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A TRANSFORMATION APPROACH IN SHAPE OPTIMIZATION:

EXISTENCE AND REGULARITY RESULTS

Bernhard Kiniger1

Abstract. In this paper we consider a model shape optimization problem. The state variable solves

an elliptic equation on a star-shaped domain where the radius is given via a control function. First

we reformulate the problem on a fixed reference domain, where we put a focus on the regularity which

is needed to ensure the existence of an optimal solution. Second, we introduce the Lagrangian and

use it to show that the optimal solution possesses a higher regularity, which allows for the explicit

computation of the derivative of the reduced cost functional as a boundary integral. We finish the

paper with some second order optimality conditions.
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Introduction

In this paper we consider the following shape optimization problem governed by a linear elliptic equation:

min J̃(q, u) =
1

2
‖u− uqd‖

2

L2(Ωq)
+
α

2
‖q‖

2
H2((0,2π)) ,

subject to
{
−∆u+ u = fq in Ωq,

u = 0 on Γq = ∂Ωq,

where the domain Ωq is star-shaped with respect to the origin with radius given by the control q, see Figure 1.
The data functions uqd and fq are restrictions of functions defined on a sufficiently large (holding-all) domain

Ω̂. The problem is analyzed by using a transformation Tq onto a reference domain Ω0. The precise formulation
including a functional analytic setting is presented in Section 1.

Similar shape optimization problems, where the unknown part of the boundary is parametrized as the graph
of a function, are considered in various publications, see e.g., [17, 18, 27, 35]. The problem formulation in
these publications involves a bound on an appropriate norm of q. Our formulation utilizes a Tikhonov-type
term ‖q‖

2
H2((0,2π)) instead. In [26] the authors consider a similar approach with a simpler domain, where the

transformation Tq is given explicitly. Generally speaking, our approach leads to a problem on a fixed domain
where the coefficients of the differential operator are variable. In a more abstract setting, such types of problems
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Figure 1. The domain Ωq

have already been considered in [8]. Concerning the existence of optimal shapes in a general setting, we would
like to refer to [6, 19].

The main contribution of this paper is the implementation of the standard control theoretic approach for
optimization with partial differential equations as presented in [37] and the references cited therein. In the
context of shape optimization, calculus is often carried out formally, the needed regularity of the domain and
the involved functions is often left unclear or has to be kind of Ck, whereas within the theory of optimal
control one mainly has a look at regularity results with respect to Sobolev Spaces. Within this paper we state
the exact requirements regarding the Sobolev regularity that ensure that the transformation actually exists, is
bijective and that the derivative of the reduced cost functional can be computed via a boundary integral. Our
approach also aims at providing the theoretical background for a numerical implementation and related error
estimates. For this very reason, we are using a transformation approach, which avoids remeshing, is therefore
easier to implement and allows for the comparison of states corresponding to different controls. Choosing the
H2-norm for regularization is due to computational aspects, our approach can also be carried out using the
weaker H3/2+ε-norm instead. We would also like to mention that our approach can also be carried out in three
dimensions. In that case one has to use the H2+ε-norm for regularization in order to ensure that the domain
Ωq is Lipschitz.

In papers which follow a similar approach, cf. [5, 13, 21, 22], the existence of such a transformation with the
desired regularity is very often just assumed. Within the setting of the Level set method, as considered in [1,20]
one defines the domain Ωq as the zero level set of a function φ, which evolves in time according to a descent
direction of the cost functional. Again, the needed regularity is often just assumed to hold.

The paper is organized as follows: In the next section we discuss a precise formulation of the shape optimiza-
tion problem under consideration, reformulate the problem using a transformation to a reference domain Ω0 and
show the existence of at least one globally optimal solution applying standard techniques. In Section 2 we first
show the differentiability of the control-to-state operator and the reduced cost functional. In order to introduce
the Lagrangian, we first present the concept of the very weak formulation. Using the first-order optimality
conditions we show higher regularity of the optimal control q, i.e. q ∈ H9/2((0, 2π)) and the corresponding
state, which allows for the definition of the derivative as a boundary integral. Similar ideas have already been
used in [7, 29, 30]. Due to the fact that the considered optimization problem is not convex in general, we also
deal with second order optimality conditions, where we adapt the technique from [10].



TITLE WILL BE SET BY THE PUBLISHER 3

Throughout the paper, Id shall denote the identity function, whereas I shall denote the identity matrix.
With c and ci we will denote generic constants which are — if not stated otherwise — independent of the other
variables and have different values on different appearances. With ε we will denote a positive real number
which can be made arbitrarily small. For 1 ≤ p ≤ ∞, k, n ∈ N and Ω ⊂ R

n let Lp(Ω) and Wk,p(Ω) denote the

usual Lebesgue spaces with norm ‖·‖Wk,p(Ω) and seminorm |·|Wk,p(Ω). It is well known that on Wk,p
0 (Ω), the

set of all functions in Wk,p(Ω) whose derivatives up to order k − 1 vanish on the boundary in the trace sense,
‖·‖Wk,p

0 (Ω) = |·|Wk,p(Ω) is equivalent to ‖·‖Wk,p(Ω). Furthermore, we set Hk(Ω) = Wk,2(Ω). If s /∈ N, s = k + σ

with k = ⌊s⌋ ∈ N0, σ ∈ (0, 1) and p ∈ (1,∞), let Ws,p(Ω) be the space of all functions u ∈ Wk,p(Ω) with

‖u‖
p
Ws,p(Ω) = ‖u‖

p
Wk,p(Ω) + |u|

p
Ws,p(Ω) <∞,

where

|u|
p
Ws,p(Ω) =

∑

|α|=k

(∫

Ω

∫

Ω

|∂αu(x)− ∂αu(y)|
p

|x− y|
n+σp dx dy

)

.

If V is a Banach space, its dual will be denoted with V ′. For any Hilbert space X, (·, ·)X shall denote the
corresponding scalar product. As in most cases we will be dealing with the Hilbert space L2, let (·, ·)Ω denote
the L2-scalar product over the domain Ω, whereas 〈·, ·〉Γ shall denote the L2-scalar product over the boundary
Γ. If the domain is clear, we skip the subindices. For k ∈ N0 and α ∈ (0, 1], let Ck,α(Ω) be the set of all k-times
continuously differentiable functions whose derivatives of order k are Hölder continuous with exponent α.

1. Optimization problem

1.1. Problem formulation

In this section we first describe the shape optimization problem under consideration. The control variable q
is an element of the control space Q = H2

per(I) with I = (0, 2π) and

H2
per(I) = C∞

per(I)
‖·‖H2(I) , (1)

equipped with the standard H2-norm, where

C∞
per(I) =

{

v ∈ C∞(I)| v(n)(0) = v(n)(2π) ∀n ∈ N0

}

.

The control q characterizes the domain Ωq through

Ωq =
{

(x, y) ∈ R
2| r < 1 + q(ϕ), r =

√

x2 + y2, ϕ = arg (x+ iy)
}

.

To exclude a possible degeneracy of the domain Ωq, we fix ε > 0 and define the set

Q
ad

= {q ∈ Q| q(ϕ) ≥ −1 + ε for all ϕ ∈ I} . (2)

Because of H2(I) →֒ C1,1/2(I), (2) is well-defined. For each q ∈ Q
ad

the domain Ωq is a Lipschitz domain, which
allows for the definition of the state variable u ∈ H1

0(Ωq) being the weak solution of the state equation

{
−∆u+ u = fq in Ωq,

u = 0 on Γq = ∂Ωq.
(3)
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The shape optimization problem is then given as:

Minimize J̃(q, u) =
1

2
‖u− uqd‖

2

L2(Ωq)
+
α

2
‖q‖

2
H2(I) , q ∈ Q

ad
, u ∈ H1

0(Ωq), (4)

subject to (3), where α > 0 is fixed.

We define the solution operator S̃, which assigns to each q ∈ Q
ad

the unique solution S̃(q) = ũ(q) of (3).

This allows to introduce the reduced cost functional j : Q
ad

→ R by

j(q) = J̃(q, S̃(q)).

In order to prove the existence of an optimal solution to (4), we need to bound Q
ad

in H2(I).

Lemma 1.1. There exists C̃ = C̃(α) > 0 such that the search for a solution to (4) can be restricted to the set

Qad =
{

q ∈ Q
ad
∣
∣
∣ ‖q‖H2(I) ≤ C̃

}

. (5)

Furthermore it holds that limα→∞ C̃(α) = 0.

Proof. We set q0 = 0 ∈ Q
ad
. A necessary condition for q ∈ Q

ad
to be a solution to (4) is

j(q) ≤ j(q0),

which reads as

1

2

∥
∥
∥S̃(q)− uqd

∥
∥
∥

2

L2(Ωq)
+
α

2
‖q‖

2
H2(I) ≤ j(q0),

or equivalently

‖q‖
2
H2(I) ≤

2

α

(

j(q0)−
1

2

∥
∥
∥S̃(q)− uqd

∥
∥
∥

2

L2(Ωq)

)

≤
2

α
j(q0).

Setting C̃(α) =
√

2
αj(q0) finishes the proof. �

Due to the boundedness of Qad in C1(I) it follows that there exists a bounded so-called holding-all domain

Ω̂, such that Ωq ⊂ Ω̂ for all q ∈ Qad. Throughout we assume for the data

uqd = ud|Ωq
, fq = f |Ωq

, with ud, f ∈ C2,1(Ω̂), (6)

we will therefore just write f and ud instead of fq and uqd.
The rest of this paper is mainly devoted to show the following theorems concerning the existence of an optimal

solution and the improved regularity of every optimal solution. The first theorem is proven in Subsection 1.3,
the second theorem is proven in Subsection 2.4.

Theorem 1.2. If the constant C̃ from (5) is chosen sufficiently small in the sense of Assumption 1.16, then
the problem (4) has a global solution.

Theorem 1.3. Let q be an optimal solution to problem (4) which lies in the interior of Qad. Then it holds that
q ∈ H9/2(I).
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1.2. Transformation of the problem

The aim of the following subsection is to reformulate the original problem (4) on a fixed reference domain
Ω0. This method is called the method of mapping, a short overview can be found in [12, 36]. We define Ω0 to
be the unit circle and then compute a transformation Tq such that the domain Ωq is just the image of Ω0 under
that transformation, Ωq = Tq(Ω0). All the results remain true if Ω0 is replaced by any other sufficiently smooth
domain sufficiently close to Ωq in the sense of Assumption 1.16. In order to compute Tq it is often necessary to
solve an additional partial differential equation like the equations of linear elasticity or the Laplace equation.
Within this paper we will focus on the Laplace equation. Our results remain true as long as Theorem 1.5 holds
for the chosen equation.

If one worked locally near the optimal shape instead of transforming the whole domain, then one would have
to remesh the working domain every step, which is costly. As already mentioned, we bypass this remeshing at
the cost of two additional Laplace equations. The reason why we choose this approach is the fact that it allows
for comparing states corresponding to different shapes, which is important in the context of error estimation.
Furthermore, from a practical point of view, adding some Laplace equations to the numerical solver is often less
complicated than including a remeshing step.

Let F = (F1, F2)
T be the weak solution of the following boundary value problem.

{
−∆F = 0 in Ω0,

F = q n on Γ0,
(7)

where n shall denote the outer unit normal to Γ0 and the Laplacian shall act on each component separately. If
F = F (q) solves (7) for a given q ∈ Q, then define Tq = TF (q) = Id+F (q). This transformation will now be
used to reformulate the original problem (4) on Ω0. In order to do so, we will need regularity results for elliptic
partial differential equations of various types. Here we state them all at once.

Theorem 1.4. Let Ω ⊂ R
2 be bounded with Lipschitz boundary Γ, f ∈ H−1(Ω), and let the matrix A be

symmetric and uniformly elliptic with coefficients ai,j ∈ L∞(Ω). Furthermore, let u ∈ H1
0(Ω) be the weak

solution of
{
− div(A · ∇u) = f in Ω,

u = 0 on Γ.

(1) If 1/2 ≥ t > s > 0 and the coefficients of A belong to C0,t(Ω), then for all f ∈ H−1+s(Ω) it holds
u ∈ H1+s

0 (Ω) and there exists cs > 0 with ‖u‖H1+s(Ω) ≤ cs ‖f‖H−1+s(Ω).

(2) If the coefficients of A are Lipschitz and f ∈ H−1/2+ε(Ω), then u ∈ H3/2(Ω). In addition, if f ∈ L2(Ω),
then there exists c > 0 with ‖u‖H3/2(Ω) ≤ c ‖f‖L2(Ω).

(3) If Ω is convex, the coefficients of A are Lipschitz and f ∈ L2(Ω), then u ∈ H2(Ω) and there exists c > 0,
depending only on the diameter of Ω, with ‖u‖H2(Ω) ≤ c ‖f‖L2(Ω).

(4) If Ω is sufficiently smooth, the coefficients of A are Lipschitz and f ∈ Lp(Ω) for a p < ∞ then it holds
that u ∈ W2,p(Ω) and there exists cp > 0, depending on p and the Lipschitz-constant of A, such that
‖u‖W2,p(Ω) ≤ cp ‖f‖Lp(Ω).

Proof. Part (1) can be found in [33], (2) can be found in [23,24,34], part (3) is proven in [14,25] and the proof
of the last part can be found in [14]. �

The following regularity result can be found in [16], Theorem 9.1.20.

Theorem 1.5. Let Ω ⊂ R
2 be a bounded and open domain with C∞-boundary Γ. Assume s ≥ 0, s 6= 1/2 and

g ∈ Hs+1/2(Γ). Then the weak solution u of

{
−∆u = 0 in Ω,

u = g on Γ,
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belongs to Hs+1(Ω), and there holds the estimate ‖u‖Hs+1(Ω) ≤ cs ‖g‖Hs+1/2(Γ).

Furthermore, we will also need the Trace Theorem several times. The following version can be found in [14],
Theorem 1.5.1.2.

Theorem 1.6. Let Ω be a bounded and open subset of R2 with a Ck,1 boundary Γ for k ≥ 0. Let 1 < p < ∞
and assume that s− 1/p is not an integer, s ≤ k + 1, s− 1/p = l + σ, 0 < σ < 1 and l is a nonnegativ integer.
Then the mapping

u 7→

{

u|Γ ,
∂u

∂n

∣
∣
∣
∣
Γ

, . . . ,
∂lu

∂nl

∣
∣
∣
∣
Γ

}

,

which is defined for u ∈ Ck,1(Ω), has a unique continuous extension as an operator from

Ws,p(Ω) onto

l∏

j=0

Ws−j−1/p,p(Γ).

This operator has a continuous right inverse which does not depend on p.

Corollary 1.7. For q ∈ Qad, the solution u ∈ H1
0(Ωq) defined via (3) possesses the higher regularity u ∈

H3/2(Ωq).

Proof. This corollary follows from Theorem 1.4, part (2). �

Corollary 1.8. For q ∈ Q it holds that F = F (q) as the weak solution to (7) possesses the regularity F ∈
(
H5/2(Ω0)

)2
→֒

(
C1,1/2(Ω0)

)2
and ‖F‖(Hs+1/2(Ω0))

2 ≤ cs ‖q‖Hs(I) for s > 1.

Proof. As the outer unit normal n of the unit circle is uniformly bounded in
(
C2(Γ0)

)2
, we get

‖q n‖(H2(Γ0))
2 ≤ c ‖n‖(C2(Γ0))

2 ‖q‖H2(I) ≤ c ‖q‖H2(I) ,

cf. [14], Theorem 1.4.1.1, and the result follows with Theorem 1.5. �

Remark 1.9. For q ∈ Q, F (q) shall always denote the unique solution to (7) for that given q.

Remark 1.10. With a slight abuse of notation we will just write F ∈ Wk,p(Ω) instead of F ∈
(
Wk,p(Ω)

)2
,

for both components of F possess the same regularity. This kind of notation will be applied throughout to
vector-valued functions.

Let

F =
{

F ∈ H5/2(Ω0)
∣
∣
∣ ∃q ∈ Q such that F = F (q) solves (7)

}

, (8)

Fad =
{

F ∈ H5/2(Ω0)
∣
∣
∣ ∃q ∈ Qad such that F = F (q) solves (7)

}

, (9)

where Fad is a bounded set in H5/2(Ω0) due to Corollary 1.8 and (5). Note that Fad need not be closed in
H5/2(Ω0) for the trace is not surjective as an operator from Hk+1/2(Ω0) to Hk(Γ0) for k ∈ N0 as follows from
Theorem 1.6.

Before we can proceed, we need some results concerning the regularity of the product of functions. The
following lemma can be found in [14], Theorem 1.4.4.2 and the comment afterward.

Lemma 1.11. Let Ω ⊂ R
n be bounded, open, with sufficiently regular boundary Γ, let s1, s2 ≥ s ≥ 0 and

p1, p2, p ∈ (1,∞) such that either

s1 + s2 − s ≥ n

(
1

p1
+

1

p2
−

1

p

)

≥ 0, sj − s > n

(
1

pj
−

1

p

)

, j = 1, 2,
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or

s1 + s2 − s > n

(
1

p1
+

1

p2
−

1

p

)

≥ 0, sj − s ≥ n

(
1

pj
−

1

p

)

, j = 1, 2.

Then u, v 7→ uv is a continuous bilinear form from Ws1,p1(Ω)×Ws2,p2(Ω) into Ws,p(Ω).

In what follows we will also have to work with the inverse transformation T−1
F . The following two lemmas

ensure that the multiplicative inverse of a functions also possess a desired regularity.

Lemma 1.12. Let Ω ⊂ R
n be open an bounded. Let v ∈ H1(Ω) and k ∈ N. If there exists c0 > 0 such that

v(x) ≥ c0 for almost every x ∈ Ω, then v−k ∈ H1(Ω).

Proof. We only have to show that

∇
(
v−k

)
= −kv−k−1∇v ∈ L2(Ω),

which follows from the generalized Hölder inequality and

v−k−1 ∈ L∞(Ω), ∇v ∈ L2(Ω). �

Lemma 1.13. Let Ω ⊂ R
n, n ≤ 2, be open an bounded. Let s ≥ 0 and v ∈ Hs(Ω). If there exists c0 > 0, such

that v(x) ≥ c0 for almost every x ∈ Ω, then v−1 ∈ Hs(Ω).

Proof. Let s = k + σ, where k ∈ N0 and σ ∈ [0, 1). First, consider the case k = 0. For σ = 0 the result is clear.
If σ ∈ (0, 1), then

∣
∣v−1

∣
∣
2

Hs(Ω)
=

∫

Ω

∫

Ω

∣
∣v(x)−1 − v(y)−1

∣
∣
2

|x− y|
n+2σ dx dy

=

∫

Ω

∫

Ω

∣
∣
∣
∣

1

v(x)v(y)

∣
∣
∣
∣

2
|v(x)− v(y)|

2

|x− y|
n+2σ dx dy

≤
1

a4
|v|

2
Hs(Ω) .

Now consider the case s = 1+σ, v ∈ H1+σ(Ω). Due to Lemma 1.12 it remains to consider the case σ ∈ (0, 1).
As ∇v ∈ Hσ(Ω) and v−3 ∈ H1(Ω) due to Lemma 1.12, it follows from Lemma 1.11 that −2v−3∇v = ∇

(
v−2

)
∈

Hε(Ω) for ε < σ. Hence, v−2 ∈ H1+ε(Ω), and again with Lemma 1.11 it follows that −v−2∇v = ∇
(
v−1

)
∈

Hσ(Ω), and v−1 ∈ H1+σ(Ω).
The next case is s = 2. Due to Lemma 1.12 we only have to show that

∇2
(
v−1

)
= 2v−3∇v · ∇vT − v−2∇2v ∈ L2(Ω),

which follows from v−2, v−3 ∈ L∞(Ω), ∇v ∈ H1(Ω) →֒ L4(Ω), and ∇2v ∈ L2(Ω).
We finish this proof with induction. Assume that the statement has been shown for all s < k for some

k ∈ N with k ≥ 2. Let s = k + σ, σ ∈ [0, 1) and v ∈ Hk+σ(Ω). We can further assume that σ > 0 if k = 2.
As v−1 ∈ H(k−1)+σ(Ω) by induction hypothesis, we get v−2 ∈ H(k−1)+σ(Ω) with Lemma 1.11. Furthermore,
∇v ∈ H(k−1)+σ(Ω), and again with Lemma 1.11 we end up with −v−2∇v = ∇

(
v−1

)
∈ H(k−1)+σ(Ω), which

leads to v−1 ∈ Hk+σ(Ω). �

With those results at hand, we can now proceed in transforming the optimization problem. For F ∈ Fad,
δF, τF ∈ F , the following functions derived from the transformation

TF = Id+F (10)
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will be used in the sequel. Some regularity as well as stability results concerning these functions can be found
in the Annex, Section 3.

DTF (x, y) = I+DF (x, y) =

(
1 + ∂xF1(x, y) ∂yF1(x, y)
∂xF2(x, y) 1 + ∂yF2(x, y)

)

, (11)

γF (x, y) = det (DTF (x, y)) , (12)

γ′F,δF (x, y) =
d

dt
γF+t·δF (x, y)

∣
∣
∣
∣
t=0

, (13)

γ′′F,δF,τF (x, y) =
d

dt
γ′F+t·τF,δF (x, y)

∣
∣
∣
∣
t=0

, (14)

AF (x, y) =
(
γFDT

−1
F ·DT−T

F

)
(x, y), (15)

where DT−1
F = (DTF )

−1
,

A′
F,δF (x, y) =

d

dt
AF+t·δF (x, y)

∣
∣
∣
∣
t=0

, (16)

A′′
F,δF,τF (x, y) =

d

dt
A′

F+t·τF,δF (x, y)

∣
∣
∣
∣
t=0

. (17)

Lemma 1.14. There exist c0 > 0, 0 < c1 < c2 and 0 < c3 < c4 such that for ‖q‖H2(I) < c0 it holds

that γF (q) ∈ [c1, c2] and the two Eigenvalues of AF (q) are elements of the interval [c3, c4]. If c0 → 0, then
c1, c2, c3, c4 → 1.

Proof. This lemma follows from Lemma 3.2 and the fact that the Eigenvalues of a matrix continuously depend
on its entries. �

As we use the transformation TF (q) to map Ω0 onto Ωq, it is desirable that this transformation is one-to-one.

Lemma 1.15. For ‖q‖H2(I) sufficiently small, the transformation TF (q) : Ω0 → Ωq is bijective.

Proof. As Γq = TF (q)(Γ0) by definition of F (q), surjectivity follows by continuity and injectivity follows from
Lemma 3.2. �

Assumption 1.16. We assume that the constant C̃ in (5) is chosen sufficiently small such that Lemma 1.14
and Lemma 1.15 hold for all q ∈ Qad.

Remark 1.17. With Lemma 1.1 it follows that Assumption 1.16 holds if α is sufficiently large. Furthermore,
within practical applications like computing the optimal shape of an airfoil, a good approximation of the optimal
shape is very often already known a priori.

For the ease of notation, for F ∈ Fad, u, z ∈ H1(Ω0) we will make use of the following bilinear forms

a(F )(u, z) =

∫

Ω0

∇uT ·AF · ∇z + uzγF dx, (18)

l(F )(z) =

∫

Ω0

(f ◦ TF )zγF dx. (19)

Lemma 1.18. Let F ∈ Fad. Then there exists a unique u ∈ H1
0(Ω0) such that

a(F )(u, z) = l(F )(z) ∀z ∈ H1
0(Ω0), (20)

and ‖u‖H1
0(Ω0)

≤ c ‖f‖L2(Ωq)
.
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Proof. As the bilinear form a(F )(·, ·) is continuous and coercive due to Lemma 3.8, this lemma is a direct
consequence of the Theorem of Lax-Milgram. �

For more stability results concerning the forms (18) and (19) we refer to the Annex, Section 3.

Remark 1.19. For q1, q2 ∈ Qad and F3 ∈ Fad, u(q1), u(F2) and u(F3) shall denote the unique solutions to (20)
for F = F (q1), F = F2 = F (q2) and F = F3, respectively.

Lemma 1.18 motivates the introduction of another solution operator S which assigns to each control q ∈ Qad

the ”transported” solution, i.e. let S(q) = u(q) ∈ H1
0(Ω0) be the solution of (20) for F = F (q).

Lemma 1.20. Let q ∈ Qad, F = F (q) ∈ Fad and v ∈ L2(Ωq). Then it holds that v ∈ H1(Ωq) if and only if
v ◦ TF ∈ H1(Ω0). Furthermore, the two norms ‖·‖H1(Ωq)

and ‖· ◦ TF ‖H1(Ω0)
are equivalent.

Proof. Let v ∈ H1(Ωq). We have

‖v‖
2
H1(Ωq)

=

∫

Ωq

v2 + |∇v|
2
dx =

∫

Ω0

(v ◦ TF )
2
γF + |∇v ◦ TF |

2
γF dx

≤ c

∫

Ω0

(v ◦ TF )
2
+
∣
∣DTT

F · ∇v ◦ TF
∣
∣
2
dx

= c ‖v ◦ TF ‖
2
H1(Ω0)

≤ c

∫

Ω0

(v ◦ TF )
2
+ |∇v ◦ TF |

2
dx ≤ c

∫

Ω0

(v ◦ TF )
2
γF + |∇v ◦ TF |

2
γF dx

= c

∫

Ωq

v2 + |∇v|
2
dx = c ‖v‖

2
H1(Ωq)

,

where we also used Assumption 1.16. �

Lemma 1.21. Let F ∈ Fad, uq ∈ H1
0(Ωq), u = uq ◦ TF ∈ H1

0(Ω0). Then the following two variational
formulations are equivalent

∫

Ωq

(
(∇uq)T · ∇zq + uqzq

)
dx =

∫

Ωq

fz dx ∀zq ∈ H1
0(Ωq), (21)

∫

Ω0

(
∇uT ·AF · ∇z + uzγF

)
dx =

∫

Ω0

(f ◦ TF ) zγF dx ∀z ∈ H1
0(Ω0). (22)

Proof. In order to proof this lemma one has to use integration by substitution and Lemma 1.20. �

We are now able to reformulate problem (4) on the reference domain.

min J(q, u, F ) =
1

2

∫

Ω0

(u− ud ◦ TF )
2
γF dx+

α

2
‖q‖

2
H2(I) , (23)

subject to

{
−∆F = 0 in Ω0,

F = q n on Γ0,

{
− div(AF · ∇u) + uγF = f ◦ TF γF in Ω0,

u = 0 on Γ0.

Theorem 1.22. The two problems (4) and (23) are equivalent.

Proof. Let q ∈ Qad, uq = u(q) ◦ TF (q) ∈ H1
0(Ωq). This theorem now follows from the fact that J̃(q, uq) =

J(q, u(q), F (q)) and the fact that the state equations on Ωq and Ω0, (3) and (20), respectively, are uniquely
solvable. �
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1.3. Existence of an optimal solution

Within this subsection we are going to proof Theorem 1.2. The following proof relies on Assumption 1.16
which can be omitted as mentioned in Remark 1.25. Due to Theorem 1.22 it is sufficient to show that (23) has
a global solution.

Proof. Let j(q) = J(q, u(q), F (q)) ≥ 0 be the reduced cost functional. There exists a minimizing sequence
(qn, un = u(qn), Fn = F (qn))n∈N

with

j = inf
q∈Qad

j(q) = lim
n→∞

j(qn) = lim
n→∞

J(qn, un, Fn).

As Qad is a convex, closed and bounded subset of the Hilbert space H2(I) there exists q ∈ Qad such that, up to
extracting a subsequence, it holds that

qn ⇀ q in H2(I),

qn → q in H2−ε(I) for n→ ∞,

due to the compact embedding of H2(I) into H2−ε(I). Let F = F (q) ∈ Fad and u = u(F ). Due to Corollary 1.8
it follows that Fn → F in H5/2−ε(Ω0). Hence, u(Fn) → u(F ) = u in H1(Ω0) by Lemma 3.11. In addition,
γFn

→ γF and ud ◦ TFn
→ ud ◦ TF in L∞(Ω0) due to Lemma 3.3, which leads to

lim
n→∞

(∫

Ω0

(u(Fn)− ud ◦ TFn
)
2
γFn

dx

)

=

∫

Ω0

(
u(F )− ud ◦ TF

)2
γF dx. (24)

As the squared norm is continuous and convex it is lower semicontinuous,

lim inf
n→∞

‖qn‖
2
H2(I) ≥ ‖q‖

2
H2(I) , (25)

and by adding (24) and (25) we arrive at

J(q, u, F ) ≤ lim inf
n→∞

J(qn, un, Fn) = j, (26)

and conclude that J(q, u, F ) = j. Hence
(
q, u, F

)
is a global solution to (23). �

Corollary 1.23. Every minimizing sequence (qn)n∈N
⊂ Qad contains a subsequence (qnk

)k∈N
such that qnk

→ q

in H2(I) for k → ∞, where q is an optimal solution to (23).

Proof. In the proof of Theorem 1.2 we have already shown the existence of such a subsequence with qnk
⇀ q

in H2(I). As J(qnk
, u(qnk

), F (qnk
)) → J(q, u, F ) it follows that ‖qnk

‖H2(I) → ‖q‖H2(I). It is well-known that

within Hilbert spaces weak convergence plus convergence of the norm implies strong convergence, and the result
follows. �

Remark 1.24. Although the state equation (20) is linear, the mapping q 7→ u(q) is highly nonlinear and one
cannot expect the reduced cost functional j to be convex. Therefore uniqueness of an optimal solution cannot
be shown in general.

Remark 1.25. Although the proof of Theorem 1.2 depends on Assumption 1.16, this assumption can be
omitted. In [17], Theorem 2.8, the authors show existence of an optimal solution for a similar shape optimization
problem where they just need some sort of compactness of Qad in Q. As the proof mentioned in the source cited
above is more invloved than the one presented here, and as Assumption 1.16 is needed throughout the paper,
we decided to include the proof as stated.
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2. The optimality system

2.1. Differentiability of the control-to-state mapping and first-order optimality conditions

Within this subsection we investigate the differentiability of the control-to-state mapping q 7→ u(q). In order
to show this we will use the Implicit Function Theorem, the following version can be found in [3], Theorem 2.3.

Theorem 2.1. Let B ∈ Ck
(
Xad × Y ad, Z

)
, k ≥ 1, where Z is a Banach space and Xad, Y ad are open subsets

of Banach spaces X and Y , respectively. Suppose B(x∗, y∗) = 0 and that B′
y(x

∗, y∗) is continuously invertible.

Then there exist neighborhoods Θ of x∗ in X and Φ of y∗ in Y and a map g ∈ Ck (Θ, Y ) such that

• B (x, g(x)) = 0 for all x ∈ Θ,
• B(x, y) = 0, (x, y) ∈ Θ× Φ, implies y = g(x),

• g′(x) = − (By(x, g(x)))
−1

◦Bx(x, g(x)) for x ∈ Θ.

Lemma 2.2. The mapping Q ∋ q 7→ F (q) ∈ F is twice continuously Fréchet differentiable.

Proof. As the mapping q 7→ F (q) is linear, the result follows with Corollary 1.8. �

Lemma 2.3. The mapping int
(
Qad

)
∋ q 7→ u(q) ∈ H1

0(Ω0) is twice continuously Fréchet differentiable.

Proof. We set X = Q, Xad = int
(
Qad

)
, Y = Y ad = H1

0(Ω0) and Z = H−1(Ω0). Furthermore, let

B : Q×H1
0(Ω0) → H−1(Ω0),

B(q, u) = a(F (q))(u, ·)− l(F (q))(·).

Then B is affine linear in u and twice continuously differentiable with respect to q, as follows from Lemma 3.4,
Lemma 2.2 and (6). The result now follows with Theorem 2.1. �

In order to be able to use Lemma 2.3 we make the following assumption.

Assumption 2.4. We assume that the optimal control q under consideration is an element of the interior of
the admissible set, q ∈ int(Qad).

We also recall the definition of the operator S and its derivatives, which follow by a direct calculation.

(1) u = S(q) ∈ H1
0(Ω0) is the solution of

a(F )(u, z) = l(F )(z) ∀z ∈ H1
0(Ω0), (27)

where F = F (q).
(2) δu = S′(q)(δq) ∈ H1

0(Ω0) is the solution of

a(F )(δu, z) =
(
f ◦ TF , z div

(
γFDT

−1
F · δF

))
+

(

(∇f ◦ TF )
T
· δF, zγF

)

−
(
∇u,A′

F,δF · ∇z
)
−
(
u, z div

(
γFDT

−1
F · δF

))
∀z ∈ H1

0(Ω0),
(28)

where δF = F ′(q)(δq) = F (δq).
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(3) δτu = S′′(q)(δq, τq) ∈ H1
0(Ω0) is the solution of

a(F )(δτu, z) = (f ◦ TF , z (tr(DδF ) tr(DτF )− tr(DδF ·DτF )))

+
(
τFT · ∇2f ◦ TF · δF, zγF

)
−
(
∇u,A′′

F,δF,τF · ∇z
)

+
(

(∇f ◦ TF )
T
· δF, z div

(
γFDT

−1
F · τF

))

+
(

(∇f ◦ TF )
T
· τF, z div

(
γFDT

−1
F · δF

))

−
(
∇τu,A′

F,δF · ∇z
)
−

(
∇δu,A′

F,τF · ∇z
)

−
(
τu, z div

(
γFDT

−1
F · δF

))
−
(
δu, z div

(
γFDT

−1
F · τF

))

− (uz, tr(DδF ) tr(DτF )− tr(DδF ·DτF )) ∀z ∈ H1
0(Ω0),

(29)

where τu = S′(q)(τq) and τF = F ′(q)(τq) = F (τq).

Furthermore we also state the definitions of the reduced cost functional j and its derivatives, which follow
by a direct calculation. The fact that j is at least twice continuously differentiable follows from Lemma 2.3.

j(q) =
1

2
(S(q)− ud ◦ TF , (S(q)− ud ◦ TF ) γF ) +

α

2
(q, q)H2(I) , (30)

j′(q)(δq) =
1

2

(
S(q)− ud ◦ TF , (S(q)− ud ◦ TF ) div

(
γFDT

−1
F · δF

))

+
(

S′(q)(δq)− (∇ud ◦ TF )
T
· δF, (S(q)− ud ◦ TF ) γF

)

+ α (q, δq)H2(I) ,
(31)

j′′(q)(δq, τq) =
1

2
(S(q)− ud ◦ TF , (S(q)− ud ◦ TF ) (tr(DδF ) tr(DτF )− tr(DδF ·DτF )))

+
(

S′(q)(δq)− (∇ud ◦ TF )
T
· δF,

(

S′(q)(τq)− (∇ud ◦ TF )
T
· τF

)

γF

)

+
(

S(q)− ud ◦ TF ,
(

S′(q)(δq)− (∇ud ◦ TF )
T
· δF

)

div
(
γFDT

−1
F · τF

))

+
(

S(q)− ud ◦ TF ,
(

S′(q)(τq)− (∇ud ◦ TF )
T
· τF

)

div
(
γFDT

−1
F · δF

))

+
(
S(q)− ud ◦ TF ,

(
S′′(q)(δq, τq)− τFT · ∇2ud ◦ TF · δF

)
γF

)
+ α (δq, τq)H2(I)

(32)

Remark 2.5. The representations (29) as well as (32) show that the second derivatives are symmetric with
respect to the directions.

For stability results concerning these operators and functionals, which will be needed in the context of
second-order calculus in Subsection 2.5, we again refer to the Annex, Section 3.

Due to Assumption 2.4 and the differentiability of j, the first-order optimality condition in q is just

j′(q)(δq) = 0 ∀δq ∈ Q. (33)

Our goal is to use the first-order optimality condition (33) to show higher regularity of the optimal control
q. As we are using a control-theoretic approach, we first need to introduce the very weak formulation for the
transformation equation and the Lagrangian.

2.2. The very weak formulation

As the control q enters the equation for the transformation F on the boundary, (7) is kind of a Dirichlet
control problem which is known not to be of variational type. In [28] the authors present various possibilities
on how to deal with such problems. They propose the use of the so-called very weak formulation, which is also
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used in [9] and [11]. We will also stick to that formulation, therefore we are having a closer look at the solution
u to the problem

{
−∆u = f in Ω,

u = g on Γ.
(34)

If f ∈ H−1(Ω) and g ∈ H1/2(Γ), then one can proceed in a standard way as follows. Let B : H1/2(Γ) → H1(Ω)
be an arbitrary right inverse to the trace operator. The existence of such a B is ensured by Theorem 1.6. Now
set u = uΩ + uΓ, where uΓ = B(g) and uΩ ∈ H1

0(Ω) solves

(∇uΩ,∇v) = − (∇uΓ,∇v) + (f, v) ∀v ∈ H1
0(Ω). (35)

The drawback of formulation (35) is the fact that one has to split u into the sum of the two functions uΓ and
uΩ. This makes it more difficult to take the derivative of u with respect to g, which is crucial in order to derive
an optimality system, where we have to take the derivative of (7) with respect to q. One possibility to overcome
this difficulty is the use of the very weak formulation, which can be obtained from the weak formulation of (34)
by partial integration,

− (u,∆v) + 〈g, ∂nv〉 = (f, v) ∀v ∈ H1
0(Ω) ∩H2(Ω), (36)

which also allows for solutions u ∈ L2(Ω) of the boundary value problem. For an overview see [4, 14,15,31].
In what follows we always assume that the domain Ω is sufficiently smooth in the sense that problem (34) is

H2-regular, i.e. for arbitrary f ∈ L2(Ω) and g ∈ H3/2(Γ) it holds that the weak solution u possesses the regularity
u ∈ H2(Ω). In [16], Theorem 9.1.20, it is shown that this assumption is satisfied if Ω has a C2-boundary. If
H−2

∗ (Ω) denotes the dual space of H1
0(Ω) ∩H2(Ω), then the following lemma can be shown, cf. [31].

Lemma 2.6. For any given f ∈ H−2
∗ (Ω) and g ∈ H−1/2(Γ), the very weak formulation (36) possesses a unique

solution u ∈ L2(Ω). There holds the a-priori estimate

‖u‖L2(Ω) ≤ c
(

‖f‖H−2
∗ (Ω) + ‖g‖H−1/2(Γ)

)

.

Corollary 2.7. Any weak solution u to (34) is also a very weak solution. Vice versa, if the very weak solution
possesses the additional regularity u ∈ H1(Ω), then it is also a weak solution.

Proof. It follows from the definition that every weak solution also fulfills the very weak formulation (36),
uniqueness has already been shown in Lemma 2.6. If the very weak solution is more regular, then one can
perform partial integration and the result follows. �

2.3. The Lagrangian

The aim of this subsection is to introduce the Lagrangian for problem (23). Let

L : Q×H1
0(Ω0)×H1

0(Ω0)×H5/2(Ω0)×H1
0(Ω0) ∩H2(Ω0) → R,

L(q, u, z, F,G) = J(q, u, F ) + l(F )(z)− a(F )(u, z) + (F,∆G)− 〈q n, ∂nG〉.
(37)

Furthermore, define
G = H1

0(Ω0) ∩H2(Ω0), (38)

with norm ‖·‖
2
G = ‖·‖

2
H1

0(Ω0)
+ |·|

2
H2(Ω0)

.

Lemma 2.8. In G, the norms ‖∆·‖L2(Ω0)
and ‖·‖G are equivalent.

Proof. Let v ∈ G be arbitrary. First, we have

‖∆v‖
2
L2(Ω0)

=

∫

Ω0

v2xx + v2yy + 2vxxvyy dx ≤ 2

∫

Ω0

v2xx + v2yy dx ≤ 2 |v|
2
H2(Ω0)

.



14 TITLE WILL BE SET BY THE PUBLISHER

As v ∈ H1
0(Ω0), we know that there exists cΩ0

> 0 such that

‖v‖L2(Ω0)
≤ cΩ0

‖v‖H1
0(Ω0)

,

and hence

‖v‖
2
H1

0(Ω0)
=

∫

Ω0

∇vT · ∇v dx = −

∫

Ω0

v∆v dx ≤ ‖v‖L2(Ω0)
‖∆v‖L2(Ω0)

≤ cΩ0
‖v‖H1

0(Ω0)
‖∆v‖L2(Ω0)

,

so we arrive at

‖v‖H1
0(Ω0)

≤ cΩ0
‖∆v‖L2(Ω0)

.

In [16], Zusatz 9.1.27, it is proven that for convex Ω0 it holds that

|v|H2(Ω0)
≤ ‖∆v‖L2(Ω0)

,

which finishes the proof. �

If u = u(q) and F = F (q), then L(q, u, z, F,G) = j(q) for all z ∈ H1
0(Ω0) and G ∈ G. This fact is well known

and exploited in order to receive an optimality system. In general, one is looking for a stationary point of L,
but in order to ensure that every local minima of (23) is also a stationary point of L, one needs some additional
regularity which does not hold in general in our case.

Lemma 2.9. Let q ∈ Qad. Then F (q) ∈ Fad is the unique solution to

L′
G(q, u, z, F,G)(δG) = 0 ∀δG ∈ G. (39)

Proof. As L is linear in G, it follows that (39) just reads as

(F,∆δG)− 〈q n, ∂nδG〉 = 0 ∀δG ∈ G.

which is just the very weak formulation. The result follows with Lemma 2.6 and Corollary 2.7. �

Lemma 2.10. Let q ∈ Qad and F = F (q). Then it holds that u(q) ∈ H1
0(Ω0) is the unique solution to

L′
z(q, u, z, F,G)(δz) = 0 ∀δz ∈ H1

0(Ω0). (40)

Proof. As l(F )(·) as well as a(F )(u, ·) are linear it immediately follows that L′
z exists. As (40) just reads as

l(F )(δz) = a(F )(u, δz) ∀δz ∈ H1
0(Ω),

the result follows with Lemma 1.18. �

Lemma 2.11. Let q ∈ Qad, F = F (q) and u = u(q). Then there exists a unique z ∈ H1
0(Ω0) such that

L′
u(q, u, z, F,G)(δu) = 0 ∀δu ∈ H1

0(Ω0). (41)

Proof. First, equation (41) can be rewritten as

a(F )(δu, z) = J ′
u(q, u, F )(δu) ∀δu ∈ H1

0(Ω0),
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which reads as

a(F )(δu, z) = ((u− ud ◦ TF )γF , δu) ∀δu ∈ H1
0(Ω0). (42)

As the right hand side in (42) is a continuous functional on L2(Ω0), existence and uniqueness follow with
standard arguments. �

Remark 2.12. With z(q), z(F ) or z(u) we will denote the adjoint state z as the solution to (41) for given q,
F or u, cf. Remark 1.19.

To follow the standard procedure, we are now going to compute the derivative of L with respect to F , which
exists due to Lemma 3.4. The goal is to show the existence of an adjoint transformation G ∈ G such that
L′
F (q, u, z, F,G)(δF ) = 0 for all δF ∈ F . As the transformation F enters L in a highly nonlinear way, we split

the computation. First, it holds that

J ′
F (q, u, F )(δF ) =

1

2

∫

Ω0

(u− ud ◦ TF )
2
div

(
γFDT

−1
F · δF

)
dx

−

∫

Ω0

(u− ud ◦ TF ) (∇ud ◦ TF )
T
· δFγF dx

=

∫

Γ0

1

2
(u− ud ◦ TF )

2γF δF
T ·DT−T

F · nds−

∫

Ω0

(u− ud ◦ TF )∇u
T ·DT−1

F · δFγF dx,

(43)

l′F (F )(δF, z) =

∫

Ω0

f ◦ TF div
(
γFDT

−1
F · δF

)
z + (∇f ◦ TF )

T
· δFγF z dx

= −

∫

Ω0

f ◦ TF γF∇z
T ·DT−1

F · δF dx,

(44)

a′F (F )(δF, u, z) =

∫

Ω0

∇uT ·A′
F,δF · ∇z + uz div

(
γFDT

−1
F · δF

)
dx

=

∫

Ω0

∇uT ·A′
F,δF · ∇z − (u∇z + z∇u)

T
·DT−1

F · δFγF dx,

(45)

where we used the Divergence Theorem, ∇f ◦ TF = DT−T
F · ∇ (f ◦ TF ) as well as the analog formula for ud

and uz ∈ W1,p
0 (Ω0) for p < 2 due to Lemma 1.11. By combinig (43), (44) and (45) with the definition of the

Lagrangian, (37), we get

L′
F (q, u, z, F,G)(δF ) =

∫

Γ0

1

2
(u− ud ◦ TF )

2
γF δF

T ·DT−T
F · nds−

∫

Ω0

(u− ud ◦ TF )∇u
T ·DT−1

F · δFγF dx

−

∫

Ω0

f ◦ TF γF∇z
T ·DT−1

F · δF dx (46)

−

∫

Ω0

∇uT ·A′
F,δF · ∇z dx+

∫

Ω0

(u∇z + z∇u)
T
·DT−1

F · δFγF dx

+

∫

Ω0

δF∆Gdx.

Lemma 2.13. For q ∈ Qad, u = u(q), z = z(q), F = F (q) and G ∈ G there exists d ∈ H1(Ω0) such that

L′
F (q, u, z, F,G)(δF ) = (−d, δF )H1(Ω0)

+ (δF,∆G) ∀δF ∈ H1(Ω0).

i.e. the derivative L′
F (q, u, z, F,G) is a continuous linear functional on H1(Ω0).
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Proof. Linearity of L′
F (q, u, z, F,G) follows from (46) and Lemma 3.4. Boundedness in H1(Ω0) with respect to

δF follows with Lemma 3.6, Lemma 3.7 and Theorem 1.6. We also have to make use of the improved regularity
u(q), z(q) ∈ W1,4

0 (Ω0), which follows from [32], Theorem 1. The Riesz Representation Theorem (cf. [2], Theorem
4.1) now ensures the existence of such an element d ∈ H1(Ω0). �

Remark 2.14. As u, z ∈ H3/2−ε(Ω0) due to Theorem 1.4 and the definition of A′
F,δF , Lemma 3.4, it follows

that L′
F (q, u, z, F,G) is in general not a continuous linear functional on L2(Ω0). As ∆: G → L2(Ω0) is an

isomorphism, it follows that the equation

L′
F (q, u(q), z(q), F (q), G)(δF ) = 0 ∀δF ∈ H1(Ω0),

need not have a solution G ∈ G for general q ∈ Qad.

With Remark 2.14 it follows that, in order to show the existence of an adjoint transformation G, it is
necessary that the (adjoint) state as well as the transformation have a higher regularity. This is the case if the
corresponding control is more regular.

2.4. Higher regularity of the optimal solution

This subsection is devoted to proof Theorem 1.3 regarding the improved regularity of the optimal control q.
In order to do so, we exploit the first-order optimality condition (33), which relies on Assumption 2.4. First,

j′(q)(δq) =
d

dt
J (q + t δq, u(q + t δq), F (q + t δq))

∣
∣
∣
∣
t=0

=
d

dt
L (q + t δq, u(q + t δq), z, F (q + t δq), G)

∣
∣
∣
∣
t=0

∀z ∈ H1
0(Ω0), G ∈ G.

We now choose z = z(q), G = 0. With (33), (28) and Lemma 2.11 we get

j′(q)(δq) = L′
q(q, u(q), z(q), F (q), 0)(δq)

+ L′
F (q, u(q), z(q), F (q), 0)(δF ) = 0 ∀δq ∈ Q, δF = F ′(q)(δq) ∈ F (47)

With Lemma 2.13 we can rewrite (47) as

α(q, δq)H2(I) − (d, δF )H1(Ω) = 0 ∀δq ∈ Q, δF = F ′(q)(δq) ∈ F , (48)

with some d ∈ H1(Ω0). With Cauchy-Schwarz it holds that

∣
∣(d, δF )H1(Ω)

∣
∣ ≤ ‖d‖H1(Ω0)

‖δF‖H1(Ω0)
.

Furthermore δq 7→ δF is linear and ‖δF‖H1(Ω0)
≤ c ‖δq‖H1(I), which proofs the existence of d1 ∈ H1(I) such

that

(d, δF )H1(Ω) = (d1, δq)H1(I) ∀δq ∈ Q. (49)

Inserting (49) into (48), we get

α(q, δq)H2(I) = (d1, δq)H1(I) ∀δq ∈ Q. (50)

To proceed, we need the following lemma.
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Lemma 2.15. Let λ ∈ H2
per(I), ψ ∈ H1

per(I) such that

(λ, ϕ)H2(I) = (ψ,ϕ)H1(I) ∀ϕ ∈ C∞
per(I), (51)

Then it holds that λ ∈ H3
per(I).

Proof. Equation (51) just reads as

∫ 2π

0

λ′′ϕ′′ + λ′ϕ′ + λϕdx =

∫ 2π

0

ψ′ϕ′ + ψϕdx ∀ϕ ∈ C∞
per(I).

Partial integration yields

∫ 2π

0

(λ′′ − λ+ ψ)ϕ′′ dx =

∫ 2π

0

(−λ+ ψ)ϕdx ∀ϕ ∈ C∞
per(I). (52)

As (52) is just the definition of the second weak derivative, and −λ+ ψ ∈ H1
per(I), this yields

λ′′ − λ+ ψ ∈ H3
per(I) ⊂ H1

per(I),

and because of λ, ψ ∈ H1
per(I) we end up with λ′′ ∈ H1

per(I), hence λ ∈ H3
per(I). �

By applying Lemma 2.15 to (50) we get q ∈ H3(I). This improved regularity then yields F ∈ H7/2(Ω0),
DF ∈ H5/2(Ω0) →֒ C1,1/2(Ω0). Hence, AF , γF ∈ C1,1/2(Ω0), and Theorem 1.4 yields u, z ∈ W2,p(Ω0) for p <∞.

Theorem 1.6 now implies ∇u|Γ0
, ∇z|Γ0

∈ W1−1/p,p(Γ0). Due to this improved regularity we can further simplify

some of the expressions in (46). First, we recall that

A′
F,δF = tr

(
DT−1

F ·DδF
)
AF −DT−1

F ·DδF ·AF −AF ·DδFT ·DT−T
F ,

hence

−

∫

Ω0

∇uT ·AF · ∇z tr
(
DT−1

F ·DδF
)
dx = −

∫

Ω0

∇uT ·DT−1
F ·DT−T

F · ∇z div
(
γFDT

−1
F · δF

)
dx

= −

∫

Γ0

(
DT−T

F · ∇u
)T

·
(
DT−T

F · ∇z
)
γF δF

T ·DT−T
F · nds

+

∫

Ω0

∇
((

DT−T
F · ∇u

)T
·
(
DT−T

F · ∇z
))T

·DT−1
F · δFγF dx.

(53)

It also holds that

∫

Ω0

∇
((

DT−T
F · ∇u

)T
·
(
DT−T

F · ∇z
))T

·DT−1
F · δFγF +∇uT ·

(
DT−1

F ·DδF ·AF +AF ·DδFT ·DT−1
F

)
· ∇z dx

=

∫

Ω0

∇uT ·AF · ∇
(
∇zT ·DT−1

F · δF
)
+∇zT ·AF · ∇

(
∇uT ·DT−1

F · δF
)
dx (54)

=

∫

Ω0

− div(AF · ∇u)∇zT ·DT−1
F · δF − div(AF · ∇z)∇uT ·DT−1

F · δF dx

+ 2

∫

Γ0

(
DT−T

F · ∇u
)T

·
(
DT−T

F · ∇z
)
γF δF

T ·DT−T
F · nds.
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So, if we insert (53) and (54) into (46), we finally arrive at

L′
F (q, u, z, F,G)(δF ) =

∫

Γ0

1

2
(u− ud ◦ TF )

2γF δF
T ·DT−1

F · nds

+

∫

Γ0

(
DT−T

F · ∇u
)T

·
(
DT−T

F · ∇z
)
γF δF

T ·DT−1
F · nds

+

∫

Ω0

(− div(AF · ∇u) + uγF − f ◦ TF γf )
︸ ︷︷ ︸

=0

(
∇zT ·DT−1

F · δF
)
dx

+

∫

Ω0

(− div(AF · ∇z) + zγF − (u− ud ◦ TF )γF )
︸ ︷︷ ︸

=0

(
∇uT ·DT−1

F · δF
)
dx

+

∫

Ω0

δF∆Gdx

=

∫

Γ0

(
1

2
(u− ud ◦ TF )

2 +
(
DT−T

F · ∇u
)T

·
(
DT−T

F · ∇z
)
)

γF δF
T ·DT−1

F · nds

+

∫

Ω0

δF∆Gdx,

(55)

where we made use of the strong formulations of the (adjoint) state equation, (40) and (41), which hold due to
the improved regularity of u and z.

Remark 2.16. One may note that (55) looks similar to shape derivatives obtained by different methods as
done for example in [26] and [36]. The fact that we end up with a boundary integral is due to the well-known
Hadamard-Zolesio Theorem (cf. [36], Theorem 2.27), which holds if all the involved functions are sufficiently
smooth.

As in the proof of Lemma 2.13 it is now possible to show that there exists d2 ∈ H1/2(Γ0) such that

L′
F (q, u, z, F ,G)(δF ) = −〈d2, δF 〉+ (δF,∆G) ∀δF ∈ F . (56)

If we want to choose G ∈ G such that (56) vanishes, then this G has to fulfill certain boundary conditions.

Lemma 2.17. The normal derivative ∂n : H
1
0(Ω0) ∩H2(Ω0) → H1/2(Γ0) is continuous and surjective.

Proof. Continuity follows from Theorem 1.6. Furthermore, this theorem ensures that the mapping v 7→
(
v|Γ0

, ∂nv|Γ0

)
from H2(Ω0) to H3/2(Γ0)×H1/2(Γ0) is surjective and the result follows, cf. [37], page 70. �

This proves the existence of G ∈ G with ∂nG = d2. It now holds that

(
δF,∆G

)
= −

(
∇δF,∇G

)
+ 〈∂nG, δF 〉 = 〈∂nG, δF 〉, (57)

where the first term vanishes due to the fact that δF is harmonic and G ∈ G ⊂ H1
0(Ω0). Inserting (57) into (56)

yields

L′
F (q, u, z, F ,G)(δF ) = 0 ∀δF ∈ F ,

and we arrive at

j′(q)(δq) = L′
q(q, u, z, F ,G)(δq)

= α (q, δq)H2(I) − 〈δq n, ∂nG〉 ∀δq ∈ Q.
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Remark 2.18. One may notice that G ∈ G is not uniquely defined as H2
0(Ω0) is in the kernel of the operator

∂n, as presented in Lemma 2.17. As easily follows from (57), all computed values just depend on ∂nG, which is
indeed unique.

The following lemma can be proven similar to Lemma 2.15.

Lemma 2.19. Let λ ∈ H3
per(I), ψ ∈ H

1/2
per (I) such that

(λ, ϕ)H2(I) = (ψ,ϕ)L2(I) ∀ϕ ∈ C∞
per(I).

Then it holds that λ ∈ H
9/2
per (I).

With the help of Lemma 2.19 it easily follows that q ∈ H9/2(I) which finally proves Theorem 1.3. �

Remark 2.20. By using a bootstrap argument it is possible to show an even higher regularity of q. With [16],
Theorem 9.1.20, one can show that q ∈ H7(I), F ∈ H15/2(Ω0), u, z ∈ H5(Ω0) and G ∈ H9/2−ε(Ω0). A further
improvement is not possible in general due to the regularity of f and ud, cf. (6). Any further improvement in

the regularity of f and ud would result in a further improved regularity of q, u, z, F ,G. For f, ud ∈ C∞(Ω̂) we
get q ∈ C∞

per(I) and u, z, F ,G ∈ C∞(Ω0).

2.5. Second order optimality conditions

Within this subsection we are going to state a sufficient second-order optimality condition, which is necessary
due to the nonlinearity of the problem. The following lemmas and proofs have been inspired by [10].

Lemma 2.21. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N
⊂ Q. If δqn → δq in H3/2+ε(I), then it holds that

(1) S′(q)(δqn) → S′(q)(δq) in H1
0(Ω0),

(2) S′′(q)(δqn, δqn) → S′′(q)(δq, δq) in H1
0(Ω0).

Proof. (1) Let δF = F ′(q)(δq) = F (δq) and δFn = F ′(q)(δqn) = F (δqn). With Corollary 1.8 it follows that
δFn → δF in H2+ε(Ω0), and with Lemma 1.11 it follows thatA′

F,δFn
→ A′

F,δF and div
(
γFDT

−1
F · δFn

)
→

div
(
γFDT

−1
F · δF

)
in H1+ε(Ω0) →֒ C(Ω0). As a result, the right hand side in (28) converges in H−1(Ω0),

and the result follows with the standard H1-stability result.
(2) The second part is proven analogously to the first part. In order to show that the right hand side in

(29) converges in H−1(Ω0) one has to make use of the first part, Lemma 3.4 and the fact that the trace
of a matrix: X2×2 → X is continuous in every Banach space X. �

Lemma 2.22. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N
⊂ Q with δqn → δq in H3/2+ε(I). Let m : Qad ×Q→ R and

n : Qad ×Q→ R be defined by

m(q)(δq) = j′(q)(δq)− α(q, δq)H2(I),

n(q)(δq) = j′′(q)(δq, δq)− α(δq, δq)H2(I).

Then it holds that

m(q)(δqn) → m(q)(δq),

n(q)(δqn) → n(q)(δq), for n→ ∞.

Proof. This lemma follows directly from the representations (31) and (32) in combination with Lemma 2.21. �

Lemma 2.23. Let q ∈ Qad, δq ∈ Q and (δqn)n∈N
⊂ Q. If δqn ⇀ δq in H2(I) then

(1) j′(q)(δqn) → j′(q)(δq),
(2) j′′(q)(δq, δq) ≤ lim infn→∞ j′′(q)(δqn, δqn)
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Proof. As H2(I) is compactly embedded into H3/2+ε(I) for ε < 1/2, we get δqn → δq in H3/2+ε(I).

(1) As (q, δqn)H2(I) → (q, δq)H2(I), this part follows from the first part of Lemma 2.22.

(2) The squared H2-norm is a continuous and convex functional on H2(I) and therefore weakly lower
semicontinuous, hence (δq, δq)H2(I) ≤ lim infn→∞(δqn, δqn)H2(I), and this part follows from the second
part of Lemma 2.22. �

Lemma 2.24. Let q ∈ Qad, δq ∈ Q, (δqn)n∈N
⊂ Q and δqn ⇀ δq in H2(I). If

lim
n→∞

j′′(q)(δqn, δqn) = j′′(q)(δq, δq),

then

δqn → δq in H2(I).

Proof. Again we get δqn → δq in H3/2+ε(I) for ε < 1/2. With the second part of Lemma 2.22 it follows
that ‖δqn‖H2(I) → ‖δq‖H2(I). The result follows from the fact that strong convergence is equivalent to weak

convergence plus convergence of the norm. �

Theorem 2.25. Let q ∈ Qad be a solution of (23). If

j′′(q)(δq, δq) > 0 ∀δq ∈ Q\{0}, (58)

then there exists β > 0 such that

j′′(q)(δq, δq) ≥ β ‖δq‖
2
H2(I) ∀δq ∈ Q. (59)

Proof. Assume that (59) does not hold. Then there exists a sequence (δqn)n∈N
⊂ Q with ‖δqn‖H2(I) = 1 and

j′′(q)(δqn, δqn) <
1

n
.

Possibly after extracting a subsequence we get the existence of an element δq ∈ Q with δqn ⇀ δq in H2(I). We
get

0 ≤ j′′(q)(δq, δq) ≤ lim inf
n→∞

j′′(q)(δqn, δqn) ≤ lim sup
n→∞

j′′(q)(δqn, δqn) ≤ lim sup
n→∞

1

n
= 0. (60)

The first inequality is just the necessary optimality condition of second order, and the second inequality is due
to Lemma 2.23. Equation (60) now yields

j′′(q)(δqn, δqn) → j′′(q)(δq, δq) = 0.

As a result, (58) implies δq = 0, whereas Lemma 2.24 implies δqn → δq in H2(I), which contradicts ‖δqn‖H2(I) =

1. �

Lemma 2.26. Let q ∈ Qad and β > 0 such that

j′′(q)(δq, δq) ≥ β ‖δq‖
2
H2(I) ∀δq ∈ Q.

Then there exists δ > 0 such that for all p ∈ Qad with ‖q − p‖H2(I) ≤ δ it holds that

j′′(p)(δq, δq) ≥
β

2
‖δq‖

2
H2(I) ∀δq ∈ Q.
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Proof. With Lemma 3.14 one gets

j′′(p)(δq, δq) = j′′(q)(δq, δq) + j′′(p)(δq, δq)− j′′(q)(δq, δq)

≥ j′′(q)(δq, δq)− |j′′(p)(δq, δq)− j′′(q)(δq, δq)|

≥ β ‖δq‖
2
H2(I) − c ‖q − p‖H2(I) ‖δq‖

2
H2(I)

=
(

β − c ‖q − p‖H2(I)

)

‖δq‖
2
H2(I) ,

and the result follows for δ ≤ β
2c . �

Lemma 2.27. Let q ∈ Qad be a solution of (23). Then the following two statements are equivalent

(1) There exists β1 > 0 such that

j′′(q)(δq, δq) ≥ β1 ‖δq‖
2
H2(I) ∀δq ∈ Q,

(2) There exist β2, δ > 0 such that

j(p) ≥ j(q) + β2 ‖p− q‖
2
H2(I) ∀p ∈ Qad : ‖p− q‖H2(I) ≤ δ.

Proof. (1) If the first statement holds, then we have for some t ∈ [0, 1]:

j(p) = j(q) + j′(q)(p− q) +
1

2
j′′(q + t(p− q))(p− q, p− q)

= j(q) +
1

2
j′′(q + t(p− q))(p− q, p− q)

≥ j(q) +
β1
4

‖p− q‖
2
H2(I) ,

whereas in the second step we used the first-order optimality condition (33), in the third step we used
Lemma 2.26.

(2) If the second condition holds, then q is a local solution to

min
q∈Qad

j(q)− β2 ‖q − q‖
2
H2(I) ,

and the necessary optimality conditions of second order yield

j′′(q)(δq, δq)− 2β2 ‖δq‖
2
H2(I) ≥ 0 ∀δq ∈ Q. �

3. Annex

Within this section we are going to collect various regularity as well as stability results related to the
transformation TF , the (bi)linear forms a(F )(·, ·) and l(F )(·), the solution operator S and the reduced cost
functional j.

Lemma 3.1. If s > 3/2 and q ∈ Hs(I), then it holds that γF (q), AF (q) ∈ Hs−1/2(Ω0).

Proof. The regularity result for γF (q) follows from (12), Corollary 1.8 and Lemma 1.11. Because of

DT−1
F (q) =

1

γF (q)

(
1 + ∂yF2(q) −∂yF1(q)
−∂xF2(q) 1 + ∂xF1(q)

)

, (61)
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and DF ∈ Hs−1/2(Ω0), Lemma 1.13 yields DT−1
F (q) ∈ Hs−1/2(Ω0), and the regularity for AF (q) follows with (15)

and the first part of this lemma. �

Lemma 3.2. For ‖q‖H2(I) → 0 it holds that

(1) TF (q) → Id in H5/2(Ω0) →֒ C1,1/2(Ω0).

(2) γF (q) → 1 in H3/2(Ω0) →֒ C0,1/2(Ω0).

(3) DT−1
F (q) → I in H3/2(Ω0).

(4) AF (q) → I in H3/2(Ω0).

Proof. (1) This statement follows from (10) and Corollary 1.8.
(2) This part follows from (12), Lemma 3.1 and the first part of this lemma.
(3) This part follows from (61), Lemma 1.11 and the first two parts of this lemma.
(4) The last part follows from (15), the parts (2) and (3) and again Lemma 1.11. �

With these explicit definitions at hand, one can easily derive some stability results which follow by a direct
calculation and the boundedness of Fad in H5/2(Ω0), as well as the fact that ud, f ∈ C2,1(Ω̂).

Lemma 3.3. For F,E ∈ Fad, s ∈ (1, 3/2], we have

• ‖γF − γE‖Hs(Ω0)
≤ cs ‖F − E‖Hs+1(Ω0)

,

• ‖TF − TE‖Hs+1(Ω0)
≤ cs ‖F − E‖Hs+1(Ω0)

,

• ‖DTF −DTE‖Hs(Ω0)
≤ cs ‖F − E‖Hs+1(Ω0)

,

•
∥
∥DT−1

F −DT−1
E

∥
∥
Hs(Ω0)

≤ cs ‖F − E‖Hs+1(Ω0)
,

• ‖AF −AE‖Hs(Ω0)
≤ cs ‖F − E‖Hs+1(Ω0)

,

• ‖f ◦ TF − f ◦ TE‖L∞(Ω0)
≤ c ‖F − E‖L∞(Ω0)

,

• ‖∇f ◦ TF −∇f ◦ TE‖L∞(Ω0)
≤ c ‖F − E‖L∞(Ω0)

,

•
∥
∥∇2f ◦ TF −∇2f ◦ TE

∥
∥
L∞(Ω0)

≤ c ‖F − E‖L∞(Ω0)
,

• ‖ud ◦ TF − ud ◦ TE‖L∞(Ω0)
≤ c ‖F − E‖L∞(Ω0)

,

• ‖∇ud ◦ TF −∇ud ◦ TE‖L∞(Ω0)
≤ c ‖F − E‖L∞(Ω0)

,

•
∥
∥∇2ud ◦ TF −∇2ud ◦ TE

∥
∥
L∞(Ω0)

≤ c ‖F − E‖L∞(Ω0)
,

Furthermore, the expressions TF , f ◦ TF , ∇f ◦ TF , ∇
2 ◦ TF , ud ◦ TF , ∇ud ◦ TF and ∇2ud ◦ TF are bounded in

H5/2(Ω0), γF and DTF are bounded in H3/2(Ω0).

Lemma 3.4. Let F ∈ Fad, δF, τF ∈ H5/2(Ω0). Then the following operators are Fréchet differentiable.

(1) γF : H5/2(Ω0) → H3/2(Ω0) with derivative

γ′F,δF = γF tr
(
DT−1

F ·DδF
)
= div

(
γFDT

−1
F · δF

)
.

(2) DT−1
F : H5/2(Ω0) → H3/2(Ω0) with derivative

(
DT−1

F

)′

δF
= −DT−1

F ·DδF ·DT−1
F .

(3) γ′F,δF : H5/2(Ω0)×H5/2(Ω0) → H3/2(Ω0) with derivative

γ′′F,δF,τF = γF tr
(
DT−1

F ·DδF
)
tr
(
DT−1

F ·DτF
)
− γF tr

(
DT−1

F ·DτF ·DT−1
F ·DδF

)

= tr(DδF ) tr(DτF )− tr(DδF ·DτF ) .

(4) AF : H5/2(Ω0) → H3/2(Ω0) with derivative

A′
F,δF = tr

(
DT−1

F ·DδF
)
AF −DT−1

F ·DδF ·AF −AF ·DδFT ·DT−T
F .
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(5) A′
F,δF : H5/2(Ω0)×H5/2(Ω0) → H3/2(Ω0) with derivative

A′′
F,δF,τF =− tr

(
DT−1

F ·DτF ·DT−1
F ·DδF

)
AF + tr

(
DT−1

F ·DδF
)
tr
(
DT−1

F ·DτF
)
AF

− tr
(
DT−1

F ·DδF
)
DT−1

F ·DτF ·AF − tr
(
DT−1

F ·DτF
)
DT−1

F ·DδF ·AF

− tr
(
DT−1

F ·DδF
)
AF ·DτFT ·DT−T

F − tr
(
DT−1

F ·DτF
)
AF ·DδFT ·DT−T

F

+DT−1
F ·DδF ·DT−1

F ·DτF ·AF +DT−1
F ·DτF ·DT−1

F ·DδF ·AF

+DT−1
F ·DδF ·AF ·DτFT ·DT−T

F +DT−1
F ·DτF ·AF ·DδFT ·DT−T

F

+AF ·DδFT ·DT−T
F ·DτFT ·DT−T

F +AF ·DτFT ·DT−T
F ·DδFT ·DT−T

F

Proof. (1) By a direct calculation it follows that

lim
‖δF‖

H5/2(Ω0)
→0

∥
∥γF+δF − γF − γF tr

(
DT−1

F ·DδF
)∥
∥
H3/2(Ω0)

‖δF‖H5/2(Ω0)

= lim
‖δF‖

H5/2(Ω0)
→0

‖∂xδF1 ∂yδF2 − ∂yδF1 ∂xδF2‖H3/2(Ω0)

‖δF‖H5/2(Ω0)

≤ lim
‖δF‖

H5/2(Ω0)
→0

c ‖δF‖
2
H5/2(Ω0)

‖δF‖H5/2(Ω0)

= 0,

where in the second step we made use of Lemma 1.11.
(2) This part follows from a direct calculation.
(3) This part follows from the fact that the trace is linear, the product rule as well as the first two parts of

this lemma.
(4) The fourth part follows from the previous two parts, the product rule and Lemma 1.11.
(5) The last part follows from a direct calculation and the previous parts. �

Remark 3.5. For A,B ∈ R
n×n it holds that tr(A ·B) = tr(B ·A), hence the second derivatives A′′

F,δF,τF and

γ′′F,δF,τF which are computed in Lemma 3.4 are symmetric with respect to the directions.

Lemma 3.6. For F ∈ Fad, δF, τF ∈ F , s ∈ (1, 3/2], we have

(1) ‖γF ‖H3/2(Ω0)
≤ c,

(2)
∥
∥
∥γ′F,δF

∥
∥
∥
Hs(Ω0)

≤ cs ‖δF‖Hs+1(Ω0)
.

(3)
∥
∥
∥γ′′F,δF,τF

∥
∥
∥
Hs(Ω0)

≤ cs ‖δF‖Hs+1(Ω0)
‖τF‖Hs+1(Ω0)

.

Proof. The first part follows from the definition of Fad and the comment afterward, the second and the third
part follow from the representations obtained in Lemma 3.4. �

Lemma 3.7. For F ∈ Fad, δF, τF ∈ F , s ∈ (1, 3/2], we have

(1) ‖AF ‖H3/2(Ω0)
≤ c,

(2)
∥
∥
∥A′

F,δF

∥
∥
∥
Hs(Ω0)

≤ cs ‖δF‖Hs+1(Ω0)
.

(3)
∥
∥
∥A′′

F,δF,τF

∥
∥
∥
Hs(Ω0)

≤ cs ‖δF‖Hs+1(Ω0)
‖τF‖Hs+1(Ω0)

.

Proof. (1) Due to (15) it holds that

‖AF ‖H3/2(Ω0)
=

∥
∥γFDT

−1
F ·DT−T

F

∥
∥
H3/2(Ω0)

≤ c

∥
∥
∥
∥

1

γF

∥
∥
∥
∥
H3/2(Ω0)

‖DTF ‖
2
H3/2(Ω0)

≤ c,
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where we made use of Lemma 1.13 and Lemma 1.11.
(2) In order to proof the second assertion we use Lemma 3.4 and get

∥
∥A′

F,δF

∥
∥
Hs(Ω0)

=
∥
∥tr

(
DT−1

F ·DδF
)
AF −DT−1

F ·DδF ·AF −AF ·DδFT ·DT−T
F

∥
∥
Hs(Ω0)

≤ c ‖δF‖Hs+1(Ω0)
,

where we again made use of Lemma 1.11 and the first part of this lemma.
(3) This last part can be proven in the same way as the previous part. �

The following three lemmas are direct consequences of the definitions (18), (19), Lemma 3.3, Lemma 3.6 and
Lemma 3.7.

Lemma 3.8. The bilinear form a(F )(·, ·) is continuous and coercive in H1(Ω0), i.e. there exist c1, c2 > 0,
independent of F ∈ Fad, such that for all u, z ∈ H1(Ω0) it holds that

|a(F )(u, z)| ≤ c1 ‖u‖H1(Ω0)
‖z‖H1(Ω0)

,

a(F )(u, u) ≥ c2 ‖u‖
2
H1(Ω0)

.

Furthermore, there exists c3 > 0, independent of F ∈ Fad and p ∈ [1,∞], such that for u ∈ W1,p(Ω0) and

z ∈ W1,p′

(Ω0) with
1
p + 1

p′
= 1 the following Hölder-like inequality holds

|a(F )(u, z)| ≤ c3 ‖u‖W1,p(Ω0)
‖z‖W1,p′ (Ω0)

.

Lemma 3.9. For F,E ∈ Fad and u, z ∈ H1(Ω0) it holds that

|a(F )(u, z)− a(E)(u, z)| ≤ cε ‖F − E‖H2+ε(Ω0)
‖u‖H1(Ω0)

‖z‖H1(Ω0)
.

Lemma 3.10. For F,E ∈ Fad and z ∈ L2(Ω0) it holds that

|l(F )(z)− l(E)(z)| ≤ c ‖F − E‖H1(Ω0)
‖z‖L2(Ω0)

.

Lemma 3.11. For F,E ∈ Fad it holds that

‖u(F )− u(E)‖H1(Ω0)
≤ cε ‖F − E‖H2+ε(Ω0)

.

Proof. Let e = u(F )− u(E). With Lemma 3.9, Lemma 3.10 and Lemma 3.12 we have

c ‖e‖
2
H1(Ω0)

≤ a(F )(e, e) = a(F )(u(F ), e)− a(F )(u(E), e)

= a(F )(u(F ), e)− a(E)(u(E), e) + a(E)(u(E), e)− a(F )(u(e), e)

≤ |l(F )(e)− l(E)(e)|+ |a(E)(u(E), e)− a(F )(u(E), e)|

≤ cε ‖e‖H1(Ω0)
‖F − E‖H2+ε(Ω0)

. �

Lemma 3.12. For q ∈ Qad, δq ∈ Q, it holds with q-independent constants that

(1) ‖S(q)‖H1
0(Ω0)

≤ c,

(2) ‖S′(q)(δq)‖H1
0(Ω0)

≤ c ‖δq‖H2(I),

(3) ‖S′′(q)(δq, δq)‖H1
0(Ω0)

≤ c ‖δq‖
2
H2(I).
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Proof. (1) As a(F )(·, ·) is uniformly coercive we have

c ‖u(F )‖
2
H1

0(Ω0)
≤ a(F )(u(F ), u(F )) = l(F )(u(F ))

≤ c ‖f ◦ TF ‖L2(Ω0)
‖u(F )‖H1

0(Ω0)
‖γF ‖L∞(Ω0)

.

(2) and (3) are proven in the same way, one additionally has to make use of Lemma 3.6, Lemma 3.7,
Corollary 1.8 and the embedding H3/2(Ω0) →֒ L∞(Ω0). �

Lemma 3.13. For q, p ∈ Qad, δq ∈ Q, it holds that

(1) ‖S(q)− S(p)‖H1
0(Ω0)

≤ c ‖q − p‖H2(I),

(2) ‖S′(q)(δq)− S′(p)(δq)‖H1
0(Ω0)

≤ c ‖q − p‖H2(I) ‖δq‖H2(I),

(3) ‖S′′(q)(δq, δq)− S′′(p)(δq, δq)‖H1
0(Ω0)

≤ c ‖q − p‖H2(I) ‖δq‖
2
H2(I).

Proof. (1) Let e = S(q)− S(p), Fq = F (q) and Fp = F (p). With Lemma 3.9 we get

c ‖e‖
2
H1

0(Ω0)
≤ a(Fq)(e, e) = a(Fq)(S(q), e)− a(Fq)(S(p), e)

≤ a(Fq)(S(q), e)− a(Fp)(S(p), e) + cε ‖Fq − Fp‖H2+ε(Ω0)
‖S(p)‖H1

0(Ω0)
‖e‖H1

0(Ω0)
.

Now we use the definition of S(q), S(p) and Lemma 3.10 and get

a(Fq)(S(q), e)− a(Fp)(S(p), e) = l(Fq)(e)− l(Fp)(e) ≤ c ‖Fq − Fp‖H1(Ω0)
‖e‖H1

0(Ω0)
.

The proof is finished with Corollary 1.8 and Lemma 3.12.
(2) and (3) are proven in the same way. �

The following lemma can be proven in essentially the same way as Lemma 3.13.

Lemma 3.14. For q, p ∈ Qad, δq ∈ Q, it holds that

(1) |j(q)− j(p)| ≤ c ‖q − p‖H2(I),

(2) |j′(q)(δq)− j′(p)(δq)| ≤ c ‖q − p‖H2(I) ‖δq‖H2(I),

(3) |j′′(q)(δq, δq)− j′′(p)(δq, δq)| ≤ c ‖q − p‖H2(I) ‖δq‖
2
H2(I).
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