*(Q) onto
HL(Q).



Proof. Let L~! be the solution operator for (2). From [36], Theorem 5 and Remark 5.1, it follows

that L' maps L2(Q) onto HS’/Q_E(Q) fore > 0. As H3/2_€(Q) is compactly embedded into HE ()

for e < 1/2, it follows that L =" is compact from L(Q) onto H} (). As L™(f) = (ﬂfl(f o T51)> oTp
is the concatenation of linear and compact operators, the result follows.

The operator L™1 is selfadjoint and compact over HJ () due to Lemma 2.9, and as the matrix
pAp is uniformly elliptic for ¢ € Q2! it follows with the spectral theorem that there exists a
sequence of eigenvalues (v;),cy C R(J{ with 0 as only limit point, and a sequence of eigenfunctions
(ui);en C HY(Q) with

Lilui = vu;.
Taking the H&G(Q)—scalar product on both sides yields
(V (L_lui) S WAR - Vv) = (V (vju;) , pAp - Vo) Yv € H&(Q)
Setting \; = v ! and using the definition of L~ we arrive at
(Vui, pAp - Vo) = N (ug, vyp) Vo € H}(Q).
From
i (ui, ujvr) = (Vug, pAp - Vug) = Aj (ug, ujvre),
it also follows that the eigenfunctions are mutually orthogonal,
a(F) (us,uy) = b(F) (i, ) = 0, (23)

for i # j.

2.4 Existence of a solution

Within this subsection we are going to prove that the variational problem (10) has a solution. As
the original problem is equivalent to the transformed problem (21), we will show the existence of a
minimizer just for the transformed one. First we need a continuity result for the eigenvalues, the
following theorem can be found in [24], Theorem 2.3.1.

Theorem 2.10. Let 11 and 15 be two self-adjoint, compact and positive operators on a separable
Hilbert space V. Let i € N, and let v;(T1) and v;(T2) be their i-th eigenvalues, respectively. Then it
holds that

(v, (Th = Ty)v)y

lvi(Th) — vi(T2)| < sup

vev ol
Ty — 1) (v
< sup H( 1 2)( )HV _ HTI _TQHV'
veV ”UHV

Lemma 2.11. Let q,p € Q*! with corresponding transformations F and E, respectively. Then it
holds that

IAF = Apll L) < cellg = Plasrreqy s

H’YF - 'YEHLoo(Q) <ece Hq _pHH3/2+s(I) .



Proof. This lemma follows from the definitions of Ar and yp and Lemma 2.6. 0

Lemma 2.12. Let i € N and let q,p € Q! with corresponding transformations F and E, respec-
tively. Then it holds that

(Ai(g) = Xi(p)| < ¢ sup |(Vu, 1 (Ap = Ap) - Vu)l + | (v, yr — 78)|

2
weHL(Q) [l 0

<cellg— p||H3/2+e([) .
Proof. This lemma follows from Theorem 2.10 and Lemma 2.11. O
Theorem 2.13. Problem (21) has a solution.

Proof. Let (¢n),eny C Q@ be a minimizing sequence with

i j(gn) = inf j(a) = .
As Q* is a bounded, closed and convex subset of the Hilbert space Q it is weakly sequentially
compact. It follows that there exists § € Q*! and a subsequence of (g,) denoted in the same
way, with

neNs

Gn =@ in H*(I),
G — G in H> (1),

where the strong convergence follows from the fact that H?(I) is compactly embedded into H2~¢(I).
With Lemma 2.12 it follows that A;(gn) — A\i(g) for n — 0o and 7 € {1,2}. As the squared norm is
lower semicontinuous it follows that

.. 2 —112
hnrr_l)loréf HQnHHz(I) > HQHH2(I) )
hence
liminf j(¢,) > (),
n—oo

and from the definition of j it follows that

i@ =7 O

Remark 2.14. As g — A\;(q) is highly nonlinear, the optimal control § need not be unique.

2.5 Regularity of the eigenfunctions

The aim of this subsection is to investigate in the regularity of the eigenfunctions, i.e. the solutions
(ui, A;) to (17),

(Vui, pAp - Vo) = N; (ug, vyp) Yo € HY (),

where it is known that Ar € C%Y/2(Q;) for j € {0,1}. Here we will prove some general regularity
results for u;, in a later section we will show that the optimal control § possesses some even higher
regularity which will also improve the regularity of the associated optimal eigenfunctions. As we
just focus on the regularity of the eigenfunctions, we omit the normalizing condition in (17) within
this subsection.



Lemma 2.15. Let ¢ € Q*, i € N and u; = u;(q), then it holds that
[uill ga ey < cilluill 2y -

Proof. Let F = F(q) and \; = \i(q), as all the matrices pAp are uniformly elliptic for ¢ € Q* it
follows that

|luill B @y < alF)(ui,ui) = i b(F) (us, w)
< e il ) -
and the proof follows with Lemma 2.3. O

Lemma 2.16. There exists p € (2,00) such that for all ¢ € Q> and i € N it holds that u;(q) € WP(Q)
and

[uillyrp ) < cip lluill L2 -

Proof. Let F' = F(q) and \; = \i(q). Again we use the fact that for ¢ € Q* the ellipticity constants
of the matrices pAp can be bounded uniformly. The existence of such a p > 2 now follows from [32],
Theorem 1. From the cited theorem it also follows that

HUiHWLp(Q) < ¢ HAiUi’YFHLp(Q) < Cip HuiHLP(Q)

< Cip HUZ‘HHol(Q) < Cip lluill 2(q) »

where we used the continuous embedding H'(Q) < LP(Q) for p < oo in dimension n = 2 and
Lemma 2.15. O

The following lemma can be proven by a direct calculation.

Lemma 2.17. Let f € CY(Y, Z) and g € CY*(X,Y) for some a € (0,1] and closed subsets X, Y
and Z of some Banach spaces. Then it holds that f o g € CY(X,Z) and

1f Og”cl,a(x,z) <c ”f”clu(y,z) ngclya(x,y) :
Lemma 2.18. Let ¢ € Q™, F = F(q), j € {0,1} and K CC Q;. Then F|; is analytic.

Proof. This lemma is a direct consequence of Weyl’s lemma, cf. [42], Lemma 2, and the fact that
F is weakly harmonic in Q; for j € {0,1}. O

Lemma 2.19. Leti € N, ¢ € Q*, w; = u;(q), j € {0,1} and let K CC Q; be sufficiently smooth.
Then it holds that u; € CVY2(K) for i € N and there exists ¢; = c;(K) such that

luill g2y < cilluill 2o -

Proof. Let F = F(q) and K’ = T;;*(K). Due to Lemma 2.18, F|} is analytic, and as T is bijective
it follows that K is sufficiently smooth. On K’ it holds that u,; = u; o Tp* solves —Aug; = Aug,
where \; = \; or \; = %, depending on whether j is either 0 or 1. Using the results presented in [24],
Section 1.2.4 and the references cited therein it follows that HU@QHWQA(K’) < (i, K) Hui’q”Lg(Qq).

The regularity result and the estimate for w;|, = w;q o Tr follow with the continuous embedding
W24 K') < CY/2(K7), Lemma 2.17 and Lemma 2.6. O

10



Next we are going to prove a result dealing with the regularity of the eigenfunctions up to the
boundary I'g. The following theorem can be found in [30], Corollary 1.3.

Theorem 2.20. Let 2 C R™ be a bounded domain with C1*-boundary T with o € (0,1). Let L € N
and for 1 < m < L let Q,, be a subdomain of Q with CY*-boundary and Q = Uﬁz:l Q. For
1 <m < Llet A™ € CO*(Q,,) with u € (0,1] be a symmetric and positive definite matriz, and
let the matriz A be defined via A|Qm = Alm), Suppose that 0 < ¢c1 < A < ¢y < 00 on  in the
sense of symmetric and positive definite matrices. In a likewise manner, let h(™ € CY"*(Q) and
hlg, = RU™) At last, let f € L®(Q) and g € CY*(T). Then the restriction of the weak solution u
to

{ div(A - Vu) = f+div(h) in Q, (24)

u=g on I

onto Qy, belongs to CH (Q,,) for 0 < o < min {,u, ﬁ} and there holds the estimate

fo— < (m))
i, [y < ¢ (1o + ma, [607] o

lalener )
with the constant ¢ being independent of f, h™ and g.

Coming back to our situation, we obtain:

Corollary 2.21. Leti € N, g € Q*, u; = u;(q), € > 0, and let Q. = {x € Q|dist(x,T') > }. Then
it holds that

uilg, € C1Y0(), uilg,n, € CHVO (N0,
[will o1 gy < cilluill L2y » [will gra/s rmnn) < Cie lluillp2(q) -
Proof. Let K CC 1 be sufficiently smooth such that 9. C K. Lemma 2.19 now yields
||Ui||clyl/6(agg) <c HUiH()Ll/?(K) < ¢ ||Ui||L2(Q) :
This corollary now follows with Lemma 2.16 which ensures that u; € L*°(£2) and Theorem 2.20. [
The following lemmata are proven in order to show H3/272(Q) N WhP(Q)-regularity of u;.

Lemma 2.22. Let ¢ € Q*, i € N, u; = u;(q), p € [2,00) and € > 0. Then there exists

uir € Wy (Q) nWitl/r==r(q),
such that ui7p|F0 = ui’ro and

i rllyiv1/p-en(o) < Ciep luill p2(q) -

Proof. With Corollary 2.21 it follows that w;lp, € CHY6(Dg) < WT/6P(Ty) for all p < co. In
addition, for € > 0 sufficiently small let the annulus K be defined as

K= {x € Ql|dist($,ro) < 6} C Q.

11



Using the trace theorem, cf. [18|, Theorem 1.5.1.2 and Theorem 1.5.2.1, it follows that for p € [6/5, 00)
there exists a function u; 1 € L' (0 U K) with the following properties.

uirlq, € WT6+1pP(Qn) s CBY/6-1/P(Qy),

uirlp, = wilp,

(25)
Opuirlp, =0,
’ 2(Qp) <¢p Huz‘HW7/6-,p(p0) )
and
e WT/6H/pp ([ —y CLV/6-1/P(E),
uirlgir, = o =0 (26)
‘ »(K) <o ”uiHW7/6,p(r0) .
As w; r is continuous along Iy, it follows that
[ wi, Flep (KUQo) — = [|u, F||W1 »(K) + ||UZF||W1P (Q0)
< & il oy (27)
S o -
< Cip HUiH}£2(Q) )
where we used Corollary 2.21. From the definition of fractional norms it now follows that
‘ui,r|€[/1+1/1”75,;v(](ug0) = / / [Vuir(z) 2+V11/Ll FE() 1 dx dy
KUQo J KU |z y| p(1/p—
, P
<c¢p ((’uivr‘];vul/psp W1+1/p Ep(QD / /ﬂo [Vosird 2+§11/LZESJ)‘ dz dy)
< cCep ||u¢,r||§,7/6,p(ro) + maX{Hui,FHp NP, @) / / 2+p(1/p o dedy
< e (112100 + 8% {0 B 177 gy N0 W } TN R———
< e (Il oy + 1ilByrsar ey ngo||w1/p_a,p(mm)
< cop il ey (1 110 B0y )
< Ciep ||ui||]z2(g) )
(28)

where we used Corollary 2.21 and the fact that the characteristic function of every bounded C*-
domain is an element of W1/P=5P(R?), cf. [38], Proposition 2.1, and [5]. If we extend u; r by zero to
the whole domain ©, one can repeat the steps undertaken in (27) and (28) to show W1t1/P==r(Q)-
regularity as well as the stability estimate and thus finish this proof. O

Lemma 2.23. Let ¢ € Q*, i € N, u; = u;(q) and p < oo. Then it holds that u; € WHP(Q) and

il ey < Cip lluill L2 (o)
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Proof. Let @ = (u; — w;r) with u; p defined as in Lemma 2.22. Then @ is the weak solution to

{ - diV(MAF . Vﬂ) = \NuYF + diV(uAF . Vui,p) in Qj, (29)

0 on 0§},

a

for j € {0,1}. As p is constant on §2;, one can apply [2|, Theorem 1, and get @ € Wol’p(Qj), as well
as

|L"(Qj))

< i (il a0y + 1AF | oy It

||71||W1,p(szj) < ¢ (H)\z’uﬂFHLP(Qj) + [[AF - Vur

‘Wl’p(Qj))

< Cip Hui||L2(Q) )

where we used Lemma 2.15, Lemma 2.6 and Lemma 2.22. As 4 € Wol’p(Qj) it also follows that
@ € WyP(€), and the result follows. O

Lemma 2.24. Let g € Q*, i € N and u; = u;(q). Then it holds that u; € H*?>7(Q) and

Huz‘HHf%/%s(Q) < Cie HUiHL2(Q) ‘

Proof. As in the proof of Lemma 2.23 let @ = (u; — u;r), then @ is the weak solution to (29) for
j €{0,1}. As both subdomains of Q are Lipschitz it follows with [19], Theorem 9.1.25 and [33],
that ﬂ|Qj € H3/?75(Q;) and

]l gr3/2-< () < ce (||>\z‘uz"YF||L2(Qj) +[|AF - VUz‘,FHHm—s(Qj))

< i (Iluill oy + AR zs/2qy) il gsro<qa,)

< Cie HUiHLQ(Q) )

where we used Lemma 2.22 and [18], Theorem 1.4.4.2. It remains to prove H3/27¢(Q)-regularity.
This can be done in exactly the same way as shown in (28) within the proof of Lemma 2.22. O

2.6 Differentiability of the eigenvalues

In the following subsection we are going to prove differentiability of the eigensystem with respect
to domain perturbations. In order to do so we follow the approach presented in [11], where it is
proven that eigenvalues are differentiable with respect to a specific boundary perturbation and also
a representation for the derivative is given. Although our approach uses a transformation to a
reference domain and our regularity assumptions differ, their proofs can be adapted to our case.

Assumption 2.25. We assume that for all ¢ € Q24, the eigenvalues \(q) and A\a(q) have multiplicity
one.

Taking into account the cost functional (21) it is reasonable to assume that \1(q) # Aa2(q) for
all ¢ sufficiently close to the optimal control g. Another justification is the Krein-Rutman theorem
(cf. |24], Theorem 1.2.5 and Theorem 1.2.6), which states that the first eigenvalue for a uniformly
elliptic partial differential operator of second order is simple. However, we do have to admit that
we did not find theoretical results supporting the claim that A2(q) # A3(q) for all ¢ € Q* with
17 — all g2y sufficiently small.
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2.6.1 On the existence of the derivatives of )\; and u;

The proof of the existence of the derivatives of A; and w; with respect to ¢ relies on the implicit
function theorem and Fredholm’s alternative.

Theorem 2.26 (Fredholm’s alternative). Let X be a Banach Space over K with either K = R or
K = C. Let T be a compact operator on X with adjoint T, and let A € K, X # 0. Then ezactly one
of the following two possibilities holds true.

o The equation
Ax — Tz =0, (30)
has = 0 as its only solution and
e — Tz =y, (31)

15 uniquely solvable for every y € X.

o There exist n = dim(ker(\Id —T)) linear independent solutions to (30), and the adjoint equa-
tion

' —T'z' =0,

also has n linear independent solutions. Furthermore, there exists a solution to (31) if and
only if y € (ker(AId —T"))*.

Proof. This theorem can be found in [1|, Theorem 10.8. O

Lemma 2.27. Let ¢ € Q*, F = F(q), i € N, let (u; = ui(q), \i = \i(q)) be an eigenpair to the
simple eigenvalue \; and let g € H=1(Q). The equation

(Vi 1A - F0) = A (1,095) + (9, ) 1 o e H(©) (32)
has a solution u € H}(Q) if and only if (g,ui)H,l’Hol =0.

Proof. Again, we use the operator L from Definition 2.8. Let h = L™1(g/vr), then equation (32)
can be written as

(u, U)H&a(m =\ (L‘lu, U)Hé,a(m + (h,U)H(}ya(Q) NORS H&a(Q),
which can be written as
viu — L™ u = yh in H&Q(Q),
with ; = A\;'. With Theorem 2.26 it now follows that (32) has a solution if and only if
(hyui) gy @) =0

which reads as

0= (Vh, pAp - Vur) = (g, 1) 1 g1 - =

14



Lemma 2.28. The mappings A: Q*¢ — L®(Q), ¢ — Ap(q) and v: Q™ — L>(Q), q — Yr(q) @Te
at least two times continuously Fréchet-differentiable. For 6q € Q and 6F = F'(q)(dq) it holds that

wop = trace (DT' - DSF) Ap — DT;' - DSF - Ap — Ap - DOFT - DT 7,
7};76F = g trace (DTE1 . D5F) = diV("}/F DT},?1 . (5F) .
Proof. The mapping q — F'(q) is linear and hence differentiable, and the result follows with (18)
and the product rule. O
Theorem 2.29. Let ¢ € Q*, 6q € Q and i € N such that \;i(q) is a simple eigenvalue. Then the
mappings q — \i(q) and q — u;(q) are at least two times continuously Fréchet-differentiable.
Proof. Let F' = F(q) and let
B: H*(I) x H}(Q) xR — H1(Q) x R,
Blg,u, \) = —dlv(,uA2F -Vu) — Auyp .
Jouypdr —1

The functional B is at least twice differentiable, which follows with Lemma 2.28. In addition,
B(q,u;, Ai) = 0 if and only if w; is a normalized eigenfunction with eigenvalue \; corresponding to
the control ¢q. Taking the derivative of B with respect to v and A yields

—div(pAp - Vo) — Ajuyp — ﬁuivp>

DuaB(gq,ui, Ai)(v,9) = ( 2 [0 uivyp do

Now we show that D, yB(q, ui, \;) is bijective, which can be done using Theorem 2.26 and Lemma 2.27
as follows. Let (w,7) € H1(2) xR be arbitrary, we have to show that there exists (v,9) € H}(Q2) x R
such that

{ (Vo, nAp - Vo) = N (v, 077) = 9 (wi 07p) + (w,0) g1 gy Vo € Hy(), (33)
2 (uj, vyp) = 7.
If we set
U= - (waui)Hfl,Hg )

then Lemma 2.27 yields the existence of vy € H}(£2) such that the first equation within (33) is
fulfilled for v = vy + cu; for all ¢ € R. Setting

.
c= 5—(U1,1}0’YF>7

makes v also fulfill the second equation within (33), and this theorem follows with implicit function
theorem, cf. [3], Theorem 2.3. O

2.6.2 Representation of the derivatives )\, and u}

In this subsubsection we are going to find explicit representations for the derivatives of the eigenvalue
and eigenfunction. Let ¢ € @, F = F(q), dg € Q, i € N and let X = X.(q)(dq), du; = u}(q)(dq)
and 0F = F'(q)(dq). Due to Theorem 2.29 we can differentiate (17) with respect to ¢, which yields

(Vous, pAp - Vo) = A; (dus, vyr) + X (ui, vyr)
+ Xi (ui, v¥psp) — (Vui, pApsp - Vo) Yo € Hy(€), (34)
2 (6ui, uivr) + (Ui, Yisr) = 0.
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Remark 2.30. From the first equation within (34) it follows that du; can formally be seen as a
solution to

—div(pAp - Vou;) = Niduivr + (Nuiye + ANivwivp sp + div(pAfpsp - Vug)) (35)
which is just a “perturbed” eigenvalue equation of the form
Lou; = Njdwyr + g,

with g = g(\i, ui, q,0q) € H=1(). Solutions to (35) are not unique: if du; is a solution, then so is
du; + cu; for all ¢ € R. Instead, uniqueness is guaranteed through the second equation within (34).

Now using u; as a test function in (17), we get
(Vui, pAp - Vi) = A (uf, vr)
and differentiation yields
2 (Vug, pAp - Vou;) + (Vu, ,uA'F,(;F V) =\ (uf, VF) + 2N (uibug, vr) + Ai (%27 7}7,6F) . (36)
As 6u; € HY(Q) it holds that
(Vui, pAp - Vou;) = A (ui, 0uiyr) - (37)
Inserting (37) and the normalizing condition (u?,vr) =1 into (36) yields

)\Q(Q)(&I) = (VUuHA/F,aF : VUi) - A (U?,V%,(SF) . (38)
It can be seen that the computation of du; is not necessary in order to compute A,. Expression (38)
may be rewritten as a boundary integral, but in order to do so we need more regularity of the
involved functions in order to justify partial integration. This will be shown in the next subsection.

2.7 Higher regularity of the optimal control

Our proof of the higher regularity of the optimal control exploits some first order optimality condi-
tions, we therefore have to make the following assumption.

Assumption 2.31. We assume that the optimal control § under consideration is an element of the
interior of Q2.

Due to Assumption 2.31, the first order optimality condition reads as
(@) (dg) =0 Véq € Q, (39)
which is
Xy (@)(6) — No(@) (60) + 0 (@ 00) gra gy = O vég € Q. (40)
Lemma 2.32. For every q € Q* there ewists p; = p;(q) € H'(I) such that

Xi(@)(69) = (pi, 00) 1 1) Voq € Q.
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Proof. Let F = F(q), ¢ € Q and 6F = F'(q)(d¢q). With (38) it holds that

Xi(@)(8q) = (Vus, pAisp - Vug) — Ni (uf, Ve sr)
= (Vui, pApsp - V“i)ﬂo + (Vui, A s - v“")m (41)

- )\z (uzzafy}:',ﬁF)Qo B )\Z (u?’fY%"‘;F)Ql ’

Using Lemma 2.23 and the normalizing condition for w; we can estimate the right hand side
within (41) via

2 2 —
(u?a'y%‘ﬁF)Qj < luillzagq,) H’y%‘,&FHLQ(Qj) < clluillgyq,) |ye DTy - 5FHH1(QJ.)
2
< clluillgy ) 10F 1oy < €ill0F | o

< ¢ 10/l gy -

and in a similar way it holds that

(Vui, pAf s - VUi)Qj < e luillfyra HA/F,cSFHL2(Q].)

<c ||5QHH1(1) )
for j € {0,1}. As dq — X(q)(0q) is linear, the existence of such a p; follows with the Riesz
representation theorem. ]
Lemma 2.33. Let A € H2, (I) and ¢ € H}, (I) such that
A @)z = (@) Vi € Cper(1)- (42)
Then it holds that \ € Hg’er(l).
Proof. The lemma follows with the definition of weak derivatives and partial integration. O

Lemma 2.34. The optimal control § € Q*® has the higher reqularity g € H3(I).
Proof. This lemma follows from (40), Lemma 2.32 and Lemma 2.33. O

Lemma 2.35. For F = F(q) and j € {0,1} it holds that F‘Q € W2(Q,).
J

Proof. Asq € H3(I) due to Lemma 2.34, [19], Theorem 9.1.20 yields F| ay € HT2(Qp) «— W22(Qyp).
The regularity of F' on €2 follows with [10], Remark 1, and [15, 41]. O

In order to derive higher regularity of @; = u;(q) we will need some regularity results concerning
spaces with bounded mean oscillation.

Definition 2.36 (Campanato-John-Nirenberg space). Let Q@ C R"™ be a bounded domain with
diameter d and let ¢: [0,d] — R be a nonnegativ continuous function satisfying r < ct(r) for some
positive constant c. A function f € L?(f2) is said to be an element of BMOy(f), the space of
bounded mean oscillation, if

zoES
0<p<d

1 2 1/2
|f|BMOw(Q) = sup WP) </Q(a:0,p) ‘f(a:) - (f)Q(xo,p)’ da:) < 00,
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where Q(x0, p) = QN Q,(xo) with Q,(xo) being a cube with center z¢, sides parallel to the axis and
side length equal to 2p. Furthermore,

1
(o =15 /Dfdwn

shall denote the mean value of f on D.

In what follows we will focus on the case where ¥(p) = p® with « > 0 sufficiently small. As
mentioned in [43], the resulting spaces are called Campanato spaces. Furthermore, in that case it
even holds that

BMOy(©) = C™*(Q),

cf. [39], Example 1.

Definition 2.37 (Domains of class C*BMOv), Let Q € R" be a bounded domain. We say that
00 € CFBMOy for | € N if for any x¢ € 0N there exists a C*¥~Ll-transformation 7 and a neighbor-
hood N, of zy such that

T : Ny NQ — B (0),
where Bj(0) is the unit ball with positive last coordinate, is one to one and onto with

T (N NOQ) = B (0) N {z, = 0}.

Moreover, the norms of 7, 7! and their derivatives DT, D¥ (7'*1) are uniformly bounded in L
and BMOy;, for |v| < k.

From [12], Remark 3.2, it follows that domains which are locally the epigraph of a C*® function
for k > 1 are of class C*“. Furthermore, from the same source, Definition 3.1, it follows that if O
is a domain of class C*<, then it is also in C*BMOu for ¢(p) = p°.

Theorem 2.38. Let 2 C R" be a bounded domain containing L € N disjoint subdomains Q,, CC Q
for 1 < m < L, and let Q41 = Q\ Ufn:l Q. We consider weak solutions u € H*(Q) to the
equation

—div(A - Vu) = —div(f), (43)

where the matriz A is uniformly elliptic. Suppose that O, € CF+LBMOy wyiph o> 1,

A‘Qm ) f|Q

m

e CF=11(Q,,) and D’“A‘Q ,D’“f‘ﬂ € BMO ().

Then for any Q' CC Q it holds for the solution u to (43) that

ulg, € C*(Qm N Q') and DFu € BMOy, (' N Qo).

Proof. This theorem can be found in [43]|, Theorem 2.3, where it is assumed that the function
fulfills some additional assumptions. In [25], Remark 2.2, it is shown that these assumptions hold
true for ¢(p) = p® with o > 0 sufficiently small. O]

Lemma 2.39. Fori €N, u; = u;(q) and j € {0,1} it holds that HZ'\Q], € W2 (Q;).
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Proof. With Theorem 2.38 it follows that u; € C%%(Qg) — W?>*(Qy). Now let F = F(g) and
Ui g = U; © Tgl be an eigenfunction on the untransformed domain. As

Uil , € H*75(Qq1) = L¥(Q1)

as shown in the proof of Lemma 2.9, it follows with [18], Theorem 2.4.2.5 and Section 5.2 that
Ug,ilg, , € WHP(Q41) = CH (1)

for all p < oo and o =1—2/p > 0. With [10], Remark 1, and [15, 41] it now follows that
Tuilg, | € W(Q0).

Due to the regularity of T% on 4, cf. Lemma 2.35, it follows that
-1 _ = —1 2,
Uilg, = Ugy 0T o € W(Qy). O

2.7.1 A representation of \' as a boundary integral

Due to the higher regularity of the optimal eigenfunctions @;, equation (17) also holds in strong form
(at least on each of the subdomains Qg and €;), therefore it is possible to rewrite expression (38)
from above, the goal is to compute X;(G)((Sq) as a boundary integral over I'g. The fact that the
derivative of the reduced cost functional can be represented as a boundary integral is known as the
Hadamard-Zolesio theorem and can be found in [38], Theorem 2.27. Let 6F = F'(q)(dq), using the
representation obtained in Lemma 2.28 one can show that

(V1 1py g0 V1) = 2 (div (pAp - Vi) , Vil - DTS -0F)
’ 0

+2 (div(uAg - V@), Val - DTS - oF )

_d/
To
‘)

o

where @; — and @, 4 shall denote @; approaching I'g from the inside of Qy and 5 respectively, cf. (3),
and the same for F'_ and F;. It holds that

Q1

2
DT Vg | 6FT DT - nds

)

(44)

2
DT V|, 6FT - DTZT - nds,

2 (div(pAg - V), Val - DT 5F)Q — —2X; (g, V! - DT - 0F )
J

Q;
_ (45)
= -\ (V (@?) ﬁFDTf_I . 5F)Qv ;

J

for j € {0,1}, and

X (@Y ) = ~Ni (v (v DT 6F)>Q ~Xi (@ div(vpDTR - 0F)) . (46)

0 971
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Summing up (45) and (46) yields

1

> < <dlv pAp - V), Va) - DT '5F>Qj — A <u?’7%75F)Qj>

Jj=

=\ d1v<u Y5 T ! 5F dx — / WQDTZ1 0F) dx
——)\i/ u’yF oFT . DT T nds—i—)\/ u7F 5FT'DT§f-nds
To
SV T T -T
_)‘i/ru%?‘SF -DTZ" - nds,
where the last term vanishes due to u; € HJ (). Inserting (47) back into (44) finally yields
- 2 _
Xi(@)(0q) = / ( ]DT—T Vi, \ + Aiu?> vp_ 0FT-DT." - nds
(48)

N T -7
s ‘DTF;T.WH‘ + X ) 97, OFT - DTET - nds.

Remark 2.40. As 6F|p, = dgn, it is not necessary to compute JF' in order to compute X;(Q)((Fq)
via (48).

Lemma 2.41. The optimal control § € Q*! has the higher reqularity g € H*(I).

Proof. As §F|p = dgn and using the higher regularity of @; and F as shown in Lemma 2.39 and
Lemma 2.35, it follows similar to the proof of Lemma 2.32 that there exists p; = p;(q) € L*(I) with

Xi(@)(0q) = (pi,69) 121 Véq € Q,

and this lemma follows similar to Lemma 2.34. O

2.8 The second derivative

Within this subsection we are going to compute the second derivative of u; = u;(q) and A\; = X\i(q)
with respect to perturbations in ¢, which exist due to Theorem 2.29.

Taking the second derivative of the first equation of (17) with respect to ¢ yields the equation for
dtu; = ull(q)(dq, Tq),

(VoTui, pAp - Vo) = X (07w, vyF) + N 540 (Wi, v7F) + N 50 (Tus, vy7) + N s, (ui, VYprr)
+ X g Ous, vyp) + N g (ui VYR 1)
+ N\ (5ui, v*y}:jTF) + N (Tui; ’U’Y}?,(SF) + A (Uia U’YZ“,(SF,TF) (49)
— (Véug, pAp g - Vv) — (VTug, pApsp - Vo)
— (Vui, pdlpspep - Vo) Yo € Hy(9),

where we used the abbreviations \; = A\i(q), A} 5, = Ni(9)(09), A; -, = N(@)(70), ] 5,4 = N (0)(0q, T9),

du; = uf(q)(dq) and Tu; = u}(q)(7q). Note that (49) can again be regarded as a “perturbed” eigen-
function equation.
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Using u; itself as a test function within (17) and then taking the second derivative with respect
to q yields

2 (Vrus, pAp - Vou;) + 2 (Vui, ,uA’ETF . V(Sui) + 2 (Vuy, pAp - VoTu;)
+ 2 (Vug, pApsp - Vrug) + (Vug, pAfsp o p - V)
= N 5q,rq (U 7F) + 27, 54 (wis Tuive) + N s (47, Vrp) + 20 g (i, Suiyr) (50)
+ 2 (6ui, Tuiyp) + 2 (i, 6Tuye) + 20 (i, 0wy p) + N rg (U3 Vrsr)
+ 2 (i, Tuypsr) + N (U, Vesprr) -
Using 7u; as a test function in (34), and vice versa for du; in the equation for Tu;, yields
(V7ug, pAp - Vouy) + (Vui, pAp s - VTui) = X 5, (ui, Tuiyr)
+ i (Tug, 6uiyr) + Ni (wi, TwiYpsp) |
(Vou;, pAp - V1u;) + (Vui, MA;«“,TF : Véui) = )\;’Tq (g, Ouiyr)
+ i (ui, Tuivr) + Ni (wi, Suiyp o) -
The second derivative of the normalizing condition within (17) with respect to ¢ reads as
2 (6us, Tuivp) + 2 (g, 0Tuye) + 2 (i, uiyp o p) + 2 (wi Tuivpsr) + (4, Visrer) =0. (53)
Now subtracting (51) and (52) twice from (50) finally yields
;f(;qﬁq = (Vui, ,u,A’Ifﬂ’(;FJF . Vui) —2(VTui, nAp - Vou;)

- A;,éq (u7,27 ’7}7,5F) - )‘;,Tq (u127 7}7,7-F) + 2\ (5ul7 Tui’yF) = A (u227 ’7%,’,6F,TF) :

3 Stability estimates for eigenvalues and eigenfunctions

In order to estimate the error between eigenfunctions and their discretized counterparts, the appli-
cation of the “standard” techniques is not possible, this is due to the fact that eigenfunctions appear
on the left-, as well as on the right hand side of the corresponding equation, cf. (17). Hence we have
to deal with different concepts which will be presented in this section.

The results of Subsection 3.1 will be needed to estimate terms like |lu;(q) — ui(p)| for ¢, p € Q*4,
whereas the results of Subsection 3.2 will be needed to estimate terms like ||u}(q)(dq) — u;(p)(dq)||
for ¢,p € Q* and dq € Q.

3.1 Gap between operators

If u is an eigenfunction of a linear partial differential operator L, then for arbitrary ¢ € R\ {0}, cu
is also an eigenfunction. Due to this fact it is not clear how to estimate the difference ||ug,; — ug ||
between the i-th eigenfunctions u;; and ug; corresponding to different differential operators L and
Lo, for even normalized eigenfunctions are only unique up to their sign. In order to deal with this
difficulty we will have a closer look at the concept of the so-called gap between operators. What
follows is mainly based on [6] and [9].

Definition 3.1. Let M and N be linear subspaces of a normed space Z. The gap from M to N is
defined via

0(M,N)= sup dist(u,N),

ueM
llull z=1
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where for u € Z we have
dist(u, N) = Ulélj{fHu —vll,.

Furthermore, the gap between M and N is defined via

~

(M, N) = max {5(M, N), 5(N, M)} .

Lemma 3.2. Let M and N be linear subspaces of a Hilbert space Z, and let P and Q) be the
orthogonal projections onto the closures of M and N, respectively. Then it holds that

6(M,N) = [[(1-Q)P|z,

6(M,N) =[P =@l
Proof. This lemma can be found in |9|, Theorem 2.2. O

Definition 3.3. Let T: D(T) C X — Y be a linear operator whose domain D(T) is a subset of
the Hilbert space X and maps onto the Hilbert space Y. The graph G of the operator T is defined
as

G(T) = { (u, Tw)| u € D(T)}.
Definition 3.4. Let X and Y be Hilbert spaces and let
S:D(S)Cc X =Y,
T:D(T)C X =Y,
be linear operators mapping subsets of X onto Y. The gap from S to T is defined by
6(5,T) = 6(G(S), G(T)),
whereas the gap between S and T is defined by

(S, T) = 6(G(S), G(T)).
More explicitly,
S51)= s it (ol s ro2)"”. (53)
lull %+ Sulls =1
Lemma 3.5. Let X be a Hilbert space and let S and T be selfadjoint on X. Then it holds that
5(S,T) = 6(T,S) = 5(S,T).
Proof. This lemma can be found in [9], Corollary 2.6. O

Theorem 3.6. Let Q C R™ be a bounded open set, let T be a selfadjoint operator over L*(Q)
with compact resolvent bounded from below and let © € N such that the i-th eigenvalue \; of T s
simple. Then there exist cy,00 > 0 such that for each selfadjoint operator S over L?(2) whose
compact resolvent is bounded from below, for which 6(S,T) < dy and normalized eigenfunction
u; corresponding to the i-th eigenvalue i of S, there exists a normalized eigenfunction u; of T,
corresponding to A\;, such that

(i — Z~LZ‘HL2(Q) < cpd(S,T).
Proof. This theorem can be found in [9], Theorem 2.14. ]
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3.2 Stability estimates for affine eigenvectors

In what follows let X be a Hilbert space over R with scalar product (-, )y, norm [Ju|| y = /(u, u) y,
and let L be a compact linear operator over X. The ordered eigenvalues of L shall be denoted with
(I/,‘)Z-GN, where lim; o, 1; = 0. The eigenspace corresponding to v; will be denoted with N;(L), its
orthogonal complement N;(L)* has to be understood with respect to the X-scalar product. From
Theorem 2.26 it follows that for g € X and ¢ € N there exists a solution v € X to

Lu=rju+g, (56)

if and only if g € N;(L)*. This solution, if it exists, is not unique. If u solves (56), so does u + cu;
for all u; € N;(L) and ¢ € R. In what follows we are going to prove that there exists ¢; > 0 such
that for all g € N;(L)* there exists a solution to (56) with [|ulyx < ¢; ||lg]lx-

Lemma 3.7. The subspace N;(L)* is closed in X.

Proof. Using the spectral theorem it follows that N;(L) C X is of finite dimension and closed.
From [1], Lemma 7.17, it follows that X = N;(L) @ N;(L)*. As N;(L) is closed, there exists a
continuous orthogonal projection P onto N;(L) with N;(L)* = N(P), and this lemma follows with
the closed complement theorem, cf. [1], Theorem 7.15. O

Lemma 3.8. Let g € N;(L): and let uy be a solution to (56). Then u, minimizes the X-norm
among all solutions of (56) if and only if uy € N;(L)*.

Proof. Let ug be a solution to (56). Then u, has minimal X-norm if and only if for all u; € N;(L),
the solution to
. 2
luif|y 57
argmin [lug + tuix (57)

is t = 0. The proof now follows by taking the first and second derivative of the squared norm
within (57) with respect to t. O

Lemma 3.9. Let g € N;(L)*. Then there exists ezactly one solution u, to (56) that minimizes the
X -norm among all solutions to (56).

Proof. Let ug1 and ug 2 be two solutions to (56) with minimal X-norm, and let ug = ug1 — ug2.
With Lemma 3.8 it follows that u, € N;(L)*. As L is linear we get Lu, = v;u,, hence u, € N;(L).
It follows that uy € N;(L) N N;(L)* = {0}, and the result follows. O

Corollary 3.10. Let g € N;(L)™*, let ug be an arbitrary solution to (56) and let {u}, ..., ul'} be
an orthogonal basis for N;(L). Then the solution g of (56) with minimal X-norm is given via

N ( i
) ug )«
Ug = Ug — g s .
i=1 HUVHX

Proof. By definition of u, it follows that (g, ul,), = 0for all i € {1,..., N} and the result follows
with Lemma 3.8. O

Definition 3.11. For i € Nlet T = T;: N;(L)* € X — X, Tg = u, such that u, is a solution
to (56) corresponding to g with minimal X-norm, i.e. for all solutions @, to (56) with ug # a4 it
holds that [Jug|| v < |tg]| -
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Remark 3.12. The fact that the operator T from Definition 3.11 is well-defined follows with Thorem 2.26
and Lemma 3.9.

Lemma 3.13. The operator T from Definition 3.11 is linear.

Proof. Let g,h € N;(L)*, let u, and uy be arbitrary solutions to the corresponding perturbed
eigenvalue equations (56), let {ul,...,u’’} be an orthogonal basis for N;(L) and let o € R. As

L(augy) = aLuy = a(viug + g) = vi (aug) + ag,
it follows with Corollary 3.10 that

a (O‘“muu)x al “gv :'/X
T(ag):aug—zii ul, = Z u, | = aT(g).

i=1 HuuHX i=1 Hu HX

Furthermore,
L(ug 4+ up) = Lug + Lup, = (viug + g) + (Viup + h) = v; (ug +up) + (g + h),

and again we use Corollary 3.10 to get

Z ((ug +up) v“zi/)xuz‘

14

— i, | %

_ (u _ivj (ugvui)xuz') n <u _ﬁ: (un,ui) z)
= | % 2 W h 2
‘ i=1

Jud I
=T(g) +T(h). O

Lemma 3.14. Let T be as in Definition 3.11 and let G(T) = {(g9,Tg)| g € Ni(L)*} C (X x X)
be the graph of T. Then G(T) is closed.

Proof. Let (gn)peny C Ni(L)*, up = T(gn) with g, — ¢ and u, — u in X for some elements
g,u € X. We have to show that ¢ € N;(L)* and u = Tg. From Lemma 3.8 it follows that
(un)peny C Ni(L)*. As N;(L)* is closed due to Lemma 3.7 it follows that u,g € N;(L)*. As L is
compact it follows that

Lu < Luy, = vjuy + gn — viu+ g,

hence u =Tyg. O
Lemma 3.15. The operator T from Definition 3.11 is bounded.

Proof. As T is a linear operator with closed graph due to Lemma 3.13 and Lemma 3.14, this lemma
follows with the closed graph theorem, cf. [1], Theorem 5.9. O

Corollary 3.16. There exists c; > 0, independent of g € N;(L)*, such that

ITgllx < cillglx

for all g € N;(L)*.
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4 Discretization

Within this section we are going to discretize problem (21) with respect to the control, the state
and the transformation.
4.1 Discretization of the control

We split the interval I = (0,27) into N € N subintervals I; for j € {0,..., N — 1} with maximal
length o, and introduce the space of (admissible) discretized controls as

Qo = {a € Ql auls, € PX(U) Vi € {0,....N = 1}},

Q5 =QoNQ™,
where P3(I) shall denote the set of all polynomials of degree at most 3 over the interval I. The
first partially discretized problem now reads as

. . (6%
min j(g,) = M(d0) = A2(g0) + 5 llaol3r2(r) - (58)

o €EQY

subject to (12) and

b(F) (ui,u;) =1,
where i € {1,2} and ); is the i-th eigenvalue given via (6).

{ a(F)(ui,v) = A b(F)(us,v) Vo € HA(Q),

4.2 Discretization of the state

For h > 0 let Qg C Qo be a polygonal approximation of {2y where we assume that all the vertices
of I'g.p, = 0Q p, lie on I'y. In addition, let Qq p, = Q\m D )1 be a polygonal approximation of €2;.
Let {7}, be a family of admissible triangulations of €2 using triangles with maximal diameter h,
fulfilling the usual regularity assumptions like shape regularity and quasiuniformity. In addition we
assume that each member of this family can be represented as the union of a triangulation of €24,
with a triangulation of €2y j,. We define the usual linear finite elements,

Vi, = {Uh S Hl(Q)‘ 'Uh’Kh S Pl(Kh) VK € ﬂ'h} ,
Vio = Vi N H(Q),
where PL(K}) is the set of all polynomials of degree at most 1 over K. Now let

pn =1+ (d—=1)xq,,,
ah(F)(ua U) = (vuv MhAF : V’U) ) (60)
with xq,, being the characteristic function of Qg p. In addition, let Ain(q) be the i-th eigenvalue

with respect to the bilinear forms ap(F)(-,-) and b(F)(+,-) which can be computed via (6). The
second partially discretized problem, where we additionally discretize the state, now reads as

(59)

. . (6]
o In(de) = Ainldo) = Aoplasr) + 5 1901 772(r) (61)

subject to (12) and
{ an(F)(Wih, vn) = Xip b(F)(win, vn) Von € Vi,
b(F)(wip,uip) =1,
with i € {1,2}.
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4.3 Discretization of the transformation

As in Subsection 4.2, let €y C €29 be a polygonal approximation to €g, let I'gj = 0€Qq, let
Q11 = 2\ Qo D Q1 be a polygonal approximation to Q; and let {m;},., be a family of admissible
triangulations of  using triangles with maximal diameter k, and fulfilling the usual regularity
assumptions like shape regularity and quasiuniformity. Again we assume that every triangulation
T can be considered as the union of a triangulation of €1g; with a triangulation of €y ;. Similar
to (59) let

Vi = {Uk € H'(Q)| vily, € P (Ky) VK € wk}. (62)

The transformation is now being discretized as follows.

—AFL =0 in Qj’k, Jje {0, 1},

F,=0 on I (63)

Fk = Hk (qn) on FO,k = 8907/{,
where Ay, is to be interpreted as the discretized weak Laplacian and IIj, first maps I'g onto I'g , and
then projects these values into the set of boundary values of Vj. For a more detailled investigation
into that topic we refer to [8].

If Fy, = F(q) denotes the discrete transformation corresponding to the control ¢, then the fully

discretized i-th eigenvalue \; 1 is given via (6) using the forms ap(F%)(:,-) and b(F})(-,-). Finally,
the fully discretized problem, where also the transformation is being discretized, reads as

. . (6]
min i (d0) = Aak(d0) = Aonkldo) + 5 ol » (64)
go€Q2d 2

subject to (63) and
an(F)(win, vn) = Nipk b(Fi) (Wi, vn) Yop € Vi,
b(Fy)(wip, uip) =1,

where again i € {1, 2}.
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