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Abstract

We consider the level sets of distance functions from the point of view of geometric measure
theory. This lays the foundation for further research that can be applied, among other uses, to
the derivation of a shape calculus based on the level-set method. Particular focus is put on the
(n − 1)-dimensional Hausdorff measure of these level sets. We show that, starting from a bounded
set, all sub-level sets of its distance function have finite perimeter. Furthermore, if a uniform density
condition is satisfied for the initial set, one can even show an upper bound for the perimeter that
is uniform for all level sets. Finally, we present an example that shows that our results are sharp
in the sense that no uniform upper bound can exist if our density condition is not satisfied. This is
even true if the initial set is otherwise very regular (i. e., a bounded Caccioppoli set with smooth
boundary).

Keywords: Geometric Measure Theory, Level Set, Distance Function, Hausdorff Measure, Perimeter,
Caccioppoli Set

1 Introduction

In this paper, we are interested in a measure-theoretic analysis of the level sets of distance functions.
For some open set Ω0 ⊂ Rn, the distance function is given by

dΩ0
(x) = inf

y∈Ω0

|x− y| .

This is a widely studied construct with well-known properties. See, for instance, chapter 6 of [6]. In
particular, note that dΩ0(x) is well-defined and non-negative for all x ∈ Ω0. Furthermore, the function
dΩ0

is continuous on Rn. For t > 0, let us also define

Ωt = dΩ0

−1 ((−∞, t)) = {x ∈ Rn | dΩ0(x) < t} and

Γt = dΩ0

−1 ({t}) = {x ∈ Rn | dΩ0
(x) = t} .

(1)

Continuity of the distance function implies that Ωt is open and Γt closed. It is also easy to see that Γt
coincides with the topological boundary of Ωt. I. e., Γt = ∂Ωt. The set Ωt is sometimes called t-envelope
of Ω0 in the literature. It is an inflated and smoothed version of Ω0.

To see why the study of these sets is interesting, let us briefly mention the classical level-set method
introduced by Osher and Sethian in [13]: Based on this method, one can describe evolving shapes as
the sub-zero level sets of a time-dependent level-set function. If the geometry is changed by moving the
boundary in normal direction according to a given speed field, the time evolution of the level-set function
can be described by the so-called level-set equation. Based on this method, one can, for instance, build
a framework for shape optimisation as done in [4]. See [8], [5] and [12] for some recent applications.
Our work in [11] allows to represent the propagating domains in the level-set framework with a formula
similar to (1). In the general case, one uses the solution of an Eikonal equation instead of the distance
function dΩ0

. The situation considered here is a special case, which results if the speed field is positive and
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constant throughout all of Rn. Furthermore, shape sensitivity analysis in this context leads naturally to
the question whether or not the surface measure of Γt (or, equivalently, the perimeter of Ωt) is continuous
with respect to the propagation time t. One half of this question can be resolved quite easily by the well-
known lower semi-continuity property of the total variation. This, in turn, implies lower semi-continuity
for the perimeter of the evolving sets. Estimates in the other direction, however, are more difficult to
obtain.

It is the aim of this paper to explore one approach to establish such estimates. After investigating
some auxiliary geometric properties of spherical sectors in Section 2, we will derive our main results in
Section 3. The first is a kind of inverse isoperimetric inequality (see Theorem 2), that gives an upper
bound on the perimeter P (Ωt) of Ωt in terms of the created volume Ωt \ Ω0. An obvious estimate of
this volume follows if Ω0 is bounded, which results in Corollary 1. Note, however, that this only yields
an upper bound for P (Ωt) that diverges like 1/t for t → 0+. Under an additional uniform density
assumption on Ω0, we can further improve the estimate: In this situation, the volume can be bounded
in terms of the perimeter of the initial domain Ω0 times t. Consequently, we obtain a uniform bound on
the perimeter of Ωt. This will be done in Subsection 3.2. Subsection 3.3 discusses the required uniform
density condition in comparison to related geometric properties in the literature. In the final Section 4,
we give an example that demonstrates that our uniform density property is really necessary to get a
uniform bound on P (Ωt). If it is not fulfilled, the perimeter of Ωt can diverge for t→ 0+ even if Ω0 is a
smooth Caccioppoli set.

2 Auxiliary Geometric Results

In order to show our main results in Section 3 (in particular, Theorem 2), we need some auxiliary results.
While they are only based on elementary geometry, their proofs are, nevertheless, quite technical. In
this section, we will develop these results. The basic object studied is what we will call a sector below:

Definition 1. Let x0, x ∈ Rn and φ ∈ [0, π/2]. We define

Sφ(x0, x) = {y ∈ Rn | 0 < |x0 − y| < |x0 − x| and (y − x0) · (x− x0) > |x0 − y| |x0 − x| · cosφ} .

We will often set t = |x0 − x| to be the sector’s radius. For 0 ≤ f < f ≤ 1, we further define

Sφ(x0, x; f, f) =
{
y ∈ Sφ(x0, x) | ft < |x0 − y| < ft

}
.

Sφ(x0, x) is an open sector of the ball with centre x0 and radius t = |x0 − x|. The value of φ, which
corresponds to the maximum allowed angle x–x0–y, defines the sector’s aperture. The restricted version
Sφ(x0, x; f, f) is similar to a conic frustum, except that its bases are spherical instead of planar. One
can easily see that

Sφ(x0, x) = Sφ(x0, x; 0, 1)

for the degenerate case f = 0 and f = 1. Besides using the angle φ directly, we will also need to define
such a sector via an auxiliary ball Bδ (x) for δ < t. The idea is depicted in Figure 1b: In this case, the
sector’s aperture is defined indirectly via δ. It is chosen as the angle at which the ball around x intersects
the larger sphere with centre x0. With basic trigonometry, one can derive

φ(δ) = arccos

(
1− δ2

2t2

)
(2)

for the corresponding aperture angle. In the following, we will only need two basic properties of this
explicit function: δ < tφ(δ) holds for all δ and tφ(δ)/δ → 1 in the limit δ → 0+. In other words, tφ(δ) ≈ δ
asymptotically for small δ.

2.1 The Volume of Sectors

The first part of our geometric analysis of sectors is concerned with determining their volume (i. e.,
n-dimensional Lebesgue measure). For this, let us state the following fundamental geometric facts:

2



φ

x0

x

t

(a) Based on φ according to Definition 1.

δ

x0

x

(b) Defined via the ball Bδ (x) and (2).

Figure 1: Definitions of the sector Sφ(x0, x).

Lemma 1. Let n ≥ 2. The volume of a ball with radius ρ > 0 is given by

vol (Bρ (x)) = ωnρ
n, ωn =

πn/2

Γ(n/2 + 1)
.

This holds obviously for arbitrary x ∈ Rn.
Furthermore, there exists a mapping r : [0, π/2] → [0, 1/2] which is continuous, bijective, strictly

increasing and satisfies
vol (Sφ(x0, x)) = r(φ) · vol (Bt (0)) = r(φ) · ωntn (3)

for all x0, x ∈ Rn and φ ∈ [0, π/2]. Here, we have set t = |x0 − x| as before. In addition,

lim
φ→0+

r(φ)

φn−1
> 0 (4)

exists and is strictly positive.

Proof. The volume of n-dimensional balls is a well-known result. See, for instance, Theorem 26.13 in [14].
In order to compute the volume of Sφ(x0, x), we use spherical coordinates:

y1 = r cosφ1,

yk = r

k−1∏
i=1

sinφi · cosφk for k = 2, . . . , n− 2,

yn−1 = r

n−2∏
i=1

sinφi · sinφn−1,

yn = r

n−2∏
i=1

sinφi · cosφn−1

For a derivation of spherical coordinates particularly suited to our purposes, see [2]. Based on the
derivation given there, it is easy to see that

Sφ(x0, x) = {x0 + y ∈ Rn | y = y(r, φ1, . . . , φn−1), r ∈ (0, t), φ1 ∈ [0, φ)} .

The other angles are drawn from their full range, i. e., φk ∈ [0, π] for k = 2, . . . , n−2 and φn−1 ∈ [0, 2π).
Since the Jacobian determinant of this transformation is

det J(r, φ1, . . . , φn−1) = rn−1
n−2∏
i=1

sinn−i−1 φi,
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we find by simple integration that

vol (Sφ(x0, x)) =

∫ t

0

rn−1 dr ·
∫ φ

0

sinn−2 φ1 dφ1 ·
n−2∏
i=2

∫ π

0

sinn−i−1 φi dφi ·
∫ 2π

0

dφn−1.

Note that the integral over r is trivial to compute. The integrals over φ2, . . . φn−1 result in a dimensional
constant. If φ is chosen as π, we recover the full volume of Bt (x0). Thus,

r(φ) =

∫ φ
0

sinn−2 φ′ dφ′∫ π
0

sinn−2 φ′ dφ′

fulfils (3). All other claimed properties of r follow from this expression.

Based on Lemma 1, we can also derive how the volume changes if we use a different angle φ and
consider a frustum with non-degenerate f and f :

Lemma 2. Let 0 ≤ f < f ≤ 1. Then

vol
(
Sφ(x0, x; f, f)

)
= vol (Sφ(x0, x)) ·

(
f
n − fn

)
for arbitrary x0, x ∈ Rn and φ ∈ [0, π/2].

If φ′ ∈ [0, π/2] in addition, then

vol (Sφ′(x0, x)) =
r(φ′)

r(φ)
· vol (Sφ(x0, x)) .

In particular, for φ′ = aφ with some fixed ratio a > 0,

lim
φ→0+

vol (Saφ(x0, x))

vol (Sφ(x0, x))
= an−1. (5)

This remains true if we consider Sφ′(x0, x; f, f) instead of Sφ′(x0, x).

Proof. The first result follows immediately by subtracting the volumes of sectors with radii ft and ft.
The second is a direct consequence of (3). Finally, Lemma 1 also implies that

lim
φ→0+

r(aφ)

r(φ)
= an−1 · lim

φ→0+

r(aφ)

(aφ)n−1

φn−1

r(φ)
= an−1.

This completes the proof.

Note that the rate of convergence in the limit (5) does not depend on x0, x or t. In particular, this
implies that for fixed a and n, there exist constants 0 < C ′ < C ′′ such that

C ′ · vol (Sφ(x0, x)) ≤ vol (Saφ(x0, x)) ≤ C ′′ · vol (Sφ(x0, x)) (6)

for all φ small enough. The same is true for the frustum Saφ(x0, x; f, f).
Another conclusion from Lemma 1 is the following estimate, which relates, somehow, the surface area

of a sector’s base to its volume. This result will be used later when we prove Theorem 2.

Lemma 3. For fixed t > 0, there exist δ0 > 0 and a dimensional constant C such that

δn−1ωn−1 ≤ C
vol
(
Sφ(δ)(x0, x)

)
t

for all δ ∈ (0, δ0) and arbitrary x0, x ∈ Rn with |x0 − x| = t.

Proof. By (4), there exist φ0 > 0 and C ′ such that φn−1 ≤ C ′r(φ) holds for all φ ∈ (0, φ0). Since
δ < tφ(δ) according to (2), it follows that

δn−1ωn−1 < tn−1φ(δ)n−1ωn−1 ≤ C ′
ωn−1

ωn
· r(φ(δ)) · ωntn−1 = C ′

ωn−1

ωn
·

vol
(
Sφ(δ)(x0, x)

)
t

.

This estimate holds as long as φ(δ) ∈ (0, φ0). Since t is fixed and tφ(δ)/δ → 1, we can choose δ0 > 0
suitably such that this condition is satisfied for all δ ∈ (0, δ0).
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Figure 2: The situation of Lemma 4. The quantity |x− z|, shown in blue, is estimated.

2.2 Sectors Are Disjoint

Another main ingredient for the proof of Theorem 2 will be Lemma 7 below. Let us now prepare some
lemmas that will allow us to prove this result at the end of this subsection. For the first, consider the
situation shown in Figure 2: We will derive various estimates of the distance |x− z| highlighted in blue,
depending on the angle φ of the sector as well as the distance |x0 − z| = ft. In particular:

Lemma 4. Let x0, x ∈ Rn, φ ∈ [0, π/2] and z ∈ Sφ(x0, x). Denote t = |x0 − x| and |x0 − z| = ft with
some f ∈ [0, 1]. Then

t(1− f) ≤ |x− z| ≤ t(1− f + φf) ≤ t(1− f + φ) (7)

and also
|x− z|2 ≤ t2

(
(1− f)2 + fφ2

)
. (8)

If f ≤ 1/2, then additionally

|x− z| ≤ t
(

1− f +
φ2

2

)
. (9)

Proof. For the first inequality, note that

t = |x0 − x| ≤ |x0 − z|+ |z − x| = tf + |z − x| .

Furthermore, consider the red path in Figure 2. It is necessarily longer than |x− z|. Noting that α ≤ φ,
we find

|x− z| ≤ ftα+ (t− ft) ≤ t(1− f + fφ) ≤ t(1− f + φ).

In fact, using basic trigonometry, one can even deduce the exact relation

|x− z|2 = t2
(
(1− f cosα)2 + f2 sin2 α

)
= t2

(
1 + f2 − 2f cosα

)
.

Since this expression is increasing in α, we also get

|x− z|2 ≤ t2
(
1 + f2 − 2f cosφ

)
≤ t2

(
1 + f2 − 2f + fφ2

)
= t2

(
(1− f)2 + fφ2

)
.

Here, we have used that cosφ ≥ 1− φ2/2 for all φ ∈ R. This shows the second inequality.
Finally, let f ≤ 1/2. Note that a series expansion implies√

a2 + bx2 ≤ a+
b

2a
x2

for all a > 0 and b, x ≥ 0. Applying this with a = 1− f and b = f to (8) yields

|x− z| ≤ t
(

1− f +
f

2(1− f)
φ2

)
.

Since f ≤ 1/2, the coefficient in front of φ2 can be estimated by 1/2. This shows the third inequality.
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Next, we consider two sectors Sφ(x0, x) and Sφ(y0, y). The angle is the same for both, and we assume
that φ = φ(δ) for some δ > 0. As usual, we set t = |x0 − x| = |y0 − y|. We are interested in the situation

Bδ (x) ∩Bδ (y) = ∅ and t ≤ min(|x0 − y| , |y0 − x|). (10)

Our goal is to show that we can make these sectors disjoint by taking appropriate subsets, without
reducing their volumes too much in the process. (Actually, we believe that the sectors themselves are
already disjoint. We do not yet have a proof for this conjecture, though, and do not need one for our
purposes.) Thus, assume z ∈ Sφ(x0, x) ∩ Sφ(y0, y). Let us write |x0 − z| = f1t and |y0 − z| = f2t, where
f1, f2 ∈ [0, 1] as before. Under these assumptions, we can first conclude that f1 and f2 must be close to
each other:

Lemma 5. Consider the situation described above and assume, in particular, that condition (10) is
fulfilled. Then |f1 − f2| ≤ φ. If furthermore f1, f2 ≤ 1/2, then also |f1 − f2| ≤ φ2/2.

Proof. Assume, without loss of generality, f1 ≤ f2. Then (7) implies

t ≤ |x0 − y| ≤ |x0 − z|+ |z − y| ≤ f1t+ t(1− f2 + φ) = t(1− |f1 − f2|+ φ).

This yields the claimed |f1 − f2| ≤ φ. For the case f1, f2 ≤ 1/2, the second estimate follows if we use
(9) instead of (7) to get an upper bound on |z − y|.

While Lemma 5 has already used the second part of condition (10), we now make use of the first part.
By knowing that the balls Bδ (x) and Bδ (y) are disjoint, we can conclude that potential intersection
points of the sectors must lie on a line that has a certain minimum angle to the sector’s central line:

Lemma 6. We use the notation from above and assume that condition (10) is satisfied. Furthermore,
let 0 < f1, f2 ≤ 1/2 and introduce the angle α for a given point z as in Figure 3. I. e.,

(y − z) · (x0 − z) = |z − y| |z − x0| · cos(π − α). (11)

Then there exists δ0 > 0 so that z ∈ Sφ(δ)(x0, x) ∩ Sφ(δ)(y0, y) implies 8α ≥ φ(δ) for all δ ∈ (0, δ0).

Proof. Since tφ(δ)/δ → 1 as δ → 0+, there exists δ0 > 0 such that tφ(δ) ≤ 2δ holds for all δ ∈ (0, δ0).
We can choose δ0 so that φ(δ) ≤ 1/4 in addition. Now, let δ ∈ (0, δ0) be given and set φ = φ(δ). Note
that, for n > 2, the four points x0, z, x and y do not necessarily lie in one plane. Thus, let us introduce
the point

x′ = x0 + t
z − x0

|z − x0|
on the base of Sφ(x0, x). (Note that z 6= x0 since f1 > 0 is assumed.) With this definition, x′ lies in the
plane defined by x0, z and y. In the following, we will consider this plane as depicted in Figure 3. By
Bδ (x) ∩Bδ (y) = ∅, we know that

|x′ − y| ≥ |x− y| − |x− x′| ≥ 2δ − δ = δ ≥ tφ

2
. (12)

Next, we want to estimate |x′ − y| also from above. For this, consider the highlighted path in Figure 3:
The length of the circular arc in this path can be estimated via (9) as

l1 = α |z − y| ≤ t
(

1− f2 +
φ2

2

)
α.

The length of the straight part is given by

l2 = ||z − x′| − |z − y|| = |t(1− f1)− |z − y|| .

To resolve the absolute value, we have two cases to consider: First, assume |z − x′| ≥ |z − y| (as depicted
in the sketch). In this case,

l2 = t(1− f1)− |z − y| ≤ t(1− f1)− t(1− f2) = t(f2 − f1) ≤ t |f2 − f1| .
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Figure 3: Sketch for the situation considered in the proof of Lemma 6.

Alternatively, for |z − x′| ≤ |z − y|, the estimate (9) implies

l2 = |z − y| − t(1− f1) ≤ t
(

1− f2 +
φ2

2

)
− t(1− f1) = t

(
f1 − f2 +

φ2

2

)
≤ t
(
|f1 − f2|+

φ2

2

)
.

Note that the latter upper bound is larger than the one we got in the first case, so that it actually holds
for both cases. Since Lemma 5 implies |f1 − f2| ≤ φ2/2, we arrive at the final estimate

|x′ − y| ≤ l1 + l2 ≤ t
(

1− f2 +
φ2

2

)
α+ t

(
|f1 − f2|+

φ2

2

)
≤ t
((

1 +
φ2

2

)
α+ φ2

)
. (13)

Since φ ≤ 1/4, also φ2/2 ≤ 1 and φ2 ≤ φ/4. Using (12) and (13) together finally yields

tφ

2
≤ |x′ − y| ≤ t

(
(1 + 1)α+

φ

4

)
.

This can be easily transformed to show the claimed φ ≤ 8α.

Combining the results above, we can finally show that certain well-defined subsets of two such sectors
must be disjoint:

Lemma 7. Fix t > 0. There exist δ0 > 0, a > 0 and 0 < f < f ≤ 1 such that

Saφ(δ)(x0, x; f, f) ∩ Saφ(δ)(y0, y; f, f) = ∅ (14)

for all δ ∈ (0, δ0) and x0, y0, x, y ∈ Rn with t = |x0 − x| = |y0 − y|, whenever condition (10) is satisfied.
The constants a, f and f are explicit and do not depend on any other values.

Proof. Note that there exists f ∈ (0, 1/2) such that f(1 − f) ≥ 1/6 for all f ∈ [f, 1/2]. Set a = 1/32

and f = 1/2. Assume that there exists z in the intersection (14). Let us use the notation f1 and f2 as
before. Note that f1, f2 ≤ 1/2 and f1(1− f1) ≥ 1/6 by our choice of f and f . Let α be as in (11). If φ
is small enough, Lemma 6 implies that 8α ≥ φ. If we set φ′ = aφ = φ/32, this means α ≥ 4φ′. Recall
also that |x0 − z| = f1t by definition, t ≤ |x0 − y| by condition (10) and |z − y| ≤ t(1 − f2 + φ′2/2) by
Lemma 4. Furthermore, Lemma 5 implies |f1 − f2| ≤ φ′2/2, which, in particular, yields

f2 ≥ f1 −
φ′2

2
⇔ −f2 +

φ′2

2
≤ −f1 + φ′2.

Now we are ready to put everything together: Using the law of cosines in the plane containing x0, z
and y (see Figure 3 and (11)), we get:

t2 ≤ |x0 − y|2 = |x0 − z|2 + |z − y|2 − 2 |x0 − z| |z − y| cos(π − α)

= t2f2
1 + |z − y|2 + 2tf1 |z − y| cosα ≤ t2f2

1 + t2
(

1− f2 +
φ′2

2

)2

+ 2t2f1

(
1− f2 +

φ′2

2

)
cosα

≤ t2f2
1 + t2(1− f1 + φ′2)2 + 2t2f1(1− f1 + φ′2) cosα
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Dividing by t2 and completing the square yields the further estimates:

1 ≤ (f1 + 1− f1 + φ′2)2 + 2f1(1− f1 + φ′2)(cosα− 1)

≤ (1 + φ′2)2 − 2f1(1− f1)(1− cosα) ≤ (1 + φ′2)2 − 2

6
(1− cos(4φ′))

With a series expansion, one can see that there exists φ0 > 0 such that this inequality is wrong for all
φ′ ∈ (0, φ0). This finishes the proof.

3 Main Results

With all the technical preparations of Section 2 in place, we can now proceed to show the main results.
As before, let us assume that Ω0 ⊂ Rn is an open set. We denote its boundary by Γ0 = ∂Ω0 and
introduce d = dΩ0

as the distance function of Ω0. Recall also the definition of Ωt and Γt from (1).

Lemma 8. For each x ∈ Rn \ Ω0,
d(x) = inf

y∈Γ0

|x− y| . (15)

Furthermore, there exists x0 ∈ Γ0 with d(x) = |x− x0|.

Proof. See (2.2) on page 337 of [6] for (15). Γ0 is closed, and we can clearly restrict the infimum to some
bounded subset of Γ0. Hence, this subset is compact and there exists a minimiser x0.

In the following, we are interested in estimating the “surface area” of Ωt for t > 0. Before we can do
that, let us briefly recall the applicable concepts for defining such a surface area in the first place: For
an open set Ω ⊂ Rn, we denote by P (Ω) its perimeter as defined, for instance, by Definition 3.35 on
page 143 of [1]. (Note that we are always interested in the perimeter relative to the base set Rn.) Ω is
said to have finite perimeter or to be a Caccioppoli set if P (Ω) <∞.

Furthermore, let us introduce also the Hausdorff measure following Definition 2.46 on page 72 of [1]:

Definition 2. Let k ∈ N and Ω ⊂ Rn. For δ > 0, we define

Hkδ (Ω) = inf

{ ∞∑
i=1

(
di
2

)k
ωk | Ω ⊂

∞⋃
i=1

Ui, di = sup
x,y∈Ui

|x− y| , di ≤ 2δ

}
.

Here, ωk denotes the volume of the k-dimensional unit ball as in Lemma 1. The value di is the diameter
of the set Ui, and it is allowed to be at most 2δ in order for (Ui) to be an admissible δ-covering of Ω.

Furthermore, the k-dimensional Hausdorff measure of Ω is then given by

Hk(Ω) = sup
δ>0
Hkδ (Ω) = lim

δ→0+
Hkδ (Ω).

Note that we define the Hausdorff measure in such a way that Hn corresponds to the n-dimensional
Lebesgue measure. (For a proof, see Theorem 2.53 in [1].) This is the reason for including ωk in the
definition. Others (e. g., [14]) do not add this normalisation constant, which results in a notion of Hk
that is different from Definition 2 by a constant.

For the case of only one dimension, the situation is simple since sets of finite perimeter in one
dimension can be represented (up to a set of measure zero) as the union of a finite number of intervals:

Theorem 1. Let n = 1 and Ω0 ⊂ R be open and bounded. Then Γt is a finite set for each t > 0 and its
cardinality is non-increasing with respect to t. Furthermore,

H0(Γt) ≤ P (Ω0) . (16)

If Ω0 has finite perimeter and t is sufficiently small, then even equality holds.
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Proof. Let t > 0 and x ∈ Γt. Lemma 8 implies that there exists x0 ∈ Γ0 with |x− x0| = t. Assume,
without loss of generality, that x0 < x. It follows that Ix = (x0, x) ⊂ d−1 ((0, t)). Furthermore, if y ∈ Γt
and x 6= y, then Ix ∩ Iy = ∅. Since vol (Ix) = t > 0 for each x ∈ Γt and Ωt is bounded, the cardinality
of Γt is bounded as H0(Γt) ≤ vol (Ωt) /t and thus finite. If we have 0 < s < t, the estimate (16) implies
that

H0(Γt) ≤ P (Ωs) ≤ H0(Γs).

Hence it follows that the cardinality is non-increasing when we have established (16).
For (16), assume that Ω0 has finite perimeter (the situation is trivial otherwise). According to

Proposition 3.52 on page 153 of [1], there exist p ∈ N and p disjoint intervals Ji = [ai, bi] such that
Ω0 ⊂

⋃p
i=1 Ji. These two sets can only differ up to a set of measure zero. Furthermore, P (Ω0) = 2p. As

before, we can associate an interval Ix ⊂ d−1 ((0, t)) to each x ∈ Γt, and all Ix are disjoint. If we assume
that Ix = (x0, x), then x0 = bi for some 1 ≤ i ≤ p. Similarly, x0 = ai if Ix = (x, x0). This implies (16),
since

H0(Γt) ≤ 2p = P (Ω0) .

If we assume an ordering such as

a1 < b1 < a2 < b2 < · · · < ap < bp

and denote by
L = inf

i=1,...,p−1
(ai+1 − bi) > 0

the minimal distance between the intervals Ji, then equality holds with H0(Γt) = 2p for t < L/2.

3.1 A Bound on the Hausdorff Measure

Intuitively, Ωt is constructed from Ω0 by adding a “layer” of thickness t onto Γ0. Following this picture,
one can imagine that the volume of this layer should roughly equal t times the surface area (i. e.,
perimeter) of either Ω0 or Ωt. This argument can be made rigorous by estimating the volume in terms of
P (Ω0) and then Hn−1(Γt) in terms of the volume. The former will be done in Subsection 3.2. We will
show the latter as our first main result in this subsection. This is, somehow, an inverse isoperimetric
inequality. Of course, in the general situation no inverse to the classical isoperimetric inequality (see
section 5.6.2 of [9]) holds. In our case, however, it works because the considered volume is not allowed
to be “arbitrarily thin”.

Definition 3. For Ω0, we define the newly created volume to be

Ut =

( ⋃
x0∈Γ0

Bt (x0)

)
\ (Γ0 ∪ Ω0) = {x ∈ Rn | 0 < d(x) < t} .

We can now state and prove the first main result:

Theorem 2. There exists a dimensional constant C such that

P (Ωt) ≤ Hn−1(Γt) ≤ C
vol (Ut)

t

holds for all t > 0.

Proof. The first inequality is a well-known fact about the relation between perimeter and the Hausdorff
measure. See, for instance, Proposition 3.62 on page 159 of [1]. We will now show the second inequality.
For this, let δ0 be the bound from Lemma 7 and δ ∈ (0, δ0) be given. Then clearly Γt ⊂ ∪x∈Γt

Bδ (x).
According to Vitali’s covering theorem (see Theorem 1 on page 27 of [9]), there exists a countable subset
X ⊂ Γt such that

Γt ⊂
⋃
x∈X

B5δ (x)

and all Bδ (x) are disjoint for x ∈ X. Note that X is, in fact, finite if Ω0 is bounded.

9



For each x ∈ Γt, there exists a corresponding x0 ∈ Γ0 with |x− x0| = t according to Lemma 8.
Furthermore, t ≤ |y − y0| for all y ∈ Γt and y0 ∈ Γ0. Based on Lemma 7, define

Sx = Saφ(δ)(x0, x; f, f)

for all x ∈ X. Note that the condition (10) is satisfied for each pair (Sx, Sy) with x, y ∈ X, so that all
Sx and Sy with x 6= y are disjoint by Lemma 7. Also note that Sx ∩ (Γ0 ∪ Ω0) = ∅ as long as δ is small
enough: For z ∈ Sx, we know from (7) that

|x− z| ≤ t(1− f + aφ(δ)) < t(1− f + φ(δ)),

where f = |x0 − z| /t ≥ f . Thus, |x− z| < t if φ(δ) ≤ f . Since d(x) = t, this implies z 6∈ Γ0 ∪Ω0. Thus,
we also find that each Sx is contained in the newly created volume and get∑

x∈X
vol
(
Sφ(δ)(x0, x)

)
≤ C ′

∑
x∈X

vol (Sx) = C ′ · vol

( ⋃
x∈X

Sx

)
≤ C ′ · vol (Ut) . (17)

As long as δ is small enough, a suitable C ′ exists based on an estimate similar to (6).
Since the enlarged balls provide a particular 5δ-covering of Γt, we know that

Hn−1
5δ (Γt) ≤

∑
x∈X

(5δ)n−1ωn−1 ≤ 5n−1C
′′

t

∑
x∈X

vol
(
Sφ(δ)(x0, x)

)
.

The last estimate and the constant C ′′ come from Lemma 3. Together with (17), this yields

Hn−1
5δ (Γt) ≤ 5n−1C ′C ′′ · vol (Ut)

t
.

Since the bound on the right-hand side does not depend on δ any more, this implies the claim in the
limit δ → 0+.

Having this first result, we can already show that all evolved sets Ωt must be Caccioppoli sets:

Corollary 1. Let Ω0 be bounded. Then Ωt has finite perimeter for t > 0.

Proof. From the boundedness of Ω0, we can directly conclude that also Ωt and Ut are bounded sets for
any fixed t. Thus, vol (Ut) <∞ and Theorem 2 implies that Hn−1(Γt) is finite for each t. It follows now
again from Proposition 3.62 on page 159 of [1] that Ωt is a set of finite perimeter.

Take note that the actual bound we get from Corollary 1 diverges like 1/t for t → 0+. It will be
the focus of the next subsection (in particular, Corollary 2) to show a uniform bound as t → 0+ under
additional assumptions. Section 4 (in particular, Theorem 5) will be devoted to a construction that
shows that the rate 1/t is (almost) sharp if these additional assumptions are not fulfilled.

3.2 Uniform Bounds

As we have seen above in Theorem 2, the quantity vol (Ut) /t is crucial as it gives an upper bound on the
evolved sets’ perimeters. Particularly interesting is the limit t→ 0+. As our second main result below,
we can show that there exists a uniform upper bound for t→ 0+ as long as a uniform density condition
holds for the initial set Ω0. This condition prevents arbitrarily sharp corners and cusps. To be precise:

Definition 4. Let A ⊂ Γ0, c ∈ (0, 1) and t0 > 0. We say that Ω0 has (t0, c)-uniform lower density on
A if the estimate

0 < c ≤ vol (Bt (x) ∩ Ω0)

vol (Bt (x))
(18)

holds for all t ∈ (0, t0) and x ∈ A.
Similarly, Ω0 is said to have (t0, c)-uniform upper density on A if

vol (Bt (x) ∩ Ω0)

vol (Bt (x))
≤ 1− c < 1. (19)

When both conditions are satisfied together, Ω0 simply has (t0, c)-uniform density on A.
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For fixed x and in the limit t → 0+, the expression in (18) and (19) gives the density of Ω0 at
x. See page 158 of [1] for some known results about this quantity. In particular, let FΩ denote the
reduced boundary of an open set Ω. (Roughly speaking, this is the set of all boundary points where
a measure-theoretic variant of the normal vector to the boundary can be defined. See Definition 3.54
on page 154 of [1].) Then Ω has density 1/2 at all points in FΩ. This is, for instance, also true in
the example constructed in Section 4. Hence, note that uniformity of the estimates is really crucial for
our purposes in the following. The relation between this concept of uniform density and other, more
established geometric properties will be discussed in more detail in Subsection 3.3.

For our estimate of vol (Ut), we need to somehow get an upper bound on t in terms of the perimeter
of Ω0. For a classical result in this direction, see (3.54) on page 156 of [1]. Unfortunately, this estimate
is local in nature and not uniform over the whole boundary of Ω0. Note, however, that (18) and (19)
together are equivalent to

c ≤ min (vol (Bt (x) ∩ Ω0) , vol (Bt (x) \ Ω0))

vol (Bt (x))
. (20)

This relation can be combined with the relative isoperimetric inequality (see, for instance, Theorem 2 on
page 190 of [9]) to get the uniform estimate that we need:

Lemma 9. Let Ω0 have (t0, c)-uniform density on A. Then there exists a dimensional constant C such
that

tn−1 ≤ C
(

1

c

)n−1
n

Hn−1 (Bt (x) ∩ FΩ0)

for all x ∈ A and t ∈ (0, t0).

Proof. Since we assume uniform density, (20) implies that

c · vol (Bt (x)) = c · ωntn ≤ min (vol (Bt (x) ∩ Ω0) , vol (Bt (x) \ Ω0))

for all t ∈ (0, t0). If we also apply the relative isoperimetric inequality, we get

tn−1 ≤ C
(

1

c

)n−1
n

P (Ω0;Bt (x))

for some dimensional constant C. This implies the result together with the well-known relation between
perimeter and Hn−1 (Theorem 3.59 on page 157 of [1]).

So far, we have assumed uniform density of Ω0. It will turn out, however, that it is enough to require
only uniform lower density. Uniform upper density is provided automatically if we choose the subset
A ⊂ Γ0 in the right way:

Definition 5. We say that x0 ∈ Γ0 is backwards reachable for time t > 0 if there exists x ∈ Rn with

t ≤ |x0 − x| = d(x). (21)

The set of all backwards reachable points for time t is denoted by Rt.

See Figure 4a for an illustration of the set Rt: The point x0 ∈ Rt is shown together with a possible
x ∈ Γt that fulfils (21). Note that only the red part of Γ0 is backwards reachable. Thus, we see that Rt
is actually more regular than Γ0 itself. In particular, Ω0 has always uniform upper density on Rt. To
understand why this must be the case, take a look at Figure 4b: Whenever x0 and x are as indicated,
the ball Bt (x) must be disjoint to Γ0 ∪Ω0 since otherwise d(x) < t would be the case. Thus, the volume
of Bt (x) ∩ Bt (x0) can never be part of Ω0, which implies an upper bound for the density of Ω0 at x0.
(For the shown situation, the density is actually 1/2. The maximal possible density would be achieved
if also the light grey area were part of Ω0.) Let us formalise this argument:

Lemma 10. Let t > 0 and Rt be the backwards reachable set for time t. Then Ω0 has (t, c)-uniform
upper density on Rt, where c is a dimensional constant.

11



Ω0

Γt

Rt

x

x0

t

(a) The set Rt of Definition 5.

x0

x

t

(b) The main argument in the proof of Lemma 10.

Figure 4: The backwards reachable set and its regularity with respect to uniform upper density. The
dark grey region is Ω0. The point x0 is on Rt ⊂ Γ0, with x ∈ Γt such that (21) holds.

Proof. Let e ∈ Rn be arbitrary with |e| = 1. We define

0 < c =
vol (B1 (0) ∩B1 (e))

vol (B1 (0))
< 1.

Now choose x0 ∈ Rt and τ ≤ t. We have to show that (19) holds for Bτ (x0) with the defined c. By
Definition 5, there exists x ∈ Rn such that τ ≤ t ≤ |x0 − x| = d(x). We can assume, without loss of
generality, that |x0 − x| = τ . Considering Figure 4b, this implies Bτ (x) ∩ Ω0 = ∅. Hence:

vol (Bτ (x0) ∩ Ω0)

vol (Bτ (x0))
= 1− vol (Bτ (x0) \ Ω0)

vol (Bτ (x0))
≤ 1− vol (Bτ (x0) ∩Bτ (x))

vol (Bτ (x0))
= 1− c

Another important observation is that the backwards reachable set is already sufficient for the con-
struction of the newly created volume Ut. This allows us to restrict ourselves to the more regular Rt
instead of Γ0 itself later on.

Lemma 11. For 0 < s < t, Rt ⊂ Rs. Furthermore,

Ut \ Us ⊂
⋃

x0∈Rs

Bt (x0) .

Proof. The inclusion Rt ⊂ Rs is immediately clear from Definition 5. Pick x ∈ Ut \ Us arbitrarily. By
Lemma 8 we can find x0 ∈ Γ0 with d(x) = |x0 − x|. Moreover, x 6∈ Us implies that d(x) ≥ s, so that
x0 ∈ Rs. Similarly, x ∈ Ut yields d(x) < t and thus x ∈ Bt (x0).

With this result, all preparations are in place and we can proceed to the actual estimate of vol (Ut).
This is done in two steps: First, we estimate vol (U2t \ Ut). The regularity of the backwards reachable
set with respect to uniform upper density of Ω0 can be used for this situation. Afterwards, we build the
union of a sequence of such strips in order to get vol (Ut) itself.

Lemma 12. Assume that Ω0 has (t0, c)-uniform lower density on Γ0. Then there exists a dimensional
constant C such that

vol (U2t \ Ut) ≤ C
(

1 +
1

c

)n−1
n

t · P (Ω0)

holds for all t ∈ (0, t0).
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Proof. According to Lemma 10, we know that Ω0 has (t, c′)-uniform upper density on Rt with some
dimensional c′. Since it has uniform lower density per assumption, it has (t, c′′)-uniform density (both
upper and lower) with c′′ = min(c, c′). Furthermore, note that

1

c′′
=

1

min(c, c′)
≤ 1

c
+

1

c′
.

Thus Lemma 9 implies that

tn ≤ C ′
(

1

c
+

1

c′

)n−1
n

t · Hn−1(Bt (x0) ∩ FΩ0)

for all x0 ∈ Rt with some dimensional C ′. Taking it even further, this yields also

vol
(
B10t (x0)

)
≤ C

(
1 +

1

c

)n−1
n

t · Hn−1(Bt (x0) ∩ FΩ0) (22)

for yet another dimensional constant C.
Making use of Lemma 11, we know that

U2t \ Ut ⊂
⋃

x0∈Rt

B2t (x0) .

With Vitali’s covering theorem (see, again, Theorem 1 on page 27 of [9]), we can construct X ⊂ Rt at
most countable such that the sets B2t (x0) are disjoint for x0 ∈ X, but still

U2t \ Ut ⊂
⋃
x0∈X

B10t (x0).

Taking the measure on both sides of this inclusion and using (22), we finally find

vol (U2t \ Ut) ≤
∑
x0∈X

vol
(
B10t (x0)

)
≤ C

(
1 +

1

c

)n−1
n

t ·
∑
x0∈X

Hn−1(Bt (x0) ∩ FΩ0)

≤ C
(

1 +
1

c

)n−1
n

t · Hn−1(FΩ0) = C

(
1 +

1

c

)n−1
n

t · P (Ω0) .

The simplification of the sum is justified because all sets Bt (x0) are disjoint.

Theorem 3. Let Ω0 have (t0, c)-uniform lower density on Γ0. Then

vol (Ut)

t
≤ C

(
1 +

1

c

)n−1
n

P (Ω0)

for all t ∈ (0, t0) and a dimensional constant C. In particular,

lim sup
t→0+

vol (Ut)

t
≤ C

(
1 +

1

c

)n−1
n

P (Ω0) .

Proof. Let t ∈ (0, t0) be given. Then the disjoint telescopic decomposition

Ut =
(
Ut \ Ut/2

)
∪
(
Ut/2 \ Ut/4

)
∪ · · · =

∞⋃
n=1

(
U2t/2n \ Ut/2n

)
holds. Together with Lemma 12 this yields

vol (Ut) =

∞∑
n=1

vol
(
U2t/2n \ Ut/2n

)
≤ C

(
1 +

1

c

)n−1
n

P (Ω0) ·
∞∑
n=1

t

2n
= C

(
1 +

1

c

)n−1
n

t · P (Ω0) .

This finishes the proof.
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When we combine Theorem 3 with Theorem 2, we finally get a uniform bound for Hn−1(Γt):

Corollary 2. Assume that Ω0 has (t0, c)-uniform lower density on Γ0 and that Ω0 is bounded. In
particular, let Ω0 ⊂ BR (0) for some R > 0. Then

Hn−1(Γt) ≤ C ·
(
1 + P (Ω0) + tn−1

)
(23)

for all t ≥ 0. The constant C depends only on n, t0, c and R but no other properties of Ω0.

Proof. Note that the situation is clear for t = 0 as long as we choose C ≥ 1. From Theorem 3, we know
that vol (Ut) /t ≤ C ′P (Ω0) for all t ∈ (0, t0). Furthermore, since Ω0 ⊂ BR (0), note that Ωt ⊂ BR+t (0).
Thus, for t ≥ t0,

vol (Ut) ≤ ωn(R+ t)n ≤ C ′′(1 + tn) ⇒ vol (Ut)

t
≤ C ′′

(
1

t
+ tn−1

)
≤ C ′′

t0

(
1 + tn−1

)
.

The claim now follows from Theorem 2, if we combine both estimates for vol (Ut) /t.

3.3 Geometric Regularity Properties in the Literature

The main ingredient for the results in the previous Subsection 3.2 is a particular geometric property of
the initial set Ω0, namely uniform density from Definition 4. This notion is, as far as we know, new
and specifically tailored towards our results. Thus, it makes sense to put it into perspective with similar
geometric properties that are more established in the literature. In particular, a variety of so-called
(uniform) segment and cone properties is often used to characterise geometric regularity of sets. For a
thorough introduction, see section 2.6 of [6].

Since uniformity plays an important role for the derivations in Subsection 3.2, it makes only sense to
consider the uniform variants of those segment properties. (All non-uniform properties are fulfilled by
the example developed in Section 4, since it is constructed only from circles.) Furthermore, the uniform
(fat) segment property alone also provides very little regularity. For instance, a cusp satisfies it while
it clearly does not have uniform lower density. Thus, let us focus on the uniform cone property. For
convenience, we recall its definition from Definition 6.3 on page 115 of [6]:

Definition 6. For x0, x ∈ Rn and φ ∈ [0, π/2], define the open cone

Cφ(x0, x) =
{
y ∈ Rn | |x0 − y| |x0 − x| · cosφ < (y − x0) · (x− x0) < |x0 − x|2

}
.

This is similar to the definition of Sφ(x0, x) in Definition 1, but it describes a cone with flat base (i. e.,
without a spherical cap).

Now, let Ω ⊂ Rn be open. We say that Ω satisfies the uniform cone property if there exist t > 0,
φ ∈ (0, π/2) and ρ > 0 such that for all x0 ∈ ∂Ω there is x ∈ Rn with |x0 − x| = t and

x+ d ∈ Ω ⇒ Cφ(x0 + d, x+ d) ⊂ Ω

for all d ∈ Bρ (0).

Since the uniform cone property ensures for each boundary point the existence of a cone that is
entirely contained in Ω, we can use this cone’s volume as a lower bound on the density of Ω. Thus, the
uniform cone property is a stronger condition than uniform lower density:

Theorem 4. Let Ω ⊂ Rn satisfy the uniform cone property with t and φ as in Definition 6. Then Ω
has (t, r(φ))-uniform lower density on ∂Ω. Similarly, if Rn \Ω has the uniform cone property with these
constants, then Ω has (t, r(φ))-uniform upper density.

Proof. Let x0 ∈ ∂Ω be given. According to Definition 6, there exists x ∈ Rn with |x0 − x| = t such that
Cφ(x0, x) ⊂ Ω. Note that Sφ(x0, x) ⊂ Cφ(x0, x) since

|x0 − y| < |x0 − x| ⇒ (y − x0) · (x− x0) ≤ |y − x0| · |x− x0| < |x0 − x|2 .
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Thus, for each τ ∈ (0, t), clearly

Bτ (x0) ∩ Sφ(x0, x) ⊂ Bτ (x0) ∩ Ω.

Hence, we can estimate

vol (Bτ (x0) ∩ Ω) ≥ vol (Bτ (x0) ∩ Sφ(x0, x)) = r(φ) · vol (Bτ (x0))

based on (3). This shows the claim. The proof for uniform upper density works analogously.

Another concept related to our definition of uniform lower density are sets with finite density perimeter
as defined in [3] and section 3.1 of [7]:

Definition 7. Let Ω ⊂ Rn be open and h > 0. The h-density perimeter of Ω is defined as

Ph (Ω) = sup
0<ε<h

vol (Vε(∂Ω))

2ε
(24)

where Vε(∂Ω) is the ε-envelope of ∂Ω:

Vε(∂Ω) =
⋃
x∈∂Ω

Bε (x) = {x ∈ Rn | d∂Ω(x) < ε}

If Ph (Ω) is finite, we call Ω a set of finite h-density perimeter.

This can be interpreted as a relaxation of the (n−1)-dimensional Minkowski content (see, for instance,
3.2.27 in [10]). To be precise, the Minkowski content results if the supremum in (24) is replaced by the
limit ε→ 0+. It is easy to see that Vε(Ω0) is related to the newly created volume Uε defined in Definition 3:
The set Uε is the part of Vε(Ω0) which is outside of Γ0 ∪Ω0. Hence, an argument similar to the proof of
Theorem 3 can be applied to show that uniform density implies finite density perimeter.

4 Diverging Boundary Length

In Corollary 1, we have established an upper bound for P (Ωt) that behaves like 1/t in the limit t→ 0+.
If Ω0 has additional regularity (in particular, uniform lower density), we even get a uniform bound by
Corollary 2. We will now show by means of an example that these results cannot be further improved:

Example 1. Consider D = [0, 2]× [0, 1] ⊂ R2 as hold-all domain. For k = 0, 1, . . ., define

lk = 4−k, rk =
(lk)2

4
=

1

4
· 16−k, Nk =

2−k

(lk)2
= 8k.

Based on these definitions, we define Ω0 as infinite union of balls as depicted in Figure 5. Specifically,
Ω0 is constructed by splitting D first into a sequence of vertical strips with widths 2−k. Each strip is
then further divided into squares of size lk × lk. Into each such square, we put a ball with radius rk. For
each k, there is a total of Nk such squares and balls.

Each ball at level k has perimeter 2πrk, so that the total perimeter of Ω0 is given as

P (Ω0) =

∞∑
k=0

Nk · 2πrk =
π

2

∞∑
k=0

(
8

16

)k
= π.

Thus, Ω0 is a bounded set of finite perimeter. It is also clear that it has a smooth boundary, since it
consists entirely of balls. Note, however, that it does not have uniform lower density (nor a uniformly
bounded curvature), since the balls’ radii become arbitrarily small. For the time evolution of Ω0, note
that each circle grows outwards and is a circle of radius rk + t at time t. This works as long as t is small
enough, so that the circle does not yet hit another growing circle. If we let tk be the time at which circles
at level k hit their enclosing square, we find that

tk =
lk
2
− rk =

1

2
· 4−k − 1

4
· 16−k =

1

2
· 4−k

(
1− 1

2
· 4−k

)
≥ 1

4
· 4−k. (25)
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l0 l1 l1

N0 = 1 N1 = 8

r0

Figure 5: The notation and initial set Ω0 used in Example 1. Ω0 consists of the union of all grey balls.

The other way round, this means that for times t < tk, all circles up to (and including) level k have
certainly not touched any others. Let t > 0 be given, and m such that tm+1 ≤ t < tm. If we use only
circles up to level m to estimate the perimeter of Ωt, this yields

P (Ωt) ≥
m∑
k=0

Nk · 2π(rk + t) ≥ 2π

m∑
k=0

Nkt ≥ 2πtm+1

m∑
k=0

8k ≥ π

2

1

4m+1

8m+1 − 1

7
≥ π

14

(
2m+1 − 1

)
(26)

Note that we can see already here that this expression is unbounded for t → 0+, since this limit corre-
sponds to m→∞. To get a more precise estimate, we can rewrite (25) to get

4m ≥ 1

4tm
⇔ 2m ≥ 1

2
√
tm

⇒ 2m+1 ≥ 1

2
√
tm+1

≥ 1

2
√
t
.

Combining this result with (26) finally gives

P (Ωt) ≥
π

14

(
1

2
√
t
− 1

)
,

which diverges like 1/
√
t as t→ 0+ and certainly becomes unbounded.

If one considers the calculation in Example 1 carefully, one can see that the base number in the
definition of lk (4 in the example) influences only the constant in front of the final estimate as long as it
is larger than 2. The exponent 1/2 determining the rate to be 1/

√
t comes from the fact that each level

of balls gets assigned only half the area that was assigned to the previous level. We can increase this
fraction as long as it is less than 1 if we still want to get a bounded set as result. This line of thought
can be extended to the following result:

Theorem 5. Let n ≥ 2 and 0 < s < 1 be given. There exists a Caccioppoli set Ω0 ⊂ Rn bounded and
with smooth boundary, such that

P (Ωt) ≥
C

ts

for some constant C and t > 0 small enough. In particular, this rate of divergence holds in the limit
t→ 0+.

Proof. We replicate the construction of Example 1: For the desired result, choose some α > 1 and set

f = αs−1 ∈ (0, 1).

Note that fαn > fα = αs > 1. We define

lk = α−k, rk =
(lk)n

4
=
α−kn

4
, Nk =

⌈
fkαnk

⌉
.
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This yields to a total volume of all (lk)n-cubes of

∞∑
k=0

Nk(lk)n ≤
∞∑
k=0

(
fkαnk + 1

)
α−nk =

∞∑
k=0

fk +

∞∑
k=0

(
α−n

)k
=

1

1− f
+

1

1− α−n
<∞.

Hence, since f < 1, we can fit everything into a bounded set as before. Clearly, Ω0 has again a smooth
boundary. Its perimeter is also finite, since

P (Ω0) = C

∞∑
k=0

Nk(rk)n−1 ≤ C
∞∑
k=0

(
fkαnk + 1

)
rk

=
C

4

( ∞∑
k=0

fk +

∞∑
k=0

(
α−n

)k)
=
C

4

(
1

1− f
+

1

1− α−n

)
.

On the other hand, we still find that balls at level k have not yet hit anything else until time

tk =
lk
2
− rk =

α−k

2
− α−kn

4
≥ α−k

2
− α−k

4
=
α−k

4
. (27)

Thus, for t > 0 with tm+1 ≤ t < tm, we know that

P (Ωt) ≥ C
m∑
k=0

Nk(rk + t)n−1 ≥ C(tm+1)n−1
m∑
k=0

Nk ≥ C
(
α−(m+1)

4

)n−1

·
m∑
k=0

(fαn)
k

=
C

4n−1

(
αn−1

)−(m+1) fm+1 (αn)
m+1 − 1

fαn − 1
≥ C

4n−1 (fαn − 1)

(
(fα)m+1 − 1

)
= C ′

(
(αs)

m+1 − 1
)
,

where we have defined the constant C ′ suitably. From (27), it follows that

αm+1 ≥ 1

4tm+1
≥ 1

4t
⇔ (αs)

m+1 ≥ 4−s

ts
.

Combining this with the estimate for P (Ωt) above shows the claim.

Thus, we know from Corollary 1 that the rate of divergence of P (Ωt) for t→ 0+ can be at most 1/t.
The other way round, however, Theorem 5 shows that the rate can actually be worse than 1/ts for any
s ∈ (0, 1).
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