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Abstract

In this paper, we establish convergence to equilibrium for a drift-diffusion-recombination system
modelling the charge transport within certain semiconductor devices. More precisely, we consider
a two-level system for electrons and holes which is augmented by an intermediate energy-level for
electrons in so-called trapped states. The recombination dynamics uses the mass action principle by
taking into account this additional trap level.

We first prove existence of global solutions using Banach’s fixed-point theorem. The main part of
the paper is concerned with the derivation of an entropy-entropy production inequality, which entails
exponential convergence to the equilibrium via the so-called entropy method.
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1 Introduction and main results

In this paper, we consider the following PDE-ODE drift-diffusion-recombination system:
∂tn = ∇ · Jn(n) +Rn(n, ntr),

∂tp = ∇ · Jp(p) +Rp(p, ntr),

ε ∂tntr = Rp(p, ntr)−Rn(n, ntr),

(1)

with

Jn := ∇n+ n∇Vn = µn∇
(
n

µn

)
, µn := e−Vn ,

Jp := ∇p+ p∇Vp = µp∇
(
p

µp

)
, µp := e−Vp ,

Rn :=
1

τn

(
ntr −

n

n0µn
(1− ntr)

)
, Rp :=

1

τp

(
1− ntr −

p

p0µp
ntr

)
,

where n0, p0, τn, τp > 0 are positive recombination parameters and ε ∈ (0, ε0] for arbitrary ε0 > 0 is a
positive relaxation parameter to be detailed in the following.
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Figure 1: A schematic picture illustrating the allowed transitions of electrons between the various energy
levels.

The physical motivation for system (1) originates from the studies of Shockley, Read and Hall [SR52,
Hal52] on the generation-recombination statistics for electron-hole pairs in semiconductors. The involved
physical processes are sketched in Figure 1. The starting point for our considerations is a basic model
of a semiconductor consisting of two electronic energy bands: In this model, charge carriers within the
semiconductor are negatively charged electrons in the conduction band and positively charged holes (these
are pseudo-particles, which describe vacancies of electrons) in the valence band. The corresponding charge
densities of electrons and holes are denoted by n and p, respectively. In Figure 1, the in-between trap-level
is a consequence of appropriately distributed foreign atoms in the crystal lattice of the semiconductor
material. In general, there might be multiple intermediate energy levels due to various crystal impurities.
In the sequel, we will restrict ourselves to exactly one additional trap level. The intermediate energy
states facilitate the excitation of electrons from the valence band into the conduction band since this
transition can now take part in two steps, each requiring smaller amounts of energy. On the other hand,
charge carriers on the trap level are not mobile and their maximal density ntr is limited.

The equations for n and p in system (1) include the drift-diffusion terms ∇ · Jn and ∇ · Jp as well
as the recombination-terms Rn and Rp. The quantities Vn and Vp within the fluxes Jn and Jp are given
external time-independent potentials, which generate an additional drift for n and p. Note that more
realistic drift-diffusion models would additionally consider Poisson’s equation coupled to (1) in order to
incorporate drift caused by a self-consistent electrostatic potential. However, including a self-consistent
drift structure into (1) leads to great and still partially open difficulties in the here presented entropy
method and is thus left for future works.

The reaction-term Rn models transitions of electrons from the trap-level to the conduction band
(proportional to ntr) and vice versa (proportional to −n(1− ntr)), where the maximum capacity of the
trap-level is normalised to one. Similarly, Rp encodes the generation and annihilation of holes in the
valence band. But one has to be aware that the rate of hole-generation is equivalent to the rate of an
electron moving from the valence band to the trap-level, which is proportional to (1− ntr). Similar, the
annihilation of a hole corresponds to an electron that jumps from the trap-level to the valence band,
which yields a reaction rate proportional to −pntr.

The dynamical equation for ntr in (1) is an ODE in time and pointwise in space with a right hand side
depending on n and p via Rn and Rp. In the same manner as above, one can find that all gain- and loss-
terms for ntr are taken into account correctly via Rp−Rn. We stress that there is no drift-diffusion-term
for ntr. This is due to the correlation between foreign atoms and the corresponding trap-levels which are
locally bound near these crystal impurities. As a consequence, an electron in a trap-level cannot move
through the semiconductor, hence, the name trapped state.

In the recombination process, n0, p0 > 0 represent reference levels for the charge concentrations n
and p, while τn, τp > 0 are inverse reaction parameter. Finally, ε > 0 models the lifetime of the trapped
states, where lifetime refers to the expected time until an electron in a trapped state moves either to
the valence or the conduction band. Note that the concentration ntr of these trapped states satisfies
ntr ∈ [0, 1] provided this holds true for their initial concentration (cf. Theorem 1.1).

A particular situation is obtained in the (formal) limit ε → 0. This quasi-stationary limit allows to
derive the well known Shockley–Read–Hall-model for semiconductor recombination, where the concen-
tration of trapped states is determined from the algebraic relation 0 = Rp(p, ntr) − Rn(n, ntr), which
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results in

ntr =
τn + τp

n
n0µn

τn + τp + τn
p

p0µp
+ τp

n
n0µn

.

Thus, the trapped state concentration ntr and its evolution can (formally) be eliminated from system (1),
while the evolution of the charge carriers n and p is then subject to the Shockley–Read–Hall recombination
terms

Rn(n, ntr) = Rp(p, ntr) =
1− np

n0p0µnµp

τn
(
1 + p

p0µp

)
+ τp

(
1 + n

n0µn

) .
Note that the above quasi-stationary limit has been rigorously performed in [GMS07], even for more
general models. See also [MRS90] for semiconductor models assuming a reaction term of Shockley–
Read–Hall-type.

The main goal of this paper is to prove exponential convergence to equilibrium of system (1) with
rates and constants, which are independent of the relaxation time ε. We will therefore always consider
ε ∈ (0, ε0] for some arbitrary but fixed ε0 > 0. Our approach also allows us to study the limiting case
ε→ 0.

In the following, system (1) is considered on a bounded domain Ω ⊂ Rm with sufficiently smooth
boundary ∂Ω. In addition, we suppose that the volume of Ω is normalised, i.e. |Ω| = 1, which can be
achieved by an appropriate scaling of the spatial variables. We impose no-flux boundary conditions for
Jn and Jp,

n̂ · Jn = n̂ · Jp = 0 on ∂Ω, (2)

where n̂ denotes the outer unit normal vector on ∂Ω.
The potentials Vn and Vp are assumed to satisfy

Vn, Vp ∈W 2,∞(Ω) and n̂ · ∇Vn, n̂ · ∇Vp ≥ 0 on ∂Ω, (3)

where the last condition means that the potentials are confining. For later use, we introduce

V := max(‖Vn‖L∞(Ω), ‖Vp‖L∞(Ω)).

Finally, we assume that the initial states fulfil

(nI , pI , ntr,I) ∈ L∞+ (Ω)3, ‖ntr,I‖L∞(Ω) ≤ 1.

As a consequence of the no-flux boundary conditions, system (1) features conservation of charge:

∂t(n− p+ ε ntr) = ∇ · (Jn − Jp)

and, therefore, ∫
Ω

(n− p+ ε ntr) dx =

∫
Ω

(nI − pI + ε ntr,I) dx =: M, (4)

where M ∈ R is a real and possibly negative constant and ε ∈ (0, ε0] for arbitrary ε0 > 0.

The following Theorem 1.1 comprises the existence and regularity results which provide the framework
for our subsequent considerations. In particular, we will show that there exists a global solution to (1),
and that ntr(t, x) ∈ [0, 1] for all t ∈ [0,∞) and a.a. x ∈ Ω.

Theorem 1.1 (Time-dependent system). Let n0, p0, τn, τp and ε be positive constants. Assume that Vn
and Vp satisfy (3) and that Ω ⊂ Rm is a bounded, sufficiently smooth domain.

Then, for any non-negative initial datum (nI , pI , ntr,I) ∈ L∞(Ω)3 satisfying ‖ntr,I‖L∞(Ω) ≤ 1, there
exists a unique non-negative global weak solution (n, p, ntr) of system (1), where (n, p) satisfy the boundary
conditions (2) in the weak sense.

More precisely, for all T ∈ (0,∞) and by introducing the space

W2(0, T ) :=
{
f ∈ L2((0, T ), H1(Ω)) | ∂tf ∈ L2((0, T ), H1(Ω)∗)

}
↪→ C([0, T ], L2(Ω)), (5)
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where we recall the last embedding e.g. from [Chi00], we find that

(n, p) ∈
(
C([0, T ], L2(Ω)) ∩W2(0, T ) ∩ L∞((0, T ), L∞(Ω))

)2
, (6)

and
ntr ∈ C([0, T ], L∞(Ω)), ∂tntr ∈ C([0, T ], L2(Ω)). (7)

Moreover, there exist positive constants Cn(‖nI‖∞, Vn), Cp(‖pI‖∞, Vp) and Kn(Vn), Kp(Vp) inde-
pendent of ε such that

‖n(t, ·)‖∞ ≤ Cn +Knt, ‖p(t, ·)‖∞ ≤ Cp +Kpt, for all t ≥ 0. (8)

In addition, the concentration ntr(t, x) is bounded away from zero and one in the sense that for all
times τ > 0 there exist positive constants η = η(ε0, τ, τn, τp), θ = θ(Cn, Cp,Kn,Kp) and a sufficiently
small constant γ(τ, Cn, Cp,Kn,Kp) > 0 such that

ntr(t, x) ∈
[
min

{
ηt,

γ

1 + θt

}
, max

{
1− ηt, 1− γ

1 + θt

}]
for all t ≥ 0 and a.a. x ∈ Ω (9)

where ητ = γ
1+θτ such that the linear and the inverse linear bound intersect at time τ . As a consequence

of (9), there exist positive constants µ, Γ > 0 (depending on τ , η, θ, γ, Vn, Vp) such that

n(t, x), p(t, x) ≥ min
{
µ
t2

2
,

Γ

1 + θt

}
for all t ≥ 0 and a.a. x ∈ Ω (10)

where µ τ
2

2 = Γ
1+θτ such that the quadratic and the inverse linear bound intersect at the same time τ .

Remark 1.2. The existence theory of Theorem 1.1 for the coupled ODE-PDE problem (1) applies
standard parabolic methods and pointwise ODE estimates. The proof is therefore postponed to the
Appendix. It relates to previous results like [GMS07] by assuming L∞ initial data and by proving L∞-
bounds in order to control nonlinear terms. We remark that the main objective of this article is the
following quantitative study of the large-time behaviour of global solutions to system (1).

The main tool in order to quantitatively study the large-time behaviour of global solutions to system
(1), is the entropy functional

E(n, p, ntr) =

∫
Ω

(
n ln

n

n0µn
− (n− n0µn) + p ln

p

p0µp
− (p− p0µp) + ε

∫ ntr

1/2

ln

(
s

1− s

)
ds

)
dx. (11)

For n and p, we encounter Boltzmann-entropy contributions a ln a− (a− 1) ≥ 0, whereas ntr enters the
entropy functional via a non-negative integral term. Note that the integral

∫ ntr
1/2

ln
(

s
1−s
)
ds is non-negative

and well-defined for all ntr(x) ∈ [0, 1].
It is straight forward to calculate that the entropy functional (11) is indeed a Ljapunov functional:

By introducing the entropy production functional

D := − d

dt
E, (12)

it holds true along solution trajectories of system (1) that

D(n, p, ntr) = −
∫

Ω

((
∇ · Jn +Rn

)
ln

(
n

n0µn

)
+
(
∇ · Jp +Rp

)
ln

(
p

p0µp

)
+ ε ln

(
ntr

1− ntr

)
∂tntr

)
dx

=

∫
Ω

(
Jn ·

Jn
n

+ Jp ·
Jp
p
−Rn ln

(
n

n0µn

)
−Rp ln

(
p

p0µp

)
− ln

(
ntr

1− ntr

)(
Rp −Rn

))
dx

=

∫
Ω

(
|Jn|2

n
+
|Jp|2

p
−Rn ln

(
n(1− ntr)
n0µnntr

)
−Rp ln

(
pntr

p0µp(1− ntr)

))
dx ≥ 0. (13)
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The entropy production functional involves flux-terms, which are obviously non-negative, and reaction-
terms of the form (a−1) ln a ≥ 0. Thus, the entropy E and its production D are non-negative functionals,
which formally implies the entropy E to be monotonically decreasing in time.

In order to rigorously verify (a weak version of) the entropy-entropy production law (12), note that
the last two reaction terms in (13) are unbounded for ntr(t, x) → 0, 1 or n(t, x), p(t, x) → 0 and that
the entropy production is therefore potentially unbounded even for smooth solutions. However, the
regularity of n and p of Theorem 1.1 as well as the lower and upper bounds (9) for ntr and the lower
bounds (10) for n and p allow to prove that any solution of Theorem 1.1 satisfies the following weak
entropy-entropy production law

E(t1) +

∫ t1

t0

D(s) ds = E(t0), for all 0 < t0 ≤ t1 <∞. (14)

Note that (14) implies that solutions of Theorem 1.1 may only feature singularities of D at time zero (due
to a lacking regularity of the initial data or due to initial data ntr,I(x) ∈ [0, 1], nI(x), pI(x) ∈ [0,∞)).

We will further prove that there exists a unique equilibrium (n∞, p∞, ntr,∞) of system (1) in a suitable
(and natural) function space. This equilibrium can be seen as the unique solution of the stationary
system (15) or, equivalently, as the unique state for which the entropy production (13) vanishes. Note
that from both viewpoints, uniqueness of the equilibrium is only satisfied once the mass constant M
in the conservation law (4) is fixed. For simplicity of the presentation, we shall introduce the following
notation for integrated quantities.

Notation 1.3. For any function f , we set

f :=

∫
Ω

f(x) dx

which is consistent with the usual definition of the average of f since |Ω| = 1. Using this notation, the
conservation law (4) rewrites as

n− p+ ε ntr = M ∈ R.

Theorem 1.4 (Stationary system). Let M ∈ R, ε ∈ (0, ε0] for arbitrary ε0 > 0 and (n∞, p∞, ntr,∞) ∈ X
where X is defined via

X := {(n, p, ntr) ∈ H1(Ω)2 × L∞(Ω)
∣∣n− p+ εntr = M ∧ (∃ γ > 0) : n, p ≥ γ a.e. ∧ ntr ∈ [γ, 1− γ] a.e.}.

Then, the following statements are equivalent.

1. (n∞, p∞, ntr,∞) is a solution of the stationary system

∇ · Jn(n∞) +Rn(n∞, ntr,∞) = 0, (15a)

∇ · Jp(p∞) +Rp(p∞, ntr,∞) = 0, (15b)

Rp(p∞, ntr,∞)−Rn(n∞, ntr,∞) = 0. (15c)

2. D(n∞, p∞, ntr,∞) = 0.

3. Jn(n∞) = Jp(p∞) = Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 a.e. in Ω.

4. The state (n∞, p∞, ntr,∞) satisfies

n∞ = n∗e
−Vn , p∞ = p∗e

−Vp , ntr,∞ =
n∗

n∗ + n0
=

p0

p∗ + p0
(16)

where the positive constants n∗, p∗ > 0 are uniquely determined by the condition

n∗p∗ = n0p0 (17)

and the conservation law
n∗µn − p∗µp + ε ntr,∞ = M, (18)

where the uniqueness follows from the strict monotonicity of f(n∗) := n∗µn − n0p0µp
n∗

+ ε n∗
n∗+n0

on

(0,∞) and the asymptotics f(n∗)→ −∞ for n∗ → 0+ and f(n∗)→∞ for n∗ →∞.
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Consequently, there exists a unique positive equilibrium (n∞, p∞, ntr,∞) ∈ X given by the formulae in
(16). Furthermore, this equilibrium satisfies

ntr,∞ =
n∗
n0

(1− ntr,∞), 1− ntr,∞ =
p∗
p0
ntr,∞. (19)

Remark 1.5. The characterisation of the equilibria of Theorem 1.4 can be further improved. The below
Proposition 2.1 will prove that for all M ∈ R the solutions n∗, p∗ of (16)–(18) are uniformly positive and
bounded for all ε ∈ (0, ε0], i.e. that there exist constants γ(ε0,M, n0, p0, V ) and Γ(ε0,M, n0, p0, V ) such
that

0 < γ(ε0,M, n0, p0, V ) ≤ n∗, p∗ ≤ Γ(ε0,M, n0, p0, V ) <∞
for all ε ∈ (0, ε0] and arbitrary ε0 > 0. Note that the above bounds also imply that any relevant
equilibrium state (n∞, p∞, ntr,∞) to (1)–(3) with Jn(n∞) = Jp(p∞) = Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) =
0 a.e. in Ω lies necessarily in the function space X for a suitable choice γ > 0.

The main result of this article is to prove exponential convergence to the unique positive equilibrium
(n∞, p∞, ntr,∞) for solutions of system (1)–(3) and to obtain explicit bounds for the rates and constants of
convergence. Following the idea of the so-called entropy method, we aim to derive a functional inequality
of the form

E(n, p, ntr)− E(n∞, p∞, ntr,∞) ≤ C D(n, p, ntr),

where n, p and ntr are non-negative functions satisfying the conservation law (4), and C > 0 is a
constant which we shall estimate explicitly. This approach, which establishes an upper bound for the
relative entropy in terms of the entropy production, is referred to as the entropy method. Using a
Gronwall-argument, the entropy-entropy production (EEP) inequality applied to the entropy-entropy
production law (14) entails exponential decay of the relative entropy. Finally, by using a Csiszár–
Kullback–Pinsker-type estimate, we deduce exponential convergence in L1 for solutions to system (1).

The derivation of an EEP-estimate is quite an involved task in our situation. The crucial part is
the proof of a functional EEP-inequality, which is first shown in the special case of spatially homoge-
neous concentrations, which fulfil the conservation law (4) and the natural L1-bounds (cf. Proposition
5.3). This core estimate is then extended to the case of arbitrary concentrations satisfying the same
assumptions in Proposition 5.5.

Based on these preliminary results, Theorem 1.6 formulates the key EEP-inequality, which is the main
ingredient of the entropy method for proving exponential convergence to the equilibrium. Note that our
method allows for an expression of the associated constant CEEP in the subsequent estimate (20), which
is independent of ε for all ε ∈ (0, ε0] and for any ε0 > 0. As a consequence, also the convergence rate of
the relative entropy is independent of ε in this sense.

Theorem 1.6 (Entropy-Entropy Production Inequality). Let ε0, τn, τp, n0, p0, M1 and V be positive
constants and consider M ∈ R.

Then, for all ε ∈ (0, ε0] there exists an explicitly computable constant CEEP > 0 such that for all
non-negative functions (n, p, ntr) ∈ L1(Ω)3 satisfying ‖ntr‖L∞(Ω) ≤ 1, the conservation law

n− p+ εntr = M

and the L1-bound
n, p ≤M1,

the following entropy-entropy production inequality holds true:

E(n, p, ntr)− E(n∞, p∞, ntr,∞) ≤ CEEPD(n, p, ntr), (20)

where the equilibrium (n∞, p∞, ntr,∞) ∈ X is given in Theorem 1.4.

Remark 1.7. We point out that the functions (n, p, ntr) considered in Theorem 1.6 are not necessarily
solutions of (1)–(3), although we have to assume that the functions (n, p, ntr) share some few natural
properties like the L1-bound. In particular, we emphasise that the above entropy-entropy production
inequality (20) does not depend on the lower and upper solution bounds (8)–(10), which are only needed
to prove that any solution to (1)–(3) satisfies the weak entropy production law (14).
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The following main result (Theorem 1.8) establishes exponential convergence to equilibrium in relative
entropy and in L1. We stress that the convergence rate, subsequently denoted by K, is uniformly positive
for all ε ∈ (0, ε0] and arbitrary ε0 > 0. Up to our knowledge, this is the first time where the entropy
method has successfully been applied uniformly in a fast-reaction parameter.

Moreover, the relative entropy and the L1-distance to the equilibrium of n and p can be estimated
from above independent of ε for ε ∈ (0, ε0]. Only ‖ntr − ntr,∞‖L1(Ω) is multiplied with a prefactor ε.

Theorem 1.8 (Exponential convergence). Let (n, p, ntr) be a global weak solution of system (1) as
given in Theorem 1.1 corresponding to the non-negative initial data (nI , pI , ntr,I) ∈ L∞(Ω)3 satisfying
‖ntr,I‖L∞(Ω) ≤ 1. Then, this solution satisfies the entropy-production law

E(n, p, ntr)(t1) +

∫ t1

t0

D(n, p, ntr)(s) ds = E(n, p, ntr)(t0)

for all 0 < t0 ≤ t1 <∞.
Moreover, the following versions of the exponential decay towards the equilibrium (n∞, p∞, ntr,∞) ∈ X

from Theorem 1.4 hold true:

E(n, p, ntr)(t)− E∞ ≤ (EI − E∞)e−Kt,

where EI and E∞ denote the initial entropy and the equilibrium entropy of the system, respectively.
Moreover,

‖n− n∞‖2L1(Ω) + ‖p− p∞‖2L1(Ω) + ε‖ntr − ntr,∞‖2L1(Ω) ≤ C(EI − E∞)e−Kt (21)

where C := C−1
CKP and K := C−1

EEP are explicitly computable constants independent of ε ∈ (0, ε0] for
arbitrary ε0 > 0 (cf. Theorem 1.6 and Proposition 6.1).

Corollary 1.9. The solutions n and p of Theorem 1.1 are uniformly-in-time bounded in L∞, i.e. there
exists a constant K > 0 such that

‖n(t, ·)‖∞, ‖p(t, ·)‖∞ ≤ K for all t ≥ 0. (22)

This global bound follows from the exponential convergence (21) in L1 to the bounded equilibrium (n∞, p∞,
ntr,∞) and the linearly growing L∞-bounds (8) via an interpolation argument.

Moreover, the bounds (22) allow to improve the bounds (9), (10) and to obtain uniform-in-time bounds
in the sense that for all τ > 0, there exist sufficiently small constants η, γ, µ,Γ > 0 such that

ntr(t, x) ∈
[
min

{
ηt, γ

}
,max

{
1− ηt, 1− γ

}]
(23)

and

n(t, x), p(t, x) ≥ min
{
µ
t2

2
,Γ
}

(24)

for all t ≥ 0 and a.a. x ∈ Ω where ηt and γ as well as µt2/2 and Γ intersect at time τ > 0.

The final results of this paper consider the limit ε→ 0. Up to our knowledge, Theorem 1.6 is the first
result of an entropy-entropy production inequality which holds uniformly in a fast-reaction parameter,
i.e. uniformly for all 0 < ε ≤ ε0. Intuitively, one thus expects the corresponding entropy method to
extend to the limiting case ε = 0. The details of this singular limit are subject of the last part of this
paper. In particular, one has to bypass the ε-dependency of the conservation law (4).

First, we point out that the limiting PDE system for ε = 0 is the following well known Shockley–
Read–Hall drift-diffusion recombination model{

∂tn = ∇ · Jn(n) +R(n, p), Jn = ∇n+ n∇Vn,
∂tp = ∇ · Jp(p) +R(n, p), Jp = ∇p+ p∇Vp,

(25)

where

R(n, p) =
1− np

n0p0µnµp

τn
(
1 + p

p0µp

)
+ τp

(
1 + n

n0µn

) .
The existence theory of the Shockley–Read–Hall model follows from classical methods (see e.g. [MRS90])
or can also be carried out similar to Theorem 1.1. Therefore, we state here the corresponding results
without proof.
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Theorem 1.1’ (Shockley–Read–Hall for ε = 0). Under the assumptions of Theorem 1.1, there exists

a unique non-negative global weak solution (n, p) ∈
(
C([0, T ], L2(Ω)) ∩W2(0, T ) ∩ L∞((0, T ), L∞(Ω))

)2
,

of system (25) for all T ∈ (0,∞) satisfying the boundary conditions (2).
Moreover, there exist positive constants Cn(‖nI‖∞, Vn), Cp(‖pI‖∞, Vp) and Kn(Vn), Kp(Vp) such

that
‖n(t, ·)‖∞ ≤ Cn +Knt, ‖p(t, ·)‖∞ ≤ Cp +Kpt, for all t ≥ 0. (26)

Finally, there exist positive constants µ, Γ, θ > 0 (depending on τ , Cn, Cp, Kn, Kp, Vn, Vp) such that

n(t, x), p(t, x) ≥ min
{
µt,

Γ

1 + θt

}
for all t ≥ 0 and a.a. x ∈ Ω (27)

where µτ = Γ
1+θτ such that the bounds µt and Γ/(1 + θt) intersect at time τ .

Secondly, the entropy functional (11) extends continuously to the limit ε = 0:

E0(n, p) :=

∫
Ω

(
n ln

n

n0µn
− (n− n0µn) + p ln

p

p0µp
− (p− p0µp)

)
dx,

which is indeed an entropy (the free energy) functional of the Shockley–Read–Hall model with the entropy
production (free energy dissipation) functional

D0(n, p) := − d

dt
E0(n, p) =

∫
Ω

(
|Jn|2

n
+
|Jp|2

p
−R ln

(
np

n0µnp0µp

))
dx ≥ 0. (28)

Next, we define neqtr = neqtr (n, p) such that Rn(n, neqtr ) = Rp(p, n
eq
tr ), i.e.

neqtr :=
τn + τp

n
n0µn

τn + τp + τn
p

p0µp
+ τp

n
n0µn

, (29)

and neqtr (n, p) denotes the pointwise equilibrium value of the trapped states in (1) for fixed n and p, which
corresponds to ε = 0.

Moreover, we observe that the Shockley–Read–Hall entropy production functional (28) can be iden-
tified as the entropy production functional D(n, p, neqtr ) along trajectories of (1) with ε = 0 in the sense
that ntr ≡ neqtr (n, p):

D(n, p, neqtr ) =

∫
Ω

(
|Jn|2

n
+
|Jp|2

p
−Rn ln

(
n(1− neqtr )

n0µnn
eq
tr

)
−Rp ln

(
pneqtr

p0µp(1− neqtr )

))
dx

=

∫
Ω

(
|Jn|2

n
+
|Jp|2

p
−R ln

(
np

n0µnp0µp

))
dx = D0(n, p)

where one uses R = Rn = Rp at ntr = neqtr and that the involved integrals are finite.
Analog to Theorem 1.4, there exists a unique equilibrium (n∞,0, p∞,0) ∈ X0 in the case ε = 0, where

X0 := {(n, p) ∈ H1(Ω)2
∣∣n− p = M ∧ (∃ γ > 0)n, p ≥ γ a.e. ∧ neqtr ∈ [γ, 1− γ] a.e.}.

This equilibrium reads
n∞,0 = n∗,0e

−Vn , p∞,0 = p∗,0e
−Vp , (30)

where n∗,0, p∗,0 > 0 are uniquely determined by

n∗,0p∗,0 = n0p0 and n∗,0µn − p∗,0µp = M.

We are now in the position to formulate the EEP-inequality

E0(n, p)− E0(n∞,0, p∞,0) ≤ CEEPD0(n, p)

involving the entropy E0 and its production D0 by applying an appropriate limiting argument to the
EEP-inequality from Theorem 1.6.
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Theorem 1.6’ (Entropy-Entropy Production Inequality for ε = 0). Let τn, τp, n0, p0, M1 and V be
positive constants and consider M ∈ R.

Then, recalling the equilibrium (n∞,0, p∞,0) ∈ X0, the following EEP-inequality holds true for all non-
negative functions (n, p) ∈ L1(Ω)2 satisfying the conservation law n − p = M, the L1-bound n, p < M1

as well as the conditions E0(n, p) <∞, D0(n, p), D(n, p, neqtr ) <∞ for some ε0 > 0:

E0(n, p)− E0(n∞,0, p∞,0) ≤ CEEPD0(n, p), (31)

where CEEP > 0 is the same constant as in Theorem 1.6.

Theorem 1.8’ (Exponential convergence for ε = 0). Let (n, p) be a global weak solution of system (25)
as given in Theorem 1.1’ corresponding to the non-negative initial data (nI , pI) ∈ L∞(Ω)2. Then, this
solution satisfies the entropy-production law

E0(n, p)(t1) +

∫ t1

t0

D0(n, p)(s) ds = E0(n, p)(t0) (32)

for all 0 < t0 ≤ t1 <∞.
Moreover, the following versions of the exponential decay towards the equilibrium (n∞,0, p∞,0) ∈ X0

hold true:
E0(n, p)(t)− E∞ ≤ (EI − E∞)e−Kt

and
‖n− n∞,0‖2L1(Ω) + ‖p− p∞,0‖2L1(Ω) ≤ C(EI − E∞)e−Kt (33)

where C := C−1
CKP and K := C−1

EEP are the same constants as in Theorem 1.8. Moreover, EI and E∞
denote the initial entropy of the system and the entropy in the equilibrium, respectively.

Remark 1.10. We believe that the entropy-entropy production inequality (31) can also be directly
proven by combining estimates of Section 5 with previous works on the entropy method for detailed
balanced reaction-diffusion models, see e.g. [DF08, DFFM08, MHM15, FT17]. We emphasise, however,
that one key novelty of Theorem 1.6’ is to be able to derive an entropy-entropy production inequality
via the fast-reaction parameter ε→ 0.

In the same way as for strictly positive ε > 0, we can derive uniform-in-time L∞-bounds for n and p
also in the case ε = 0. As before, these bounds further improve the lower bounds on n and p.

Corollary 1.9’. There exists a constant K > 0 such that

‖n(t, ·)‖∞, ‖p(t, ·)‖∞ ≤ K for all t ≥ 0. (34)

And for all τ > 0 there exist sufficiently small constants µ,Γ > 0 such that

n(t, x), p(t, x) ≥ min {µt,Γ} (35)

for all t ≥ 0 and a.a. x ∈ Ω, where µτ = Γ such that the bounds µt and Γ intersect at time τ > 0.

Outline: The remainder of the paper is organised in the following manner. Section 2 contains the
proof of Theorem 1.4 as well as the result on the bounds of n∞, p∞ and ntr,∞. In Section 3, we collect a
couple of technical lemmata, and within Section 4, we state a preliminary proposition which serves as a
first result towards an EEP-inequality. An abstract version of the EEP-estimate is proven in Section 5,
first for constant concentrations and based on that also for general concentrations. Section 6 is concerned
with the proofs of the EEP-inequality from Theorem 1.6, the announced exponential convergence from
Theorem 1.8 and the uniform L∞-bounds from Corollary 1.9. Moreover, the proofs of Theorem 1.6’ and
Theorem 1.8’ are also part of this section. Finally, the existence proofs of Theorem 1.1 and Theorem
1.1’ are contained in the Appendix.
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2 Properties of the equilibrium

Proof of Theorem 1.4. We shall prove the equivalence of the statements in the Theorem by a circular
reasoning. Assume that (n∞, p∞, ntr,∞) ∈ X is a solution of the stationary system (15). In this case,

Jn(n∞), Jp(p∞), Rn(n∞, ntr,∞), Rp(p∞, ntr,∞) ∈ L2(Ω).

We test equation (15a) with ln(n∞/(n0µn)). Due to n∞ ∈ H1(Ω) and n∞ ≥ γ a.e. in Ω, the test
function ln(n∞/(n0µn)) belongs to H1(Ω). We find

0 =

∫
Ω

(
|Jn(n∞)|2

n∞
−Rn(n∞, ntr,∞) ln

(
n∞
n0µn

))
dx.

In the same way, we test equation (15b) with ln(p∞/(n0µp)) ∈ H1(Ω). This yields

0 =

∫
Ω

(
|Jp(p∞)|2

p∞
−Rp(p∞, ntr,∞) ln

(
p∞
p0µp

))
dx.

Moreover, we multiply (15c) with ln(ntr,∞/(1− ntr,∞)) ∈ L2(Ω), integrate over Ω and obtain

0 =

∫
Ω

((
Rn(n∞, ntr,∞)−Rp(p∞, ntr,∞)

)
ln

(
ntr,∞

1− ntr,∞

))
dx.

Taking the sum of the three expressions above, we arrive at

D(n∞, p∞, ntr,∞) =

∫
Ω

(
|Jn(n∞)|2

n∞
+
|Jp(p∞)|2

p∞

−Rn(n∞, ntr,∞) ln

(
n∞(1− ntr,∞)

n0µnntr,∞

)
−Rp(p∞, ntr,∞) ln

(
p∞ntr,∞

p0µp(1− ntr,∞)

))
dx = 0.

A closer look at the formula above shows that

−Rn(n∞, ntr,∞) ln

(
n∞(1− ntr,∞)

n0µnntr,∞

)
≥ 0

where equality holds if and only if Rn(n∞, ntr,∞) = 0. The same argument also applies to the other
reaction term. Hence, the relation D(n∞, p∞, ntr,∞) = 0 immediately implies Jn(n∞) = Jp(p∞) =
Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 a.e. in Ω.

Because of Jn(n∞) = Jp(p∞) = 0, we know that

n∞ = n∗e
−Vn , p∞ = p∗e

−Vp

with constants n∗, p∗ > 0. Moreover, Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 gives rise to

ntr,∞ =
n∗
n0

(1− ntr,∞), 1− ntr,∞ =
p∗
p0
ntr,∞.

Consequently, n∗p∗ = n0p0 and

ntr,∞ =
n∗

n∗ + n0
=

p0

p∗ + p0
∈ (0, 1).

The constants n∗ and p∗ are uniquely determined by the condition

n∗p∗ = n0p0

and the conservation law
n∗µn − p∗µp + ε ntr,∞ = M.

Finally, the state

n∞ = n∗e
−Vn , p∞ = p∗e

−Vp , ntr,∞ =
n∗

n∗ + n0
=

p0

p∗ + p0

obviously satisfies Jn(n∞) = Jp(p∞) = Rn(n∞, ntr,∞) = Rp(p∞, ntr,∞) = 0 a.e. in Ω which proves
(n∞, p∞, ntr,∞) to be a solution of the stationary system.
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A key equilibrium property are the subsequent uniform bounds for n∗, p∗ and ntr,∞ for all ε ∈ (0, ε0].

Proposition 2.1 (Uniform-in-ε bounds on the equilibrium). Let (n∞, p∞, ntr,∞) ∈ X be the unique
positive equilibrium as characterised in Theorem 1.4. Then, for all M ∈ R and for all ε ∈ (0, ε0] and
arbitrary ε0 > 0, there exist various constants γ ∈ (0, 1/2) and Γ ∈ (1/2,∞) depending only on ε0, n0,
p0, M , V such that

n∗, p∗ ∈ [γ,Γ], ntr,∞ ∈ [γ, 1− γ] and n∞(x), p∞(x) ∈ [γ,Γ]

for a.a. x ∈ Ω.

Proof. We recall the equilibrium conditions (16)–(18) from Theorem 1.4 and observe that in the equation

n∗µn −
n0p0µp
n∗

= M − εntr,∞ = M − ε n∗
n∗ + n0

,

the left hand side is strictly monotone increasing from −∞ to +∞ as n∗ ∈ (0,∞), while the right
hand side is strictly monotone decreasing and bounded between (M,M − ε0) as n∗ ∈ (0,∞). Both
monotonicity and unboundedness/boundedness imply uniform positive lower and upper bounds for n∗
as explicitly proven in the following: First, we derive that

n∗ =
M − εntr,∞

2µn
+

√
(M − εntr,∞)2

4µn
2 +

n0p0µp
µn

> 0 (36)

for all ε ∈ (0, ε0]. Note that (36) is not an explicit representation of n∗ since ntr,∞ depends itself on n∗.
Because of ntr,∞ ∈ (0, 1), we further observe that

n∗ ≤
|M − εntr,∞|

2µn
+

√
(M − εntr,∞)2

4µn
2 +

√
n0p0µp
µn

≤ |M |+ ε0

µn
+

√
n0p0µp
µn

≤ β <∞,

where β = β(ε0, n0, p0,M, V ). And as a result of the elementary inequality
√
a+ b ≥

√
a + b

2
√
a+
√
b

for

a ≥ 0 and b > 0, we also conclude that

n∗ ≥
M − εntr,∞

2µn
+
|M − εntr,∞|

2µn
+

n0p0µp
µn

|M−εntr,∞|
µn

+
√

n0p0µp
µn

≥
n0p0µp
µn

|M |+ε0
µn

+
√

n0p0µp
µn

≥ α > 0

where α = α(ε0, n0, p0,M, V ). Similar arguments show that corresponding bounds α and β are also
available for p∗. Hence,

ntr,∞ ∈
[

α

α+ n0
,

β

β + n0

]
.

Due to n∞ = n∗e
−Vn , p∞ = p∗e

−Vp and the L∞-bounds on Vn and Vp, the claim of the Proposition
follows.

3 Some technical lemmata

A particularly useful relation between the concentrations n, p and ntr is the following Lemma.

Lemma 3.1. The conservation law n− p+ ε ntr = M and the equilibrium condition (19) imply

∀ t ≥ 0 : (n− n∞) ln

(
n∗
n0

)
+ (p− p∞) ln

(
p∗
p0

)
= ε(ntr − ntr,∞) ln

(
1− ntr,∞
ntr,∞

)
. (37)

Proof. With n∞− p∞+ ε ntr,∞ = M (note that ntr,∞ = ntr,∞ is constant), we have p− p∞ = n−n∞+
ε(ntr − ntr,∞). We employ this relation to replace p− p∞ on the left hand side of (37) and calculate

(n− n∞) ln

(
n∗
n0

)
+ (p− p∞) ln

(
p∗
p0

)
= (n− n∞) ln

(
n∗p∗
n0p0

)
+ ε(ntr − ntr,∞) ln

(
p∗
p0

)
.

11



Now, the first term on the right hand side vanishes due to n∗p∗ = n0p0 while we use p∗/p0 = (1 −
ntr,∞)/ntr,∞ for the second term and obtain

(n− n∞) ln

(
n∗
n0

)
+ (p− p∞) ln

(
p∗
p0

)
= ε(ntr − ntr,∞) ln

(
1− ntr,∞
ntr,∞

)
as claimed above.

Lemma 3.2 (Relative Entropy). The entropy relative to the equilibrium reads

E(n, p, ntr)− E(n∞, p∞, ntr,∞) =∫
Ω

(
n ln

n

n∞
− (n− n∞) + p ln

p

p∞
− (p− p∞) + ε

∫ ntr(x)

ntr,∞

(
ln

(
s

1− s

)
− ln

(
ntr,∞

1− ntr,∞

))
ds

)
dx.

Proof. By the definition of E(n, p, ntr) in (11), we note that

E(n, p, ntr)− E(n∞, p∞, ntr,∞) =

∫
Ω

(
n ln

(
n

n0µn

)
− n∞ ln

(
n∞
n0µn

)
− (n− n∞)

+ p ln

(
p

p0µp

)
− p∞ ln

(
p∞
p0µp

)
− (p− p∞) + ε

∫ ntr(x)

ntr,∞

ln

(
s

1− s

)
ds

)
dx.

We expand the first integrand as n ln
(

n
n0µn

)
= n ln

(
n
n∞

)
+ n ln

(
n∞
n0µn

)
. Thus, with n∞/µn = n∗, we get∫

Ω

(
n ln

(
n

n0µn

)
− n∞ ln

(
n∞
n0µn

)
− (n− n∞)

)
dx

=

∫
Ω

(
n ln

(
n

n∞

)
− (n− n∞)

)
dx+ (n− n∞) ln

(
n∗
n0

)
.

Together with an analogous calculation of the p-terms, we obtain

E(n, p, ntr)− E(n∞, p∞, ntr,∞) =

∫
Ω

(
n ln

(
n

n∞

)
− (n− n∞) + p ln

(
p

p∞

)
− (p− p∞)

)
dx

+ (n− n∞) ln

(
n∗
n0

)
+ (p− p∞) ln

(
p∗
p0

)
+ ε

∫
Ω

∫ ntr(x)

ntr,∞

ln

(
s

1− s

)
ds dx.

Lemma 3.1 allows us to reformulate the second line as

(n− n∞) ln

(
n∗
n0

)
+ (p− p∞) ln

(
p∗
p0

)
+ ε

∫
Ω

∫ ntr(x)

ntr,∞

ln

(
s

1− s

)
ds dx

= ε(ntr − ntr,∞) ln

(
1− ntr,∞
ntr,∞

)
+ ε

∫
Ω

∫ ntr(x)

ntr,∞

ln

(
s

1− s

)
ds dx

= ε

∫
Ω

∫ ntr(x)

ntr,∞

(
ln

(
s

1− s

)
− ln

(
ntr,∞

1− ntr,∞

))
ds dx,

which proves the claim.

Lemma 3.3 (Csiszár–Kullback–Pinsker inequality). Let f, g : Ω → R be non-negative measureable
functions. Then, ∫

Ω

(
f ln

(f
g

)
− (f − g)

)
dx ≥ 3

2f + 4g
‖f − g‖2L1(Ω).

Proof. Following a proof by Pinsker, we start with the elementary inequality 3(x−1)2 ≤ (2x+4)(x lnx−
(x− 1)). This allows us to derive the following Csiszár–Kullback–Pinsker-type inequality:

‖f − g‖L1(Ω) =

∫
Ω

g

∣∣∣∣fg − 1

∣∣∣∣ dx ≤ ∫
Ω

g

√
2

3

f

g
+

4

3

√
f

g
ln
(f
g

)
−
(f
g
− 1
)
dx

=

∫
Ω

√
2

3
f +

4

3
g

√
f ln

(f
g

)
− (f − g) dx ≤

√
2

3
f +

4

3
g

√∫
Ω

(
f ln

(f
g

)
− (f − g)

)
dx

where we applied Hölder’s inequality in the last step.
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The subsequent Lemma provides L1-bounds for n and p in terms of the initial entropy of the system
and some further constants.

Lemma 3.4 (L1-bounds). Due to the monotonicity of the entropy functional, any entropy producing
solution of (1) satisfies

∀ t ≥ 0 : n, p ≤ 5

2
max{n0µn, p0µp}+

3

4
E(n(0), p(0), ntr(0)) =: M1.

Proof. Employing Lemma 3.3 and Young’s inequality, we find

n ≤ n0µn + ‖n− n0µn‖L1(Ω) ≤ n0µn +

√
2

3
n+

4

3
n0µn

√∫
Ω

(
n ln

( n

n0µn

)
− (n− n0µn)

)
dx

≤ n0µn +
1

3
n+

2

3
n0µn +

1

2

∫
Ω

(
n ln

( n

n0µn

)
− (n− n0µn)

)
dx.

Solving this inequality for n yields

n ≤ 5

2
n0µn +

3

4

∫
Ω

(
n ln

(
n

n0µn

)
− (n− n0µn)

)
dx.

Therefore, we arrive at

n ≤ 5

2
n0µn +

3

4
E(n, p, ntr) ≤

5

2
max{n0µn, p0µp}+

3

4
E(n(0), p(0), ntr(0))

where we used the monotonicity of the entropy functional in the last step. In the same way, we may
bound p from above.

At certain points, we will have to estimate the difference between terms like n/n∞ and n/n∞.
Using Lemma 3.5 below, we can bound this difference by the Jn-flux-term and, hence, by the entropy
production.

Lemma 3.5. Let f ∈ L1(Ω) and g ∈ L∞(Ω) such that f ≥ 0, g ≥ γ > 0 a.e. on Ω and f/g is weakly
differentiable. Then, there exists an explicit constant C(‖f‖L1(Ω), ‖g‖L∞(Ω), γ) > 0 such that

(
f

g
−
(
f

g

))2

≤ C
∫

Ω

∣∣∣∣∣∇
√
f

g

∣∣∣∣∣
2

dx.

Proof. We define δ := f
g −

(
f
g

)
and obtain f = g

((
f
g

)
+ δ

)
and

f

g
=

∫
Ω

f

g
dx =

∫
Ω

g

g

((
f

g

)
+ δ

)
dx =

(
f

g

)
+

∫
Ω

g

g
δ dx.

Therefore, ∣∣∣∣∣fg −
(
f

g

)∣∣∣∣∣ ≤ ‖g‖L∞(Ω)

g
‖δ‖L1(Ω) ≤ CP

‖g‖L∞(Ω)

g

∥∥∥∥∇(fg
)∥∥∥∥

L1(Ω)

by applying Poincaré’s inequality to δ with δ = 0 and some constant CP (Ω) > 0. As g ≥ γ > 0 is
uniformly positive on Ω and g ≥ γ, we arrive at∣∣∣∣∣fg −

(
f

g

)∣∣∣∣∣ ≤ CP ‖g‖L∞(Ω)

γ2

∥∥∥∥g∇(fg
)∥∥∥∥

L1(Ω)

.

Finally, we deduce(
f

g
−
(
f

g

))2

≤
(
CP
‖g‖L∞(Ω)

γ2

)2 ∥∥∥∥√fg√ g

f
∇
(
f

g

)∥∥∥∥2

L1(Ω)

≤ 4fg

(
CP
‖g‖L∞(Ω)

γ2

)2 ∫
Ω

∣∣∣∣∣∇
√
f

g

∣∣∣∣∣
2

dx

employing Hölder’s inequality in the second step.
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4 Two preliminary propositions

Notation 4.1. For arbitrary functions f , we define the normalised quantity

f̃ :=
f

f
.

The following Logarithmic Sobolev inequality on bounded domains was proven in [DF14] by following
an argument of Stroock [Str93].

Lemma 4.2 (Logarithmic Sobolev inequality on bounded domains). Let Ω be a bounded domain in Rm

such that the Poincaré (-Wirtinger) and Sobolev inequalities

‖φ−
∫

Ω
φdx‖2L2(Ω) ≤ P (Ω) ‖∇φ‖2L2(Ω) , (38)

‖φ‖2Lq(Ω) ≤ C1(Ω) ‖∇φ‖2L2(Ω) + C2(Ω) ‖φ‖2L2(Ω) ,
1
q = 1

2 −
1
m , (39)

hold. Then, the logarithmic Sobolev inequality∫
Ω

φ2 ln

(
φ2

‖φ‖22

)
dx ≤ L(Ω,m) ‖∇φ‖2L2(Ω) (40)

holds (for some constant L(Ω,m) > 0).

The Log-Sobolev inequality allows to bound an appropriate part of the entropy functional by the
flux-parts of the entropy production. The normalised variables on the left hand side of the subsequent
inequality naturally arise when reformulating the flux-terms on the right hand side in such a way that
we can apply the Log-Sobolev inequality on Ω.

Proposition 4.3. Recall the assumptions ‖Vn‖L∞(Ω), ‖Vp‖L∞(Ω) ≤ V . Then, there exists a constant
C(V ) > 0 such that ∫

Ω

(
n ln

(
ñ

µ̃n

)
+ p ln

(
p̃

µ̃p

))
dx ≤ C

∫
Ω

(
|Jn|2

n
+
|Jp|2

p

)
dx.

Proof. From the definition of Jn one obtains

∫
Ω

|Jn|2

n
dx =

∫
Ω

µn
n

∣∣∣∣∇( n

µn

)∣∣∣∣2 µn dx = 4n

∫
Ω

µn
n

∣∣∣∣∇√ n

µn

∣∣∣∣2 dx = 4n

∫
Ω

µn
µn

∣∣∣∣∣∇
√

ñ

µ̃n

∣∣∣∣∣
2

dx.

We set

φ(x) :=

√
ñ

µ̃n
, α :=

∫
Ω

φ(x)2 dx

and observe due to the mean-value theorem that α = µn
n

∫
Ω

n
µn
dx = µn

µn(θ) ≤ µne
V is bounded indepen-

dently of n. Next, we introduce the rescaled variable y := α−
1
mx where m denotes the space dimension.

Note that ‖φ‖L2(dx) is in general different from one, whereas ‖φ‖L2(dy) = 1. We now estimate with
‖Vn‖L∞(Ω) ≤ V and the Logarithmic Sobolev Inequality (40)∫

Ω

|∇xφ|2 dx =

∫
Ω

|α− 1
m∇yφ|2 αdy = α1− 2

m

∫
Ω

|∇yφ|2 dy

≥ α1− 2
m

1

L

∫
Ω

φ2 ln(φ2) dy = α1− 2
m

1

L

∫
Ω

ñ

µ̃n
ln
( ñ
µ̃n

)
dy = α−

2
m

1

L

µn
n

∫
Ω

n

µn
ln
( ñ
µ̃n

)
dx.

The corresponding estimate involving Jn reads∫
Ω

|Jn|2

n
dx ≥ 4

n

µn
e−V

∫
Ω

|∇xφ|2 dx ≥
4

L
α−

2
m e−2V

∫
Ω

n ln
( ñ
µ̃n

)
dx.

The same arguments apply to the terms involving p.
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The following Proposition contains the first step towards an entropy-entropy production inequality.
The relative entropy can be controlled by the flux-part of the entropy production and three additional
terms, which mainly consist of square-roots of averaged quantities. The proof that the entropy production
also serves as an upper bound for these terms will be the subject of the next section.

Proposition 4.4. There exists an explicit constant C(γ,Γ,M1) > 0 such that for (n∞, p∞, ntr,∞) ∈ X
from Theorem 1.4 and all non-negative functions (n, p, ntr) ∈ L1(Ω)3 satisfying ntr ≤ 1, the conservation
law

n− p+ εntr = M

and the L1-bound
n, p ≤M1,

the following estimate holds true:

E(n, p, ntr)− E(n∞, p∞, ntr,∞) ≤ C

(∫
Ω

(
|Jn|2

n
+
|Jp|2

p

)
dx

+

(√( n
µn

)
−
√
n∗

)2

+

(√( p
µp

)
−√p∗

)2

+ ε

∫
Ω

(√
ntr −

√
ntr,∞

)2
dx

)
. (41)

(Note that the right hand side of (41) vanishes at the equilibrium (n∞, p∞, ntr,∞).)

Proof. According to Lemma 3.2, we have

E(n, p, ntr)− E(n∞, p∞, ntr,∞) =∫
Ω

(
n ln

n

n∞
− (n− n∞) + p ln

p

p∞
− (p− p∞) + ε

∫ ntr

ntr,∞

(
ln
( s

1− s

)
− ln

( ntr,∞
1− ntr,∞

))
ds

)
dx.

Recall that n = ñ n, n∞ = ñ∞ n∞ and ñ∞ = µ̃n. Using these relations, we rewrite the first two
integrands as

n ln
( n

n∞

)
− (n− n∞) = n ln

( ñ
µ̃n

)
+ n ln

( n

n∞

)
− (n− n∞)

and analogously for the p-terms. This results in

E(n, p, ntr)− E(n∞, p∞, ntr,∞) =

∫
Ω

(
n ln

( ñ
µ̃n

)
+ p ln

( p̃
µ̃p

))
dx

+ n∞

(
n

n∞
ln
( n

n∞

)
−
( n

n∞
− 1
))

+ p∞

(
p

p∞
ln
( p

p∞

)
−
( p

p∞
− 1
))

+ ε

∫
Ω

∫ ntr

ntr,∞

(
ln
( s

1− s

)
− ln

( ntr,∞
1− ntr,∞

))
ds dx. (42)

The terms in the first line of (42) can be estimated using the Log-Sobolev inequality of Proposition
4.3. Moreover, the elementary inequality x lnx− (x− 1) ≤ (x− 1)2 for x > 0 gives rise to

n∞

(
n

n∞
ln
( n

n∞

)
−
( n

n∞
− 1
))
≤ n∞

(
n

n∞
− 1

)2

≤ 2n∞

[(( n

n∞

)
− 1

)2

+

(
n

n∞
−
( n

n∞

))2
]

and an analogous estimate for the corresponding expressions involving p. The second term on the right
hand side of the previous line can be bounded from above by applying Lemma 3.5, which guarantees a
constant C(γ,Γ,M1) > 0 such that(

n

n∞
−
( n

n∞

))2

≤ C
∫

Ω

∣∣∣∣∇√ n

n∞

∣∣∣∣2 dx ≤ C

4 infΩ n∞

∫
Ω

1

n

∣∣∣∣n∞∇( n

n∞

)∣∣∣∣2 dx ≤ c1 ∫
Ω

|Jn|2

n
dx
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for some constant c1(γ,Γ,M1) > 0. Besides,

(( n

n∞

)
− 1

)2

=
1

n2
∗

(( n
µn

)
− n∗

)2

=
1

n2
∗

(√( n
µn

)
+
√
n∗

)2(√( n
µn

)
−
√
n∗

)2

=
1

n∗

(√( n

n∞

)
+ 1

)2(√( n
µn

)
−
√
n∗

)2

≤ C(γ,M1)

(√( n
µn

)
−
√
n∗

)2

.

See Proposition 2.1 and Lemma 3.4 for the bounds on n∗, n∞ and n. We have thus verified that

n∞

(
n

n∞
ln
( n

n∞

)
−
( n

n∞
− 1
))
≤ c2

(∫
Ω

|Jn|2

n
dx+

(√( n
µn

)
−
√
n∗

)2
)

with some c2(γ,Γ,M1) > 0. A similar estimate holds true for the corresponding part of (42) involving p.
Considering the last line in (42), we further know that for all x ∈ Ω there exists some mean value

θ(x) ∈ (min{ntr(x), ntr,∞},max{ntr(x), ntr,∞})

such that ∫ ntr(x)

ntr,∞

ln

(
s

1− s

)
ds = ln

(
θ(x)

1− θ(x)

)
(ntr(x)− ntr,∞). (43)

Consequently,

ε

∫
Ω

∫ ntr(x)

ntr,∞

ln

(
s

1− s

)
ds dx = ε

∫
Ω

ln

(
θ(x)

1− θ(x)

)
(ntr(x)− ntr,∞) dx.

In fact, we will prove that there even exists some constant ξ ∈ (0, 1/2) such that

θ(x) ∈ (ξ, 1− ξ)

for all x ∈ Ω. Thus, the function θ(x) is uniformly bounded away from 0 and 1 on Ω. To see this, we
first note that ntr,∞ ∈ [γ, 1− γ] using the constant γ ∈ (0, 1/2) from Proposition 2.1. In addition,∣∣∣∣∣

∫ ntr(x)

ntr,∞

ln

(
s

1− s

)
ds

∣∣∣∣∣ ≤
∫ 1

0

∣∣∣∣ln( s

1− s

)∣∣∣∣ ds = 2 ln(2)

for all x ∈ Ω. Together with (43), this estimate implies∣∣∣∣ln( θ(x)

1− θ(x)

)∣∣∣∣ ∣∣ntr(x)− ntr,∞
∣∣ ≤ 2 ln(2).

We now choose an arbitrary x ∈ Ω and distinguish two cases. If |ntr(x)− ntr,∞| ≥ γ/2, then∣∣∣∣ln( θ(x)

1− θ(x)

)∣∣∣∣ ≤ 2 ln(2)

|ntr(x)− ntr,∞|
≤ 4 ln(2)

γ
.

As a consequence of ln(s/(1 − s)) → ∞ for s → 1− and ln(s/(1 − s)) → −∞ for s → 0+, there exists
some constant ξ ∈ (0, γ) depending only on γ such that θ(x) ∈ (ξ, 1− ξ). If |ntr(x)− ntr,∞| < γ/2, then
ntr,∞ ∈ [γ, 1− γ] implies ntr(x) ∈ (γ/2, 1− γ/2) and, hence, θ(x) ∈ (γ/2, 1− γ/2). Again the constant
ξ depends only on γ.

As a result of the calculations above, we may rewrite the last line in (42) as

ε

∫
Ω

∫ ntr(x)

ntr,∞

(
ln
( s

1− s

)
− ln

( ntr,∞
1− ntr,∞

))
ds dx

= ε

∫
Ω

(
ln
( θ(x)

1− θ(x)

)
− ln

( ntr,∞
1− ntr,∞

))
(ntr(x)− ntr,∞) dx.
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Applying the mean-value theorem to the expression in brackets and observing that

d

ds
ln

(
s

1− s

)
=

1

s(1− s)
,

we find

ε

∫
Ω

(
ln
( θ(x)

1− θ(x)

)
− ln

( ntr,∞
1− ntr,∞

))
(ntr(x)− ntr,∞) dx

= ε

∫
Ω

1

σ(x)(1− σ(x))
(θ(x)− ntr,∞)(ntr(x)− ntr,∞) dx

with some σ(x) ∈ (min{θ(x), ntr,∞},max{θ(x), ntr,∞}). Since both θ(x), ntr,∞ ∈ (ξ, 1− ξ) for all x ∈ Ω,
we also know that σ(x) ∈ (ξ, 1 − ξ) for all x ∈ Ω. Thus, (σ(x)(1 − σ(x)))−1 is bounded uniformly in Ω
in terms of ξ = ξ(γ). Consequently,

ε

∫
Ω

∫ ntr(x)

ntr,∞

(
ln
( s

1− s

)
− ln

( ntr,∞
1− ntr,∞

))
ds dx

≤ εc3
∫

Ω

|θ(x)− ntr,∞||ntr(x)− ntr,∞| dx ≤ εc3
∫

Ω

(ntr − ntr,∞)2 dx

= εc3

∫
Ω

(
√
ntr +

√
ntr,∞)2(

√
ntr −

√
ntr,∞)2 dx ≤ 4εc3

∫
Ω

(√
ntr −

√
ntr,∞

)2
dx

with a constant c3(γ) > 0 after applying the estimate |θ(x) − ntr,∞| ≤ |ntr(x) − ntr,∞| for all x ∈ Ω.
Finally, we arrive at

E(n, p, ntr)− E(n∞, p∞, ntr,∞) ≤ C

(∫
Ω

(
|Jn|2

n
+
|Jp|2

p

)
dx

+

(√( n
µn

)
−
√
n∗

)2

+

(√( p
µp

)
−√p∗

)2

+ ε

∫
Ω

(√
ntr −

√
ntr,∞

)2
dx

)
with a constant C(γ,Γ,M1) > 0.

5 Abstract versions of the EEP-inequality

Notation 5.1. We set
n′tr := 1− ntr, n′tr,∞ := 1− ntr,∞

and define the positive constants

ν∞ :=

√
n∗
n0

=

√
n∞
n0µn

, π∞ :=

√
p∗
p0

=

√
p∞
p0µp

, νtr,∞ :=
√
ntr,∞, ν′tr,∞ :=

√
n′tr,∞.

The motivation for introducing the additional variable n′tr is the possibility to symmetrise expressions
like (n(1− ntr)− ntr)2 + (pntr − (1− ntr))2 as (nn′tr − ntr)2 + (pntr − n′tr)2. Similar terms will appear
frequently within the subsequent calculations.

Remark 5.2. We may consider n′tr as a fourth independent variable within our model. In this case, the
reaction-diffusion system features the following two independent conservation laws:

n− p+ ε ntr = n0 µn

(
n

n0µn

)
− p0 µp

(
p

p0µp

)
+ ε ntr = M ∈ R, ntr(x) + n′tr(x) = 1 for all x ∈ Ω.

The special formulation of the first conservation law will become clear when looking at the following
two Propositions. There, we derive relations for general variables a, b, c and d, which correspond to√
n/(n0µn),

√
p/(p0µp),

√
ntr and

√
n′tr, respectively.

In addition, we have the following L1-bound (cf. Lemma 3.4):

n, p ≤M1.
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The following Proposition 5.3 establishes an upper bound for the terms in the second line of (41) in
the case of constant concentrations a, b, c and d. This result is then generalised in Proposition 5.5 to
non-constant states a, b, c, d.

Proposition 5.3 (Homogeneous Concentrations). Let a, b, c, d ≥ 0 be constants such that their squares
satisfy the conservation laws

n0µna
2 − p0µpb

2 + ε c2 = M = n0µnν
2
∞ − p0µpπ

2
∞ + ε ν2

tr,∞, c2 + d2 = 1 = ν2
tr,∞ + ν′ 2tr,∞

for any ε ∈ (0, ε0] and arbitrary ε0 > 0. Moreover, assume

a2, b2 ≤ C(n0, p0,M1, V ).

Then, there exists an explicitly computable constant C(ε0, n0, p0,M,M1, V ) > 0 such that

(a− ν∞)2 + (b− π∞)2 + (c− νtr,∞)2 ≤ C
(
(ad− c)2 + (bc− d)2

)
(44)

for all ε ∈ (0, ε0].

Proof. We first introduce the following change of variable: Due to the non-negativity of the concentrations
a, b, c, d, we define constants µ1, µ2, µ3, µ4 ∈ [−1,∞) such that

a = ν∞(1 + µ1), b = π∞(1 + µ2), c = νtr,∞(1 + µ3), d = ν′tr,∞(1 + µ4),

where ν∞, π∞, νtr,∞ and ν′tr,∞ are uniformly positive and bounded for all ε ∈ (0, ε0] in terms of
ε0, n0, p0,M and V by (the proof of) Propositions 2.1. Thus, the boundedness of a, b, c, d implies the
existence of a constant K(ε0, n0, p0,M,M1, V ) > 0, such that µi ∈ [−1,K] for all 1 ≤ i ≤ 4. The left
hand side of (44) expressed in terms of the µi rewrites as

(a− ν∞)2 + (b− π∞)2 + (c− νtr,∞)2 = ν2
∞µ

2
1 + π2

∞µ
2
2 + ν2

tr,∞µ
2
3.

Employing the equilibrium conditions (19), we also find

ad− c = ν∞ν
′
tr,∞(1 + µ1)(1 + µ4)− νtr,∞(1 + µ3) = νtr,∞ [(1 + µ1)(1 + µ4)− (1 + µ3)]

and

bc− d = π∞νtr,∞(1 + µ2)(1 + µ3)− ν′tr,∞(1 + µ4) = ν′tr,∞ [(1 + µ2)(1 + µ3)− (1 + µ4)] .

Moreover, the two conservation laws from the hypotheses rewrite as

n0µnν
2
∞µ1(2 + µ1)− p0µpπ

2
∞µ2(2 + µ2) + ε ν2

tr,∞µ3(2 + µ3) = 0, (45)

ν2
tr,∞µ3(2 + µ3) + ν′ 2tr,∞µ4(2 + µ4) = 0. (46)

The relations (45)–(46) allow to express εµ3 and εµ4 in terms of µ1 and µ2, although not explicitly:

εµ3 = −n0µnν
2
∞

ν2
tr,∞

2 + µ1

2 + µ3
µ1 +

p0µpπ
2
∞

ν2
tr,∞

2 + µ2

2 + µ3
µ2 =: −f1,3(µ1, µ3)µ1 + f2,3(µ2, µ3)µ2, (47)

εµ4 = −
ν2
tr,∞

ν′ 2tr,∞

2 + µ3

2 + µ4
εµ3 =: −f3,4(µ3, µ4) εµ3 =: f1,4(µ1, µ3, µ4)µ1 − f2,4(µ2, µ3, µ4)µ2, (48)

where the last definition follows from inserting the previous expression (47) for εµ3 while the factor 2+µ3

is bounded in [1,K + 2] since µi ∈ [−1,K] for all 1 ≤ i ≤ 4. Therefore, all the terms fi,j are uniformly
positive as well as bounded from above:

0 < C1,3 ≤ f1,3 ≤ C1,3 <∞, 0 < C2,3 ≤ f2,3 ≤ C2,3 <∞,

0 < C3,4 ≤ f3,4 ≤ C3,4 <∞, 0 < C1,4 ≤ f1,4 ≤ C1,4 <∞, 0 < C2,4 ≤ f2,4 ≤ C2,4 <∞.
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All constants Ci,j and Ci,j only depend on ε0, n0, p0, M , M1 and V , and there exist corresponding

bounds C > 0 and C > 0 such that for all i, j

C ≤ Ci,j , Ci,j ≤ C.

In order to prove (44), we show that under the constraints of the conservation laws (45)–(46), respec-
tively, the relations (47)–(48), there exists a constant C(ε0, n0, p0,M,C,C) > 0 for all ε ∈ (0, ε0] such
that

(a− ν∞)2 + (b− π∞)2 + (c− νtr,∞)2

(ad− c)2 + (bc− d)2
≤ C,

which is equivalent to

ν2
∞µ

2
1 + π2

∞µ
2
2 + ν2

tr,∞µ
2
3

ν2
tr,∞ [(1 + µ1)(1 + µ4)− (1 + µ3)]

2
+ ν′ 2tr,∞ [(1 + µ2)(1 + µ3)− (1 + µ4)]

2 ≤ C. (49)

Recall that ν2
∞ ≤ Γ/n0, π2

∞ ≤ Γ/p0 and ν2
tr,∞, ν

′ 2
tr,∞ ∈ [γ, 1 − γ] with γ ∈ (0, 1/2) and Γ ∈ (1/2,∞)

depending on ε0, n0, p0 and M for all ε ∈ (0, ε0] (cf. the proof of Proposition 2.1). Since numerator and
denominator of (49) are sums of quadratic terms, it is sufficient to bound the denominator from below
in terms of its numerator omitting the prefactors ν2

∞, π2
∞, ν2

tr,∞ and ν′ 2tr,∞, i.e. to prove that

(∗) := [(1 + µ1)(1 + µ4)− (1 + µ3)]
2

+ [(1 + µ2)(1 + µ3)− (1 + µ4)]
2 ≥ C

(
µ2

1 + µ2
2 + µ2

3

)
. (50)

More precisely, we will prove that there exists a constant c(ε0, C, C) > 0 for all ε ∈ (0, ε0] such that

(∗) = (µ1 + µ4 + µ1µ4 − µ3)
2

+ (µ2 + µ3 + µ2µ3 − µ4)
2 ≥ c (µ2

1 + µ2
2)

and that
(∗) = (µ1 + µ4 + µ1µ4 − µ3)

2
+ (µ2 + µ3 + µ2µ3 − µ4)

2 ≥ µ2
3.

For this reason, we distinguish four cases and we shall frequently use estimates like

µi + µiµj = µi(1 + µj) ≥ 0 iff µi ≥ 0 for all 1 ≤ j ≤ 4,

since µj ≥ −1 for all 1 ≤ j ≤ 4. We mention already here that all subsequent constants c1, c2 are strictly
positive and depend only on ε0, C and C uniformly for ε ∈ (0, ε0].

Case 1: µ1 ≥ 0 ∧ µ2 ≥ 0: If µ3 ≥ 0, then (46) implies µ4 ≤ 0 and µ2 + µ3 + µ2µ3 − µ4 ≥ µ2. Moreover,
µ3 ≥ 0 yields

f2,3µ2 ≥ f1,3µ1 ⇒ C2,3µ2 ≥ C1,3µ1 ⇒ µ2 ≥ C1,3/C2,3 µ1

and
µ2 + µ3 + µ2µ3 − µ4 ≥ µ2 ≥ µ2/2 + C1,3/(2C2,3)µ1 ≥ c1(µ1 + µ2).

Hence, (∗) ≥ (µ2 + µ3 + µ2µ3 − µ4)
2 ≥ c2(µ2

1 + µ2
2). Besides, (∗) ≥ (µ2 + µ3 + µ2µ3 − µ4)

2 ≥ µ2
3.

If µ3 < 0, (46) yields µ4 > 0 and µ1 + µ4 + µ1µ4 − µ3 ≥ µ1. Since µ3 < 0, (47) implies

f1,3µ1 ≥ f2,3µ2 ⇒ C1,3µ1 ≥ C2,3µ2 ⇒ µ1 ≥ C2,3/C1,3 µ2

and
µ1 + µ4 + µ1µ4 − µ3 ≥ µ1 ≥ µ1/2 + C2,3/(2C1,3)µ2 ≥ c1(µ1 + µ2).

As above, (∗) ≥ c2(µ2
1 + µ2

2). The signs µ3 ≤ 0 ≤ µ1, µ4 yield (∗) ≥ (µ1 + µ4 + µ1µ4 − µ3)
2 ≥ µ2

3.

Case 2: µ1 ≥ 0 ∧ µ2 < 0: (47) and (48) imply µ3 ≤ 0 and µ4 ≥ 0, and we deduce for all ε ∈ (0, ε0]

µ1 + µ4 + µ1µ4 − µ3 ≥ µ4 − µ3 = ε−1(f1,3 + f1,4)µ1 − ε−1(f2,3 + f2,4)µ2

≥ ε−1
0 (C1,3 + C1,4)|µ1|+ ε−1

0 (C2,3 + C2,4)|µ2| ≥ c1(|µ1|+ |µ2|)

and, thus, (∗) ≥ (µ1 + µ4 + µ1µ4 − µ3)2 ≥ c2(µ2
1 + µ2

2). Since µ2, µ3 ≤ 0 ≤ µ4, we have

(∗) ≥ (µ4 − µ3 − µ2(1 + µ3))
2 ≥ µ2

3.
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Case 3: µ1 < 0 ∧ µ2 ≥ 0: Here, µ3 ≥ 0 due to (47) and, thus, µ4 ≤ 0 by (48), which yields for all
ε ∈ (0, ε0]

µ2 + µ3 + µ2µ3 − µ4 ≥ µ3 − µ4 = ε−1(f2,3 + f2,4)µ2 − ε−1(f1,3 + f1,4)µ1

≥ ε−1
0 (C1,3 + C1,4)|µ1|+ ε−1

0 (C2,3 + C2,4)|µ2| ≥ c1(|µ1|+ |µ2|)

and (∗) ≥ (µ2 + µ3 + µ2µ3 − µ4)2 ≥ c2(µ2
1 + µ2

2). And as µ1, µ4 ≤ 0 ≤ µ3, one has

(∗) ≥ (µ3 − µ4 − µ1(1 + µ4))
2 ≥ µ2

3.

Case 4: µ1 < 0 ∧ µ2 < 0: Supposing that µ3 ≥ 0 and thus µ4 ≤ 0 by (48), we observe

|µ1 + µ4 + µ1µ4 − µ3| = µ3 − µ1 − µ4(1 + µ1) ≥ −µ1.

Furthermore, µ3 ≥ 0 enables us to estimate

f1,3µ1 ≤ f2,3µ2 ⇒ C1,3µ1 ≤ C2,3µ2 ⇒ −µ1 ≥ −C2,3/C1,3 µ2.

and
|µ1 + µ4 + µ1µ4 − µ3| ≥ −µ1 ≥ −µ1/2− C2,3/(2C1,3)µ2 ≥ c1(|µ1|+ |µ2|).

Hence, (∗) ≥ (µ1 + µ4 + µ1µ4 − µ3)2 ≥ c2(µ2
1 + µ2

2). The second estimate in terms of µ2
3 follows

with µ1, µ4 ≤ 0 ≤ µ3 from
(∗) ≥ (µ3 − µ4 − µ1(1 + µ4))

2 ≥ µ2
3.

In the opposite case that µ3 < 0 and thus µ4 ≥ 0 due to (48), we estimate

|µ2 + µ3 + µ2µ3 − µ4| = µ4 − µ2 − µ3(1 + µ2) ≥ −µ2

and
f2,3µ2 ≤ f1,3µ1 ⇒ C2,3µ2 ≤ C1,3µ1 ⇒ −µ2 ≥ −C1,3/C2,3 µ1.

We, thus, arrive at

|µ2 + µ3 + µ2µ3 − µ4| ≥ −µ2 ≥ −µ2/2− C1,3/(2C2,3)µ1 ≥ c1(|µ1|+ |µ2|)

and (∗) ≥ (µ2 + µ3 + µ2µ3 − µ4)2 ≥ c2(µ2
1 + µ2

2). The corresponding inequality for µ3 reads

(∗) ≥ (µ4 − µ3 − µ2(1 + µ3))
2 ≥ µ2

3,

which follows from µ2, µ3 ≤ 0 ≤ µ4.

The proof of the Proposition is now complete.

Notation 5.4. From now on, ‖ · ‖ without further specification shall always denote the L2-norm in Ω.

Within the subsequent Proposition 5.5, the expressions (ad− c)2 and (bc−d)2 on the right hand side
of (44) will be generalised to ‖ad− c‖2 and ‖bc− d‖2 in Equation (51). We will later show in the proof
of Theorem 1.6 that ‖ad− c‖2 (and also ‖bc− d‖2) can be estimated from above via the reaction terms
within the entropy production (13) when using the special choices

√
n/(n0µn),

√
p/(p0µp),

√
ntr and√

n′tr for a, b, c and d.

Proposition 5.5 (Inhomogeneous Concentrations). Let a, b, c, d : Ω → R be measurable, non-negative
functions such that their squares satisfy the conservation laws

n0µna2 − p0µpb2 + ε c2 = M = n0µnν
2
∞ − p0µpπ

2
∞ + ε ν2

tr,∞, c2 + d2 = 1 = ν2
tr,∞ + ν′ 2tr,∞

for any ε ∈ (0, ε0] and arbitrary ε0 > 0. In addition, we assume

a2, b2 ≤ C(n0, p0,M1, V ).

Then, there exists an explicitly computable constant C(ε0, n0, p0,M,M1, V ) > 0 such that(√
a2 − ν∞

)2

+
(√

b2 − π∞
)2

+ ‖c− νtr,∞‖2

≤ C
(
‖ad− c‖2 + ‖bc− d‖2 + ‖∇a‖2 + ‖∇b‖2 + ‖a− a‖2 + ‖b− b‖2 + ‖c− c‖2 + ‖d− d‖2

)
(51)

for all ε ∈ (0, ε0].
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Proof. We divide the proof into two steps. In the first part, we shall derive lower bounds for the reaction
terms ‖ad− c‖2 + ‖bc− d‖2 involving (a d− c)2 + (b c− d)2. This will allow us to apply Proposition 5.3
in the second step.

Step 1: We show

‖ad− c‖2 ≥ 1

2

(
a d− c

)2 − c1 (‖a− a‖2 + ‖b− b‖2 + ‖c− c‖2 + ‖d− d‖2
)
,

and

‖bc− d‖2 ≥ 1

2

(
b c− d

)2 − c1 (‖a− a‖2 + ‖b− b‖2 + ‖c− c‖2 + ‖d− d‖2
)

with some explicitly computable constant c1 > 0. For this reason, we define

δ1 := a− a, δ2 := b− b, δ3 := c− c, δ4 := d− d

and note that δ1 = δ2 = δ3 = δ4 = 0. Moreover,

|a d− c|, |b c− d| ≤ C(n0, p0,M1, V )

due to Young’s inequality, a2, b2 ≤ C(n0, p0,M1, V ) and c2, d2 ≤ 1.
We now define

S :=
{
x ∈ Ω

∣∣ |δ1| ≤ 1 ∧ |δ2| ≤ 1 ∧ |δ3| ≤ 1 ∧ |δ4| ≤ 1
}

and split the squares of the L2(Ω)-norm as

‖ad− c‖2 =

∫
S

(ad− c)2 dx+

∫
Ω\S

(ad− c)2 dx (52)

and

‖bc− d‖2 =

∫
S

(bc− d)2 dx+

∫
Ω\S

(bc− d)2 dx,

respectively. In order to estimate the first integral in (52) from below, we write

ad = (a+ δ1)(d+ δ4) = ad+ aδ4 + dδ1 + δ1δ4, c = c+ δ3.

This yields∫
S

(ad− c)2 dx =

∫
S

(ad− c)2 dx+ 2

∫
S

(ad− c)(aδ4 +dδ1 + δ1δ4− δ3) dx+

∫
S

(aδ4 +dδ1 + δ1δ4− δ3)2 dx

≥ 1

2

∫
S

(ad−c)2 dx−
∫
S

(aδ4 +dδ1 +δ1δ4−δ3)2 dx ≥ 1

2

∫
S

(ad−c)2 dx−C(n0, p0,M1, V )
(
δ2
1 + δ2

3 + δ2
4

)
where we used Young’s inequality 2xy ≥ −x2/2−2y2 for x, y ∈ R in the second step and the boundedness
of δi, 1 ≤ i ≤ 4, in the last step. Similarly, we deduce∫

S

(bc− d)2 dx ≥ 1

2

∫
S

(bc− d)2 dx− C(n0, p0,M1, V )
(
δ2
2 + δ2

3 + δ2
4

)
.

The second integral in (52) is mainly estimated by deriving an upper bound for the measure of Ω\S. For
all i ∈ {1, . . . , 4} we have ∣∣{δ2

i > 1
}∣∣ =

∫
{δ2
i>1}

1 dx ≤
∫

Ω

δ2
i dx = δ2

i

and, hence,

|Ω\S| ≤
4∑
i=1

∣∣{δ2
i > 1

}∣∣ ≤ δ2
1 + δ2

2 + δ2
3 + δ2

4 .

As a consequence of |a d− c| ≤ C(n0, p0,M1, V ), we obtain∫
Ω\S

(a d− c)2 dx ≤ C(n0, p0,M1, V ) |{Ω\S}| ≤ C(n0, p0,M1, V )
(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
.
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This implies∫
Ω\S

(ad− c)2 dx ≥ 0 ≥ 1

2

∫
Ω\S

(a d− c)2 dx− C(n0, p0,M1, V )
(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
and, analogously,∫

Ω\S
(bc− d)2 dx ≥ 0 ≥ 1

2

∫
Ω\S

(b c− d)2 dx− C(n0, p0,M1, V )
(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
.

Taking the sum of both contributions to (52), we finally arrive at

‖ad− c‖2 ≥ 1

2

(
a d− c

)2 − c1(n0, p0,M1, V )
(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
(53)

and

‖bc− d‖2 ≥ 1

2

(
b c− d

)2 − c1(n0, p0,M1, V )
(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
. (54)

Step 2: We introduce constants µi ≥ −1, 1 ≤ i ≤ 4, such that

a2 = ν2
∞(1 + µ1)2, b2 = π2

∞(1 + µ2)2, c2 = ν2
tr,∞(1 + µ3)2, d2 = ν′ 2tr,∞(1 + µ4)2.

We recall that Proposition 2.1 guarantees the uniform positivity and boundedness of ν∞, π∞, νtr,∞ and

ν′tr,∞ for all ε ∈ (0, ε0] in terms of ε0, n0, p0,M and V . Therefore, the bounds a2, b2 ≤ C(n0, p0,M1, V )

and c2, d2 ≤ 1 give rise to a constant K(ε0, n0, p0,M,M1, V ) > 0 such that µi ∈ [−1,K] for all 1 ≤ i ≤ 4
uniformly for ε ∈ (0, ε0].

We now want to derive a formula for a in terms of δ1 and µ1. Since a2− a2 = ‖a− a‖2 = ‖δ1‖2 = δ2
1 ,

one finds

a =
√
a2 − δ2

1√
a2 + a

= ν∞(1 + µ1)− δ2
1√

a2 + a
(55)

and analogous expressions for b, c and d:

b = π∞(1 + µ2)− δ2
2√

b2 + b
, c = νtr,∞(1 + µ3)− δ2

3√
c2 + c

, d = ν′tr,∞(1 + µ4)− δ2
4√

d2 + d
.

Furthermore, (√
a2 − ν∞

)2

= ν2
∞µ

2
1,

(√
b2 − π∞

)2

= π2
∞µ

2
2

and, similarly,

‖c− νtr,∞‖2 = c2 − 2cνtr,∞ + ν2
tr,∞

= ν2
tr,∞(1 + µ3)2 − 2ν2

tr,∞(1 + µ3) +
2νtr,∞δ2

3√
c2 + c

+ ν2
tr,∞ = ν2

tr,∞µ
2
3 +

2νtr,∞√
c2 + c

δ2
3 .

One observes that the expansions above in terms of δ2
i are singular if, e.g., a2 is zero. We therefore

distinguish the following two cases.

Case 1: a2 ≥ κ2 ∧ b2 ≥ κ2 ∧ c2 ≥ κ2 ∧ d2 ≥ κ2: The constant κ > 0 will be chosen according to the
calculations in the other Case 2. Here, we have

1√
a2 + a

,
1√
b2 + b

,
1√
c2 + c

,
1√
d2 + d

≤ 1

κ

and
ν′tr,∞√
a2 + a

,
νtr,∞√
b2 + b

,
π∞√
c2 + c

,
ν∞√
d2 + d

≤ C(κ, ε0, n0, p0,M, V )

22



for all ε ∈ (0, ε0] due to the bounds on ν∞ and π∞ from Proposition 2.1. Equation (55) further implies

(ad− c)2 =

(
ν∞ν

′
tr,∞(1 + µ1)(1 + µ4)− ν∞(1 + µ1)√

d2 + d
δ2
4 −

ν′tr,∞(1 + µ4)√
a2 + a

δ2
1

+
1

(
√
a2 + a)(

√
d2 + d)

δ2
1 δ

2
4 − νtr,∞(1 + µ3) +

δ2
3√

c2 + c

)2

≥ ν2
tr,∞

(
(1 + µ1)(1 + µ4)− (1 + µ3)

)2 − c2(κ, ε0, n0, p0,M,M1, V )
(
δ2
1 + δ2

3 + δ2
4

)
with some explicit constant c2 thanks to ν∞ν

′
tr,∞ = νtr,∞ (compare Equation (19)) and |µi|, δ2

i ≤
c1(ε0, n0, p0,M,M1, V ). In a similar fashion using π∞νtr,∞ = ν′tr,∞, one obtains

(bc− d)2 =

(
π∞νtr,∞(1 + µ2)(1 + µ3)− π∞(1 + µ2)√

c2 + c
δ2
3 −

νtr,∞(1 + µ3)√
b2 + b

δ2
2

+
1

(
√
b2 + b)(

√
c2 + c)

δ2
2 δ

2
3 − ν′tr,∞(1 + µ4) +

δ2
4√

d2 + d

)2

≥ ν′ 2tr,∞
(
(1 + µ2)(1 + µ3)− (1 + µ4)

)2 − c2(κ, ε0, n0, p0,M,M1, V )
(
δ2
2 + δ2

3 + δ2
4

)
.

In order to finish the proof, it is — according to Step 1 — sufficient to show that

ν2
∞µ

2
1 + π2

∞µ
2
2 + ν2

tr,∞µ
2
3 +

2νtr,∞√
c2 + c

δ2
3 ≤ C1

(
‖∇a‖2 + ‖∇b‖2

+
1

2

(
a d− c

)2
+

1

2

(
b c− d

)2 − 2 c1(n0, p0,M1, V )
(
δ2
1 + δ2

2 + δ2
3 + δ2

4

))
+ C2

(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
for appropriate constants C1, C2 > 0. But due to Step 2 it is sufficient to show that for suitable constants
C1, C2 > 0,

ν2
∞µ

2
1 + π2

∞µ
2
2 + ν2

tr,∞µ
2
3 +

2νtr,∞√
c2 + c

δ2
3 ≤ C1

(
‖∇a‖2 + ‖∇b‖2

+
ν2
tr,∞

2

(
(1 + µ1)(1 + µ4)− (1 + µ3)

)2
+
ν′ 2tr,∞

2

(
(1 + µ2)(1 + µ3)− (1 + µ4)

)2
− c3(κ, ε0, n0, p0,M,M1, V )

(
δ2
1 + δ2

2 + δ2
3 + δ2

4

))
+ C2

(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
.

Collecting all δ2
i -terms on the right hand side, one only has to prove that

ν2
∞µ

2
1 + π2

∞µ
2
2 + ν2

tr,∞µ
2
3 ≤ C1

(
‖∇a‖2 + ‖∇b‖2

+ ν2
tr,∞

(
(1 + µ1)(1 + µ4)− (1 + µ3)

)2
+ ν′ 2tr,∞

(
(1 + µ2)(1 + µ3)− (1 + µ4)

)2)
+
(
C2 − C(C1, κ, ε0, n0, p0,M,M1, V )

)(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
or, equivalently,(√

a2 − ν∞
)2

+
(√

b2 − π∞
)2

+
(√

c2 − νtr,∞
)2

≤ C1

((√
a2
√
d2 −

√
c2
)2

+
(√

b2
√
c2 −

√
d2
)2

+ ‖∇a‖2 + ‖∇b‖2
)

+
(
C2 − C(C1, κ, ε0, n0, p0,M,M1, V )

)(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
. (56)
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In order to verify (56), we start with the estimate

(√
a2 − ν∞

)2

≤ 2


√µna2

µn
− ν∞

2

+

√µna2

µn
−
√
a2

2


and a corresponding one involving b. The last term on the right hand side satisfies√µna2

µn
−
√
a2

2

=

(
µna2

µn
− a2

)2
(√

µna2

µn
+
√
a2

)2 ≤
1

κ2

(
µna2

µn
− a2

)2

≤ c
∫

Ω

∣∣∣∇√a2
∣∣∣2 dx = c ‖∇a‖2

due to Lemma 3.5 with a constant c(κ, n0, p0,M1, V ) > 0. Similarly,

(√
b2 − π∞

)2

≤ c(κ, n0, p0,M1, V )


√µpb2

µp
− π∞

2

+ ‖∇b‖2

 .
Proposition 5.3 (with a2, b2, c2 and d2 therein replaced by µna2/µn, µpb2/µp, c2 and d2) tells us that
there exists an explicitly computable constant C(ε0, n0, p0,M,M1, V ) > 0 such that√µna2

µn
− ν∞

2

+

√µpb2

µp
− π∞

2

+
(√

c2 − νtr,∞
)2

≤ C


√µna2

µn

√
d2 −

√
c2

2

+

√µpb2

µp

√
c2 −

√
d2

2
 (57)

for all ε ∈ (0, ε0]. Using an analog expansion as before, we further deduce with d2 ≤ 1,√µna2

µn

√
d2 −

√
c2

2

=

√a2
√
d2 −

√
c2 +

√µna2

µn
−
√
a2

√d2

2

≤ c(κ, n0, p0,M1, V )

((√
a2
√
d2 −

√
c2
)2

+ ‖∇a‖2
)
.

As a corresponding estimate holds true also for the other expression on the right hand side of (57), we
have shown that there exists a constant C1(κ, ε0, n0, p0,M,M1, V ) > 0 independent of ε for ε ∈ (0, ε0]
such that(√

a2 − ν∞
)2

+
(√

b2 − π∞
)2

+
(√

c2 − νtr,∞
)2

≤ C1

((√
a2
√
d2 −

√
c2
)2

+
(√

b2
√
c2 −

√
d2
)2

+ ‖∇a‖2 + ‖∇b‖2
)
.

Choosing C2 > 0 now sufficiently large, Equation (56) holds true.

Case 2: a2 < κ2 ∨ b2 < κ2 ∨ c2 < κ2 ∨ d2 < κ2: In this case, we will not need Proposition 5.3 and we
shall directly prove Equation (51) employing only the result of Step 1. In fact, for κ chosen sufficiently
small, the states considered in Case 2 are necessarily bounded away from the equilibrium and the following
arguments show that consequentially the right hand side of (51) is also bounded away from zero, which
allows to close the estimate (51). As a result of the hypotheses a2, b2 ≤ C(n0, p0,M1, V ) and c2, d2 ≤ 1,
we use Young’s inequality to estimate a, b, c, d ≤ c(n0, p0,M1, V ) and(√

a2 − ν∞
)2

+
(√

b2 − π∞
)2

+ ‖c− νtr,∞‖2 ≤ C(ε0, n0, p0,M,M1, V )

with C > 0 uniformly for ε ∈ (0, ε0]. We stress that the subsequent cases are not necessarily exclusive.
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Case 2.1: c2 < κ2: First, c =
√
c2 ≤

√
c2 < κ. This yields

d2 = 1− c2 > 1− κ2 ⇒ d
2

= d2 − δ2
4 > 1− δ2

4 − κ2 ⇒(
b c− d

)2 ≥ d2 − 2b c d > 1− δ2
4 − κ2 − 2b d κ ≥ 1− δ2

4 − κ2 − C(n0, p0,M1, V )κ.

For κ > 0 sufficiently small, we then have 0 < 1− C(n0, p0,M1, V )κ− κ2 ≤ (b c− d)2 + δ2
4 and, hence,(√

a2 − ν∞
)2

+
(√

b2 − π∞
)2

+ ‖c− νtr,∞‖2 ≤ C(ε0, n0, p0,M,M1, V ) ≤

K(b c− d)2 +Kδ2
4 ≤ 2K‖bc− d‖2 + (2Kc1(n0, p0,M1, V ) +K)

(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
by (54) with some K(κ, ε0, n0, p0,M,M1, V ) > 0. Let us call the parameter κ from above κc.

Case 2.2: d2 < κ2: Now d =
√
d

2 ≤
√
d2 < κ and

c2 = 1− d2 > 1− κ2 ⇒ c2 = c2 − δ2
3 > 1− δ2

3 − κ2 ⇒(
a d− c

)2 ≥ c2 − 2a c d > 1− δ2
3 − κ2 − 2a c κ ≥ 1− δ2

3 − κ2 − C(n0, p0,M1, V )κ.

Again κ > 0 sufficiently small gives rise to 0 < 1− C(n0, p0,M1, V )κ− κ2 ≤ (a d− c)2 + δ2
3 and(√

a2 − ν∞
)2

+
(√

b2 − π∞
)2

+ ‖c− νtr,∞‖2 ≤ C(ε0, n0, p0,M,M1, V ) ≤

K(a d− c)2 +Kδ2
3 ≤ 2K‖ad− c‖2 + (2Kc1(n0, p0,M1, V ) +K)

(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
for some constant K(κ, ε0, n0, p0,M,M1, V ) > 0 using (53). This κ > 0 shall be denoted by κd.

Case 2.3: a2 < κ2: We first notice that a < κ and 2 c d ≤ c2 + d
2 ≤ c2 + d2 = 1. Now, we choose

κa := κ > 0 sufficiently small such that 2κ < κ2
c . Then, if c2 < 2κ, we have c2 < κ2

c , and the estimate(√
a2−ν∞

)2

+
(√

b2−π∞
)2

+‖c−νtr,∞‖2 ≤ 2K‖bc−d‖2+(2Kc1(n0, p0,M1, V )+K)
(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
with K(κ, ε0, n0, p0,M,M1, V ) > 0 immediately follows from Case 2.1. And if c2 ≥ 2κ, then

c2 = c2 − δ2
3 ≥ 2κ− δ2

3 ⇒
(
a d− c

)2 ≥ c2 − 2 a c d ≥ 2κ− δ2
3 − κ = κ− δ2

3 .

Consequently, 0 < κ ≤ (a d− c)2 + δ2
3 and(√

a2 − ν∞
)2

+
(√

b2 − π∞
)2

+ ‖c− νtr,∞‖2 ≤ C(ε0, n0, p0,M,M1, V ) ≤

K(a d− c)2 +Kδ2
3 ≤ 2K‖ad− c‖2 + (2Kc1(n0, p0,M1, V ) +K)

(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
due to (53) with a constant K(κ, ε0, n0, p0,M,M1, V ) > 0.

Case 2.4: b2 < κ2: Again b < κ and 2 c d ≤ c2 + d
2 ≤ c2 + d2 = 1. Here, we choose κb := κ > 0

sufficiently small such that 2κ < κ2
d. If d2 < 2κ, we have d2 < κ2

d, and due to Case 2.2 there exists some
K(κ, ε0, n0, p0,M,M1, V ) > 0 such that(√

a2−ν∞
)2

+
(√

b2−π∞
)2

+‖c−νtr,∞‖2 ≤ 2K‖ad−c‖2+(2Kc1(n0, p0,M1, V )+K)
(
δ2
1 +δ2

2 +δ2
3 +δ2

4

)
.

If d2 ≥ 2κ, then

d
2

= d2 − δ2
4 ≥ 2κ− δ2

4 ⇒
(
b c− d

)2 ≥ d2 − 2 b c d ≥ 2κ− δ2
4 − κ = κ− δ2

4 .
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This implies 0 < κ ≤ (b c− d)2 + δ2
4 and(√

a2 − ν∞
)2

+
(√

b2 − π∞
)2

+ ‖c− νtr,∞‖2 ≤ C(ε0, n0, p0,M,M1, V ) ≤

K(b c− d)2 +Kδ2
4 ≤ 2K‖bc− d‖2 + (2Kc1(n0, p0,M1, V ) +K)

(
δ2
1 + δ2

2 + δ2
3 + δ2

4

)
with K(κ, ε0, n0, p0,M,M1, V ) > 0 employing (54).

All arguments within Step 2 remain valid, if we finally set κ := min(κa, κb, κc, κd). We also observe
that the constants K > 0 above are independent of ε ∈ (0, ε0]. And since κ only depends on n0, p0, M1

and V , we may skip the explicit dependence of C2 on κ at the end of Case 1. This finishes the proof.

We already pointed out that ‖ad− c‖2 and ‖bc− d‖2 can be controlled by the reaction-terms of the
entropy production, if we replace a, b, c, d by

√
n/(n0µn),

√
p/(p0µp),

√
ntr and

√
n′tr (see the proof of

Theorem 1.6 in Section 6 for details). In this proof, also ‖∇a‖2, ‖∇b‖2, ‖a − a‖2 and ‖b − b‖2 may be
bounded by the entropy production. However, ‖c− c‖2 and ‖d−d‖2 may not be estimated with the help
of Poincaré’s inequality since this would yield terms involving ∇ntr, which do not appear in the entropy
production.

Instead, we are able to derive the following estimates for ‖c − c‖2 and ‖d − d‖2, which describe an
indirect diffusion transfer from c to b and from d to a, respectively: Even if c and d are lacking an
explicit diffusion term in the dynamical equations, they do experience indirect diffusive effects thanks to
the reversible reaction dynamics and the diffusivity of a and b. This is the interpretation of the following
functional inequalities.

Proposition 5.6 (Indirect Diffusion Transfer). Let a, b, c, d : Ω→ R be non-negative functions such that

c2 + d2 = 1

holds true a.e. in Ω. Then,

‖c− c‖2 ≤ 4
(
‖bc− d‖2 + ‖b− b‖2

)
and ‖d− d‖2 ≤ 4

(
‖ad− c‖2 + ‖a− a‖2

)
.

Proof. We only verify the second inequality; the first one can be checked along the same lines. First, we
notice that

‖ad− c‖ = ‖ad− c+ (a− a)d‖ ≤ ‖ad− c‖+ ‖a− a‖ (58)

because of the bound 0 ≤ d ≤ 1. Besides, we deduce

‖a2d2 − c2‖ = ‖(ad+ c)(ad− c)‖ ≤ (1 + a)‖ad− c‖
employing 0 ≤ c, d ≤ 1. For the subsequent estimates, we need two auxiliary inequalities: For every
function f : Ω→ R and all λ ∈ R, we have

‖f − f‖2 =

∫
Ω

(f − λ+ λ− f)2dx =

∫
Ω

(
(f − λ)2 − 2(f − λ)(f − λ) + (f − λ)2

)
dx

=

∫
Ω

(f − λ)2dx− (f − λ)2 ≤ ‖f − λ‖2. (59)

And for all x ≥ 0, one has

1 + x√
1 + x2

=

√
1 + 2x+ x2

√
1 + x2

≤
√

2(1 + x2)√
1 + x2

=
√

2.

Since c2 + d2 = 1, we obtain

‖a2d2 − c2‖ = ‖a2d2 + d2 − 1‖ = ‖(1 + a2)d2 − 1‖ =
∥∥(√1 + a2 d+ 1

)(√
1 + a2 d− 1

)∥∥
≥
∥∥√1 + a2 d− 1

∥∥ =
√

1 + a2

∥∥∥∥d− 1√
1 + a2

∥∥∥∥ ≥√1 + a2‖d− d‖.

where we applied (59) in the last step. Consequently,

‖d− d‖ ≤ 1√
1 + a2

‖a2d2 − c2‖ ≤ 1 + a√
1 + a2

‖ad− c‖ ≤
√

2 ‖ad− c‖

and
‖d− d‖2 ≤ 2‖ad− c‖2 ≤ 4(‖ad− c‖2 + ‖a− a‖2)

using (58).
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6 EEP-inequality and convergence to the equilibrium

We are now prepared to prove Theorem 1.6.

Proof of Theorem 1.6. Let (n, p, ntr) ∈ L1(Ω)3 be non-negative functions satisfying ntr ≤ 1, the
conservation law n− p+ εntr = M and the L1-bound n, p ≤ M1. Keeping in mind that ν∞ =

√
n∗/n0

and π∞ =
√
p∗/p0 (cf. Notation 5.1), Proposition 4.4 guarantees that there exists a positive constant

C1(γ,Γ,M1) > 0 such that

E(n, p, ntr)− E(n∞, p∞, ntr,∞) ≤ C1

(∫
Ω

(
|Jn|2

n
+
|Jp|2

p

)
dx

+ n0

(√
n

n0µn
− ν∞

)2

+ p0

(√
p

p0µp
− π∞

)2

+ ε

∫
Ω

(√
ntr −

√
ntr,∞

)2
dx

)
. (60)

Next, we have to bound the second line of (60) in terms of the entropy production. To this end, we
apply Proposition 5.5 with the choices a :=

√
n/(n0µn), b :=

√
p/(p0µp), c :=

√
ntr and d :=

√
n′tr

(as always n′tr = 1 − ntr). The hypotheses of this Proposition are fulfilled as a consequence of the
conservation law n− p+ εntr = M and the L1-bound n, p ≤M1. As a result, we obtain(√

n

n0µn
− ν∞

)2

+

(√
p

p0µp
− π∞

)2

+ ‖
√
ntr −

√
ntr,∞‖2

≤ C2

(∥∥∥∥∥
√
nn′tr
n0µn

−
√
ntr

∥∥∥∥∥
2

+

∥∥∥∥√ pntr
p0µp

−
√
n′tr

∥∥∥∥2

+

∥∥∥∥∇√ n

n0µn

∥∥∥∥2

+

∥∥∥∥∇√ p

p0µp

∥∥∥∥2

+

∥∥∥∥∥
√

n

n0µn
−
√

n

n0µn

∥∥∥∥∥
2

+

∥∥∥∥∥
√

p

p0µp
−
√

p

p0µp

∥∥∥∥∥
2

+
∥∥√ntr −√ntr∥∥2

+
∥∥√n′tr −√n′tr∥∥2

)

for all ε ∈ (0, ε0] with a constant C2(ε0, n0, p0,M,M1, V ) > 0. Thanks to Poincaré’s inequality, we are
able to bound the last two terms in the second line and the first two terms in the third line from above:∥∥∥∥∥
√

n

n0µn
−
√

n

n0µn

∥∥∥∥∥
2

≤ CP
∥∥∥∥∇√ n

n0µn

∥∥∥∥2

= CP

∫
Ω

∣∣∣∣12
√

µn
n0n
∇
( n
µn

)∣∣∣∣2 dx =
CP

4n0 infΩ µn

∫
Ω

|Jn|2

n
dx

and ∥∥∥∥∥
√

p

p0µp
−
√

p

p0µp

∥∥∥∥∥
2

≤ CP
∥∥∥∥∇√ p

p0µp

∥∥∥∥2

≤ CP
4p0 infΩ µp

∫
Ω

|Jp|2

p
dx.

Moreover, the elementary inequality (
√
x− 1)2 ≤ (x− 1) ln(x) for x > 0 gives rise to∥∥∥∥∥

√
nn′tr
n0µn

−
√
ntr

∥∥∥∥∥
2

=

∫
Ω

ntr

(√
nn′tr

n0µnntr
− 1

)2

dx ≤
∫

Ω

ntr

(
nn′tr

n0µnntr
− 1

)
ln

(
nn′tr

n0µnntr

)
dx

=

∫
Ω

(
n(1− ntr)
n0µn

− ntr
)

ln

(
n(1− ntr)
n0µnntr

)
dx = −τn

∫
Ω

Rn ln

(
n(1− ntr)
n0µnntr

)
dx

and similarly ∥∥∥∥√ pntr
p0µp

−
√
n′tr

∥∥∥∥2

≤ −τp
∫

Ω

Rp ln

(
pntr

p0µp(1− ntr)

)
dx.

Proposition 5.6 further implies that∥∥√ntr −√ntr∥∥2
+
∥∥√n′tr −√n′tr∥∥2 ≤

4

∥∥∥∥∥
√

n

n0µn
−
√

n

n0µn

∥∥∥∥∥
2

+

∥∥∥∥∥
√

p

p0µp
−
√

p

p0µp

∥∥∥∥∥
2

+

∥∥∥∥∥
√
nn′tr
n0µn

−
√
ntr

∥∥∥∥∥
2

+

∥∥∥∥√ pntr
p0µp

−
√
n′tr

∥∥∥∥2
 .
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Combining the above estimates, we arrive at(√
n

n0µn
− ν∞

)2

+

(√
p

p0µp
− π∞

)2

+ ‖
√
ntr −

√
ntr,∞‖2

≤ C3

∫
Ω

(
|Jn|2

n
+
|Jp|2

p
−Rn ln

(
n(1− ntr)
n0µnntr

)
−Rp ln

(
pntr

p0µp(1− ntr)

))
with a constant C3(ε0, τn, τp, n0, p0,M,M1, V ) > 0 uniformly for ε ∈ (0, ε0]. With respect to (60), we
now find

n0

(√
n

n0µn
− ν∞

)2

+ p0

(√
p

p0µp
− π∞

)2

+ ε

∫
Ω

(√
ntr −

√
ntr,∞

)2
dx

≤ max{n0, p0, ε0}

(√ n

n0µn
− ν∞

)2

+

(√
p

p0µp
− π∞

)2

+ ‖
√
ntr −

√
ntr,∞‖2


≤ C3 max{n0, p0, ε0}

∫
Ω

(
|Jn|2

n
+
|Jp|2

p
−Rn ln

(
n(1− ntr)
n0µnntr

)
−Rp ln

(
pntr

p0µp(1− ntr)

))
.

And since the constant C1 in (60) only depends on ε0, n0, p0, M , M1 and V (via the constants γ and
Γ), we have finally proven that

E(n, p, ntr)− E(n∞, p∞, ntr,∞)

≤ C4

∫
Ω

(
|Jn|2

n
+
|Jp|2

p
−Rn ln

(
n(1− ntr)
n0µnntr

)
−Rp ln

(
pntr

p0µp(1− ntr)

))
dx

for a constant C4(ε0, τn, τp, n0, p0,M,M1, V ) > 0 independent of ε ∈ (0, ε0].

Theorem 1.6 provides an upper bound for the relative entropy in terms of the entropy production.
This already implies exponential convergence of the relative entropy. The subsequent Proposition now
yields a lower bound for the relative entropy involving the L1-distance of the solution to the equilibrium.
This will allow us to establish exponential convergence in L1.

Proposition 6.1 (Csiszár–Kullback–Pinsker inequality). Let ε0, n0, p0, M , M1 and V be positive
constants. Then, there exists an explicit constant CCKP > 0 such that for all ε ∈ (0, ε0], the equilibrium
(n∞, p∞, ntr,∞) ∈ X from Theorem 1.4 and all non-negative functions (n, p, ntr) ∈ L1(Ω)3 satisfying
ntr ≤ 1, the conservation law

n− p+ εntr = M

and the L1-bound
n, p ≤M1,

the following Csiszár–Kullback–Pinsker-type inequality holds true:

E(n, p, ntr)− E(n∞, p∞, ntr,∞) ≥ CCKP

(
‖n− n∞‖2L1(Ω) + ‖p− p∞‖2L1(Ω) + ε‖ntr − ntr,∞‖2L1(Ω)

)
.

Proof. Due to Lemma 3.2, we know that the relative entropy reads

E(n, p, ntr)− E(n∞, p∞, ntr,∞) =∫
Ω

(
n ln

n

n∞
− (n− n∞) + p ln

p

p∞
− (p− p∞) + ε

∫ ntr

ntr,∞

(
ln

(
s

1− s

)
− ln

(
ntr,∞

1− ntr,∞

))
ds

)
dx.

Similar to Proposition 4.4, we employ the mean-value theorem and observe that

d

ds
ln

(
s

1− s

)
=

1

s(1− s)
≥ 4
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for all s ∈ (0, 1). Thus, there exists some σ(s) between ntr,∞ and s such that

ε

∫
Ω

∫ ntr

ntr,∞

(
ln

(
s

1− s

)
− ln

(
ntr,∞

1− ntr,∞

))
ds dx = ε

∫
Ω

∫ ntr

ntr,∞

1

σ(s)(1− σ(s))
(s− ntr,∞) ds dx

≥ 4ε

∫
Ω

∫ ntr

ntr,∞

(s− ntr,∞) ds dx = 2ε

∫
Ω

(ntr − ntr,∞)2 dx ≥ 2ε‖ntr − ntr,∞‖2L1(Ω)

where the last inequality holds true since |Ω| = 1. Moreover, we utilise the Csiszár–Kullback–Pinsker-
inequality from Lemma 3.3 to estimate∫

Ω

(
n ln

(
n

n∞

)
− (n− n∞)

)
dx ≥ 3

2n+ 4n∞
‖n− n∞‖2L1(Ω) ≥ c‖n− n∞‖

2
L1(Ω)

where c(ε0, n0, p0,M,M1, V ) > 0 is a positive constant independent of ε ∈ (0, ε0]. As a corresponding
estimate holds true also for p, we have verified that

E(n, p, ntr)− E(n∞, p∞, ntr,∞) ≥ C
(
‖n− n∞‖2L1(Ω) + ‖p− p∞‖2L1(Ω) + ε‖ntr − ntr,∞‖2L1(Ω)

)
for some C(ε0, n0, p0,M,M1, V ) > 0 uniformly for ε ∈ (0, ε0].

Now, we are able to prove exponential convergence in relative entropy and in L1.

Proof of Theorem 1.8. We first prove exponential convergence of the relative entropy

ψ(t) := E(n, p, ntr)(t)− E(n∞, p∞, ntr,∞)

using a Gronwall argument as stated in [Wil65]. To this end, we choose 0 < t0 ≤ t1 ≤ t < T and rewrite
the entropy-production law as

ψ(t1)− ψ(t) =

∫ t

t1

D(n, p, ntr)(s) ds ≥ K
∫ t

t1

ψ(s) ds (61)

where we applied Theorem 1.6 with K := C−1
EED in the second step. Furthermore, we set

Ψ(t1) :=

∫ t

t1

ψ(s) ds = −
∫ t1

t

ψ(s) ds

and obtain from (61) the estimate KΨ(t1) ≤ ψ(t1)− ψ(t) which yields

d

dt1

(
Ψ(t1)eKt1

)
= −ψ(t1)eKt1 +KΨ(t1)eKt1 ≤ −ψ(t)eKt1 .

Integrating this inequality from t1 = t0 to t1 = t and observing that Ψ(t) = 0 gives rise to

−Ψ(t0)eKt0 ≤ −ψ(t)

K

(
eKt − eKt0

)
.

As a consequence of (61) with t1 = t0, one has −Ψ(t0) ≥ (ψ(t)− ψ(t0))/K and, hence,

−ψ(t0)eKt0 ≤ −ψ(t)eKt.

But this is equivalent to

E(n, p, ntr)(t)− E(n∞, p∞, ntr,∞) ≤ (E(n, p, ntr)(t0)− E∞)e−K(t−t0), (62)

for all t ≥ t0 > 0. In order to conclude that

E(n, p, ntr)(t)− E(n∞, p∞, ntr,∞) ≤ (EI − E∞)e−Kt,

for all t ≥ 0, we observe that the rate K is independent of t0 and that the entropy E(n, p, ntr)(t0) extends
in (62) continuously to t0 → 0 since n, p ∈ C([0, T );L2(Ω)) for all T > 0 by Theorem 1.1. This results in
the announced exponential decay of the relative entropy, while the exponential convergence in L1 follows
from Proposition 6.1.
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Proof of Corollary 1.9. We first prove that the linearly growing L∞-bounds together with parabolic
regularity for system (1) and assumption (3) entail polynomially growing W 1,q-bounds, q ∈ (1,∞), for
n and p. To this end, we consider

∂tn = ∇ · Jn +
1

τn

(
ntr −

n

n0e−Vn

(
1− ntr

))
, Jn = e−Vn∇

(
n eVn

)
.

and introduce the variable w = n eVn . We then observe that∇·Jn = ∇·
(
e−Vn∇w

)
= e−Vn (∆w −∇Vn · ∇w)

and thus,

∂tw = ∆w −∇Vn · ∇w +
eVn

τn

(
ntr −

1− ntr
n0

w

)
. (63)

Under the assumptions of Corollary 1.9, Eq. (63) is of the form

∂tw −∆w = f1 + f2w + f3 · ∇w

where fi ∈ C([0,∞), L∞(Ω)) for i ∈ {1, 2}, f3 ∈ C([0,∞), L∞(Ω)m) and n̂ · ∇w = 0 on ∂Ω. Testing this
equation with −(q − 1)|∇w|q−2∆w yields

1

q

d

dt

∫
Ω

|∇w|q dx =

∫
Ω

|∇w|q−2∇w · ∇∂tw dx

= −
∫

Ω

(
(q − 2)|∇w|q−4∇w∆w · ∇w + |∇w|q−2∆w

)
∂tw dx = −

∫
Ω

(q − 1)|∇w|q−2∆w ∂tw dx

= −
∫

Ω

(q − 1)|∇w|q−2|∆w|2dx−
∫

Ω

(q − 1)|∇w|q−2∆w
(
f1 + f2w + f3 · ∇w

)
dx.

Using the inequalities |ab| ≤ (a2 + b2)/2 and (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for a, b, c ∈ R, we find

1

q

d

dt

∫
Ω

|∇w|q dx ≤ −1

2

∫
Ω

(q − 1)|∇w|q−2|∆w|2 dx+
3

2

∫
Ω

(q − 1)|∇w|q−2
(
f2

1 + f2
2w

2 + f2
3 |∇w|2

)
dx.

Together with C > 0 satisfying |fi(t, x)2| ≤ C for all i ∈ {1, 2, 3}, t ≥ 0 and a.a. x ∈ Ω, we derive

1

q

d

dt

∫
Ω

|∇w|q dx ≤ −1

2

∫
Ω

(q − 1)|∇w|q−2|∆w|2 dx+
3C

2

∫
Ω

(q − 1)|∇w|q−2
(
1 + w2 + |∇w|2

)
dx.

An integration by parts and Young’s inequality with C1 > 0 give rise to∫
Ω

(q − 1)|∇w|q−2∇w · ∇w dx = −
∫

Ω

(
(q − 1)(q − 2)|∇w|q−4∇w∆w · ∇w+ (q − 1)|∇w|q−2∆w

)
w dx

= −
∫

Ω

(q − 1)2|∇w|q−2∆ww dx ≤ 1

3C

∫
Ω

(q − 1)1|∇w|q−2|∆w|2 dx+ C1

∫
Ω

|∇w|q−2w2 dx.

Hence, there exists a constant C2 > 0 such that

d

dt

∫
Ω

|∇w|q dx ≤ C2

∫
Ω

|∇w|q−2(1 + w2) dx ≤ (A+B t2)

∫
Ω

|∇w|q−2 dx,

where A,B > 0 result from the linearly growing L∞-bounds from (8). For any fixed t0 > 0 and all t ≥ t0,
we now have

‖∇w(t)‖qLq(Ω) ≤ ‖∇w(t0)‖qLq(Ω) +

∫ t

t0

(A+B s2)‖∇w(s)‖q−2
Lq(Ω) ds.

A Gronwall lemma (see e.g. [Bee75]) now proves the desired polynomial growth of ‖∇w‖Lq(Ω) and
‖∇n‖Lq(Ω):

‖∇w(t)‖Lq(Ω) ≤
(
‖∇w(t0)‖2Lq(Ω) +A(t− t0) +

B

3
(t3 − t30)

) 1
2

.

Next, we use (see e.g. [Tay96]) the Gagliardo–Nirenberg–Moser interpolation inequality in Rm:

‖n− n∞‖L∞ ≤ G(Ω)‖n− n∞‖
1
2

W 1,2m‖n− n∞‖
1
2

L2m . (64)
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Then, interpolating with the exponentially decaying L1-norm of n− n∞, we obtain

‖n(t, ·)‖L∞ ≤ ‖n∞‖L∞ + ‖n− n∞‖L∞ ≤ ‖n∞‖L∞ +G‖n− n∞‖
1
2

W 1,2m‖n− n∞‖
1
2−

1
4m

L∞ ‖n− n∞‖
1

4m

L1 ≤ K

due to the exponential convergence to equilibrium (21). The estimate for p follows in the same way.

Proof of Theorem 1.6’. Our goal is to derive an estimate of the form

E0(n, p)− E0(n∞,0, p∞,0) ≤ CEEPD0(n, p)

by applying the EEP-inequality from Theorem 1.6 directly to the functions n, p and neqtr . However, since
we assume that n and p satisfy

n− p = M,

the triple (n, p, neqtr ) does not satisfy the conservation law with right hand side M but

n− p+ εneqtr = M + εneqtr .

In order to resolve this issue, we shall apply the EEP-inequality from Theorem 1.6 to a suitably defined
sequence of functions (nε, pε, ntr,ε) ∈ L1(Ω)3 which fulfil ‖ntr,ε‖L∞(Ω) ≤ 1, the L1-bound nε, pε ≤ M1

and the conservation law
nε − pε + εntr,ε = M.

A convenient choice is nε := n, pε := p+ εneqtr and ntr,ε := neqtr , where neqtr = neqtr (n, p) as defined in (29).
For this choice, we derive the stated EEP-estimate for the case ε = 0 via the following steps, which are
proven below:

E0(n, p)− E0(n∞,0, p∞,0) = lim
ε→0

(
E(nε, pε, ntr,ε)− E(n∞, p∞, ntr,∞)

)
(65)

≤ lim
ε→0

(
CEEPD(nε, pε, ntr,ε)

)
(66)

= CEEPD(n, p, neqtr ) = CEEPD0(n, p) (67)

We recall that n and p are assumed to satisfy E0(n, p) < ∞ and D0(n, p), D(n, p, neqtr ) < ∞, which
implies that D0(n, p) = D(n, p, neqtr ) as discussed in the introduction.

Step 1. Proof of (65): We first show, that with (nε, pε, ntr,ε) = (n, pε, n
eq
tr )

E0(n, p) = lim
ε→0

E(nε, pε, ntr,ε). (68)

Recalling that

E(n, pε, n
eq
tr ) =

∫
Ω

(
n ln

n

n0µn
− (n− n0µn) + pε ln

pε
p0µp

− (pε − p0µp) + ε

∫ neqtr

1/2

ln

(
s

1− s

)
ds

)
dx,

we first notice that pε = p+ εneqtr → p monotonically decreasing for ε→ 0 for all x ∈ Ω. Thus, by using

neqtr ≤ 1 and the elementary estimate pε ln pε ≤ 2p (ln p+ln 2) for p ≥ max{ε0, 1}, the Lebesgue dominated
convergence theorem, the L1-bounds n, nε, p, pε ≤ M1 and E0(n, p) < ∞ imply the convergence of the
pε-integral in (68). The convergence of the third integral follows directly from∣∣∣∣∣ε

∫ neqtr (x)

1/2

ln
s

1− s
ds

∣∣∣∣∣ ≤ ε
∫ 1

1/2

ln
s

1− s
ds

ε→0−−−→ 0.

Using analog arguments, the convergence

E0(n∞,0, p∞,0) = lim
ε→0

E(n∞, p∞, ntr,∞)

follows from observing the monotone convergence n∗ → n∗,0 and p∗ → p∗,0 for ε → 0 due to (36) in
Proposition 2.1, which directly implies the monotone convergence n∞ → n∞,0 and p∞ → p∞,0 for all
x ∈ Ω, where (n∞, p∞, ntr,∞) and (n∞,0, p∞,0) are defined in (16) and (30), respectively.
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Step 2. Proof of (66): The functions (nε, pε, ntr,ε) = (n, p+εneqtr , n
eq
tr ) ∈ L1(Ω)3 satisfy ‖ntr,ε‖L∞(Ω) ≤

1, the conservation law
nε − pε + εntr,ε = n− p = M

as well as the L1-bounds nε ≤ M1 and pε ≤ p + ε′ where ε ∈ (0, ε′] ⊂ (0, ε0]. Because of p < M1, we
have pε ≤M1 for ε′ > 0 sufficiently small. As a consequence,

E(nε, pε, ntr,ε)− E(n∞, p∞, ntr,∞) ≤ CEEPD(nε, pε, ntr,ε)

where CEEP > 0 is the same constant as in Theorem 1.6.

Step 3. Proof of (67): As the constant CEEP > 0 is independent of ε ∈ (0, ε0], it suffices to show
that

lim
ε→0

D(nε, pε, ntr,ε) = D(n, p, neqtr ).

To this end, we consider the representation

D(nε, pε, ntr,ε) =

∫
Ω

(
|Jn|2

n
+
|∇p|2

pε
+ 2∇p · ∇Vp + pε|∇Vp|2

−Rn ln

(
n(1− neqtr )

n0µnn
eq
tr

)
+

1

τp

(
pε
p0µp

neqtr − (1− neqtr )

)(
ln
pεn

eq
tr

p0µp
− ln(1− neqtr )

))
dx,

where we have already taken into account that nε = n, ∇pε = ∇p and ntr,ε = neqtr for all ε > 0.
We note first that the convergence of the second, third and forth integral follows from the pointwise

convergence of pε for all x ∈ Ω and from the Lebesgue dominated convergence theorem by estimating

0 ≤ |∇p|
2

pε
+2∇p ·∇Vp+pε|∇Vp|2 ≤

|∇p|2

p
+2∇p ·∇Vp+p|∇Vp|2 +(pε−p)|∇Vp|2 ≤

|Jp|2

p
+ε0n

eq
tr |∇Vp|2,

where the function on the right hand side is integrable due to the finiteness of D(n, p, neqtr ).
Secondly, the product(
pε
p0µp

neqtr − (1− neqtr )

)(
ln
pεn

eq
tr

p0µp
−ln(1− neqtr )

)
→
(

p

p0µp
neqtr − (1− neqtr )

)(
ln
pneqtr
p0µp

− ln(1− neqtr )

)
converges pointwise for all x ∈ Ω as ε → 0. In order to conclude the convergence of the corresponding
integral via the Lebesgue dominated convergence theorem, we use similar to Step 1 the elementary
inequality pε ln pε ≤ 2p (ln p+ ln 2) for p ≥ max{ε0, 1} and the finiteness of D(n, p, neqtr ). This yields

lim
ε→0

∫
Ω

1

τp

(
pε
p0µp

neqtr−(1− neqtr )

)(
ln
pεn

eq
tr

p0µp
− ln(1− neqtr )

)
dx = −

∫
Ω

Rp ln

(
pneqtr

p0µp(1− neqtr )

)
dx

and therefore, D(nε, pε, ntr,ε)→ D(n, p, neqtr ) for ε→ 0.

Proof of Theorem 1.8’. We only have to check that the assuptions on the finiteness of the entropy E
and its production D within Theorem 1.6’ are satisfied. The claim of this Theorem then follows from
the same arguments as in the proof of Theorem 1.8.

Due to the uniform L∞-bounds (26) of n(t) and p(t) for all t ≥ 0, we know that E0(n, p) <∞ for all
t ≥ 0. Similarly, we deduce that D(n, p, neqtr ) and D0(n, p) are finite for all strictly positive t > 0 since
n, p are bounded away from zero and neqtr is bounded away from zero and one uniformly in Ω.

Finally, the lower bounds (27) guarantee similar to Theorem 1.6 that solutions satisfy the weak
entropy production law (32) for all t0 > 0.

Appendix: Proof of the existence-theorem

Proof of Theorem 1.1. In order to simplify the notation, we set the parameter τn := τp := 1 and
n0 := p0 := 1 throughout the proof. All arguments also apply in the case of arbitrary values for τn, τp,
n0 and p0. The structure of system (1) can be further simplified via introducing new variables

u := e
Vn
2 n, v := e

Vp
2 p.
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One obtains

∇u =
1

2
e
Vn
2 ∇Vnn+ e

Vn
2 ∇n and ∆u = e

Vn
2

(
∆n+∇n · ∇Vn +

1

4
n|∇Vn|2 +

1

2
n∆Vn

)
which results in

∂tu = e
Vn
2 ∂tn = e

Vn
2

(
∆n+∇n · ∇Vn + n∆Vn +Rn

)
= ∆u− e

Vn
2

(1

4
n|∇Vn|2 −

1

2
n∆Vn

)
+ e

Vn
2 Rn

= ∆u+
(1

2
∆Vn −

1

4
|∇Vn|2

)
u+ e

Vn
2 ntr − eVnu(1− ntr).

Analogously, we derive

∂tv = ∆v +
(1

2
∆Vp −

1

4
|∇Vp|2

)
v + e

Vp
2 (1− ntr)− eVpvntr.

For convenience, we also introduce the abbreviations

An :=
1

2
∆Vn −

1

4
|∇Vn|2 ∈ L∞(Ω), Ap :=

1

2
∆Vp −

1

4
|∇Vp|2 ∈ L∞(Ω)

as well as α, β > 0 such that the following estimates hold true a.e. in Ω:

|An|, |Ap| ≤ α and e
Vn
2 , e

Vp
2 , eVn , eVp ≤ β.

Next, we introduce the new variable
n′tr := 1− ntr (69)

for reasons of symmetry. In fact, we can prove the positivity of n′tr in the same way as for ntr, which
then implies the desired bound 0 ≤ ntr ≤ 1. A further ingredient for establishing the positivity of the
variables u, v, ntr and n′tr is to project them onto [0,∞) and [0, 1], respectively, on the right hand side
of the PDE-system. In this context, we use X+ := max(X, 0) to denote the positive part of an arbitrary
function X and X [0,1] := min(max(X, 0), 1) for the projection of X to the interval [0, 1]. The modified
system now reads 

∂tu−∆u = Anu
+ + e

Vn
2 n

[0,1]
tr − eVnu+n

′[0,1]
tr ,

∂tv −∆v = Apv
+ + e

Vp
2 n
′[0,1]
tr − eVpv+n

[0,1]
tr ,

ε ∂tntr = n
′[0,1]
tr − e

Vp
2 v+n

[0,1]
tr − n[0,1]

tr + e
Vn
2 u+n

′[0,1]
tr ,

ε ∂tn
′
tr = n

[0,1]
tr − e

Vn
2 u+n

′[0,1]
tr − n′[0,1]

tr + e
Vp
2 v+n

[0,1]
tr .

(70)

The no-flux boundary conditions of (1) transfer to similar conditions on u and v. In detail, we have

e−
Vn
2 ∇u = ∇n+

1

2
n∇Vn

and, hence,

∇n+ n∇Vn = e−
Vn
2

(
∇u+

1

2
u∇Vn

)
.

Therefore, the corresponding boundary conditions for u and v read

n̂ ·
(
∇u+

1

2
u∇Vn

)
= n̂ ·

(
∇v +

1

2
v∇Vp

)
= 0. (71)

Furthermore, we assume that the corresponding initial states satisfy

(uI , vI , ntr,I , n
′
tr,I) ∈ L∞+ (Ω)4, ntr,I + n′tr,I = 1. (72)

In this situation, ‖ntr,I‖L∞(Ω) + ‖n′tr,I‖L∞(Ω) ≥ 1 and we set

I := ‖uI‖L∞(Ω) + ‖vI‖L∞(Ω) + ‖ntr,I‖L∞(Ω) + ‖n′tr,I‖L∞(Ω) ≥ 1.

We now aim to apply Banach’s fixed-point theorem to obtain a solution of (70)–(72).
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Step 1: Definition of the fixed-point iteration. For any time T > 0 (to be chosen sufficiently
small in the course of the fixed-point argument), we introduce the space

XT := C([0, T ], L2(Ω))4

and the closed subspace

MT :=
{

(u, v, ntr, n
′
tr) ∈ XT

∣∣ (u(0), v(0), ntr(0), n′tr(0)) = (uI , vI , ntr,I , n
′
tr,I) ∧

max
0≤t≤T

‖u(t)‖L2(Ω), max
0≤t≤T

‖v(t)‖L2(Ω), max
0≤t≤T

‖ntr(t)‖L2(Ω), max
0≤t≤T

‖n′tr(t)‖L2(Ω) ≤ 2I ∧

‖u‖L∞((0,T )×Ω), ‖v‖L∞((0,T )×Ω) ≤ 2I
}
⊂ XT .

The fixed-point mapping S : XT → XT is now defined via

S(ũ, ṽ, ñtr, ñ
′
tr) := (u, v, ntr, n

′
tr)

where (u, v, ntr, n
′
tr) is the solution of the following PDE-system subject to the boundary and initial

conditions specified above:

∂tu−∆u = Anũ
+ + e

Vn
2 ñ

[0,1]
tr − eVn ũ+ñ

′[0,1]
tr =: f̃1,

∂tv −∆v = Apṽ
+ + e

Vp
2 ñ
′[0,1]
tr − eVp ṽ+ñ

[0,1]
tr =: f̃2,

ε ∂tntr = ñ
′[0,1]
tr − e

Vp
2 ṽ+ñ

[0,1]
tr − ñ[0,1]

tr + e
Vn
2 ũ+ñ

′[0,1]
tr =: f̃3,

ε ∂tn
′
tr = ñ

[0,1]
tr − e

Vn
2 ũ+ñ

′[0,1]
tr − ñ′[0,1]

tr + e
Vp
2 ṽ+ñ

[0,1]
tr =: f̃4.

(73)

We first show that (u, v, ntr, n
′
tr) = S(ũ, ṽ, ñtr, ñ

′
tr) ∈ XT provided (ũ, ṽ, ñtr, ñ

′
tr) ∈ XT . Due to f̃1,

f̃2 ∈ L2((0, T )× Ω), it is known from classical PDE-theory (see e.g. [Chi00]) that

u, v ∈W2(0, T ) =
{
f ∈ L2((0, T ), H1(Ω)) | ∂tf ∈ L2((0, T ), H1(Ω)∗)

}
↪→ C([0, T ], L2(Ω)).

And since

ntr(t) = ntr(0) +
1

ε

∫ t

0

f̃3(s) ds

for almost all t ∈ [0, T ], we deduce

‖ntr(t)‖L2(Ω) ≤ ‖ntr(0)‖L2(Ω) +
1

ε

∫ t

0

‖f̃3(s)‖L2(Ω) ds ≤ I +
T

ε
max

0≤t≤T
‖f̃3(s)‖L2(Ω).

Hence, ntr ∈ L∞((0, T ), L2(Ω)). Moreover, we observe that for [0, T ] 3 tn → t ∈ [0, T ] that

‖ntr(tn)− ntr(t)‖L2(Ω) ≤
1

ε

∣∣∣∣∫ tn

t

‖f̃3(s)‖L2(Ω) ds

∣∣∣∣ ≤ |tn − t|ε
max

0≤t≤T
‖f̃3(s)‖L2(Ω)

n→∞−−−−→ 0.

This proves ntr ∈ C([0, T ], L2(Ω)). The same arguments can be applied to n′tr.

Step 2: Invariance of MT . Now, let (ũ, ṽ, ñtr, ñ
′
tr) ∈ MT . Similar to the strategy of e.g. [Ali79,

GMS07, WMZ08], we perform the subsequent calculations for any q ∈ 2N+ and every t ∈ [0, T ]:∫ t

0

d

ds

∫
Ω

uq

q
dx ds =

∫ t

0

∫
Ω

uq−1∂tu dx ds =

∫ t

0

∫
Ω

uq−1∆u dx ds+

∫ t

0

∫
Ω

uq−1f̃1 dx ds

≤ −(q − 1)

∫ t

0

∫
Ω

uq−2|∇u|2 dx ds− 1

2

∫ t

0

∫
∂Ω

uq n̂ · ∇Vn dσ ds+ ‖f̃1‖L∞((0,T )×Ω)

∫ t

0

∫
Ω

|u|q−1 dx ds

≤ (2αI + β + 2βI)

∫ t

0

‖u‖q−1
Lq(Ω) ds.

Note that the first two terms in the second line are both non-positive due to q ∈ 2N and assumption (3).
Introducing γ := 2αI + β + 2βI, we obtain

‖u(t)‖qLq(Ω) − ‖u(0)‖qLq(Ω) ≤ qγ
∫ t

0

‖u(s)‖q−1
Lq(Ω) ds. (74)
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This inequality already implies a linear bound on the L∞-norm of u as we shall see below (cf. [Bee75]).
We define

U(t) := qγ

∫ t

0

‖u(s)‖q−1
Lq(Ω) ds

and note that U(0) = 0. Estimate (74) entails

U ′(t) = qγ
(
‖u(t)‖qLq(Ω)

) q−1
q ≤ qγ

(
η + ‖u(0)‖qLq(Ω) + U(t)

) q−1
q

for all t ∈ [0, T ], where η > 0 is an arbitrary constant, which guarantees that the expession X :=
η + ‖u(0)‖qLq(Ω) + U(t) is strictly positive. Multiplying both sides with X(1−q)/q and integrating from 0
to t gives ∫ t

0

(
η + ‖u(0)‖qLq(Ω) + U(s)

) 1−q
q

U ′(s) ds ≤
∫ t

0

qγ ds.

We now substitute σ := U(s) and deduce

qγt ≥
∫ U(t)

0

(
η + ‖u(0)‖qLq(Ω) + σ

) 1
q−1

dσ = q
(
η + ‖u(0)‖qLq(Ω) + σ

) 1
q
∣∣∣U(t)

0

= q
(
η + ‖u(0)‖qLq(Ω) + U(t)

) 1
q − q

(
η + ‖u(0)‖qLq(Ω)

) 1
q ≥ q

(
‖u(t)‖qLq(Ω)

) 1
q − q

(
η + ‖u(0)‖qLq(Ω)

) 1
q

where we have used (74) in the last step. Therefore,

‖u(t)‖Lq(Ω) ≤
(
η + ‖u(0)‖qLq(Ω)

) 1
q

+ γt

and, taking the limit η → 0,

‖u(t)‖Lq(Ω) ≤ ‖u(0)‖Lq(Ω) + γt ≤ I + γt.

As the bound on the right hand side is independent of q, we even obtain

‖u(t)‖L∞(Ω) ≤ I + γt, (75)

for all t ∈ [0, T ]. This result naturally gives rise to

‖u‖L∞((0,T )×Ω) ≤ I + γT.

An analogous estimate is valid for v. As a result, we obtain

‖u‖L∞((0,T )×Ω), ‖v‖L∞((0,T )×Ω) ≤ 2I

for T > 0 chosen sufficiently small.
Employing (75), we also derive

max
0≤t≤T

‖u(t)‖L2(Ω) ≤ max
0≤t≤T

‖u(t)‖L∞(Ω) ≤ I + γT.

The same argument is applicable to v, which results in

max
0≤t≤T

‖u(t)‖L2(Ω), max
0≤t≤T

‖v(t)‖L2(Ω) ≤ 2I

for sufficiently small T > 0. The corresponding bounds on ntr and n′tr can be deduced from the formula

ntr(t) = ntr(0) +
1

ε

∫ t

0

f̃3(s) ds

and from an analogous one for n′tr. In fact,

‖ntr(t)‖L2(Ω) ≤ ‖ntr(0)‖L2(Ω) +
1

ε

∫ t

0

∥∥f̃3(s)
∥∥
L2(Ω)

ds ≤ I +
T

ε
(2 + 4βI)

and, hence,
max

0≤t≤T
‖ntr(t)‖L2(Ω), max

0≤t≤T
‖n′tr(t)‖L2(Ω) ≤ 2I

for T > 0 sufficiently small.
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Step 3: Contraction property of S. We consider (ũ1, ṽ1, ñtr,1, ñ
′
tr,1), (ũ2, ṽ2, ñtr,2, ñ

′
tr,2) ∈MT and

the corresponding solutions (u1, v1, ntr,1, n
′
tr,1) = S(ũ1, ṽ1, ñtr,1, ñ

′
tr,1) ∈ MT and (u2, v2, ntr,2, n

′
tr,2) =

S(ũ2, ṽ2, ñtr,2, ñ
′
tr,2) ∈MT . We further introduce the notation

u := u1 − u2, ũ := ũ1 − ũ2

and similarly v, ntr, n
′
tr, ṽ, ñtr and ñ′tr. Then, we have to show that

‖(u, v, ntr, n′tr)‖XT ≤ c‖(ũ, ṽ, ñtr, ñ′tr)‖XT

with a constant c ∈ (0, 1) on a time interval [0, T ] small enough. The norm in XT is defined as

‖(u, v, ntr, n′tr)‖XT := max
0≤t≤T

‖u(t)‖L2(Ω) + max
0≤t≤T

‖v(t)‖L2(Ω) + max
0≤t≤T

‖ntr(t)‖L2(Ω) + max
0≤t≤T

‖n′tr(t)‖L2(Ω).

We obtain the following system by taking the difference of corresponding equations of the system for the
1- and the 2-variables, respectively:

∂tu−∆u = An
(
ũ+

1 − ũ
+
2

)
+ e

Vn
2

(
ñ

[0,1]
tr,1 − ñ

[0,1]
tr,2

)
− eVn

(
ũ+

1 ñ
′[0,1]
tr,1 − ũ

+
2 ñ
′[0,1]
tr,2

)
=: f̃1,

∂tv −∆v = Ap
(
ṽ+

1 − ṽ
+
2

)
+ e

Vp
2

(
ñ
′[0,1]
tr,1 − ñ

′[0,1]
tr,2

)
− eVp

(
ṽ+

1 ñ
[0,1]
tr,1 − ṽ

+
2 ñ

[0,1]
tr,2

)
=: f̃2,

ε ∂tntr = ñ
′[0,1]
tr,1 − ñ

′[0,1]
tr,2 − e

Vp
2

(
ṽ+

1 ñ
[0,1]
tr,1 − ṽ

+
2 ñ

[0,1]
tr,2

)
− ñ[0,1]

tr,1 + ñ
[0,1]
tr,2 + e

Vn
2

(
ũ+

1 ñ
′[0,1]
tr,1 − ũ

+
2 ñ
′[0,1]
tr,2

)
=: f̃3,

ε ∂tn
′
tr = ñ

[0,1]
tr,1 − ñ

[0,1]
tr,2 − e

Vn
2

(
ũ+

1 ñ
′[0,1]
tr,1 − ũ

+
2 ñ
′[0,1]
tr,2

)
− ñ′[0,1]

tr,1 + ñ
′[0,1]
tr,2 + e

Vp
2

(
ṽ+

1 ñ
[0,1]
tr,1 − ṽ

+
2 ñ

[0,1]
tr,2

)
=: f̃4.

(76)

We mention that u and v are subject to the boundary conditions

n̂ ·
(
∇u+

1

2
u∇Vn

)
= n̂ ·

(
∇v +

1

2
v∇Vp

)
= 0

and the homogeneous initial conditions

u(0) = v(0) = ntr(0) = n′tr(0) = 0.

First, one finds
max

0≤t≤T
‖u(t)‖L2(Ω) ≤ C1‖u‖W2(0,T ) ≤ C1C2‖f̃1‖L2((0,T )×Ω)

where C1 > 0 is the constant resulting from the embedding W2(0, T ) ↪→ C([0, T ], L2(Ω)). The constant
C2 > 0 originates from well-known parabolic regularity estimates for ‖u‖W2(0,T ) in terms of the L2-norms

of f̃1 and u(0) = 0. Therefore,

max
0≤t≤T

‖u(t)‖L2(Ω) ≤ C1C2

(
α
∥∥ũ+

1 − ũ
+
2

∥∥
L2((0,T )×Ω)

+ β
∥∥ñ[0,1]

tr,1 − ñ
[0,1]
tr,2

∥∥
L2((0,T )×Ω)

+ β
∥∥ũ+

1 − ũ
+
2

∥∥
L2((0,T )×Ω)

∥∥ñ′[0,1]
tr,1

∥∥
L∞((0,T )×Ω)

+ β
∥∥ũ+

2

∥∥
L∞((0,T )×Ω)

∥∥ñ′[0,1]
tr,1 − ñ

′[0,1]
tr,2

∥∥
L2((0,T )×Ω)

)
≤ C1C2

(
β‖ñtr‖L2((0,T )×Ω) + (α+ β)‖ũ‖L2((0,T )×Ω) + 2βI‖ñ′tr‖L2((0,T )×Ω)

)
.

Moreover, every f ∈ C([0, T ], L2(Ω)) fulfils

‖f‖2L2((0,T )×Ω) =

∫ T

0

∫
Ω

f2 dx dt ≤
∫ T

0

dt max
0≤t≤T

‖f(t)‖2L2(Ω) = T‖f‖2C([0,T ],L2(Ω))

and we proceed with the previous estimates to derive

max
0≤t≤T

‖u(t)‖L2(Ω) ≤ C1C2(α+ 2βI)
√
T
(
‖ñtr‖C([0,T ],L2(Ω)) + ‖ũ‖C([0,T ],L2(Ω)) + ‖ñ′tr‖C([0,T ],L2(Ω))

)
.
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In a similar way, we arrive at

max
0≤t≤T

‖v(t)‖L2(Ω) ≤ C1C2(α+ 2βI)
√
T
(
‖ñ′tr‖C([0,T ],L2(Ω)) + ‖ṽ‖C([0,T ],L2(Ω)) + ‖ñtr‖C([0,T ],L2(Ω))

)
.

Due to ntr(0) = 0, one obtains

ntr(t) =
1

ε

∫ t

0

f̃3 ds

for t ∈ [0, T ] and, using similar techniques as above,

max
0≤t≤T

‖ntr(t)‖L2(Ω) ≤
1

ε

∫ T

0

‖f̃3‖L2(Ω) ds ≤
√
T

ε
‖f̃3‖L2((0,T )×Ω)

≤ 1 + 2βI

ε

√
T
(
‖ũ‖L2((0,T )×Ω) + ‖ṽ‖L2((0,T )×Ω) + ‖ñtr‖L2((0,T )×Ω) + ‖ñ′tr‖L2((0,T )×Ω)

)
≤ 1 + 2βI

ε
T
(
‖ũ‖C([0,T ],L2(Ω)) + ‖ṽ‖C([0,T ],L2(Ω)) + ‖ñtr‖C([0,T ],L2(Ω)) + ‖ñ′tr‖C([0,T ],L2(Ω))

)
.

Note that because of f̃4 = −f̃3, the last estimate equally serves as an upper bound for ‖n′tr(t)‖L2(Ω).
Taking the sum of the above estimates and choosing T > 0 sufficiently small yields

‖(u, v, ntr, n′tr)‖XT ≤ c ‖(ũ, ṽ, ñtr, ñ′tr)‖XT

with some c ∈ (0, 1).

Step 4: Solution of (1). Step 2 and Step 3 imply that for T > 0 sufficiently small the mapping
S : MT → MT is a contraction. Banach’s fixed point theorem, thus, guarantees that there exists a
unique (u, v, ntr, n

′
tr) ∈ MT such that S(u, v, ntr, n

′
tr) = (u, v, ntr, n

′
tr). Moreover, due to standard

parabolic regularity for (u, v), the fixed-point (u, v, ntr, n
′
tr) is the unique weak solution of

∂tu−∆u = Anu
+ + e

Vn
2 n

[0,1]
tr − eVnu+n

′[0,1]
tr ,

∂tv −∆v = Apv
+ + e

Vp
2 n
′[0,1]
tr − eVpv+n

[0,1]
tr ,

ε ∂tntr = n
′[0,1]
tr − e

Vp
2 v+n

[0,1]
tr − n[0,1]

tr + e
Vn
2 u+n

′[0,1]
tr ,

ε ∂tn
′
tr = n

[0,1]
tr − e

Vn
2 u+n

′[0,1]
tr − n′[0,1]

tr + e
Vp
2 v+n

[0,1]
tr .

(77)

In order to prove the non-negativity of u, v, ntr and n′tr, we adapt an argument from [WMZ08]. First,
we define

h := min(0, u)

on [0, T ]× Ω and notice that h ≤ 0 and h(t = 0) = 0 a.e. since u(0) ≥ 0 a.e. We now multiply the first
equation in (77) with h and integrate over (0, t)× Ω for t ∈ [0, T ]. This yields∫ t

0

∫
Ω

∂suh dx ds =

∫ t

0

∫
Ω

∆uh dx ds+

∫ t

0

∫
Ω

Anu
+h dx ds+

∫ t

0

∫
Ω

(
e
Vn
2 n

[0,1]
tr − eVnu+n

′[0,1]
tr

)
h dx ds.

(78)
The first term on the right hand side of (78) can be seen to be non-positive using integration by parts
and the boundary condition from (71):∫ t

0

∫
Ω

∆uh dx ds = −
∫ t

0

∫
Ω

∇u · ∇h dx ds− 1

2

∫ t

0

∫
∂Ω

uh n̂ · ∇Vn dσ ds

≤ −
∫ t

0

∫
Ω

∇u · ∇h dx ds = −
∫ t

0

∫
Ω

∇h · ∇h dx ds ≤ 0

due to uh ≥ 0, n̂ ·∇Vn ≥ 0, and since ∇h 6= 0 holds true only in the case u < 0, where we have ∇u = ∇h
in L2, see e.g. [GT77]. Moreover, ∫ t

0

∫
Ω

Anu
+h dx ds = 0,
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and the third term in (78) is again non-positive as an integral over non-positive quantities:∫ t

0

∫
Ω

(
e
Vn
2 n

[0,1]
tr − eVnu+n

′[0,1]
tr

)
h dx ds =

∫ t

0

∫
Ω

e
Vn
2 n

[0,1]
tr h dx ds ≤ 0

as a consequence of u+h = 0 in L2(Ω). The left hand side of (78) can be reformulated as∫ t

0

∫
Ω

∂suh dx ds =

∫ t

0

∫
Ω

∂shh dx ds =
1

2

∫
Ω

∫ t

0

( d
ds
h2
)
ds dx =

1

2
‖h(t)‖2L2(Ω).

For the first step, we have used that the integrand ∂suh only contributes to the integral if h < 0. But
in this case, u = h and, hence, ∂su = ∂sh in L2, see e.g. [GT77]. This proves ‖h(t)‖L2(Ω) ≤ 0 for all
t ∈ [0, T ], which establishes h(t) = 0 in L2(Ω) for all t ∈ [0, T ], and thus u(t, x) ≥ 0 for all t ∈ [0, T ] and
a.e. x ∈ Ω. In the same way, one can show that v(t, x) ≥ 0 for all t ∈ [0, T ] and a.e. x ∈ Ω.

The non-negativity of ntr follows from a similar idea using

h := min(0, ntr).

Again, h ≤ 0 and h(t = 0) = 0 due to ntr(0) ≥ 0. Multiplying the third equation of (77) with h and
integrating over (0, t)× Ω, t ∈ [0, T ], we find

ε

∫ t

0

∫
Ω

∂sntr h dx ds =

∫ t

0

∫
Ω

(
n
′[0,1]
tr − e

Vp
2 v+n

[0,1]
tr − n[0,1]

tr + e
Vn
2 u+n

′[0,1]
tr

)
h dx ds.

As before, all terms under the integral on the right hand side involving n
[0,1]
tr vanish. Consequently,

ε

2
‖h(t)‖2L2(Ω) = ε

∫ t

0

∫
Ω

∂shh dx ds =

∫ t

0

∫
Ω

(
n
′[0,1]
tr + e

Vn
2 u+n

′[0,1]
tr

)
h dx ds ≤ 0

for all t ∈ [0, T ]. The same result holds true for n′tr. Therefore, we have verified that ntr(t, x), n′tr(t, x) ≥ 0
for all t ∈ [0, T ] and a.e. x ∈ Ω.

The non-negativity of ntr and n′tr together with n′tr = 1− ntr from (69) now even imply

ntr(t, x), n′tr(t, x) ∈ [0, 1], for all t ∈ [0, T ] and a.e. x ∈ Ω.

This allows us to identify the unique weak solution (u, v, ntr, n
′
tr) of (77) to equally solve

∂tu−∆u = Anu+ e
Vn
2 ntr − eVnu(1− ntr),

∂tv −∆v = Apv + e
Vp
2 (1− ntr)− eVpv ntr,

ε ∂tntr = 1− ntr − e
Vp
2 v ntr − ntr + e

Vn
2 u(1− ntr),

(79)

which is the transform version of the original problem (1).
Up to now, we have proven that there exists a unique solution (u, v, ntr) ∈ C([0, T ], L2(Ω))3 such

that (u, v, ntr, 1− ntr) ∈MT on a sufficiently small time-interval [0, T ].

Step 5: Global solution. We now fix T ∗ > 0 in such a way that [0, T ∗) is the maximal time-interval
of existence for the solution (u, v, ntr) ∈ C([0, T ], L2(Ω))3 of (79). Moreover, we choose some arbitrary
q ∈ N≥2 and multiply the first equation in (79) with uq−1. Integrating over Ω at time t ∈ [0, T ∗) gives

d

dt

∫
Ω

uq

q
dx =

∫
Ω

uq−1∂tu dx =

∫
Ω

uq−1∆u dx+

∫
Ω

Anu
q dx+

∫
Ω

uq−1
(
e
Vn
2 ntr − eVnu(1− ntr)

)
dx.

Integration by parts and the estimates |An| ≤ α,
∣∣eVn2 ntr − eVnu(1− ntr)

∣∣ ≤ β(1 + u) further yield

d

dt

∫
Ω

uq

q
dx ≤ −(q − 1)

∫
Ω

uq−2|∇u|2 dx− 1

2

∫
∂Ω

uq n̂ · ∇Vn dσ ds+ α

∫
Ω

uq dx+ β

∫
Ω

(uq−1 + uq) dx.
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Moreover, we derive∫
Ω

uq−1 dx =

∫
{u≤1}

uq−1 dx+

∫
{u>1}

uq

u
dx ≤

∫
Ω

1 dx+

∫
Ω

uq dx = 1 +

∫
Ω

uq dx

where we used |Ω| = 1. Hence,

d

dt

∫
Ω

uq

q
dx ≤ β + (α+ 2β)

∫
Ω

uq dx ≤ γ
(

1 +

∫
Ω

uq dx

)
(80)

after defining γ := α+ 2β. This results in

d

dt

∫
Ω

uq dx ≤ γq
(

1 +

∫
Ω

uq dx

)
,

which can be integrated over time from 0 to t:

‖u(t)‖qLq(Ω) ≤ ‖u(0)‖qLq(Ω) + γq

∫ t

0

(
1 + ‖u(s)‖qLq(Ω)

)
ds.

From this generalised Gronwall-type inequality, we deduce (cf. [Bee75])

‖u(t)‖qLq(Ω) ≤ ‖u(0)‖qLq(Ω)e
γqt + eγqt − 1 <

(
1 + ‖u(0)‖qLq(Ω)

)
eγqt

and
‖u(t)‖Lq(Ω) ≤

(
1 + ‖u(0)‖Lq(Ω)

)
eγt ≤ Ieγt

since 1 + ‖u(0)‖Lq(Ω) ≤ 1 + ‖u(0)‖L∞(Ω) ≤ I. As Ieγt is independent of q, we even arrive at

‖u(t)‖L∞(Ω) ≤ Ieγt.

In the same way, we can show that ‖v(t)‖L∞(Ω) ≤ Ieγt for all t ∈ [0, T ∗). As a consequence, we obtain
that the solution (u, v, ntr) ∈ C([0, T ], L2(Ω))3 can be extended for all times, i.e. T ∗ =∞.

Step 6: L∞-bounds for n and p. We now prove the linearly growing L∞-bounds (8) for n and p. We
only detail the bound for p and sketch how the bound for n follows in a similar fashion. After recalling
(with τp = 1 w.l.o.g.)

∂tp = ∇ · Jp +

(
1− ntr −

p

p0e−Vp
ntr

)
, Jp = e−Vp∇

(
p eVp

)
,

we introduce the variable w = p eVp and observe that ∇ · Jp = ∇ ·
(
e−Vp∇w

)
= e−Vp (∆w −∇Vp · ∇w)

and thus,

∂tw = ∆w −∇Vp · ∇w + eVp
(

1− ntr −
ntr
p0
w

)
, (81)

while the no-flux boundary condition n̂·Jp = 0 on ∂Ω transforms to the homogeneous Neumann condition
n̂ · ∇w = 0 on ∂Ω.

Next, by testing (81) with the positive part (w − r − st)+ := max{0, w − r − st} for two constant
r, s > 0 to be chosen, we calculate by integration by parts in the first two terms

d

dt

1

2

∫
Ω

(w − r − st)2
+ dx =

∫
Ω

(w − r − st)+

(
∆w −∇Vp · ∇w + eVp

(
1− ntr −

ntr
p0
w
)
− s
)
dx

= −
∫

Ω

1w≥r+st|∇w|2 dx−
∫

Ω

∇Vp · ∇
(w − r − st)2

+

2
dx

+

∫
Ω

(w − r − st)+

(
eVp
(

1− ntr −
ntr
p0
w
)
− s
)
dx

≤ ‖∆Vp‖∞
2

∫
Ω

(w − r − st)2
+ dx+

∫
Ω

(w − r − st)+

(
eVp
(

1− ntr −
ntr
p0
w
)
− s
)
dx,
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since n̂ · Vp ≥ 0 by assumption (3). Moreover, since ntr ∈ [0, 1] and w ≥ 0, we have

d

dt

1

2

∫
Ω

(w − r − st)2
+ dx ≤

‖∆Vp‖∞
2

∫
Ω

(w − r − st)2
+ dx+

∫
Ω

(w − r − st)+

(
‖eVp‖∞ − s

)
dx.

Thus, by choosing s := ‖eVp‖∞ and r := ‖w(τ, ·)‖∞ for some time τ ≥ 0, we conclude that

d

dt

∫
Ω

(w − r − st)2
+ dx ≤ ‖∆Vp‖∞

∫
Ω

(w − r − st)2
+ dx,

and a Gronwall lemma implies

‖w(t, ·)‖∞ ≤ ‖w(τ, ·)‖∞ + ‖eVp‖∞ t, for all t ≥ τ ≥ 0. (82)

Transforming back, this yields

‖p(t, ·)‖∞ ≤
1

inf{eVp}
(
‖p(τ, ·)‖∞‖eVp‖∞ + ‖eVp‖∞ t

)
, for all t ≥ τ ≥ 0. (83)

In order to deduce the analog bound for n in (8), we consider (with τn = 1 w.l.o.g.)

∂tn = ∇ · Jn +

(
ntr −

n

n0e−Vn

(
1− ntr

))
, Jn = e−Vn∇

(
n eVn

)
.

We introduce the variable ω = n eVn and obtain in the same way as in (63)

∂tω = ∆ω −∇Vn · ∇ω + eVn
(
ntr −

1− ntr
n0

ω

)
.

Following the same arguments as above,

‖ω(t, ·)‖∞ ≤ ‖ω(τ, ·)‖∞ + ‖eVn‖∞ t, for all t ≥ τ ≥ 0. (84)

Transforming back, this yields

‖n(t, ·)‖∞ ≤
1

inf{eVn}
(
‖n(τ, ·)‖∞‖eVn‖∞ + ‖eVn‖∞ t

)
, for all t ≥ τ ≥ 0 (85)

and thus (8).

Step 7: Regularity and bounds for ntr. We still have to verify ntr ∈ C([0, T ], L∞(Ω)) for all T > 0.
Now, let T > 0 and recall that

ntr(t) = ntr(0) +
1

ε

∫ t

0

(
1− ntr − eVpp ntr − ntr + eVnn(1− ntr)

)
ds

in L2(Ω) for all t ∈ [0, T ]. Considering a sequence (tn)n∈N ⊂ [0, T ], tn → t, we thus arrive at

‖ntr(tn)− ntr(t)‖L∞(Ω) ≤
1

ε

∣∣∣∣∫ tn

t

‖1− ntr − eVpp ntr − ntr + eVnn(1− ntr)‖L∞(Ω) ds

∣∣∣∣ ≤ |tn−t|ε
CT → 0

for n→∞. This proves the assertion.
The claim ∂tntr ∈ C([0, T ], L2(Ω)) for all T > 0 is an immediate consequence of the last equation in

(79) together with the L2-continuity and L∞-bounds of u, v and ntr.
Next, concerning the bounds (9), we recall system (1) and observe that for all ε ∈ (0, ε0]

ε∂tntr = h(ntr) := Rp(p, ntr)−Rn(n, ntr),

in the sense of L2(Ω), where h(ntr = 0) ≥ 1
τp
> 0 and h(ntr = 1) ≤ − 1

τn
< 0 uniformly for all non-

negative n and p. Therefore, wherever ntr,I(x) = 0 (or analogous ntr,I(x) = 1), an elementary argument
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proves that ntr(t, x) grows (or decreases) linearly in time and decays back to 0 (or 1) at most like
(a+ bt)−1. More precisely, we reuse the transformed variable w = p eVp and find

ε∂tntr ≥
1

τp

[
1−

(
1 +

τp
τn

+
‖w‖∞
p0

)
ntr

]
≥ 1

τp

[
1−

(
1 +

τp
τn

+
r + st

p0

)
ntr

]
for some constants r and s due to the estimate (82). Setting τn := τp := 1 w.l.o.g., we have

ε∂tntr ≥ 1− (r̃ + s̃t)ntr.

with appropriate r̃, s̃ > 0 independent of ε. By observing that the ODE ε0ẏ = 1 − (r̃ + s̃t)y features
the positive nullcline y0(t) = 1/(r̃ + s̃t), which moreover attracts all solution trajectories, standard
comparison arguments (pointwise in x ∈ Ω) imply that for all times τ > 0, there exists a constant
exist positive constants η = η(ε0, τ, τn, τp), θ = θ(Cn, Cp,Kn,Kp) and a sufficiently small constant
γ(τ, Cn, Cp,Kn,Kp) > 0 such that

ntr(t, x) ≥ min
{
ηt,

γ

1 + θt

}
for all t ≥ 0 and a.a. x ∈ Ω

where ητ = γ
1+θτ such that the linear and the inverse linear bound intersect at time τ .

Finally, the upper bounds (9) follow from analog arguments.

Step 8: Lower bounds for n and p. Finally, we prove the bounds (10). We will only detail the
argument for the lower bound on n, as the bound for p follows in an analog way. Recalling the transformed
equation for ω = eVnn (satisfying n̂ · ∇ω = 0 on ∂Ω), we estimate

∂tω = ∆ω −∇Vn · ∇ω + eVn
(
ntr −

1− ntr
n0

ω

)
≥ ∆ω −∇Vn · ∇ω − αω + cntr, (86)

where α > 0 and c > 0 are positive constants due to the assumptions (3) and eVnωntr ≥ 0.
Next, we use (9), i.e. that for all τ > 0 fixed, there exist constants η, θ and γ such that ntr(t, x) ≥ ηt

for all 0 ≤ t ≤ τ and a.a. x ∈ Ω, while ntr(t, x) ≥ γ/(1 + θt) for all t ≥ τ and a.a. x ∈ Ω. Then, by

introducing the negative part (ω)− := min{ω, 0} and testing (86) with
(
ω − µt2

2

)
− for a constant µ > 0

to be chosen below, we estimate

d

dt

1

2

∫
Ω

(
ω − µt2

2

)2

−
dx =

∫
Ω

(
ω − µt2

2

)
−

(∂tω − µt) dx =

∫
Ω

∣∣∣∣(ω − µt2

2

)
−

∣∣∣∣ (−∂tω + µt) dx

≤
∫

Ω

∣∣∣∣(ω − µt2

2

)
−

∣∣∣∣ (−∆ω +∇Vn · ∇ω + αω − cntr + µt) dx

=

∫
Ω

(
ω − µt2

2

)
−

(∆ω −∇Vn · ∇ω) dx+

∫
Ω

∣∣∣∣(ω − µt2

2

)
−

∣∣∣∣ (αω − cntr + µt) dx

≤−
∫

Ω

1
ω≤µt22

|∇ω|2 dx− 1

2

∫
Ω

∇
(
ω − µt2

2

)2

−
· ∇Vn dx+

∫
Ω

∣∣∣∣(ω − µt2

2

)
−

∣∣∣∣ (αω − cntr + µt) dx.

Thus, for 0 ≤ t ≤ τ when ntr(t, x) ≥ ηt, we have

d

dt

1

2

∫
Ω

(
ω − µt2

2

)2

−
dx ≤

∫
Ω

(
ω − µt2

2

)2

−

∆Vn
2

dx+

∫
Ω

∣∣∣∣(ω − µt2

2

)
−

∣∣∣∣ (αµt22
− cηt+ µt

)
dx.

If we choose µ
(
α τ2 + 1

)
≤ cη, we obtain

d

dt

∫
Ω

(
ω − µt2

2

)2

−
dx ≤ ‖∆Vn‖L∞(Ω)

∫
Ω

(
ω − µt2

2

)2

−
dx.

Hence, since
∫

Ω

(
ω(0, x)

)2
−dx = 0, we deduce from a Gronwall lemma∫

Ω

(
ω − µt2

2

)2

−
dx = 0, for all 0 ≤ t ≤ τ,
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which yields in particular ω(t, x) ≥ µt2

2 for all 0 ≤ t ≤ τ and a.a. x ∈ Ω.

Moreover, for t ≥ τ when ntr(t, x) ≥ γ
1+θt , we test (86) with

(
ω − Γ

1+θt

)
− for a constant Γ > 0 to be

chosen below, and estimate similar to above

d

dt

1

2

∫
Ω

(
ω − Γ

1 + θt

)2

−
dx =

∫
Ω

(
ω − Γ

1 + θt

)
−

(
∂tω +

Γθ

(1 + θt)2

)
dx

≤
∫

Ω

(
ω − Γ

1 + θt

)
−

(
∆ω −∇Vn · ∇ω − αω + cntr +

Γθ

(1 + θt)2

)
dx

≤ −
∫

Ω

1ω≤ Γ
1+θt
|∇ω|2 dx− 1

2

∫
Ω

∇
(
ω − Γ

1 + θt

)2

−
· ∇Vn dx

+

∫
Ω

∣∣∣∣(ω − Γ

1 + θt

)
−

∣∣∣∣ (αω − cntr − Γθ

(1 + θt)2

)
dx.

And as ntr(t, x) ≥ γ
1+θt for t ≥ τ , we find

d

dt

1

2

∫
Ω

(
ω − Γ

1 + θt

)2

−
dx ≤

∫
Ω

(
ω − Γ

1 + θt

)2

−

∆Vn
2

dx

+

∫
Ω

∣∣∣∣(ω − Γ

1 + θt

)
−

∣∣∣∣ (α Γ

1 + θt
− c γ

1 + θt
− Γθ

(1 + θt)2

)
dx.

Choosing αΓ ≤ cγ, we arrive at

d

dt

∫
Ω

(
ω − Γ

1 + θt

)2

−
dx ≤ ‖∆Vn‖L∞(Ω)

∫
Ω

(
ω − Γ

1 + θt

)2

−
dx.

By further reducing either Γ or µ, we are able to satisfy Γ
1+θτ = µτ2

2 . On the one hand, this implies that∫
Ω

(
ω(τ, x)− Γ

1+θτ

)2

−
dx = 0, which results — by using a Gronwall argument — in∫

Ω

(
ω(t, x)− Γ

1 + θt

)2

−
dx = 0, for all t ≥ τ,

and, hence, ω(t, x) ≥ Γ
1+θt for all t ≥ τ and a.a. x ∈ Ω. On the other hand, the increasing and decreasing

bounds now again intersect at time τ as desired.
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