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Abstract

Motivated by the termination of undesirable arrhythmia, a time optimal control formula-
tion for the monodomain equations is proposed. It is shown that, under certain conditions,
the optimal solutions of this problem steer the system into an appropriate stable neighbor-
hood of the resting state. Towards this goal, some new regularity results and asymptotic
properties for the monodomain equations with the Rogers-McCulloch ionic model are ob-
tained. For the numerical realization, a monolithic approach, which simultaneously optimizes
for the optimal times and optimal controls, is presented and analyzed. Its practical realiza-
tion is based on a semismooth Newton method. Numerical examples and comparisons are
included.
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1 Introduction and problem formulation
This work is focused on time optimal control of the monodomain equations. This reaction
diffusion equation is a simplified version of the bidomain equations which were developed in
the late 1970’s and which, in conjunction with different ionic models, provide the description
of the electrophysiological activity of the heart [32]. The monodomain equations are a reaction
diffusion system consisting of a partial differential equation for the electrical potential coupled
with an ordinary differential equation describing the ionic variables. They allow for challenging
wave phenomena which physiologically correspond to undesired arrhythmias. We introduce a
control mechanism which models an external stimulus exerted by means of an electrode, with
the goal of dampening the undesired waves. Due to the dynamical properties of the underlying
equations, which include, for example, that excited cells need a certain amount of time before
they return to rest, the formulation of the optimal control problem as a time optimal problem
offers itself as particularly useful one.

The analysis and numerical realization of the mono- and bidomain equations are themselves
an active area of research; see, e.g. [5, 13, 29]. Their investigation in the context of optimal
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control has been taken up only recently; see, e.g. [23]. The present paper, however, has yet a
second focus, namely the practical treatment of time optimal control problems. The analysis
of such problems for ordinary differential equations has received an abundance of attention;
see, e.g. the monograph [16], and the references therein. Time optimal control of partial
differential equations was investigated for instance in [12]. Turning to the numerical treatment
of time optimal control problems for ordinary differential equations we mention [18] and further
literature quoted there. Numerical techniques for solving time optimal control problems for
partial differential equations were developed in [20, 19]. In contrast to these latter papers we
propose here a joint optimization of the free final time and the control within one combined
optimization variable. For this reason we refer to our approach as the “monolithic” optimization
algorithm.

While our work focuses on the monodomain equations, many concepts are applicable to a
wider class of reactions diffusions systems. Such systems arise frequently in biomathematical
modeling [22] and chemical reaction dynamics [27]. What concerns the genuine treatment of
numerical methods for open loop optimal control problems very little specialized attention has
been paid to such systems (see, however, e.g. [4, 7]).

This paper is organized as follows. Section 2 is devoted to existence, regularity and asymp-
totic behavior of the state equation. Well-posedness of the optimal control problem is discussed
in Section 3, and Section 4 is devoted to obtaining and analyzing the optimality system. Sec-
tion 5 contains the description of the numerical approach to solve the optimality system. The
numerical realization is briefly discussed in Section 6. Numerical examples are provided in
Section 7.

1.1 Monodomain equations

We start by considering the monodomain equations in the form

∂tv + Iion(v, w)−∇ · (σ∇v) = Ie in (0, tf)×Ω, (1.1a)
∂tw +G(v, w) = 0 in (0, tf)×Ω, (1.1b)

n · σ∇v = 0 on (0, tf)× ∂Ω, (1.1c)
v(0) = v0, w(0) = w0 in Ω. (1.1d)

The independent variables are x ∈ Ω, with domain Ω ⊂ Rd for d = 2, 3 and outer unit normal
vector n, and time t ∈ (0, tf), with final time tf > 0. The functions v(t, x) and w(t, x) denote
the transmembrane voltage, and the recovery variable (see [29, Sec. 2.4.1]), and σ : Ω → Rd×d
is related to the intracellular conductivity tensor (see [29, Sec. 2.2.3]). The functions Iion(v, w)
and G(v, w) are chosen according to the Rogers-McCulloch ionic model (a modified FitzHugh-
Nagumo model) as

Iion(v, w) = η0 v

(
1− v

vth

)(
1− v

vpk

)
+ η1 v w, (1.2a)

G(v, w) = η2

(
η3w −

v

vpk

)
, (1.2b)

with ηi ∈ R+. A cell at x ∈ Ω is referred to as excited if its transmembrane potential exceeds
the threshold potential vth > 0. Further vpk > vth stands for the peak potential. In (1.1a) the
forcing function Ie denotes the external (extracellular) stimulus. It acts as a control function
which will be designed to control the transmembrane voltage. More concretely, we consider
the case where a finite number of electrode plates Ωcon,n, n = 1, . . . , Ncon are connected to the
sample Ω of heart muscle tissue. On each electrode plate we can apply a time dependent control
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un so that Ie has the form

Ie(t, x) =
Ncon∑
n=1

χΩcon,n(x)un(t), where t ∈ (0, tf). (1.3)

It will be convenient to express (1.1) with Ie as in (1.3) and combined state variable y = (v, w)
as an abstract control system in the form

∂ty(t) +A(y(t)) = Bu(t), for t ∈ (0, tf),
y(0) = y0,

(1.4)

with y0 = (v0, w0) as initial condition. We will give a precise definition of this notion in Section 2.

1.2 Modeling a successful defibrillation

The dynamic systems behavior of (1.1) with (1.2) is extremely rich, including wave phenom-
ena such as excitation and reentry waves; cf. Section 7. From a physiological point of view,
such reentry waves are undesired since they disturb the regular propagation of the electrical
impulses, and increase the hearts activation rate. This may lead to arrythmias including atrial
or ventricular fibrillation.

It is our goal to investigate control theory techniques to terminate reentry waves by the
external stimulus Ie and to bring the transmembrane potential to the neighborhood of the
resting state. From there the natural heart rhythm evolves again following the impulse of the
(natural) pacemaker of the human heart, the sinoatrial node.
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(a) Phase diagram and typical solution of the ODE
for (1.2).
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(b) Spatial norm of v(t, ·) over time for a typical
example of terminating a reentry wave.

Figure 1: Illustrations of the behavior of the nonlinearity (1.2)

In Figure 1a we depict the phase diagram of the uncontrolled ordinary differential equation
which arises from (1.1) when the second order elliptic operator is eliminated, with parameters
chosen as in Section 7. If the initial state is far enough from the origin (e.g. v > vth, w = 0),
then the trajectory rapidly reaches vpk, along the lower part of the curve, from where it slowly
moves back to the origin along the upper part of this curve. In the distributed context, i.e. for
the monodomain equations (1.1), this situation is much more complex since these trajectories
are transversed at different times at different spatial locations x leading to interaction which
allows for the evolution of complex wave patterns. Therefore, the asymptotic behavior needs
special attention and we shall analyse it in Section 2.3.
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For the optimal control formulation this suggests to not constrain or penalize the evolution
of the trajectory throughout the complete control time horizon, but rather impose the opti-
mization goal only at the final time tf . In Figure 1b we depict the L2(Ω) norm of an optimized
transmembrane potential v as a function of time (terminating the reentry wave in the setup
from Section 7.2). In view of our discussion of the phaseplane behavior of the corresponding
ordinary differential equation, it comes as no surprise that this function is not monotonously
decreasing.

Therefore, the aim is to bring the heart muscle tissue approximately to the resting state
at some final time tf by applying a defibrillation shock. We call the system stabilized, if the
controlled transmembrane voltage v(t, x) goes to zero uniformly in x ∈ Ω for times t larger
than tf . Since this condition is not directly suitable for an optimal control formulation or for
numerical computations, we next establish a control formulation for which we shall be able to
verify that it implies the monodomain system to be stabilized. Towards this goal we shall first
show that a pointwise condition at the final time of the form

v(tf , x) ≤ vmax < vth for all x ∈ Ω (1.5)

ensures that the transmembrane potential goes to zero without further control action, provided
that positivity of v and w is guaranteed, see Corollary 2.12. Next we shall replace the pointwise
inequality (1.5), which unnecessarily complicates the problem setting, by the weaker integral
condition

‖v(tf)‖L2(Ω) ≤ δ (1.6)
for a sufficiently small δ > 0. A rigorous justification that the corresponding optimal solutions
fulfill ‖v(t)‖L∞(Ω) → 0 for t → ∞ and thus that the system is stabilized, will be obtained in
Theorem 3.4. Finally, in Proposition 3.7 it will be shown that the formulation based on (1.6) is
equivalent to a tracking-type formulation, which allows for the design of efficient second order
optimization methods.

1.3 Time optimal problem formulation

The time frame needed for a successful defibrillation may vary heavily with the problem data.
Consequently, the terminal time of the control horizon can not be fixed in advance. The desire
of a short defibrillation pulse with low energy is therefore cast as a mixed time optimal control
formulation

min
tf≥0, u∈Uad, y=(v,w)

∫ tf

0

(
κ+ α

2 |u(t)|2
)

dt,

subject to ∂ty(t) +A(y(t)) = Bu(t) for t ∈ I,
y(0) = y0,

‖v(tf)‖L2(Ω) ≤ δ,

(Ptf ,δ)

with pointwise restrictions

u ∈ Uad = {u ∈ U | |un(t)| ≤ umax,n for n = 1 . . . Ncon, t ∈ I } ,

where umax,n ∈ R+ are the pointwise bounds for the n-th pulse, and u ∈ U = L2(I,RNcon) with
I = (0, tf). The objective prefers small times or pulses with low energy, depending on the choice
of the parameters κ > 0 and α ≥ 0. In Section 5.3 we shall suppose that α > 0 for the analysis
of the semismooth Newton method.

To obtain pulses with the desired effect and structure we have to ensure that δ > 0 is chosen
small enough. We remark that a choice of δ = 0 would likely not yield a well posed problem,
since we are not aware of exact controllability results for equation (1.4). Indeed, it was recently
shown that the linearized monodomain equations with the FitzHugh-Nagumo model are not
exactly null-controllable, even if the PDE is controlled using Ie = u(x, t) on all of Ω, see [6].
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2 Existence and regularity of the state equation
First we recall the existence and regularity results for the solutions of the monodomain equations.
We state some basic assumptions.

1. Ω ⊂ Rd with d ∈ { 2, 3 } is a bounded domain with Lipschitz boundary.

2. The conductivity tensor is matrix function σ : Ω → Rd×d with symmetric, uniformly
positive definite and uniformly bounded values.

3. The initial values are assumed to have the regularity v0 ∈ H1(Ω) ∩ L∞(Ω) and w0 ∈
L∞(Ω), except if explicitly mentioned otherwise.

Throughout the paper we abbreviate the spatial spaces without explicitly mentioning the domain
Ω, i.e. Lp = Lp(Ω) for any p ∈ [1,∞], etc. We denote by V the Sobolev space H1 and by
V ∗ its dual. For convenience, we abbreviate as (·, ·) = (·, ·)L2 the inner product in L2 and as
〈·, ·〉 = 〈·, ·〉V ∗,V the duality pairing in V ↪→ L2 ↪→ V ∗. Furthermore, we use the notations
I = (0, tf) for the time interval and Q = (0, tf)×Ω for the parabolic cylinder.

2.1 Weak solutions

We give the standard weak solution concept for (1.1) that has been considered in the literature.

Definition 2.1 (Weak formulation of the state equation). For any extracellular stimulus Ie ∈
L2(I, V ∗) the tuple (v, w) with

v ∈ L2(I, V ) ∩ L4(Q), ∂tv ∈ L2(I, V ∗) + L4/3(Q), v(0) = v0, (2.1)
w ∈ L2(Q), ∂tw ∈ L2(Q), w(0) = w0 (2.2)

is called a weak solution of the monodomain equations as given in (1.1) if∫
I
〈∂tv, ϕ1〉+ (Iion(v, w), ϕ1) + (σ∇v,∇ϕ1) dt =

∫
I
〈Ie, ϕ1〉dt, (2.3a)∫

I
(∂tw,ϕ2) + (G(v, w), ϕ2) dt = 0 (2.3b)

holds for every (ϕ1, ϕ2) ∈ L2(I, V ) ∩ L4(Q)× L2(Q).

Remark 2.2. The regularity for the time derivative in (2.1) results from from Iion(v, w) ∈
L4/3(Q) for v ∈ L4(Q) and w ∈ L2(Q). Note, that L2(I, V ∗) + L4/3(Q) = [L2(I, V ) ∩ L4(Q)]∗
and is endowed with the corresponding norm. Furthermore, it holds v ∈ C(Ī , L2) for any v
with the regularity as in (2.1).

The weak formulation (2.3) was analyzed in [5] for the more general bidomain equations
and has been subsequently studied in the context of optimal control (see, e.g. [23]).

Theorem 2.3 (Weak solutions of the state equation). For v0, w0 ∈ L2 and Ie ∈ L2(I, V ∗) the
weak formulation (2.3) possesses a unique solution (v, w) with the a priori estimate

‖v‖L2(I,V ) + ‖v‖2L4(Q) + ‖∂tv‖L2(I,V ∗)+L4/3(Q) + ‖v‖C(Ī,L2) + ‖w‖H1(I,L2)

≤ C
(
1 + ‖v0‖L2 + ‖w0‖L2 + ‖Ie‖L2(I,V ∗)

)
,

where the constant C does not depend on v0, w0 or Ie.
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Proof. See [5, Sec. 5] for existence and the corresponding a priori estimate. The uniqueness result
(without additional regularity assumptions) is given in the Appendix; see Proposition A.1.

Due to the special affine linear form of G we can explicitly give the solutions for the recovery
variable w depending on the transmembrane voltage v.

Proposition 2.4 (The solution of the inhibitor equation). The second component of the mon-
odomain equations for the recovery variable (1.1b) with the specific choice of G given in (1.2b),
which is

∂tw(t, x) + η2η3w(t, x) = η2
vpk

v(t, x) a.e. in Q,

has a closed analytic solution depending on v of the form

w(t) = W0(w0)(t) +W (v)(t) = e−η2η3tw0 + η2
vpk

∫ t

0
e−η2η3(t−s)v(s) ds.

We can verify that for each Banach space X ⊂ L2 and any p ∈ [1,∞] the operators W0 and W
are linear and continuous on the spaces

W0 : X →W 1,p(I,X), W : Lp(I,X)→W 1,p(I,X).

2.2 Strong solutions

Due to the cubic nonlinearity appearing in (1.2a), the weak solution concept and corresponding
regularity from Theorem 2.3 does not allow for a convenient discussion of the first and second
derivatives of the control to state mapping, as we will need in Sections 4 and 5. Since Ie has
higher regularity than L2(I, V ∗) in our problem setting (even Ie ∈ L∞(Q)), we can derive
additional regularity for v using bootstrapping arguments. With this, we can turn to a strong
solution concept, which will facilitate the discussion of the nonlinear terms; cf. Remark 2.9. To
this purpose, we first recall that the second order elliptic operator in the parabolic equation (2.3a)
can be understood as an operator

(−∇ · σ∇) : V → V ∗,

defined in the usual weak formulation. To formulate the strong solution concept we introduce
the space

D2 = domL2(−∇ · σ∇) = { v ∈ V | −∇ · σ∇v ∈ L2 }

endowed with the graph norm ‖v‖D2 = ‖−∇ · σ∇v + v‖L2 . With this definition D2 is a Hilbert
space, and (−∇·σ∇) : D2 ⊂ L2 → L2 can be understood as a selfadjoint (unbounded) operator.
Due to the low regularity assumptions on ∂Ω and σ we do not have an explicit characterization
of D2. However, it is known that the elements of D2 are Hölder continuous, which will be
sufficient for our purposes; cf. [14].

Proposition 2.5 (Elliptic regularity for nonsmooth data [15]). Under the general conditions
on ∂Ω and σ there exists a constant β > 0, such that

D2 ↪→ Cβ.

Proof. We apply the elliptic regularity result from [15] to show that the solution operator
(−∇ · σ∇+ 1)−1 is bounded from L2 to Cβ for some β > 0.

Remark 2.6. In the case that ∂Ω is C2 and the coefficients of σ are C1, this result is the
consequence of a classical regularity result for the solution operator (−∇ · σ∇+ 1)−1 : L2 → H2

and the Sobolev embedding H2 ↪→ C1/2 in spaces up to dimension three.
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For the higher regularity and the formulation of the strong solution concept, we introduce
the space

W2(0, tf) = L2(I,D2) ∩H1(I, L2),

which is endowed with the canonical inner product and norm. We have the continuous embedding
(see, e.g. [21, Sec. 2])

W2(0, tf) ↪→ C(Ī , [D2, L
2]1/2) = C(Ī , domL2(−∇ · σ∇)1/2) = C(Ī , V ).

Note, that the weak suppositions on σ and ∂Ω do not cause additional complications here.
More precisely, we apply the trace theorem [21, Th. 4.2] for the first embedding and use the
characterization/definition of the interpolation space [D2, L

2]1/2 = domL2(−∇ · σ∇)1/2 (see,
e.g. [21, Def. 2.1], and [30, Sec. 1.18.10]). Furthermore domL2(−∇ · σ∇)1/2 = V = H1 follows
from the definition of (−∇ · σ∇) by the weak formulation with continuity and ellipticity of the
bilinear from.

Theorem 2.7 (Additional regularity). If we have Ie ∈ L2(Q), v0 ∈ H1 and w0 ∈ L3, then the
solution (v, w) of (2.3) has the regularity v ∈W2(0, tf) and w ∈ H1(I, L3) with the corresponding
estimate

‖v‖W2(0,tf) + ‖w‖H1(I,L3) ≤ C
(
1 + ‖v0‖2H1 + ‖w0‖2L3 + ‖Ie‖2L2(Q)

)
. (2.4)

Proof. We recall that Iion is given by

Iion(v, w) = R(v) + η1vw

with the cubic polynomial R(·) according to (1.2a). It holds that R′ is bounded from below by

R′(·) ≥ −c0 = R′
(
vpk+vth

3

)
= η0

(
1− (vpk+vth)2

3vthvpk

)
.

Now, we take the weak solution (v, w) from Theorem 2.3 and consider the solution ṽ with
ṽ(0) = v0 of the semilinear parabolic equation

∂tṽ −∇ · σ∇ṽ +R(ṽ) + (1 + c0)ṽ = Ie + (1 + c0)v − η1vw, (2.5)

which has a strictly monotone nonlinearity v 7→ R(v) + (1 + c0)v. We know that a solution in
the sense of (2.3a) is given by v. Furthermore, by standard arguments using R′(·) ≥ −c0, a
solution of (2.5) is unique, which implies ṽ = v (cf. Proposition A.1). For the right hand side
in (2.5) it holds that

f = Ie + (1 + c0)v − η1vw ∈ L2(Q).

For the last term we use v ∈ L2(I, V ) ↪→ L2(I, L6) from Theorem 2.3, and consequently
w ∈ L∞(I, L3) with Proposition 2.4 (using w0 ∈ L3). This allows to estimate

‖vw‖L2(Q) ≤ ‖w‖L∞(I,L3)‖v‖L2(I,L6) ≤ 1
2‖w‖

2
L∞(I,L3) + 1

2‖v‖
2
L2(I,L6)

by Hölders inequality in time and space and Youngs inequality.
Now, we can derive additional regularity of v with a Galerkin argument for the semilinear

equation. In the following we give only a sketch of the proof, i.e. we do not construct a suitable
finite dimensional subspace first. We (formally) test equation (2.5) with ∂tv to obtain

‖∂tv(t)‖2L2 + 1
2

d
dt(σ∇v(t),∇v(t)) + d

dtΨ(v(t)) = (f(t), ∂tv(t)),

where Ψ(v) =
∫
Ω ψ(v) dx and ψ is the quartic polynomial with ψ′(v) = R(v) + (1 + c0)v and

ψ(0) = 0, which is uniformly convex and positive. In fact, by construction we have ψ(v) ≥ 1
2v

2
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for all v ∈ R and therefore Ψ(v) ≥ 1
2‖v‖

2
L2 holds for all v ∈ L4. Integrating from 0 to t > 0 we

obtain∫ t

0
‖∂tv‖2L2 ds+ γ

2‖∇v(t)‖2L2 + Ψ(v(t)) ≤ 1
2γ ‖∇v0‖2L2 + Ψ(v0) + 1

2

∫ t

0

(
‖f‖2L2 + ‖∂tv‖2L2

)
dt,

where γ > 0 is a constant with γ ‖∇v‖2L2 ≤ (σ∇v,∇v) ≤ γ−1‖∇v‖2L2 for all v ∈ H1. By taking
the term 1

2
∫ t

0‖∂tv‖2L2 dt to the left side and taking the supremum over all t ∈ I it follows

‖∂tv‖2L2(Q) + ‖v‖2L∞(I,H1) ≤ C
(
‖v0‖2H1 + ‖v0‖4L4 + ‖f‖2L2(Q)

)
using Ψ ≥ ‖·‖2L2 on the left-hand side, and Ψ(v0) ≤ C‖v0‖4L4 on the right-hand side. Now, we
go back to (2.5), rewrite it as the elliptic equation

−∇ · σ∇ṽ + ṽ = f − ∂tv −R(v)− c0v,

and obtain v = ṽ ∈ L2(I,D2) by the definition of D2. Together with the Sobolev embed-
ding ‖v0‖L4 ≤ ‖v0‖H1 , the combined estimates imply (2.4). The estimate for w is simply a
consequence of Proposition 2.4.

Based on the higher regularity from Theorem 2.7 we define a strong solution concept that
we will use in the following.

Definition 2.8 (Strong solutions of the state equation). Suppose that Ie ∈ L2(Q). We call the
pair (v, w) with v ∈ W2(0, tf) with v(0) = v0 ∈ V , and w ∈ H1(I, L2) with w(0) = w0 ∈ L2 a
(strong) solution of (1.1) if it fulfills equations (2.3) for all test functions in ϕ1, ϕ2 ∈ L2(Q).

Remark 2.9. For Definition 2.8 to make sense, the nonlinear terms have to be well-defined.
In fact, for each v ∈W2(0, tf) and w ∈ H1(I, L2), we can verify with Hölders inequality that

Iion(v, w) = R(v) + η1 v w ∈ L2(Q),

using v ∈ C(Ī , V ) ↪→ L6(Q) for the first term, and v ∈ L2(I,D2) ↪→ L2(I, L∞), w ∈ L∞(I, L2)
for the second term.

To make the meaning of the abstract equation (1.4) precise, we introduce the nonlinear
operator A : D2 × L2 → L2 × L2. It acts on the combined variable y = (v, w) and is given in
weak formulation as

〈A(y), ϕ〉 = (σ∇v,∇ϕ1) + (Iion(v, w), ϕ1) + (G(v, w), ϕ2)

for any ϕ = (ϕ1, ϕ2) ∈ V × L2. In the same way, we also define the linear control operator
B : RNcon → L∞ × {0}, given for u ∈ RNcon as 〈Bu,ϕ〉 = (Ie, ϕ1), where Ie =

∑Ncon
n=1 χΩcon,n un.

The abstract equation (1.4) is then understood as the weak formulation∫
I
〈∂ty, ϕ〉+ 〈A(y), ϕ〉dt =

∫
I
〈Bu,ϕ〉 dt (2.6)

for ϕ ∈ L2(Q) × L2(Q). Together with y = (v, w) ∈ W2(0, tf) × H1(I, L2) and the initial
condition y(0) = (v0, w0) = y0, formulation (2.6) is equivalent to Definition 2.8.

Proposition 2.10 (Bounded solutions). Suppose that v0 ∈ V ∩ L∞, w0 ∈ L∞, and Ie ∈
L∞(I, L2). Then the solutions v and w of (2.3) are bounded on the whole cylinder Q with the
estimate

sup
t∈[0,tf ]

(‖v(t)‖L∞ + ‖w(t)‖L∞) ≤ C
[
tf , ‖v0‖L∞ , ‖v0‖H1 , ‖w0‖L∞ , ‖Ie‖L∞(I,L2)

]
. (2.7)
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Moreover the solutions are Hölder-continuous (in space and time) for all positive times t > 0.
Furthermore, there exists β > 0 such that for all ε > 0 we have the a priori estimate

sup
t∈[ε,tf ]

(‖v(t)‖Cβ + ‖w(t)‖Cβ ) ≤ C
[
ε, tf , ‖v0‖H1 , ‖w0‖L3 , ‖Ie‖L∞(I,L2)

]
. (2.8)

In both of the last estimates, the constants depend (continuously) on the quantities in angle
brackets and the problem setup.

Proof. For uniform boundedness, Hölder regularity, and the estimates (2.7), (2.8) we now only
have to consider the linear part of the parabolic equation. We are going to apply the regularity
results from [14]. For the convenience of the reader, we sketch the main steps. First, we split
the solution v = v1 + v2 into the solutions of the linear equations

∂tv1 −∇ · σ∇v1 = 0, v1(0) = v0, (2.9a)
∂tv2 −∇ · σ∇v2 = Ie −R(v)− η1vw, v2(0) = 0. (2.9b)

The solution of (2.9a) is given using the (analytic) semigroup v1(t) = et∇·σ∇v0 (cf. [14, Th. 5.2]).
The semigroup maps the space L2 continuously to the domain of the elliptic operator D2 for all
positive times t. According to Proposition 2.5 we have D2 ↪→ Cβ for a constant β > 0. Moreover,
the semigroup is contractive on L∞ (see [14, Th. 4.12]), i.e. it holds ‖v1(t)‖L∞ ≤ ‖v0‖L∞ for all
t > 0.

For the solution of (2.9b) we apply a result on maximal parabolic regularity. First we see
that by (2.4) we have g = Ie − R(v) − η1vw ∈ L∞(I, L2). In fact, for Ie this is covered by
the assumption. For the other terms we use v ∈ W2(0, tf) ↪→ L∞(I, L6) and w ∈ L∞(I, L3)
combined with Hölders inequality in space. Now, by maximal parabolic regularity (cf. [14,
Th. 7.4]) combined with the trace method of interpolation theory (see, e.g. [1, Th. III 4.10.2])
we obtain

v2 ∈ Lq(I,D2) ∩W 1,q(I, L2) ↪→ C(Ī , (D2, L
2)1/q,q)

for any q <∞, together with a corresponding a priori estimate. For sufficiently large choice of
q, the interpolation space (D2, L

2)1/q,q embeds into Cβθ for some βθ ∈ (0, β), (cf. [14, Lem. 7.1]).
Combining all the arguments, we obtain (2.7) and (2.8) for v = v1 + v2. The estimate for w is
again a direct consequence of Proposition 2.4.

2.3 Long time behavior

It already follows from Theorems 2.3 and 2.7 that the solution of (1.1) can be defined for
arbitrarily large times. In the following, we study the long time behavior of the solutions. We
employ the convention that the solution (v(t), w(t)) fullfills the dynamics with Ie(t) = 0 for
times t > tf . In a first step we prove that the uncontrolled system is asymptotically stable in a
neighborhood of zero.

Theorem 2.11. Let the state y(tf) = (v(tf), w(tf)) be in a neighborhood of zero given by

vmin ≤ v(tf , ·) ≤ vmax, wmin ≤ w(tf , ·) in Ω, (2.10)

with constants vmax ≥ 0 and wmin, vmin ≤ 0 fulfilling

vmax ≤ vth, wmin > −
η0
η1

(
1− vmax

vth

)(
1− vmax

vpk

)
, and vmin = vpkη3wmin.

Then the state is asymptotically stable

‖v(t)‖L∞ → 0, ‖w(t)‖L∞ → 0 for t→∞.
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Proof. First, we will show that the inequalities (2.10) hold also for all t ≥ tf . Consider that

Iion(v, w) = ρ(v, w) v =
(
η0
(
1− v

vth

) (
1− v

vpk

)
+ η1w

)
v.

The term ρ(v, w) is positive for sufficiently small v and sufficiently large w, i.e. we have

ρ(v, w) ≥ 0 for all v ≤ vth, w ≥ −η0
η1

(
1− v

vth

) (
1− v

vpk

)
.

Moreover, for entries v and w with v ≤ vmax, wmin ≤ w we even have ρ(v, w) ≥ ρmin =
ρ(vmax, wmin) > 0.

Define for the given solutions v and w the function f(t) = minx∈Ω̄ ρ(v(t, x), w(t, x)). Note,
that f is continuous on [tf ,∞), since v, w ∈ C([tf ,∞) × Ω̄) according to Proposition 2.10.
Due to the assumptions on v(tf) and w(tf) we have f(tf) ≥ ρmin > 0. We define t̂ =
sup { t ∈ [tf ,∞) | f ≥ 0 on [tf , t] }. By construction, ρ(v, w) ≥ 0 holds on [tf , t̂) × Ω̄. Due
to continuity of f , a finite value of t̂ implies that f(t̂) = 0. Next, we show that t̂ < ∞ is not
possible. Therefore, we consider z = v − vmax, which fulfills

∂tz −∇ · (σ∇z) + ρ(v, w) z = −ρ(v, w)vmax, (2.11)

on (tf , t̂) × Ω with homogeneous Neumann boundary conditions, and the initial condition
z(tf , ·) = v(tf , ·) − vmax ≤ 0. We define z+ = max(0, z), which fulfills z+(tf) = 0 and z+ ∈
L2((tf , t̂), H1) (see, e.g. [34, Th. 2.1.11]). Then we test (2.11) with χ(tf ,t)z

+ for some t ∈ (tf , t̂)
to obtain∫ t

tf
〈∂tz, z+〉+ (σ∇z,∇z+) + (ρ(v, w) z, z+) ds

= 1
2‖z

+(t)‖2L2 +
∫ t

tf
(σ∇z+,∇z+) + (ρ(v, w) z+, z+) ds = −

∫ t

tf
(ρ(v, w) vmax, z

+) ds ≤ 0

for all t ∈ (tf , t̂). Here we have used the fact that 〈∂tz(t), z+(t)〉 = d
dt

1
2‖z

+(t)‖2L2 (see [8,
Lem. 11.2]). All the terms on the left hand side are non-negative, which implies z+ = 0,
wherefore z ≤ 0 and hence v ≤ vmax on the cylinder [tf , t̂)× Ω̄. With an analogous argument
we see that also v ≥ vmin holds on [tf , t̂) × Ω̄. Considering the recovery variable, we use the
solution formula from Proposition 2.4 to see that for all t ∈ [tf , t̂) it holds

w(t, ·) = e−η2η3(t−tf)w(tf , ·) + η2
vpk

∫ t

tf
e−η2η3(t−s)v(s, ·) ds

≥ wmine
−η2η3(t−tf) + vmin

vpkη3

(
1− e−η2η3(t−tf)

)
= wmin. (2.12)

Consequently, inequalities (2.10) are valid for all t ∈ [tf , t̂). This implies ρ(v(t, ·), w(t, ·)) ≥
ρmin > 0 for all t ∈ [tf , t̂). Therefore, if t̂ is finite, we obtain f(t̂) > 0 for the function f
defined above. This contradicts f(t̂) = 0, which implies that t̂ =∞ must hold. In other words,
inequalities (2.10) and ρ(v(t, ·), w(t, ·)) ≥ ρmin > 0 are valid for all t ≥ tf .

Now, we consider the variable z = v − e−ρmin(t−tf)vmax. We have

∂tz −∇ · (σ∇z) + ρ(v, w) z = (ρmin − ρ(v, w)) e−ρmin(t−tf)vmax, (2.13)

for t ≥ tf with ρ(v, w) − ρmin ≥ 0. Therefore, the right hand side in (2.13) is non-positive.
With the same argument as before we obtain z(t) ≤ 0 for all t ≥ tf which implies v(t) ≤
e−ρmin(t−tf)vmax. A similar argument shows v(t) ≥ e−ρmin(t−tf)vmin and therefore it holds that

‖v(t)‖L∞ ≤ e−ρmin(t−tf) max { vmax,−vmin } ,

for t ≥ tf . Considering again (2.12) and inserting the previous estimate for v yields the estimate
‖w(t)‖L∞ ≤ C(e−η1η2(t−tf) + e−ρmin(t−tf)), which completes the proof.
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Corollary 2.12. Suppose that 0 ≤ v(tf , ·) ≤ vmax < vth and that w(tf , ·) ≥ 0 in Ω. Then we
have

‖v(t)‖L∞ → 0, ‖w(t)‖L∞ → 0 for t→∞.

In a second step we consider estimates of the state for all times t ∈ R+. First, we show that
the L∞ bounds on v and w as in Proposition 2.10 can be chosen independently of the final time
tf for uniformly bounded Ie ∈ L∞(Q). We remark that for admissible controls u ∈ Uad we have
‖Ie‖L∞(Q) ≤ maxn umax,n independently of tf .

Lemma 2.13. Suppose u0, v0 ∈ L∞ and Ie ∈ L∞(Q). For the solution of (1.1) we have the a
priori estimate

sup
t∈[0,∞)

(‖v(t)‖L∞ + ‖w(t)‖L∞) ≤ C
[
‖v0‖L∞ , ‖w0‖L∞ , ‖Ie‖L∞(Q)

]
,

where the constant depends (continuously) on the quantities in angle brackets and the problem
setup.

Proof. The proof uses comparison principles as in the proof of Theorem 2.11. Here, we have
to additionally account for the data term Ie, which is nonzero only for t ≤ tf , and bounded
by Ce = ‖Ie‖L∞(Q). Furthermore, we have to account for the non-positivity of ρ(v, w), where
Iion(v, w) = ρ(v, w) v. As a first observation, we note that there exists constants ρ̄, γ̄ > 0, such
that

ρ(v, w) = η0
(
1− v

vth

) (
1− v

vpk

)
+ η1w ≥ −ρ̄+ η1w + γ̄ v2 (2.14)

for all entries v, w. Now we choose the constants vmax ≥ ‖v0‖L∞ and wmax ≥ ‖w0‖L∞ as

vmax = max
{

1, ‖v0‖L∞ , vpkη3‖w0‖L∞ , γ̄−1
(
Ce + ρ̄+ 2η1

vpkη3

)}
, (2.15)

wmax = vmax
vpkη3

. (2.16)

Our goal is to show that ‖v(t)‖L∞ ≤ vmax and ‖w(t)‖L∞ ≤ wmax holds for all t ≥ 0. Similar to
the proof of Theorem 2.11 we initially define t̂ to be the largest time such that ‖w(t)‖L∞ ≤ 2wmax
holds for all t ∈ [0, t̂]. As before, due to continuity of ‖w(·)‖L∞ we have t̂ > 0. In fact,
with Proposition 2.10 (2.7) we have v ∈ L∞((0, tf), L∞) and with Proposition 2.4 we obtain
w ∈W 1,∞((0, tf), L∞). To show the upper bound v ≤ vmax on (0, t̂)×Ω, we consider z = v−vmax,
which fulfills

∂tz −∇ · σ∇z = Ie − ρ(v, w) v,

on (0, t̂)×Ω, together with homogeneous Neumann boundary conditions and the initial condition
z(0, ·) = v0(·)− vmax ≤ 0. Testing with χ(0,t)z

+ for t ∈ (0, t̂) as before, we obtain

1
2‖z

+(t)‖2L2 +
∫ t

0
(σ∇z+,∇z+) ds =

∫ t

0
(Ie − ρ(v, w) v, z+) ds. (2.17)

We discuss the right-hand side in a pointwise (almost everywhere) fashion. Therefore, we define
the set Q+ = { (s, x) ∈ (0, t̂)×Ω | z(s, x) ≥ 0 }. We have

ρ(v, w) ≥ −ρ̄+ η1w + γ̄ v2 ≥ −ρ̄− 2η1wmax + γ̄ v2
max in Q+,

using (2.14), w ≥ −2wmax on (0, t̂)×Ω, and v ≥ vmax on Q+. By the choices of vmax and wmax,
we compute

γ̄ v2
max ≥

(
Ce + ρ̄+ 2η1

vpkη3

)
vmax ≥ Ce + ρ̄+ 2η1vmax

vpkη3
= Ce + ρ̄+ 2η1wmax.
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Consequently, we see that ρ(v, w) ≥ Ce on Q+ and thus

Ie − ρ(v, w) v ≤ Ce − ρ(v, w) vmax ≤ 0 on Q+.

Therefore (2.17) implies that ‖z+(t)‖2L2 ≤ 0 for all t ∈ (0, t̂), which implies v ≤ vmax on (0, t̂)×Ω.
With similar arguments for z = −vmax − v, we obtain also v ≥ −vmax on (0, t̂)×Ω. It remains
to verify that

‖w(t)‖L∞ ≤ e−η2η3t‖w0‖L∞ + η2
vpk

∫ t

0
e−η2η3(t−s)‖v(s)‖L∞ ds

≤ wmax e
−η2η3t + vmax

vpkη3

(
1− e−η2η3t

)
= wmax

for all t ∈ [0, t̂). Since the time t̂ was chosen maximal, we obtain t̂ = ∞ which concludes the
proof.

From Lemma 2.13 we deduce that also the Hölder estimate from Proposition 2.10 does not
depend on the final time tf .

Proposition 2.14. Suppose u0, v0 ∈ L∞ and Ie ∈ L∞(Q). Then there exists a β > 0, such
that for any ε > 0 the solution of (1.1) fulfills the a priori estimate

sup
t∈[ε,∞)

(‖v(t)‖Cβ + ‖w(t)‖Cβ ) ≤ C
[
ε, ‖v0‖L∞ , ‖w0‖L∞ , ‖Ie‖L∞(Q)

]
,

where the constant depends (continuously) on the quantities in angle brackets and the problem
setup.

Proof. We first show the estimate for the variable v. We can rewrite the equation for v as

∂tv −∇ · σ∇v + v = Ie + v − Iion(v, w) = f.

With Lemma 2.13, we have supt∈[0,∞)‖f(t)‖L∞ ≤ C[‖v0‖L∞ , ‖w0‖L∞ , ‖Ie‖L∞(Q)]. Recall, that
the negative of E = (−∇ · σ∇ + 1): D2 → L2 is the generator of an (analytic) semigroup.
Therefore, we can write

v(t+ ε) = e−εEv(t) +
∫ t+ε

t
e−(t+ε−s)Ef(s) ds (2.18)

with the variation of constants formula from semigroup theory (see, e.g. [24, Sec. 4.2]). To
estimate v(t+ ε) in a suitable Hölder norm, we introduce the interpolation spaces

Dθ
2 = [D2, L

2]1−θ = domL2(−∇ · σ∇)θ.

Since D2 ↪→ C β̃ for some β̃ > 0 according to Proposition 2.5, there exists a θ ∈ (0, 1), such
that Dθ

2 ↪→ Cβ, for some β ∈ (0, β̃) (cf. the proof of Proposition 2.10). Furthermore, since the
semigroup generated by −E is analytic (see [14, Thm. 5.2]), we have the a priori estimate∥∥∥e−tE v̂∥∥∥

Dθ2
≤ C t−θ‖v̂‖L2

for any v̂ ∈ L2 with a constant C that is independent of t > 0 (see, e.g. [24, Thm. 6.13]).
Applying this to (2.18) results in

‖v(t+ ε)‖Cβ ≤ C‖v(t+ ε)‖Dθ2 ≤ C
(
ε−θ‖v(t)‖L2 +

∫ t+ε

t
(t+ ε− s)−θ‖f(s)‖L2 ds

)
≤ C

(
ε−θ‖v(t)‖L2 + ε1−θ

1−θ sup
s∈(t,t+ε)

‖f(s)‖L2

)
≤ C

[
ε, ‖v0‖L∞ , ‖w0‖L∞ , ‖Ie‖L∞(Q)

]
,

where the last estimate is due to Lemma 2.13. The corresponding estimate for w is now a direct
consequence of the solution formula from Proposition 2.4.

12



3 Existence of minimizers
In this section we will discuss well-posedness of the optimal control formulation and derive
properties of the optimal solutions. Moreover, we state and analyze a related optimal control
problem based on a terminal tracking formulation.

3.1 Terminal constraint

First we will argue that the time optimal problem (Ptf ,δ) is well posed under the assumption
that there exists an admissible point.

Assumption 3.1. Suppose that there exists an admissible triple (t̃f , ũ, ỹ) with t̃f > 0 and
ũ ∈ Uad such that ỹ solves equation (1.4) and fulfills the terminal condition ‖ṽ(t̃f)‖L2 ≤ δ.

Theorem 3.2. Under Assumption 3.1 the problem (Ptf ,δ) possesses at least one optimal solution
t̄f ≥ 0, ū ∈ Uad with corresponding state solution ȳ = (v̄, w̄). If we choose δ such that δ < ‖v0‖,
then we have additionally that t̄f > 0 and ‖v̄(t̄f)‖L2 = δ.

Proof. The set of admissible points is non empty, so we can select an admissible minimizing
sequence (tfk, uk, vk, wk). We take a subsequence with tfk → t̄f for k → ∞, extend the uk
(admissibly with respect to uk ∈ Uad) to the interval Imax = (0, tfmax) for tfmax = maxk tfk and
select a further subsequence such that uk ⇀ ū weakly in L2(Imax,RNcon) for some ū. Since
Uad is closed and convex and thus weakly closed we obtain ū ∈ Uad. By a standard argument
involving weak lower semicontinuity of the squared L2(Imax,RNcon) norm and tfk → t̄f we have
that

inf (Ptf ,δ) = lim inf
k→∞

∫ tfk

0

(
κ+ α

2 |uk|
2
)

dt ≥
∫ t̄f

0

(
κ+ α

2 |ū|
2
)

dt.

It remains to check that the solution corresponding to ū fulfills the terminal condition at time t̄f .
For this purpose, we also extend the solutions (vk, wk) to the interval Imax by taking the solutions
corresponding to the extended uk. By the a priori estimate from Theorem 2.7 the vk are bounded
inW2(0, tfmax). Therefore vk ⇀ v̄ inW2(0, tfmax) holds for a further subsequence. By taking the
limit in all the terms of the weak formulation (2.3), which can be justified also for the nonlinear
terms, we verify that v̄ is the solution corresponding to the control ū. By the embedding
H1(Imax, L

2) ↪→ C1/2(Imax, L
2) we also have strong convergence vk(tfk)− vk(t̄f)→ 0 in L2 due

to Hölder continuity in time, which holds uniformly in k. Moreover, it holds vk(t̄f)− v̄(t̄f) ⇀ 0
weakly in V = H1 since the point evaluation in V at t̄f , which is a bounded linear operator on
W2(0, tfmax), preserves weak convergence. By the compactness of the embedding V ↪→ L2, this
implies

vk(tfk)→ v̄(t̄f) in L2,

and therefore ‖v̄(t̄f)‖L2 ≤ δ by continuity, which finishes the first part of the proof.
Now assume that ‖v̄(tf)‖L2 < δ for some tf > 0 and an optimal control ū. Due to ‖v̄(0)‖L2 =

‖v0‖L2 > δ and the continuity of t 7→ v̄(t) ∈ L2, there is a point t0 ∈ (0, tf) with ‖v̄(t0)‖ = δ.
This immediately implies that t̄f ≤ t0 < tf for the optimal t̄f with corresponding ū by comparison
of values of the objective for (tf , ū) and (t̄f , ū). This shows that ‖v̄(t̄f)‖ = δ.

Remark 3.3. Certainly, a choice of δ ≥ ‖v0‖ is not appropriate, since its global minimizer
t̄f = 0, ū = 0 does not help stabilizing the system.

Based on Theorems 2.11 and Proposition 2.14, we can show that for sufficiently small δ
the optimal solutions of (Ptf ,δ) will stabilize the system. For this purpose, we show that the
pointwise uniform condition from Theorem 2.11 can be realized by the condition on the L2

norm by using the smoothing of the parabolic solution operator.
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Theorem 3.4. Assume that Assumption 3.1 holds for arbitrary δ > 0. For a sufficiently small
choice of δ > 0 the optimal solutions (t̄f , ū) with corresponding state ȳ = (v̄, w̄) of problem (Ptf ,δ)
fulfill

‖v̄(t)‖L∞ → 0 for t̄f ≤ t→∞,

provided that the condition minx∈Ω̄ w̄(t̄f , x) ≥ wmin on the recovery variable holds at the final
time for some wmin > −η0/η1 independent of δ.

Proof. The proof rests on the uniform Hölder continuity of v as shown in Proposition 2.14. It
holds for any positive ε > 0 and some β > 0 that

max
t∈[ε,tf ]

‖v(t)‖Cβ ≤ C[ε, ‖v0‖L∞ , ‖w0‖L∞ , umax] .

Now, let (tf δ, uδ) with the corresponding (vδ, wδ) be optimal solutions of (Ptf ,δ) for given δ > 0.
Furthermore, fix some δ̂ < ‖v0‖ with a corresponding optimal solution (tf δ̂, uδ̂). Using the
optimality of (tf δ̂, uδ̂), it is clear that

0 <
∫ tf δ̂

0

(
κ+ α

2 |uδ̂|
2
)

dt ≤
∫ tfδ

0

(
κ+ α

2 |uδ|
2
)

dt ≤ tf δ
(
κ+ α

2 max
n

umax,n
2
)

for all δ < δ̂, since (tf δ, uδ) is admissible in the δ̂-problem. This implies tf δ ≥ tfmin for all δ < δ̂
with a tfmin > 0 independent of δ. Consequently we have

‖vδ(tf δ)‖Cβ ≤ C

for a constant C = C[tfmin, ‖v0‖L∞ , ‖w0‖L∞ , umax] independent of δ. Consider the interpolation
space [L2, Cβ ]θ for θ ∈ (0, 1). For θ > d/(2β + d), such that βθ = θ(β + d/2)− d/2 > 0 we have
[L2, Cβ ]θ ↪→ Cβθ ↪→ L∞ (cf. the proof of [14, Lem. 7.1]). Using the corresponding interpolation
inequality we confirm for any such θ that

‖vδ(tf δ)‖L∞ ≤ C ‖vδ(tf δ)‖1−θL2 ‖vδ(tf δ)‖θCβ ≤ C δ
1−θ,

for a generic constant C independent of δ. The conclusion follows now by a sufficiently small
choice of δ, Theorem 2.11, and the assumption on w(tf).

Remark 3.5. The assumption on the additional lower bound on w in Theorem 3.4 could be
easily dropped by an additional constraint on ‖w(tf)‖L2 in the problem formulation. We remark
that in computations we have never seen values of w which were smaller than a fraction of
−η0/η1, and we therefore did not include it. Moreover, w is a phenomenological variable, which
cannot be observed in practice.

3.2 Terminal tracking

For the numerical realization of problem (Ptf ,δ) we additionally consider the associated problem

min
tf≥0, u∈Uad, y=(v,w)

∫ tf

0

(
κ+ α

2 |u|
2
)

dt+ µ

2 ‖v(tf)‖2L2 ,

subject to ∂ty +A(y) = Bu, y(0) = y0.

(Ptf ,µ)

For this problem we have to select the penalization parameter µ > 0, which now has to be
chosen sufficiently large. Under mild conditions this problem leads to the same optimal solutions
as (Ptf ,δ) provided that µ > 0 and δ > 0 are chosen appropriately, see Proposition 3.7. An
existence result analogous to Theorem 3.2 can be obtained here using the same methods.
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Proposition 3.6. Problem (Ptf ,µ) possesses at least one optimal solution t̄f ≥ 0, ū ∈ Uad.

It is easy to see that (Ptf ,δ) and (Ptf ,µ) are closely related to each other.

Proposition 3.7. Let (t̄f , ū) be an optimal solution of (Ptf ,µ) for µ > 0 with the corresponding
state ȳ = (v̄, w̄). Then (t̄f , ū) is an optimal solution of (Ptf ,δ) for δ = ‖v̄(t̄f)‖L2.

Proof. The optimal solution of each problem is admissible to the other problem. Comparing
the objective values of both solutions in both problems immediately shows that the global
minimizers of (Ptf ,µ) are global minimizers of (Ptf ,δ) due to the choice of δ.

By Proposition 3.7 we know that the minimizers of (Ptf ,µ) are also minimizers of (Ptf ,δ) for
a suitable choice of δ. Furthermore, we can see that the solutions of the tracking type problem
will yield solutions of the original problem for arbitrarily small δ (provided that admissible
points exist for arbitrarily small δ).

Proposition 3.8. Assume that Assumption 3.1 holds for some δ̃ and let δ > δ̃. Then, there
exists M > 0 such that any optimal solution (tfµ, uµ, vµ, wµ) of (Ptf ,µ) for µ ≥ M fulfills
‖vµ(tfµ)‖L2 ≤ δ.

Proof. Let (t̃f , ũ) be the admissible point for δ̃ with associated state solutions (ṽ, w̃). Further-
more denote by (tfµ, uµ) with corresponding (vµ, wµ) optimal solutions of (Ptf ,µ) for given µ > 0.
By optimality we have for all µ > 0 that

fµ + µ
2‖vµ(tfµ)‖2L2 ≤ f̃ + µ

2‖ṽ(t̃f)‖2L2 , (3.1)

where fµ =
∫ tfµ
0 (κ+ α

2 |uµ|
2) dt and f̃ =

∫ t̃f
0 (κ+ α

2 |ũ|
2) dt. We note that f̃ is independent of µ

by construction. Furthermore we have ‖ṽ(t̃f)‖L2 ≤ δ̃. Dividing both sides of (3.1) by 2/µ, we
obtain

2
µ fµ + ‖vµ(tfµ)‖2L2 ≤ 2

µ f̃ + δ̃2.

Since fµ is positive this implies ‖vµ(tfµ)‖2L2 ≤ δ2 for all µ ≥ 2f̃/(δ2 − δ̃2) =: M .

This shows that minimizers of (Ptf ,δ) with the desired properties as in Theorem 3.4 can
be found by solving (Ptf ,µ) with sufficiently large µ. Therefore, we will focus on (Ptf ,µ) in the
following.

4 Optimality system
In the following we derive optimality conditions for the time optimal control problem. Therefore,
we first introduce a time transformation to a fixed reverence interval, and then analyze the
linearized state equation.

4.1 Time transformation

For the derivation of optimality conditions and the numerical realization, we transform the
problem to a fixed reference interval Ĩ = (0, T ) with a new time variable t̃ ∈ Ĩ. Analogously to
[25, Sec. 4] we introduce the local “velocity of time” ν ∈ L∞(0, T ) on the reference interval with

ν ∈ Nad = { ν ∈ L∞(0, T ) | infs∈(0,T ) ν(s) > 0 } ,

which is an open subset of N = L∞(0, T ). The true time t ∈ (0, tf) and the free end time tf are
now given as

t = θ(t̃) =
∫ t̃

0
ν(s) ds and tf = θ(T ) =

∫
Ĩ
ν(s) ds. (4.1)
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Note that the function θ is strictly monotonously increasing and Lipschitz continuous. We
define ỹ = y(θ(t̃)), ũ = u(θ(t̃)) and consider the transformed equation on the reference interval

∂tỹ + νA(ỹ) = νBũ, ỹ(0) = y0, (4.2)

which is equivalent to the weak formulation defined for ỹ ∈W2(0, T )×H1(Ĩ , L2) as∫
Ĩ
〈∂tỹ, ϕ〉+ ν〈A(ỹ), ϕ〉 dt =

∫
Ĩ
ν〈Bũ, ϕ〉dt

for all ϕ ∈ L2(Ĩ , L2) × L2(Ĩ , L2). It is easy to verify that a solution of (4.2) exists, is unique
and coincides with the solution of (1.4) by an appropriate rescaling.

Proposition 4.1. For each ν ∈ Nad and ũ ∈ Uad the unique solution ỹ to (4.2), with the
same regularity as in Theorem 2.7, corresponds to the solution y of (1.4) for u ∈ Uad with the
relations

y(t) = ỹ(θ−1(t)), u(t) = ũ(θ−1(t)), (4.3)

with the function θ : (0, T )→ (0, tf) from (4.1).

Proof. We give a short sketch of the proof: First we observe that for the unique solution y
of (1.4) the function ỹ with ỹ(t̃) = y(θ(t̃)) is an element of W2(0, T )×H1(Ĩ , L2) with

∂tỹ = ν (∂ty ◦ θ) in L2(Ĩ , L2).

Here, we used ∂tθ = ν ∈ L∞(0, T ). Therefore, ỹ solves the rescaled equation (4.2) by a change of
variables, which shows existence for (4.2). Uniqueness follows using the inverse transformation.
For any solution of (4.2) we obtain with (4.3) a solution of the original problem. Here, we use
the fact that

∂tθ
−1 = 1

ν ◦ θ−1 ∈ L
∞(0, tf),

which is guaranteed by ν ∈ Nad.

Now, we see that we can rewrite the optimization problem (Ptf ,µ) in the new coordinates as

min
ν∈Nad, ũ∈Uad, ỹ=(ṽ,w̃)

∫
Ĩ
ν

(
κ+ α

2 |ũ|
2
)

dt+ µ

2 ‖ṽ(T )‖2L2 ,

subject to ∂tỹ + νA(ỹ) = νBũ, ỹ(0) = y0.

(Pν,µ)

We can not expect the solutions of (Pν,µ) to be unique since we have a large amount of freedom
in the choice of ν. For algorithmic realization, an adequate specialization of ν will be introduced
in Section 5.1. However, the additional freedom in the choice of ν will offer a convenient way
of deriving the Hamiltonian condition (see Theorem 4.8). Besides, we can easily see how the
rescaled problem corresponds with the original one.

Proposition 4.2. If the optimal final time t̄f from Proposition 3.6 is not zero, the solution set
of the rescaled problem (Pν,µ) coincides with solution set of (Ptf ,µ) by the relations

tf = θ(T ), u(t) = ũ(θ−1(t)), and y(t) = ỹ(θ−1(t)).

In the following we will omit the superscript ˜ for the transformed variables for ease of
presentation. In particular we will again denote the time variable on the fixed interval by
t ∈ I = (0, T ) and also reuse the symbols u, y, and p on the fixed time frame.
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4.2 Differentiability

Since we are going to work with a control reduced approach we start by defining the control to
state mapping according to Proposition 4.1 as the operator

S : Nad × U →W2(0, T )×H1(I, L2),
S(ν, u) = y.

We are going to prove that S is continuously differentiable in a suitable sense. For the proof
of the differentiability of the control to state mapping we have to analyze the linearized state
equation.

Definition 4.3 (Linearized state equation). We call a δy = (δv, δw) ∈ W2(0, T ) ×H1(I, L2)
with δy(0) = 0 a solution of the linearized state equation at some function y = (v, w) ∈
W2(0, T )×H1(I, L2) for the given data f = (f1, f2) ∈ L2(Q)× L2(Q) if it fulfills

∂tδv + ν
(
I ′ion,v(v, w)δv + I ′ion,w(v)δw −∇ · σ∇δv

)
= νf1, (4.4a)

∂tδw + ν G(δv, δw) = νf2, (4.4b)

in the sense of Definition 2.8 (which incorporates the natural zero boundary condition).

We will also use the following abstract form for (4.4) given by the evolution equation

∂tδy + νA′(y)δy = νf, δy(0) = 0, (4.5)

where the spatial operator A′(y) for y = (v, w) is defined in the obvious way according to (4.4).

Lemma 4.4. For every ν ∈ Nad, y = (v, w) ∈ L∞(Q)× L∞(Q) and given data f = (f1, f2) ∈
L2(Q) × L2(Q) the linearized state equation (4.4) has a unique solution δy = (δv, δw) ∈
W2(0, T )×H1(I, L2) with the corresponding a priori estimate

‖δv‖W2(0,T ) + ‖δw‖H1(I,L2) ≤ C
(
‖f1‖L2(Q) + ‖f2‖L2(Q)

)
.

The generic constant C may depend on ν and y, but does not depend on either f or δy.

Proof. First, we can argue by a similar transformation argument as in Proposition 4.1 that it
suffices to consider (4.5) for ν ≡ 1. Then we eliminate the variable δw with Proposition 2.4.
We obtain an integro-differential equation in terms of δv as

∂tδv −∇ · σ∇δv + I ′ion,v(v, w)δv + η1vW (δv) = f1 + vpk
η2
W (f2),

which is equivalent to (4.5). Now, to obtain L2-contractivity we replace δv with the variable
ṽ = e−γtδv for a γ > 0. It is easy to check that the corresponding equation for ṽ is given by

∂tṽ −∇ · σ∇ṽ + I ′ion,v(v, w)ṽ + η1vWγ(ṽ) + γṽ = e−γt(f1 + vpk
η2
W (f2)), (4.6)

where Wγ has the form

Wγ(ṽ)(t) = η2
vpk

∫ t

0
e−(η2η3+γ)(t−s)ṽ(s) ds.

We are going to show existence of ṽ by an application of the Banach fixed-point theorem. First,
we choose γ > 0 sufficiently large such that I ′ion,v(v, w) + γ > 0 in Q, which is possible due to
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v, w ∈ L∞(Q). Then we define the mapping F : L2(Q) → W2(0, T ) by F (ṽ) = v′, where v′ is
the solution of the linear parabolic equation

∂tv
′ −∇ · σ∇v′ + I ′ion,v(v, w)v′ + γv′ = −η1vWγ(ṽ) + e−γt(f1 + vpk

η2
W (f2)).

With standard linear parabolic solution theory, F is well defined with respect to the given spaces
(see, e.g. [11, Sec. 7.1]). The low regularity assumptions on σ and ∂Ω do not cause difficulty due
to the appropriate definition of W2(0, T ) (cf. Theorem 2.7). The difference h = F (ṽ1)− F (ṽ2)
for two given ṽ1 and ṽ2 fulfills

∂th−∇ · σ∇h+ I ′ion,v(v, w)h+ γh = −η1vWγ(ṽ1 − ṽ2).

By a standard Galerkin estimate (see, e.g. [11, Sec. 7.1.2]), which is obtained by testing this
equation with the solution h we obtain

‖h‖L2(Q) ≤ Cγ‖η1v‖L∞(Q)‖Wγ(ṽ1 − ṽ2)‖L2(Q)

for a constant Cγ depending only on γ, the coefficients in the parabolic equation, and the
domains. By inspection of the proof of the estimate we obtain that Cγ can be bounded
independently of γ. In fact we even have Cγ → 0 for γ →∞. Furthermore one can show that

‖Wγ(ṽ1 − ṽ2)‖L2(Q) ≤ η2
vpk

√
T

2(η2η3+γ) ‖ṽ1 − ṽ2‖L2(Q)

by an application of Hölders inequality (cf. also [7, Sec. 2.2]). In combination, we have

‖h‖L2(Q) ≤ 1
2 ‖ṽ1 − ṽ2‖L2(Q)

for a sufficiently large choice of γ > 0. By the Banach fixed-point theorem there exists a unique
ṽ ∈ L2(Q) with ṽ = F (ṽ) ∈W2(0, T ) with the corresponding a priori estimate

‖ṽ‖W2(0,T ) ≤ C(‖f1‖L2(Q) + ‖f2‖L2(Q)).

By construction ṽ solves (4.6) and the corresponding δv together with δw = W (δv) + vpk
η2
W (f2)

solves (4.4) with the same estimate, albeit with a bigger constant. The regularity of δw follows
directly from Proposition 2.4.

Now, we can discuss differentiability of the control to state mapping. Since we only have a
solution theory for the tangent equation for states corresponding to controls in L∞(I,RNcon),
(v, w ∈ L∞(Q) can only be assured for Ie ∈ L∞(I, L2), cf. Proposition 2.10), we only obtain
differentiability in a neighborhood of Uad. Note however, that this neighborhood can be chosen
with respect to the norm in U = L2(I,RNcon).

Theorem 4.5. The control to state mapping S is (arbitrarily often) continuously Fréchet
differentiable as an operator from

S : Nad × Uad ⊂ L∞(I)× U →W2(0, T )×H1(I, L2).

The first derivative at (ν, u) ∈ Nad × Uad in a direction (δν, δu) ∈ L∞(I) × U is given as the
solution δy of the tangent equation, which is given by

∂tδy + νA′(y)δy = δν(Bu−A(y)) + νBδu, δy(0) = 0. (4.7)
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Proof. We are going to apply the implicit function theorem. For this purpose we consider the
state y as the unique solution of the nonlinear equation

e(ν, u, y) = ∂ty + νA(y)− νBu = 0, (4.8)

where e : L∞(I) × U ×W2(0, T ) × H1(I, L2) → L2(Q) × L2(Q), and argue that e is Fréchet
differentiable. First we consider the mapping

y = (v, w) ∈W2(0, T )×H1(I, L2) 7→ Iion(v, w) = R(v) + η1vw ∈ L2(Q).

For the first term we use the embedding W2(0, T ) ↪→ L6(Q). The differentiability (arbitrarily
often) of the superposition operator R : L6(Q)→ L2(Q) induced by the cubic polynomial can
be verified with a direct computation using Hölders inequality. Similarly we use the embeddings
H1(I, L2) ↪→ L∞(I, L2) and L2(I,D2) ↪→ L2(I, L∞) combined with Hölders inequality for
the second bilinear term. With this it is evident that e is (arbitrarily often) continuously
differentiable in the variables (u, y) for fixed ν, since all the other parts are linear. For the
total differentiability, we use the following (standard) argument: Since the mapping (u, y) 7→
A(y)−Bu is continuously differentiable, the function

(ν, u, y) ∈ L∞(I)× U ×W2(0, T )×H1(I, L2) 7→ ν (A(y)−Bu) ∈ L2(Q)× L2(Q)

is continuously differentiable as well. This is again essentially a consequence of Hölder’s inequal-
ity, using ν ∈ L∞(I). A similar statement holds for the higher derivatives.

We have shown the first prerequisite of the implicit function theorem. The second prerequisite
requires the partial derivative, given by

e′y(ν, u, y)(·) =
(
∂t + νÃ′(y)

)
: W2(0, T )×H1(I, L2)→ L2(Q)× L2(Q),

to be an isomorphism at the point (ν, u, S(ν, u)). Obviously, the operator is bounded. Bounded
invertibility follows from Lemma 4.4, which is applicable since y = (v, w) ∈ L∞(Q) × L∞(Q)
for all admissible controls (ν, u) ∈ Nad × Uad according to Theorem 2.7. Therefore the implicit
function theorem (see, e.g. [10, Th. 10.2.1]) can be applied, i.e. for any point (ν, u) ∈ Nad×Uad
there exists a neighborhood in Nad × U , such that we can uniquely resolve (4.8) for y with
continuously differentiable mapping y = S(ν, u). Since e is arbitrarily often continuously
differentiable, this property transfers to the solution operator S (see, e.g. [10, Th. 10.2.3]).

4.3 Necessary condition

Next, we give an optimality condition for problem (Pν,µ), which will be the basis of the
optimization algorithm in Section 5. First we introduce the Hamiltonian as

H(u, y, p) = κ+ α

2 |u|
2 + 〈Bu−A(y), p〉.

The corresponding Lagrange function for (Pν,µ) (in the sense of constrained optimization) is
given in terms of the Hamiltonian by

L(ν, u, y, p) =
∫
I
νH(u, y, p)− 〈∂ty, p〉 dt+ µ

2 ‖v(T )‖2L2

=
∫
I
ν

(
κ+ α

2 |u|
2
)

dt+ µ

2 ‖v(T )‖2L2 −
∫
I
〈∂ty, p〉+ ν〈A(y)−Bu, p〉dt.

Further we define the adjoint equation.
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Definition 4.6 (Adjoint equation). Let y = (v, w) be the solution of (4.2) corresponding to
some ν ∈ Nad and u ∈ Uad. Then we define the adjoint state p = (p1, p2) ∈W2(0, T )×H1(I, L2)
as the solution of the adjoint equation

−∂tp+ νA′(y)∗p = 0, p(T ) = µ(v(T ), 0). (4.9)

in the sense of the usual weak formulation.

For the sake of brevity, we skip the non-abstract form of the adjoint equation. For the full
expressions we refer to Appendix A.2. With slight modifications of the proof of Lemma 4.4 one
can show existence and regularity.

Proposition 4.7. For y = (v, w) ∈ L∞(Q) × L∞(Q), ν ∈ Nad, and v(T ) ∈ V the adjoint
equation (4.9) has a unique solution p = (p1, p2) ∈W2(0, T )×H1(I, L2) with the corresponding
a priori estimate

‖p1‖W2(0,T ) + ‖p2‖H1(I,L2) ≤ C‖v(T )‖H1 .

With these prerequisites we can give an optimality condition.

Theorem 4.8 (Optimality conditions). Let (ν̄, ū, ȳ) be an optimal solution of (Pν,µ). Then
there exists a unique adjoint state p̄, which fulfills the corresponding adjoint equation (4.9) and
a λ ∈ ∂χUad(ū) (the subdifferential of the convex indicator function of Uad at the point ū), such
that the optimality conditions

H(ū(t), ȳ(t), p̄(t)) = 0 for a.a. t ∈ I, (4.10)
αū+B∗p̄+ λ = 0, (4.11)

are fulfilled. For α > 0 the optimality condition (4.11) can also be given by the componentwise
projection formula

ū = Pad
(
− 1
αB
∗p̄
)

= min
(
max

(
− 1
αB
∗p̄, −umax

)
, umax

)
, (4.12)

depending only on the adjoint state p̄.

Proof. We can use standard methods. We introduce the reduced objective functional,

j(ν, u) =
∫
I
ν
(
κ+ α

2 |u|
2
)

dt+ µ
2‖v(T )‖2L2 , where y = (v, w) = S(ν, u).

With Theorem 4.5, the chain rule, and the evident differentiability of the explicit part of j we
obtain the optimality conditions

j′ν(ν̄, ū) = 0 in (L∞(I))∗, and j′u(ν̄, ū)(ũ− ū) ≥ 0 for all ũ ∈ Uad, (4.13)

by a standard result in nonlinear optimization (see, e.g. [31]). For the first equality we recall
that Nad is open in L∞(I). Now we compute the specific form of the partial derivatives. For
any admissible pair (ν, u) ∈ Nad × Uad we can write j(ν, u) = L(ν, u, S(ν, u), p) for arbitrary
p ∈ L2(I, V )×L2(Q). Therefore with Theorem 4.5 we obtain the derivative of j in the direction
(δν, δu) as

j′(ν, u)(δν, δu) = L′ν(ν, u, y, p)(δν) + L′u(ν, u, y, p)(δu) + L′y(ν, u, y, p)(δy), (4.14)

by an application of the chain rule, where y = S(ν, u) and δy is the solution of the tangent
equation (4.7). Now we take p to be the adjoint state corresponding to ν and y as defined
in (4.9). With the integration by parts formula in time it is easy to see that (4.9) implies

L′y(ν, u, y, p)(ϕ) = µ(v(T ), ϕ1(T ))−
∫
I
〈∂tϕ, p〉+ ν〈A′(y)ϕ, p〉 dt = 0,
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for all ϕ = (ϕ1, ϕ2) ∈ W2(0, T ) ×H1(I, L2) with ϕ(0) = 0. Therefore, the last term in (4.14)
vanishes and we compute

j′(ν, u)(δν, δu) =
∫
I
δνH(u, y, p) + ν(αu+B∗p) · δudt. (4.15)

Together with the first part of the abstract condition (4.13) and H(u(·), y(·), p(·)) ∈ L1(I)
we derive the Hamiltonian condition (4.10). From the second part we obtain the variational
inequality ∫

I
ν̄ (αū+B∗p̄) · (ũ− ū) dt ≥ 0,

for all ũ ∈ Uad. With infI ν̄ > 0 and standard methods from convex optimization the variational
inequality is equivalent to (4.11) and (4.12), which completes the proof.

Corollary 4.9. Suppose that α > 0. For any optimal ū it holds that ū ∈ H1(I,RNcon). In par-
ticular the optimal controls are continuous in time. Furthermore we have that the Hamiltonian
is continuous in time and therefore H(ū(t), ȳ(t), p̄(t)) = 0 for all t ∈ I (the qualifier “a.a.” can
be dropped).

Proof. We use that p̄ = (p1, p2) ∈W2(0, T )×H1(I, L2) and therefore

(B∗p̄)n =
∫
Ωcon,n

p1(·, x) dx ∈ H1(I) for n = 1, . . . , Ncon.

This regularity is preserved for ū = Pad(− 1
αB
∗p̄). From this, and due to ȳ, p̄ ∈ C(Ī , V ) follows

the continuity of the Hamiltonian.

5 Semismooth Newton method
In this section we describe a semismooth Newton method to solve the penalized time optimal
problem (Ptf ,µ). We will generally require α > 0. Local superlinear convergence of the method
is proven.

Note, that the free end time and the control are considered as a combined optimization
variable. For this reason we refer to our approach as “monolithic”. This is in contrast to the
schemes proposed in [20] or [19], where the optimal control is resolved first for a given final
time, and then the resulting value function is optimized by another method.

5.1 Variation of the end time

To derive an implementable set of necessary conditions, we take the rescaled problem (Pν,µ)
and specialize the general time transformation to the case of a free parameter τ by choosing
the parameterized velocity-of-time as

ντ = 1 + τ ν̂, (5.1a)

with a fixed ν̂ ∈ L∞(I) such that
∫
I ν̂ dt 6= 0. With this choice of ντ , the optimization problem

has the special form

min
τ∈R, u∈Uad, y=(v,w)

∫
I
ντ
(
κ+ α

2 |u|
2
)

dt+ µ
2‖v(T )‖2L2

subject to ∂ty + ντA(y) = ντBu, y(0) = y0, ντ ∈ Nad.

(5.1b)
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We compute the variation of the free end time as

tf =
∫
I
ντ dt = T + τ

∫
I
ν̂ dt.

Problems (5.1) and (Pν,µ) are equivalent for appropriate choices of ν̂. Here we focus on the
straightforward choice ν̂ ≡ 1.

Remark 5.1. In more general situations the choice (5.1a) can be adapted properly. For example,
using ν = 1 + τ1ν̂1 + τ2ν̂2 with adequate ν̂1, ν̂2, optimization problems with two different free
time points in the combined optimization variable can be treated (e.g. observation or switching
times).

5.2 Newton system

For clarity of presentation, we first describe the optimization procedure without box constraints.
It is a straightforward application of Newton’s method for minimization problems to the reduced
objective functional with some modifications for the free end time.

Similar to the proof of Theorem 4.8 we consider the reduced objective j(τ, u), which is now
depending on τ due to the specialization in (5.1a). It has the form

j(τ, u) =
∫
I
ντ
(
κ+ α

2 |u|
2
)

dt+ µ
2‖vτ,u(T )‖2L2 ,

where yτ,u = (vτ,u, wτ,u) = S(ντ , u) is the state solution corresponding to τ and u. As in
Theorem 4.8 we can compute the derivatives of j.

Proposition 5.2. The functional j is arbitrarily often continuously Fréchet differentiable. The
gradient of j w.r.t. the inner product in R× U is given by

Dj(τ, u) =
(∫

I ν̂H(u, yτ,u, pτ,u) dt
ντ (αu+B∗pτ,u)

)
=
(∫

I ν̂
(
κ+ α

2 |u|
2 + 〈Bu−A(yτ,u), pτ,u〉

)
dt

ντ (αu+B∗pτ,u)

)
, (5.2)

where pτ,u is the corresponding adjoint state fulfilling (4.9).

Proof. The first statement is easy to check for the first explicit part of j. The differentiablity of
the second part is implied by Theorem 4.5 and the chain rule. We follow the same steps as in the
proof of Theorem 4.8 and apply the chain rule δν = δτ ν̂ induced by the parametrization (5.1a)
to the representation formula (4.15).

Proposition 5.3. An application of the Hessian of j, given by the symmetric operator

D2j(τ, u) : R× U → R× U,

can be computed with the representation

D2j(τ, u)(δτ , δu) =
(∫

I ν̂ ((αu+B∗p) · δu− 〈δy,A′(y)∗p〉+ 〈Bu−A(y), δp〉) dt
ν(αδu+B∗δp) + δτ ν̂(αu+B∗p)

)
, (5.3)

where p is again the corresponding adjoint state fulfilling (4.9), δy is the solution of the tangent
equation (4.7), and δp ∈ W2(0, T ) × H1(I, L2) is the solution of the second adjoint equation,
given by

−∂tδp+ νA′(y)∗δp = −ν(A′′(y)δy)∗p− δτ ν̂A′(y)∗p,
δp(T ) = µ(δv(T ), 0).

(5.4)
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Proof. With the same techniques as in Theorem 4.5 we can show that the mapping (τ, u) 7→ pτ,u
is (arbitrarily often) continuously differentiable and that the derivative is given by (5.4). Now,
we can apply again Theorem 4.5 for the control to state mapping (τ, u) 7→ yτ,u and apply the
chain rule to obtain (5.3).

A Newton method for an unconstrained problem without the restriction u ∈ Uad can be
based on the Newton update computed as the solution h ∈ R× U of

D2j(τ, u)h = −Dj(τ, u). (5.5)

We will go into further detail after incorporating the box constraints in the next section.

Remark 5.4. The formulas (5.2) and (5.3) can also be derived from general expressions for
an abstract optimal control problem. For instance, the Newton method based on (5.5) fits into
the general framework as described in [17, Ch. 5.2].

Remark 5.5. The terms of the second derivative and the equations for δy and δp which stem
from the variation of the free end time contain the expressions (Bu−A(y)) and A′(y)∗p. Since
y and p are solution of the state and adjoint equations, we can replace them by ∂ty/ν and ∂tp/ν
respectively. This will be very convenient for the practical realization in the discrete setting as
described in Section 6; see also Appendix A.2.

5.3 Box constraints

To efficiently handle the box constraints, we introduce the auxiliary optimization variable q ∈ U
and parameterize the control as

u = uq = Pad(q). (5.6)

By inspection of Theorem 4.8 an equivalent optimality condition for (Pν,µ) can be given in
terms of the optimization variables (τ, q) with the “normal map” (due to Robinson [26]) defined
for our purposes as

F (τ, q) = Dj(τ, Pad(q)) +
(

0
c ντ (q − Pad(q))

)
(5.7)

for an arbitrary constant c > 0. We can verify that the zeros of F are precisely the points
satisfying the first order necessary conditions.

Proposition 5.6. Suppose that for (τ̄ , ū) ∈ R+ × Uad and the corresponding (ν̄, ȳ, p̄) =
(ντ̄ , yτ̄ ,ū, pτ̄ ,ū) the first order necessary conditions from Theorem 4.8 are fulfilled. Then there
exists a q̄ ∈ U such that ū = Pad(q̄) and F (τ̄ , q̄) = 0.

Proof. Define the Lagrange multiplier λ = −(αū + B∗p̄), which is an element of the subdif-
ferential ∂χUad(ū) (cf. Theorem 4.8). We set q̄ = ū + c−1λ. To see directly that Pad(q̄) =
Pad(ū+ c−1λ) = ū, we can use the characterization

∂χUad(ū) =
{
λ
∣∣∣ suppλ+ ⊂ { ū = umax } , suppλ− ⊂ { ū = −umax }

}
.

Furthermore, we have c(q̄−Pad(q̄)) = λ and therefore the second component of F (τ̄ , q̄), which is
given by ντ (αū+B∗p̄+ λ), is zero. The first component is given by j′τ (τ̄ , ū) =

∫
I ν̂H(ū, ȳ, p̄) dt,

which is zero.

In the following we will suppose α > 0 and set c = α in the normal map (5.7). By
construction we have then that

F (τ, q) =
(∫

I ν̂H(uq, yτ,q, pτ,q) dt
ντ (αq +B∗pτ,q)

)
, (5.8)
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since the term νταPad(q) = νταuq cancels in the second row of (5.7). We can now see that the
condition F (τ̄ , q̄) = 0 implies the relation

q̄ = − 1
αB
∗pτ̄ ,q̄,

which directly gives the optimality condition for the control ū = Pad(q̄). To apply a Newton
type method to F (τ, q) = 0 we require the linearization of F . Since (5.6) involves a pointwise
projection it is non-smooth. Therefore we work with the semismoothness calculus in Banach
spaces as in [33]. We introduce the generalized differential of the projection Pad as

DPad(q)(δq) = χIδq =
{
δq where |q| ≤ umax,

0 else,

where χI is the indicator function of the “inactive set” given by

I = { (t, n) | |qn(t)| ≤ umax,n } .

With the central result on semismoothness of superposition operators on Lebesgue spaces, the
pointwise projection Pad is semismooth as an operator from Lr(I,RNcon) → L2(I,RNcon) for
any exponent r ∈ (2,∞] (see, e.g. [33, Th. 3.49]). With a chain rule for semismooth operators
and representation (5.3) we compute a representation for the generalized derivative of F at the
point (τ, q) of the form

DF (τ, q)(δτ , δq) =
(∫

I ν̂ ((αq +B∗p) · χIδq − 〈δy,A′(y)∗p〉+ 〈Bu−A(y), δp〉) dt
ντ (αδq +B∗δp) + δτ ν̂(αq +B∗p)

)
, (5.9)

where δy solves the tangent equation (4.7) with δu = χIδq and δp solves the corresponding
second adjoint equation (5.4). To be precise, we obtain the following result.

Proposition 5.7. Define the space U r = Lr(I,RNcon). For any r ∈ (2,∞] the mapping
F : R× U r → R× U r as given in (5.8) is semismooth with the generalized derivative DF given
in (5.9), i.e. we have

‖F (τ + δτ , q + δq)− F (τ, q)−DF (τ + δτ , q + δq)(δτ , δq)‖R×Ur ∈ o
(
‖(δτ , δq)‖R×Ur

)
for (δτ , δq)→ 0 in R× U r.

Proof. We decompose F into F = F2 ◦ F1 with the definitions

F1 : R× U r → R× U r × U (τ, q) 7→ (τ, q, Pad(q)),

F2 : R× U r × U → R× U r (τ, q, u) 7→
(∫

I ν̂H(u, yτ,u, pτ,u) dt
ντ (αq +B∗pτ,u)

)
.

The mapping F1 is Lipschitz continuous and semismooth with generalized derivative DF1 =
(1, Id, DPad) according to the properties of Pad (see, e.g. [33, Th. 3.49]). Furthermore, the
function F2 is (arbitrarily often) Fréchet differentiable in a neighborhood of Pad(U) = Uad,
which can be proved in a straightforward way as in Theorem 4.5. We skip the details but
mention that the most important step is to show differentiability of

(τ, u) ∈ R× U 7→ B∗pτ,u ∈ H1(I,RNcon)

and then use the embeddingH1(I,RNcon) ↪→ U r for any r ∈ [1,∞]. As a continuously Fréchet dif-
ferentiable function F2 is semismooth with respect to the classical derivative (see [33, Prop. 3.4]).
Therefore, we can apply the semismooth chain rule (see [33, Prop. 3.8]) to obtain semismoothness
of F = F2 ◦ F1.

To obtain the concrete form of DF as given in (5.9) we have applied some obvious algebraic
modifications to the first line of (5.9) and used that χIu = χIq.
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For the analysis of the semismooth Newton method we also need the bounded invertibility
of the operator DF (τ, q) in a neighborhood of the optimum. For this we require a second order
sufficient condition in the optimum.

Assumption 5.8. Assume that for (τ̄ , ū) ∈ R+ × Uad there exists a constant γ > 0, such that(
(δτ , δu), D2j(τ̄ , ū)(δτ , δu)

)
R×U ≥ γ

(
δτ2 + ‖δu‖2U

)
holds for all (δτ , δu) ∈ R× U .

Lemma 5.9. Suppose that (τ̄ , q̄) ∈ R+ × U are chosen such that Assumption 5.8 holds for
(τ̄ , Pad(q̄)). Then there exists a neighborhood N(τ̄ , q̄) ⊂ R×U of (τ̄ , q̄), such that the generalized
derivative

DF (τ, q) : R× U r → R× U r

is uniformly boundedly invertible for all (τ, q) ∈ N(τ̄ , q̄).

Proof. Define ū = Pad(q̄). By continuity of D2j(τ, u) in a neighboorhood of (τ̄ , ū), the coercivity
condition from Assumption 5.8 also holds in a neighborhood Ñ(τ̄ , ū) ⊂ R× U , with a possibly
smaller constant γ̃ > 0. We will show, that the neighborhood for (τ̄ , q̄) for the invertibility ofDF
can now be chosen as N(τ̄ , q̄) = { (τ, u+ (q̄ − ū)) | (τ, u) ∈ Ñ(τ̄ , ū)) }. In the following, we fix
some (τ, q) from this neighborhood. It is clear, that for all such q we have (τ, Pad(q)) ∈ N(τ̄ , ū).
We can separate DF into the two parts DF = DF1 +DF2 according to

DF (τ, q)(δτ , δq) =
(

0
αντδq

)
+
(∫

I ν̂
(
H ′u(·)χIδq +H ′y(·)δy +H ′p(·)δp

)
dt

ντB
∗δp+ δτ ν̂(αq +B∗p)

)

with δy and δp as in (5.9). Recall that χI = DPad(q). We note that DF2 depends only on the
values of δq on the inactive set, i.e. we have

DF2(τ, q)(δτ , δq) = DF2(τ, q)(δτ , χIδq) for all (δτ , δq) ∈ R× U.

Furthermore DF2 has a smoothing property, i.e. it maps R × U continuously to the smaller
space R×U r. We define the subspace of U induced by the inactive set as UI = {χIu | u ∈ U }
and introduce the pointwise multiplication operator

PI : R× U → R× UI , (δτ , δq) 7→ (δτ , χIδq),

which is the canonical orthogonal projection to the linear subspace R× UI . By comparing the
expressions for D2j and for DF , it is easy to check that

PI ◦DF (τ, q) = PI ◦D2j(τ, Pad(q)) ◦ PI (5.10)

holds in the sense of equality of operators on R × U . Having introduced these notations, we
turn to the proof. Consider the equation

DF (τ, q)(δτ , δq) = f = (fτ , fq) (5.11)

for some given right hand side f ∈ R × U r. To show that it has a solution (δτ , δq) ∈ R × U r,
we set δu = χIδq ∈ UI and look first for the solution of

PI ◦DF (τ, q)(δτ , δu) = PIf.

With (5.10) and Assumption 5.8 the operator PI ◦DF (τ, q) is symmetric and positive definite
on R× UI and we obtain a unique solution (δτ , δu) ∈ R× UI with

‖(δτ , χIδq)‖R×U = ‖(δτ , δu)‖R×U ≤ C‖PIf‖R×U ≤ C‖f‖R×U .
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It is clear that the constant C can be chosen independently of (τ, q) ∈ N(τ̄ , q̄) due to uniform
ellipticity and boundedness of D2j(τ, Pad(q)). To obtain a full solution, we use the splitting of
DF from above and get

DF (τ, q)(δτ , δq) = DF1(τ, q)(δτ , δq) +DF2(τ, q)(δτ , χIδq).

Rearranging (5.11) and using χIδq = δu yields

(0, αντδq) = DF1(τ, q)(δτ , δq) = f −DF2(τ, q)(δτ , δu), (5.12)

which implies that the second component of the full solution has to fulfill the pointwise equation
αντδq = fq − ντB∗δp− δτ ν̂(αq +B∗p). This can be solved for δq by using ντ ∈ Nad. By using
the smoothing property of DF2(τ, q) we obtain

‖δq‖Ur ≤ C‖f −DF2(τ, q)(δτ , δu)‖R×Ur ≤ C (‖f‖R×Ur + ‖(δτ , δu)‖R×U ) ,

with a generic constant C independent of (δτ , δu) and (τ, q) ∈ N(τ̄ , q̄). Combining this with
the previous estimate for (δτ , δu) we conclude the proof.

Theorem 5.10. Suppose that F (τ̄ , q̄) = 0 and that Assumption 5.8 holds at (τ̄ , Pad(q̄)). The
semismooth Newton method based on (δτ , δq) computed from

DF (τ, q)(δτ , δq) = −F (τ, q) (5.13)

with the update rule (τnew, qnew) = (τ, q) + (δτ , δq) converges locally superlinearly towards (τ̄ , q̄)
in the space R× U r.

Proof. We combine Proposition 5.7 and Lemma 5.9 (cf., e.g. [33, Th. 3.13]).

Remark 5.11. We assume that the constraint ντ ∈ Nad is never violated during the opti-
mization. In practice this will be realized by choosing an appropriate ν̂, e.g. ν̂ ≡ const, and a
globalization strategy.

6 Practical realization
In the following the necessary background is established that is needed for an efficient numer-
ical solution of the time optimal control problem. The discretization concept and a proper
globalization of the semismooth Newton method are outlined.

6.1 Discretization

For numerical realization we choose a consistent discretization of the objective, the constraints
and the derivatives in the sense that First-Discretize-Then-Optimize methods (FDTO) and First-
Optimize-Then-Discretize (FOTD) commute, and that we get the exact discrete derivatives.
We achieve this by using a standard FE-Galerkin method in space and a Petrov-Galerkin
method in time; cf. [3]. Since the space discretization is straightforward, we focus on the time
discretization.

The time grid is denoted by 0 = t0 < · · · < tM = T with stepsizes km = tm − tm−1
and subintervals Im = (tm, tm−1]. To apply the cG(1) Crank-Nicolson scheme for both state
equations, the trial space for v and w is chosen to consist of continuous piecewise linear functions,
i.e.

v(t)|Im = vm−1 + t−tm−1
km

(vm − vm−1),
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while the test space is set to piecewise constant functions ψ(t, x)|Im = ψm(x). For the adjoint
states p1 and p2 the trial and test space are interchanged, i.e. p1(t, x)|Im = p1,m(x), and due to
(4.12) the natural control discretization is given by piecewise constant functions, i.e. u(t)|Im =
um ∈ RNcon . With constant ν = 1 + τ we obtain the semidiscrete Lagrangian as

Lk(ν, u, y, p) = µ
2 (vM , vM ) +

M∑
m=1

{
kmν

(
κ+ α

2 |um|
2
)
− (p1,m, vm − vm−1)

− kmν
[ (
∇p1,m, σ∇vm−1/2

)
+ 1

2
(
p1,m, Iion(vm, wm−1) + Iion(vm−1, wm−1)

)
−
Ncon∑
n=1

(p1,m, χΩcon,n)un,m
]
−
(
p2,m, wm − wm−1

)
+ kmν

(
p2,m, G

(
vm−1/2, wm−1/2

))}
,

where vm−1/2 = 1
2(vm+vm−1) and wm−1/2 = 1

2(wm+wm−1). Here we additionally modified the
discretization of the nonlinearity in the term Iion(vm, wm−1) to achieve a decoupling of the ODE
variable w in the state equation. The time-stepping schemes for the state and adjoint equations
can be derived from Lk. Since both will always be realized for ν ≡ 1 according to Section 6.3,
they coincide with those derived in [19] for fixed final time. The second derivatives are obtained
analogously from the semidiscrete Lagrangian. Compared to those in [19], additional terms
arise on the right hand side of the tangent and the second adjoint equation, as well as in the
Hessian evaluation, due to the differentiation w.r.t. the parameter τ .

To get a more convenient representation for the second derivatives, we note that we can
replace the left hand side of the differential equations analogously to Remark 5.5 also on
the discrete level. Here we replace the corresponding expressions occurring in the discrete
Hamiltonian by

1
ν ∂ty|Im = 1

νkm
(ym − ym−1).

6.2 Implementation and globalization of the semismooth Newton method

In the following we describe the optimization algorithm TR-SN (Trust Region Semismooth
Newton), which is displayed in Appendix A.3. Therein, the Newton step is computed in a
similar way as in Lemma 5.9. First, we compute a step (δτ , δ̂q) that solves (5.13) up to
equivalence on the inactive set. This is done in a matrix-free fashion using the method of
conjugate gradients for the system matrix DF (τ, q) in combination with the inner product
(·, ·)I = (·, PI ·) induced by the projection to the inactive set as defined above. The use of the
CG method is justifed due to the relation to the Hessian (5.10). In the case of convergence, we
derive the full step (δτ , δq) from expression (5.12). Note, that we do not set δ̂q to zero on the
inactive set.

To achieve global convergence of the semismooth Newton method, it is embedded into a
trust region framework inspired by Steihaug-CG (see [28]). As a consequence we replace the CG
method by the modification proposed in [28, Sec. 2]. In contrast to the classical CG method,
Steihaug-CG is terminated early in case of too large steps or negative curvature of the Hessian.
This saves costly Hessian evaluations especially at the beginning of the optimization. Otherwise
we terminate the CG method according to the energy error (see [9, p. 171f]). Numerically, we
employ the weighted norm ‖(δτ , δ̂q)‖2 = ζ δτ2 + ‖δ̂q‖2I on R× U and the corresponding inner
product. Thereby, too aggressive or too conservative changes of the terminal time in the initial
iterates can be avoided via a proper choice of ζ > 0. Note that this modification does only
affect the steps where the CG method is terminated early.
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6.3 Efficient use of the time transformation

In the practical realization we employ a modification of the time transformation, which allows
us to extend existing optimal control codes to the time optimal case more conveniently. In
each step, instead of updating τnew = τ + δτ , we apply the time transformation δτ ν̂ to the
discretization of the time interval. After computation of an update (δτ , δq) from the Newton
equation (5.13), it is applied as

δqnew = q + δq, knew
m = (1 + δτ ν̂)km, tnew

m = tnew
m−1 + knew

m , τnew = 0. (6.1)

We can verify that this yields an equivalent algorithm (in terms of the iterates tf and q and
the corresponding functional values). Consequently, the state and adjoint solve always work
with τ = 0, ν ≡ 1, i.e. the corresponding code does not need to be changed with respect to
an optimal control problem with fixed tf . The resulting Newton system, adjoint and tangent
equations are displayed in Appendix A.2.

7 Numerical results
In the following we apply the monolithic TR-SN method to two examples, the stabilization of
an excitation wave and of a reentry wave. We investigate the convergence properties and show
the successful stabilization of the system. Furthermore, we compare the performance of the
proposed optimization method to a non-monolithic method.

The computations are carried out with Lagrange Q1 elements on a quadrilateral grid in
space using the finite element library deal.II [2]. Concerning the choice of the parameters in
the monodomain equations we followed [13] and chose:

η0 η1 η2 η3 vth vpk σ

1.5 4.4 0.012 1.0 13 100 diag(3 · 10−3, 3.1525 · 10−4)

7.1 Example 1: Excitation wave

In the first example, an “excitation wave” has to be stabilized via problem (Ptf ,µ). One control
function is applied on two disjoint electrode plates Ωcon,1. The initial data of the excitation
wave is generated by solving, with an equidistant step size of 0.01, the uncontrolled monodomain
equation with the discontinuous initial data (v0, w0) = (101× χΩexc(x), 0) on the time interval
(0, 0.17). Here χΩexc(x) stands for the characteristic function of the initially excited zone
Ωexc = [0.18, 0.22]×[0.18, 0.24]. The terminal value (v(0.17, ·), w(0.17, ·)) serves as initial data
for the optimal control experiment. Without control, the wave would spread through the domain
forming an ellipse, leading to a very large value of the objective functional.

The parameter values for the optimization run are given by:

α κ µ umax Ωexc Ωcon,1

10−5 1 100 1000 [0.18, 0.22]×[0.18, 0.24] [0.0, 0.1]×[0.1, 0.3] ∪ [0.3, 0.4]×[0.1, 0.3]

The domain Ω = (0, 0.4)2 is discretized in 64 × 64 quadrilateral cells (6 refinements). The
temporal grid is taken equidistantly with Nt = 151 points throughout the optimization, and
ν̂ ≡ 1. The optimization is initialized with tf = tf 0 = 6 (ms) and q0 = −umax χ[0,4](t).

For the algorithm we set ζ = 104 and used ‖F (τn, qn)‖ ≤ 10−5‖F (τ0, q0)‖ as relative stopping
criterion. The iteration terminates after 19 steps. Table 1 depicts the history of the objective
jn, the Newton residual Fn, which are given by

jn = j(τn, Pad(qn)), and Fn = ‖F (τn, qn)‖,
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the number of CG iterates in the Steihaug-CG method together with its exit flag (0 fully
converged, 2 negative curvature, 3 large step), the current guess for the terminal time tfn, the
number of inactive control points |I| (out of 150), and an indicator for superlinear convergence
of the objective sn = (jn − jn−1)/(jn−1 − jn−2). We observe fast decrease in the objective at
the beginning of the iterations, together with a reduction of the terminal time. From iteration
10 on, the CG iteration is fully resolved (flag 0). As soon as the inactive set is converged, the
first order optimality sharply decreases and we observe superlinear convergence sn → 0 at the
end of the iterations.

n jn Fn #CG flag tf n |I| sn

0 27.0215 1.0 · 100 2 2 6.000 49
1 24.0119 2.7 · 10−1 2 3 5.436 150
2 19.6478 3.1 · 10−1 2 3 4.377 150

R 3 19.6478 3.1 · 10−1 2 3 4.377 150
4 18.7142 2.0 · 10−1 4 3 4.037 150
5 18.6004 5.2 · 10−2 4 3 4.046 136
6 18.4606 3.7 · 10−2 4 3 4.084 129
7 18.1565 2.8 · 10−2 4 3 4.110 127
8 17.8473 4.7 · 10−1 6 3 4.143 127
9 16.7880 2.9 · 10−1 7 3 4.337 128

10 15.6300 7.2 · 10−1 14 0 4.682 127 1.09
11 14.8599 7.3 · 10−1 9 0 5.208 125 0.67
12 14.4844 3.5 · 10−1 16 0 5.277 125 0.49
13 14.3833 6.2 · 10−2 9 0 5.328 124 0.27
14 14.3723 5.9 · 10−2 7 0 5.319 124 0.11
15 14.3694 5.6 · 10−3 9 3 5.317 124 0.26
16 14.3688 1.6 · 10−2 7 0 5.309 123 0.22
17 14.3686 3.4 · 10−4 10 0 5.309 123 0.28
18 14.3686 1.4 · 10−4 12 0 5.308 123 0.08
19 14.3686 9.2 · 10−7 0 5.308 123 0.01

Table 1: Monolithic TR-SN run with umax = 1000.

Let us turn to the question whether the excitation wave is stabilized by applying the optimal
control. The optimal state fulfills −0.40 ≤ v̄(tf , x) ≤ 0.51, −0.023 ≤ w̄(tf , ·). Hence, the system
is stabilized according to Theorem 2.11 using

vmax = 0.51 < 13, wmin = −0.023 > −0.326, vmin = −2.3.

We also ran tests with the initialization for q changed to q0 = 0, i.e. we start with an
unhindered evolution of the excitation wave. In this case the TR-SN stops after 6 steps with a
different stationary point given by t̄f = 0.00025 and j̄ = 693, which does not allow defibrillation.
But increasing ζ to 107 recovers t̄f = 5.308 also from q0 = 0, in 52 iterations.

7.1.1 Comparison to a bilevel method

For comparison we also solved the same problems with the bilevel method from [19] stopping
at the same accuracy of 3 digits in the optimal terminal time t̄f . The bisectioning-based bilevel
method is started on the interval [4, 6]. It determines t̄f = 5.31 after 14 evaluations of the lower
level problem. The total number of evaluations of state, gradient and Hessian are given in
Table 2.

For this example, the monolithic method saves ≈ 90 percent of state, gradient and Hessian
evaluations. The large number of required evaluations in the bilevel method is related to the

29



fact that the lower level problem has to fully converge to exclude bad decisions for the upper
level. Therefore it invests more Hessian evaluations far away from the optimal terminal time. In
contrast, the monolithic method concentrates most of the Hessian evaluations in a neighborhood
of the optimal terminal time.

The increase in the average run time of an Hessian evaluation in the monolithic method due
to additional assembling operations was observed to be insignificant.

Method #state #grad #Hess

Monolithic 20 19 157
Bilevel 212 197 1685

Table 2: Total number of state, gradient and Hessian evaluations.

7.2 Example 2: Reentry wave

In the second example a reentry wave has to be stabilized successfully in minimal time and
with minimal energy input. This wave was generated as in [19, Ex. 1] for Ω = (0, 2)× (0, 0.8).
We choose the parameters

α κ µ umax Ωcon,1

10−3 1 1000 40 [0.0, 0.25]×[0.3, 0.55] ∪ [1.75, 2.0]×[0.3, 0.55]

The discretization is based onM = 1600 time steps and 128×64 cells in space. We initialize the
optimizer with q0 = −umaxχ[0,70](t) and tf 0 = 100, and choose ζ = 103. The TR-SN converges
in 68 steps reducing the first order optimality condition Fn to a relative accuracy of 10−6, see
Table 3. Again we observe superlinear convergence in the last steps.

n jn Fn #CG tf n |I| sn

0 156.05 4.9 · 100 1 100.000 479
10 98.9124 3.3 · 10−1 3 67.541 1600
20 74.3351 1.8 · 100 4 67.670 1600
30 69.1416 2.9 · 100 5 67.166 1600
40 68.7508 2.2 · 100 5 66.920 1600
50 68.3986 5.6 · 10−1 5 66.720 1583

R 60 68.2537 8.4 · 10−1 5 66.492 1579
61 68.2383 7.5 · 10−2 6 66.500 1578
62 68.2329 4.3 · 10−2 10 66.525 1577

R 63 68.2329 4.3 · 10−2 5 66.525 1577
64 68.2312 7.9 · 10−2 6 66.521 1577
65 68.2294 7.1 · 10−2 7 66.512 1576 1.13
66 68.2289 6.8 · 10−3 11 66.515 1576 0.28
67 68.2287 4.0 · 10−3 7 66.510 1576 0.26
68 68.2287 5.0 · 10−6 66.510 1576 0.00

Table 3: Monolithic TR-SN run with α = 10−3.

The method delivers the optimal terminal time t̄f = 66.51 and the time optimal control
ū depicted in blue in Figure 2. The time optimal control exhibits a multi-phasic structure,
compared to the monophasic initial control. Its energy input to the tissue is very low at
‖ū‖ = 56, and thus significantly lower compared to the initial control ‖u0‖ = 335. Again, we
confirm the successful stabilization via Theorem 2.11 by examination of the optimal state. It
fulfills −0.01 ≤ v̄(tf , ·) ≤ 0.20, 0 ≤ w̄(tf , ·).
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The plot in Figure 2 additionally shows the time optimal control for different values of α.
With decreasing α the controls exhibit a different switching structure, showing additional arcs
on the lower bound. Table 4 shows the corresponding parts of the objective. We note a rather
large increase in the norms of the optimal controls, when compared to the relatively small
reduction of the optimal terminal times t̄f .

0 20 40 60
−40

−20

0

20

40
α = 10−3

α = 10−5

α = 10−7

Figure 2: Time optimal controls for different α.

α t̄f ‖ū‖ ‖v̄(x, t̄f)‖L2

10−3 66.51 56 0.016
10−5 65.53 151 0.016
10−7 65.48 221 0.016

Table 4: Optimization results for different α.

(a) Snapshots of the optimal controlled state v̄(t, x), control domain in red.

(b) Corresponding snapshots for the uncontrolled reentry wave v(t, x) for u ≡ 0.

Figure 3: Snapshots of the controlled and uncontrolled state at t = 0, 1.33, 6 and t = 16, 48,
65 (upper row and lower row, respectively).
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Figure 3 shows snapshots of the optimal transmembrane voltage v̄(tm, x) at different times
tm and comparisons to the uncontrolled transmembrane voltage v(tm, x) at the same times.
The latter depicts the evolution of the reentry wave without applying an extracellular stimulus,
i.e. u ≡ 0. While the uncontrolled reentry wave persists, the time optimal control facilitates a
fast propagation of the wave front into the control region by its positive values; see Figure 3a
for t = 1.33. Afterwards, the negative values of ū(t) hinder the wave to leave the control region
to the north. Thereby, the wave is deflected to the south and falls apart.

A Appendix

A.1 A-priori analysis of the state equation

We prove the uniqueness result from Theorem 2.3.

Proposition A.1. The solution to (1.1) in the sense of Definition 2.1 is unique.

Proof. Let (v1, w1), (v2, w2) be two solutions of (1.1) with the same initial conditions v0, w0
and the same right hand side Ie. We set δv = v1 − v2 and δw = w1 − w2. We subtract the
equations for v1 and v2 from each other and obtain

∂tδv −∇ · σ∇δv +R(v1)−R(v2) + η1(v1w1 − v2w2) = 0

with the cubic nonlinearity R as in the proof of Theorem 2.7. Clearly it holds v1w1 − v2w2 =
δv w1 + v2 δw. We test this equation with χ(0,t)δv for some t > 0 to obtain

∫ t

0
(∂tδv, δv) + (σ∇δv,∇δv) + (R(v1) − R(v2), δv) ds = −η1

∫ t

0
(δv w1, δv) + (v2 δw, δv) ds.

To estimate the term containing the cubic nonlinearity on the left hand side we use the estimate
from below given by

(R(v1)−R(v2), δv) =
∫ 1

0
(R′(θv1 + (1− θ)v2) δv, δv) dθ ≥ −c0‖δv‖2L2 ,

which is a consequence of R′(·) ≥ −c0 (cf. the proof of Theorem 2.7). The two terms on the
right hand side are treated with Hölder’s inequality in space, which results in∣∣∣∣∫ t

0
(δv w1, δv) ds

∣∣∣∣ ≤ ∫ t

0
‖δv2‖L2‖w1‖L2 ds ≤ C

∫ t

0
‖δv‖2L4 ds,∣∣∣∣∫ t

0
(v2 δw, δv) ds

∣∣∣∣ ≤ ∫ t

0
‖v2‖L4‖δw‖L2‖δv‖L4 ds ≤

∫ t

0
‖v2‖2L4‖δw‖2L2 + ‖δv‖2L4 ds.

for a constant C that is independent of δv, using that w1 is bounded in L∞(I, L2) by Proposi-
tion 2.4. Now, for any ϕ ∈ H1, we can estimate the L4 norm of ϕ by

‖ϕ‖L4 ≤ ‖ϕ‖1/4L2 ‖ϕ‖3/4L6 ≤ c3/4
d ‖ϕ‖

1/4
L2 ‖ϕ‖3/4H1 ≤

c3
d

4 ε3 ‖ϕ‖L2 + 3 ε
4 ‖ϕ‖H1

with ε > 0 arbitrary, which is a consequence of Hölder’s inequality, the Sobolev embedding
H1 ↪→ L6 in up to three space dimensions (with constant cd), and Young’s inequality. We apply
this to ‖δv‖2L4 (for each s ∈ (0, t)), which leads to the estimate∣∣∣∣∫ t

0
(δv w1, δv) ds

∣∣∣∣+ ∣∣∣∣∫ t

0
(v2 δw, δv) ds

∣∣∣∣ ≤ C ∫ t

0
ε2‖δv‖2H1 + ε−6‖δv‖2L2 + ‖v2‖2L4‖δw‖2L2 ds,
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for arbitrary ε > 0, where C does not depend on δv, δw, or ε. Combining the estimates, using
the integration by parts formula in time and the positive definiteness of the elliptic form, we
obtain

‖δv(t)‖2L2 +
∫ t

0
γ‖δv‖2H1 ds ≤ C

∫ t

0
(1 + ε−6)‖δv‖2L2 + ε2‖δv‖2H1 + ‖v2‖2L4‖δw‖2L2 ds

for γ > 0 and C independent of δv and δw. By a sufficiently small choice of ε, the H1 norm on
the right-hand side can be absorbed into the left-hand side, which leads to

‖δv(t)‖2L2 ≤ C
∫ t

0
‖δv‖2L2 + ‖v2‖2L4‖δw‖2L2 ds.

By a quick computation we can also obtain a corresponding inequality for δw as

‖δw(t)‖2L2 ≤ C
∫ t

0
‖δv‖2L2 + ‖δw‖2L2 ds.

Adding both, we obtain

‖δv(t)‖2L2 + ‖δw(t)‖2L2 ≤ C
∫ t

0

(
1 + ‖v2‖2L4

) (
‖δv(t)‖2L2 + ‖δw(t)‖2L2

)
ds,

for every t ∈ I. Note that s 7→ (1 + ‖v2(s)‖2L4) is integrable, since v2 ∈ L4(Q). By Gronwall’s
inequality, it now follows that δv = δw = 0.

A.2 Newton residual, adjoint and tangent equations

Here, we give the full formulas for the Newton residual F , its derivative DF and the auxiliary
equations. Using the time transformation iteratively as explained in Section 6.3 together with
the simplification from Remark 5.5, the Newton system DF (0, q)(δτ , δq) = −F (0, q) can be
expressed as

F (0, q) =

 ∫ T
0 ν̂

(
κ+ α

2 |Pad(q)|2 + 〈∂tv, p1〉+ 〈∂tw, p2〉
)

dt(
αqn +

∫
Ωcon,n

p1 dx
)
n=1...Ncon

 ,

DF (0, q)
(
δτ
δq

)
=


∫ T

0 ν̂
(∑Ncon

n=1 (αqn +
∫
Ωcon,n

p1)χInδqn − 〈δv, ∂tp1〉 · · ·

· · · − 〈δw, ∂tp2〉+ 〈∂tv, δp1〉+ 〈∂tw, δp2〉
)

dt(
αδqn +

∫
Ωcon,n

δp1 + δτ ν̂(αqn +
∫
Ωcon,n

p1)
)
n=1...Ncon

 .
Furthermore, we give the auxiliary equations in their full, non-abstract formulation (which
incorporate the natural boundary conditions). The adjoint equations at current state (v, w) are
given by

−∂tp1 −∇ · σ∇p1 + I ′ion,v p1 +G′v p2 = 0,
−∂tp2 + I ′ion,w p1 +G′w p2 = 0,
p1(T ) = µ v(T ), p2(T ) = 0.

The tangent equations at current state (v, w) are given by

∂tδv −∇ · σ∇δv + I ′ion,v δv + I ′ion,w δw =
∑Ncon
n=1 χInχΩcon,nδqn + δτ ν̂ ∂tv,

∂tδw +G′v δv +G′w δw = δτ ν̂ ∂tw,

δv(0) = 0, δw(0) = 0.
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The second adjoint equations at current state (v, w) and adjoint state (p1, p2) are given by

−∂tδp1 −∇ · σ∇δp1 + I ′ion,v δp1 +G′v δp2 = −I ′′ion,vv p1 δv − η1 p1 δw − δτ ν̂ ∂tp1,

−∂tδp2 + I ′ion,w δp1 +G′w δp2 = −η1 p1 δv − δτ ν̂ ∂tp2,

δp1(T ) = µ δv(T ), δp2(T ) = 0.

A.3 Optimization algorithm TR-SN

1. Initialize q0, maximal radius ∆max > 0, initial radius 0 < ∆0 ≤ ∆max and set k = 0.

2. Compute F (0, qk) from (5.8) (state and adjoint solve) and determine inactive sets.

3. Compute (δτ, δ̂q) from (5.13) by Steihaug-CG using the inner product on the inactive set
(·, ·)I .

4. If Steihaug-CG is fully converged (i.e. [28, (2.3)] is fulfilled), then compute δq from (5.12).

5. Calculate %act = j(0, Pad(qk))− j(δτ , Pad(qk + δq)) and decide:

• If (%act < −ε) then reject step:
– Set qk+1 = qk and ∆k+1 = 0.2∆k.

• Else accept step:
– Set qk+1 = qk + δq.
– Set ϕk(δτ , δq) =

(
(δτ , δq), F (0, qk)

)
I

+ 1
2

(
(δτ , δq), H(0, qk)(δτ , δq)

)
I
.

– Set %k = %act

−ϕk(δq) and update the radius:

∆k+1 =


min(2‖δq‖I , ∆max), if %k ∈ [0.7, 1.3] (model good)
0.5‖δq‖I , elseif %k 6∈ [0.25, 1.75] (model bad)
∆k, else.

– Apply the time transformation as in (6.1).

6. If stopping criteria are not fulfilled, set k = k + 1 and goto 2.
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