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Abstract. The main goal of the paper is to establish that the 𝐿1 norm of jumps of the normal derivative across element boundaries and the
𝐿1 norm of the Laplacian of a piecewise polynomial finite element function can be controlled by corresponding weighted discrete 𝐻2 norm
on convex polyhedral domains. In the finite element literature such results are only available for piecewise linear elements in two dimensions
and the extension to convex polyhedral domains is rather technical. As a consequence of this result, we establish almost pointwise stability of
the Ritz projection and the discrete resolvent estimate in 𝐿∞ norm.
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1. Introduction. As a simple model of a second order elliptic partial differential equation we consider,

−∆𝑢(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω,

𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω,
(1.1)

with a right-hand side 𝑓 ∈ 𝐿𝑟(Ω), 𝑟 > 3
2 on a convex polyhedral domain Ω ⊂ R3. Let 𝑢ℎ be the Ritz projection

of 𝑢 onto the space of continuous piecewise polynomial finite element functions 𝑉ℎ on the mesh 𝒯 consisting of
elements 𝜏 . The aim of this paper is to establish some important weighted and pointwise results for 𝑢ℎ in three
space dimensions that are not available in the literature but required in a number of applications (cf. [22, 23, 24]).

Our main technical result is Lemma 2.6 that shows∑︁
𝜏∈𝒯

(︀
‖∆𝑣ℎ‖𝐿1(𝜏) + ‖[[𝜕𝑛𝑣ℎ]]‖𝐿1(𝜕𝜏)

)︀
≤ 𝐶|lnℎ| 12

(︁
‖𝜎 3

2 ∆ℎ𝑣ℎ‖𝐿2(Ω) + ‖𝜎 1
2∇𝑣ℎ‖𝐿2(Ω)

)︁
, ∀𝑣ℎ ∈ 𝑉ℎ, (1.2)

where the weight 𝜎 describing an ℎ-dependent regularized distance is introduced in (2.6) and ∆ℎ is the discrete
Laplace operator defined in (2.4). This estimate says that the 𝐿1 norm of jumps of the normal derivative across
element boundary as well as the 𝐿1 norm of the Laplacian of any piecewise polynomial function can be controlled
by the properly weighted discrete 𝐻2-norm. A corresponding result for piecewise linear functions was proved
by Rannacher [31] in two dimensions and was used to establish pointwise stability of the semidiscrete and fully
discrete backward Euler solution of parabolic problems on convex polygonal domains. However, in order to
extend this result to three dimensions one has overcome some serious technical obstacles. To accomplish this, we
require several additional technical lemmas. Some results are standard, however Lemma 2.5 is rather peculiar and
can be thought as weighted Gagliardo-Nirenberg interpolation inequality. It shows that for any 𝑤 ∈ 𝐻1

0 (Ω), any
𝛼, 𝛽 ∈ R with 𝛼 ≥ − 1

2 and any 1 ≤ 𝑝 ≤ ∞, there holds,

‖𝜎𝛼𝑤‖2𝐿2(Ω) ≤ 𝐶‖𝜎𝛼−𝛽𝑤‖𝐿𝑝(Ω)‖𝜎𝛼+1+𝛽∇𝑤‖𝐿𝑞(Ω),
1

𝑝
+

1

𝑞
= 1. (1.3)

This result is an extension and a generalization of Lemma 3.4 from [1] and provides one with a great flexibility
in manipulating weighted spaces, especially for Galerkin finite element solutions. Thus, by choosing 𝛽 = 0 and
𝑝 = 𝑞 = 2, we obtain

‖𝜎𝛼𝑤‖𝐿2(Ω) ≤ 𝐶‖𝜎𝛼+1∇𝑤‖𝐿2(Ω), ∀𝑤 ∈ 𝐻1
0 (Ω), ∀𝛼 ≥ −1

2
,

i.e. the estimate allows, for example, to ”trade” derivatives for weights. An estimate similar to (1.3) with a weight
function |𝑥| instead of 𝜎(𝑥) can be found in [6].

These two technical lemmas, having an independent interest, are powerful results and have a variety of appli-
cations. One application provided in this paper is almost stability of the Ritz projection in 𝐿∞ norm, (cf. Theorem
3.1),

‖𝑢ℎ‖𝐿∞(Ω) ≤ 𝐶|lnℎ|‖𝑢‖𝐿∞(Ω). (1.4)
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Due to the fact that the Ritz-Projection is an identity on 𝑉ℎ, the above stability result is equivalent to the almost
best approximation property of the error

‖𝑢− 𝑢ℎ‖𝐿∞(Ω) ≤ 𝐶|lnℎ| inf
𝜒∈𝑉ℎ

‖𝑢− 𝜒‖𝐿∞(Ω). (1.5)

We would like to mention that estimates (1.4) and (1.5) for piecewise linear elements are asymptotically sharp and
|lnℎ| is necessary as was shown in the example of Haverkamp [20] in two dimensional setting, cf. also [16]. It is
known, that the factor |lnℎ| can be removed for higher order finite elements on smooth domains, see, e.g., [35].
However, whether |lnℎ| is necessary for higher order elements on convex polyhedral domains is an open question.

The second application provided in this paper is the following discrete resolvent estimate (cf. Theorem 4.3),

‖(𝑧 + ∆ℎ)−1𝜒‖𝐿∞(Ω) ≤
𝐶|lnℎ|
|𝑧 − 𝜆|

‖𝜒‖𝐿∞(Ω), for 𝑧 ∈ C∖Σ𝜆,𝛾 , for all 𝜒 ∈ 𝑉ℎ, (1.6)

where

Σ𝜆,𝛾 = {𝑧 ∈ C : | arg (𝑧 − 𝜆)| ≤ 𝛾}, (1.7)

for any 𝛾 ∈ (0, 𝜋
2 ) and 𝜆 ∈ [0, 𝜆0], where 𝜆0 > 0 is the smallest eigenvalue of −∆ with homogeneous Dirichlet

boundary conditions. Such resolvent estimates are useful in treatment of certain fully discrete schemes in 𝐿∞

norm (cf. [34], [43] chap. 9) and we require them to establish fully discrete maximal parabolic regularity in [22].
In two space dimensions, such resolvent estimates were established in [3], Lemma 6.1. For smooth bounded
domains in R𝑁 with 𝑁 ≥ 2 the logarithmic term can be removed [4], but the analysis there requires the following
continuous resolvent estimate

‖(𝑧 + ∆)−1𝑣‖𝑊 1,∞(Ω) ≤
𝐶

(1 + |𝑧|) 1
2

‖𝑣‖𝐿∞(Ω),

which for convex polyhedral domains we were not able to locate in the literature. If such a resolvent estimate
is valid on convex polyhedral domains then following the analysis similar to [4], the logarithmic term can be
removed as well. However, for our applications in [22, 24] the above estimate with |lnℎ| is sufficient. Results
(1.2)-(1.6) constitute the main results of the paper.

Pointwise error estimates in the finite element literature for the second order elliptic problems started in the
works of Nitsche [28, 27], Natterer [26], Scott [41], and Frehse and Rannacher [15]. Since then a lot of work
was done in various settings [11, 12, 30, 32, 33, 35, 36, 37, 38, 39]. Nevertheless, results in three dimensions are
rather scarce, especially on non-smooth domains. Rannacher [30] and Schatz and Wahlbin [35] were the firsts who
showed best approximation property in 𝐿∞ and 𝑊 1,∞ norms on smooth bounded domains in R𝑁 with 𝑁 ≥ 2,
however results in [35] targeted interior error estimates and the global results were just byproducts. Later in [38],
the effect of a ”skin” layer was analyzed. The first stability result for the Ritz projection in 𝑊 1,∞ norm without
a logarithmic term on non-smooth (convex polygonal) domains were obtained by Rannacher and Scott in [32].
Using a similar technique, such a result for three dimensional polyhedral domains was first provided in the book
[5] with some additional geometrical restrictions beyond convexity. This restriction was removed in Guzmán et
al. [19] and later extended to more general meshes (cf. Demlow et al. [8]). However, the estimate (1.4) is known
only on smooth domains (cf. [38]) or two dimensional polygonal domains [33]. To cover the case of a three-
dimensional convex polyhedral domain, we among other things exploited the idea from [19] and used the 𝐶1,𝜆

regularity (cf. Lemma 2.9 and the proof of Lemma 2.10) instead of the 𝑊 2,𝑝(Ω) regularity with 𝑝 > 3, which
would require additional geometrical restrictions, cf. [5].

Currently, in the finite element literature on pointwise error estimates on unstructured meshes, there exist
two popular techniques, global weighted technique, due to J. Nitsche, and the technique based on local energy
estimates due to Schatz and Wahlbin. Both techniques are natural from an analytical point of view and more or
less equivalent, meaning that the same results can be established by either technique. Thus, adapting a certain
technique for a proof is just a matter of taste. In this paper both techniques are used. Although, the proof of
Lemma 2.6 is based on a weighted technique, the proof of Lemma 2.10 is based on local energy technique, which
appeared more convenient for us in that particular proof. There is also a technique based on Campanato spaces
due to Dolzmann [9], but it is technically more involved and has never caught up much support.

The rest of the paper is organized as follows. In Section 2 we introduce the notation, define the weight
function and weighted norms. Then we continue with a series of lemmas including the key results Lemma 2.5 and
Lemma 2.6. In Section 3, we establish (1.4) in Theorem 3.1 and in Section 4, we establish the resolvent estimate
(1.6) in Theorem 4.3.
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2. Notation and weighted norm estimates. Throughout the paper we use the usual notation for Lebesgue
and Sobolev spaces. For any set 𝐷, we will denote the 𝐿2(𝐷) norm by ‖·‖𝐷. Other norms we will write explicitly.
We denote by (·, ·) the 𝐿2(Ω) inner product and we will specify a subdomain by a subscript in the case it is not
the whole Ω.

Let 𝒯 denote a quasi-uniform triangulation of Ω with a mesh size ℎ, i.e., 𝒯 = {𝜏} is a partition of Ω into
tetrahedrons 𝜏 of diameter ℎ𝜏 such that for ℎ = max𝜏 ℎ𝜏 ,

diam(𝜏) ≤ ℎ ≤ 𝐶|𝜏 | 13 , ∀𝜏 ∈ 𝒯

hold. Let 𝑉ℎ be the set of all functions in 𝐻1
0 (Ω) that are polynomial of degree 𝑘, 𝑘 ≥ 1 on each 𝜏 , i.e. 𝑉ℎ

is the usual space of Lagrangian finite elements of degree 𝑘. For the space 𝑉ℎ we will utilize the 𝐿2-Projection
𝑃ℎ : 𝐿2(Ω) → 𝑉ℎ defined by

(𝑃ℎ𝑣, 𝜒)Ω = (𝑣, 𝜒)Ω, ∀𝜒 ∈ 𝑉ℎ, (2.1)

the Ritz-Projection 𝑅ℎ : 𝐻1
0 (Ω) → 𝑉ℎ defined by

(∇𝑅ℎ𝑣,∇𝜒)Ω = (∇𝑣,∇𝜒)Ω, ∀𝜒 ∈ 𝑉ℎ, (2.2)

and the usual nodewise interpolant 𝐼ℎ : 𝐶0(Ω) → 𝑉ℎ with usual approximation properties (cf., e. g., [7, Theo-
rem 3.1.5])

‖𝑢− 𝐼ℎ𝑢‖𝐿𝑞(Ω) ≤ 𝐶ℎ2+3( 1
𝑞−

1
𝑝 )‖𝑢‖𝑊 2,𝑝(Ω), for 𝑞 ≥ 𝑝 >

3

2
. (2.3)

Moreover we introduce the discrete Laplace operator ∆ℎ : 𝑉ℎ → 𝑉ℎ by

(−∆ℎ𝑣ℎ, 𝜒)Ω = (∇𝑣ℎ,∇𝜒)Ω, ∀𝜒 ∈ 𝑉ℎ. (2.4)

Let 𝑥0 ∈ Ω be a fixed (but arbitrary) point. Associated to this point we introduce a smooth Delta function [44,
Lemma 2.2], which we will denote by 𝛿 = 𝛿𝑥0

, cf. also [40]. This function is supported in one cell, denoted by
𝜏0, and satisfies

(𝜒, 𝛿)𝜏0 = 𝜒(𝑥0), ∀𝜒 ∈ P𝑘(𝜏0).

In addition from [44, Lemma 2.2] we also have

‖𝛿‖𝑊 𝑠,𝑝(Ω) ≤ 𝐶ℎ−𝑠−3(1− 1
𝑝 ), 1 ≤ 𝑝 ≤ ∞, 𝑠 = 0, 1, 2. (2.5)

Thus in particular ‖𝛿‖𝐿1(Ω) ≤ 𝐶, ‖𝛿‖Ω ≤ 𝐶ℎ− 3
2 , and ‖𝛿‖𝐿∞(Ω) ≤ 𝐶ℎ−3. Next we introduce a weight function

𝜎(𝑥) =
√︀
|𝑥− 𝑥0|2 + 𝐾2ℎ2, (2.6)

where 𝐾 > 0 is sufficiently large constant to be chosen later. One can easily check that 𝜎 satisfies the following
properties, (cf., e.g., [7], Sec. 3.3),

‖𝜎− 3
2 ‖Ω ≤ 𝐶|lnℎ| 12 , (2.7a)

|∇𝑙𝜎| ≤ 𝐶𝜎1−𝑙, 𝑙 = 1, 2, . . . , (2.7b)
max

𝜏
𝜎 ≤ 𝐶 min

𝜏
𝜎, ∀𝜏 ∈ 𝒯 . (2.7c)

Next we require an estimate in weighted norms for the 𝐿2-Projection 𝑃ℎ. For piecewise linear case in two dimen-
sions this result is established in Lemma 7.1 in [13]. In the appendix we provide a proof for arbitrary polynomial
order.

LEMMA 2.1. There exist 𝜀 > 0 and a constant 𝐶 > 0, such that for any positive function 𝜙 : Ω → R+

satisfying ℎ𝑙|∇𝑙𝜙| ≤ 𝜀𝜙 for all 𝑙 = 1, 2, . . . , 𝑘 and any 𝑣 ∈ 𝐿2(Ω), we have

‖𝜙𝑃ℎ𝑣‖Ω ≤ 𝐶‖𝜙𝑣‖Ω.



4 DMITRIY LEYKEKHMAN AND BORIS VEXLER

The next lemma provides error estimates for the projection and the interpolation errors in weighted norms. In
what follows we will use the discrete 𝐿2 norm ‖·‖ℎ,Ω for functions defined cellwise:

‖𝑧‖2ℎ,Ω =
∑︁
𝜏∈𝒯

‖𝑧‖2𝐿2(𝜏).

LEMMA 2.2. Let 𝑣 ∈ 𝐶0(Ω) ∩ 𝐻1
0 (Ω) be cellwise in 𝐻 𝑙, i.e. 𝑣|𝜏 ∈ 𝐻 𝑙(𝜏) for all 𝜏 ∈ 𝒯 and some

2 ≤ 𝑙 ≤ 𝑘 + 1. Then the following estimates hold for any 𝛼 ∈ R and 𝐾 large enough:

‖𝜎𝛼(𝑣 − 𝐼ℎ𝑣)‖Ω + ℎ‖𝜎𝛼∇(𝑣 − 𝐼ℎ𝑣)‖Ω + ℎ2‖𝜎𝛼∇2(𝑣 − 𝐼ℎ𝑣)‖ℎ,Ω ≤ 𝑐ℎ𝑙‖𝜎𝛼∇𝑙𝑣‖ℎ,Ω, (2.8)

‖𝜎𝛼(𝑣 − 𝑃ℎ𝑣)‖Ω + ℎ‖𝜎𝛼∇(𝑣 − 𝑃ℎ𝑣)‖Ω + ℎ2‖𝜎𝛼∇2(𝑣 − 𝑃ℎ𝑣)‖ℎ,Ω ≤ 𝑐ℎ𝑙‖𝜎𝛼∇𝑙𝑣‖ℎ,Ω. (2.9)

Proof. The estimates (2.8) are straightforward due to the local nature of the nodewise interpolant 𝐼ℎ and due
to estimate (2.7c). The estimate for the first term in (2.9) is standard for 𝛼 = 0. For 𝛼 ̸= 0 we consider 𝜙 = 𝜎𝛼.
There holds for any 𝑙 = 1, 2, . . . , 𝑘

|∇𝑙𝜙| = |∇𝑙(𝜎𝛼)| ≤ 𝐶𝛼𝜎
𝛼−𝑙 ≤ 𝐶𝛼𝜎

−𝑙𝜙 ≤ 𝐶𝛼 𝐾−𝑙ℎ−𝑙𝜙,

where we used (2.7b) and the fact that 𝜎 ≥ 𝐾ℎ. For 𝐾 large enough this 𝜙 fulfills the condition of Lemma 2.1
and we get

‖𝜎𝛼(𝑃ℎ𝑣 − 𝐼ℎ𝑣)‖Ω = ‖𝜎𝛼𝑃ℎ(𝑣 − 𝐼ℎ𝑣)‖Ω ≤ 𝐶 ‖𝜎𝛼(𝑣 − 𝐼ℎ𝑣)‖Ω.

Therefore

‖𝜎𝛼(𝑣 − 𝑃ℎ𝑣)‖Ω ≤ 𝐶‖𝜎𝛼(𝑣 − 𝐼ℎ𝑣)‖Ω

and we get the estimate of the first term (2.9) using (2.8). The estimate for the second term in (2.9) is obtained by
the inverse inequality, which holds in weighted norms again due to (2.7c).

The next lemma is a superconvergence result in weighted norms.
LEMMA 2.3. Let 𝑣ℎ ∈ 𝑉ℎ. Then the following estimates hold for any 𝛼, 𝛽 ∈ R and 𝐾 large enough:

‖𝜎𝛼(Id−𝐼ℎ)(𝜎𝛽𝑣ℎ)‖Ω + ℎ‖𝜎𝛼∇(Id−𝐼ℎ)(𝜎𝛽𝑣ℎ)‖Ω ≤ 𝑐ℎ‖𝜎𝛼+𝛽−1𝑣ℎ‖Ω, (2.10)

‖𝜎𝛼(Id−𝑃ℎ)(𝜎𝛽𝑣ℎ)‖Ω + ℎ‖𝜎𝛼∇(Id−𝑃ℎ)(𝜎𝛽𝑣ℎ)‖Ω ≤ 𝑐ℎ‖𝜎𝛼+𝛽−1𝑣ℎ‖Ω. (2.11)

Proof. We prove the estimate for the first term in (2.10). By the estimate (2.8) from the previous lemma we
obtain,

‖𝜎𝛼(Id−𝐼ℎ)(𝜎𝛽𝑣ℎ)‖Ω ≤ 𝑐ℎ𝑘+1‖𝜎𝛼∇𝑘+1(𝜎𝛽𝑣ℎ)‖ℎ,Ω.

Using the multi-index notation with 𝛾 ∈ N3, we have

‖𝜎𝛼∇𝑘+1(𝜎𝛽𝑣ℎ)‖2ℎ,Ω =
∑︁

|𝛾|=𝑘+1

‖𝜎𝛼𝜕𝛾(𝜎𝛽𝑣ℎ)‖2ℎ,Ω.

Using the Leibniz’s formula for 𝜕𝛾(𝜎𝛽𝑣ℎ) and noticing that 𝜕𝛾𝑣ℎ = 0 on a cell 𝜏 for |𝛾| = 𝑘 + 1 (since 𝑣ℎ is a
polynomial of degree at most 𝑘 on 𝜏 ), for each 𝜏 ∈ 𝒯 we obtain:

𝜕𝛾(𝜎𝛽𝑣ℎ) =
∑︁

|𝛿|>0,𝛿≤𝛾

(︂
𝛾

𝛿

)︂
𝜕𝛿(𝜎𝛽)𝜕𝛾−𝛿𝑣ℎ,

where the inequality 𝛿 ≤ 𝛾 for multi-indices is understood as 𝛿𝑖 ≤ 𝛾𝑖 for 𝑖 = 1, 2, 3 and the binomial coefficient
is defined as (︂

𝛾

𝛿

)︂
=

(︂
𝛾1
𝛿1

)︂(︂
𝛾2
𝛿2

)︂(︂
𝛾3
𝛿3

)︂
.
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By the property of 𝜎, namely (2.7b), we have

|𝜕𝛿(𝜎𝛽)| ≤ 𝑐𝜎𝛽−|𝛿|.

Therefore we get for any 𝜏 ∈ 𝒯 and any 𝛾 with |𝛾| = 𝑘 + 1,

ℎ𝑘+1‖𝜎𝛼𝜕𝛾(𝜎𝛽𝑣ℎ)‖𝜏 ≤ 𝑐ℎ𝑘+1
∑︁

|𝛿|>0,𝛿≤𝛾

‖𝜎𝛼𝜕𝛿(𝜎𝛽)𝜕𝛾−𝛿𝑣ℎ‖𝜏 ≤ 𝑐ℎ𝑘+1
∑︁

|𝛿|>0,𝛿≤𝛾

‖𝜎𝛼+𝛽−|𝛿|𝜕𝛾−𝛿𝑣ℎ‖𝜏 .

Using property (2.7c) of 𝜎 and the inverse inequality ‖𝜕𝛾−𝛿𝑣ℎ‖𝜏 ≤ 𝑐ℎ|𝛿|−𝑘−1‖𝑣ℎ‖𝜏 , we obtain

ℎ𝑘+1
∑︁

|𝛿|>0,𝛿≤𝛾

‖𝜎𝛼+𝛽−|𝛿|𝜕𝛾−𝛿𝑣ℎ‖𝜏 ≤ 𝐶 ℎ
∑︁

|𝛿|>0,𝛿≤𝛾

ℎ|𝛿|−1‖𝜎𝛼+𝛽−|𝛿|𝑣ℎ‖𝜏 .

Finally using ℎ ≤ 𝜎, we obtain the desired estimate.
The estimates for the second term in (2.10) and estimates (2.11) follow by similar arguments as in the proof

of Lemma 2.2.
The next lemma shows how the weight 𝜎 compensates the singularity of the regularized Delta function 𝛿.
LEMMA 2.4. There holds

‖𝜎 3
2 𝛿‖Ω + ℎ‖𝜎 3

2∇𝛿‖Ω + ℎ2‖𝜎 3
2∇2𝛿‖Ω + ‖𝜎 3

2𝑃ℎ𝛿‖Ω ≤ 𝐶. (2.12)

Proof. Using that the support of 𝛿𝑥0 is in a single element 𝜏0 and using (2.5), we have

‖𝜎 3
2 𝛿‖2Ω =

∫︁
𝜏0

|𝜎 3
2 𝛿|2𝑑𝑥 ≤ ‖𝛿‖2𝐿∞(Ω)

∫︁
𝜏0

(|𝑥− 𝑥0|2 + 𝐾2ℎ2)
3
2 𝑑𝑥 ≤ 𝐶ℎ−6ℎ3|𝜏0| ≤ 𝐶.

Similarly we get

‖𝜎 3
2∇𝛿‖2Ω =

∫︁
𝜏0

|𝜎 3
2∇𝛿|2𝑑𝑥 ≤ ‖∇𝛿‖2𝐿∞(Ω)

∫︁
𝜏0

(|𝑥− 𝑥0|2 + 𝐾2ℎ2)
3
2 𝑑𝑥 ≤ 𝐶ℎ−8ℎ3|𝜏0| ≤ 𝐶ℎ−2

and thus ‖𝜎 3
2∇𝛿‖Ω ≤ 𝑐ℎ−1. Analogously we obtain the estimate ‖𝜎 3

2∇2𝛿‖Ω ≤ 𝑐ℎ−2. For the last term in (2.12)
we obtain by (2.9)

‖𝜎 3
2𝑃ℎ𝛿‖Ω ≤ ‖𝜎 3

2 𝛿‖Ω + ‖𝜎 3
2 (𝑃ℎ − 𝐼)𝛿‖Ω ≤ ‖𝜎 3

2 𝛿‖Ω + 𝑐ℎ2‖𝜎 3
2∇2𝛿‖Ω ≤ 𝐶.

The idea of the next lemma comes from the two-dimensional argument used within the proof of Lemma 3.4
from [1]. However, the proof of the three-dimensional result is different. A similar estimate with the weight being
the distance function |𝑥| instead of 𝜎(𝑥) can be found in [6].

LEMMA 2.5. There exists a constant 𝐶 independent of 𝐾 and ℎ such that for any 𝑓 ∈ 𝐻1
0 (Ω), any 𝛼, 𝛽 ∈ R

with 𝛼 ≥ − 1
2 and any 1 ≤ 𝑝 ≤ ∞, 1

𝑝 + 1
𝑞 = 1 holds:

‖𝜎𝛼𝑓‖2Ω ≤ 𝐶‖𝜎𝛼−𝛽𝑓‖𝐿𝑝(Ω)‖𝜎𝛼+1+𝛽∇𝑓‖𝐿𝑞(Ω),

provided ‖𝜎𝛼−𝛽𝑓‖𝐿𝑝(Ω) and ‖𝜎𝛼+1+𝛽∇𝑓‖𝐿𝑞(Ω) are bounded.
Proof. We assume that the domains Ω is contained in a ball 𝐵𝑅(𝑥0) centered in 𝑥0 with the radius 𝑅 suf-

ficiently large and denote by 𝑟 = 𝑟(𝑥) = |𝑥 − 𝑥0| the distance to 𝑥0. We define 𝑓 on the whole 𝐵𝑅(𝑥0) by
extending it by 0 outside of Ω. In the following we will use spherical coordinates (𝑟, 𝜃, 𝜙) and the notation

𝜔 = (𝜃, 𝜙) ∈ 𝒮 := (0, 𝜋) × (0, 2𝜋).

Moreover, we will use the convention 𝑓 = 𝑓(𝑥) = 𝑓(𝑟, 𝜔) as well as 𝜎 = 𝜎(𝑥) = 𝜎(𝑟). Notice that

𝑑

𝑑𝑟
(𝜎(𝑟)) =

𝑑

𝑑𝑟
(𝜎(𝑟) − 𝜎(0)) =

𝑟

𝜎
. (2.13)
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Then transforming the integral, we get

‖𝜎𝛼𝑓‖2Ω =

∫︁
Ω

𝜎2𝛼𝑓2𝑑𝑥 =

∫︁
𝒮

∫︁ 𝑅

0

𝜎2𝛼(𝑟)𝑓2𝑟2𝑑𝑟𝑑𝜔. (2.14)

Using (2.13) and integrating by parts, we obtain∫︁ 𝑅

0

𝜎2𝛼(𝑟)𝑓2𝑟2𝑑𝑟 =

∫︁ 𝑅

0

𝑑

𝑑𝑟
(𝜎(𝑟) − 𝜎(0))𝜎2𝛼+1𝑓2𝑟𝑑𝑟 = −

∫︁ 𝑅

0

(𝜎(𝑟) − 𝜎(0))
𝑑

𝑑𝑟
(𝜎2𝛼+1𝑓2𝑟)𝑑𝑟

= −
∫︁ 𝑅

0

(𝜎(𝑟) − 𝜎(0))
(︁

(2𝛼 + 1)𝜎2𝛼 𝑟

𝜎
𝑓2𝑟 + 𝜎2𝛼+1𝑓2 + 2𝜎2𝛼+1𝑓𝑓𝑟𝑟

)︁
𝑑𝑟.

Using the assumption 𝛼 ≥ − 1
2 , we have

−
∫︁ 𝑅

0

(𝜎(𝑟) − 𝜎(0))
(︁

(2𝛼 + 1)𝜎2𝛼 𝑟

𝜎
𝑓2𝑟 + 𝜎2𝛼+1𝑓2

)︁
𝑑𝑟 ≤ 0

and as a result ∫︁ 𝑅

0

𝜎2𝛼(𝑟)𝑓2𝑟2𝑑𝑟 ≤ −
∫︁ 𝑅

0

(𝜎(𝑟) − 𝜎(0)) 2𝜎2𝛼+1𝑓𝑓𝑟𝑟𝑑𝑟.

Using that

𝜎(𝑟) − 𝜎(0)

𝑟2
=

√
𝑟2 + 𝐾2ℎ2 −𝐾ℎ

𝑟2
=

1√
𝑟2 + 𝐾2ℎ2 + 𝐾ℎ

≤ 𝜎−1,

and applying the Cauchy-Schwarz inequality together with the fact that 𝑟 ≤ 𝜎, for 1 < 𝑝 < ∞, we have

‖𝜎𝛼𝑓‖2Ω ≤ 𝐶

∫︁
𝒮

∫︁ 𝑅

0

⃒⃒⃒⃒
𝜎(𝑟) − 𝜎(0)

𝑟2

⃒⃒⃒⃒
𝜎2𝛼+1|𝑓 ||𝑓𝑟|𝑟3𝑑𝑟𝑑𝜔 ≤ 𝐶

∫︁
𝒮

∫︁ 𝑅

0

𝜎2𝛼|𝑓 ||𝑓𝑟|𝑟3𝑑𝑟𝑑𝜔

≤ 𝐶

∫︁
𝒮

∫︁ 𝑅

0

𝜎2𝛼+1|𝑓 ||𝑓𝑟|𝑟2𝑑𝑟𝑑𝜔

≤ 𝐶

∫︁
𝒮

∫︁ 𝑅

0

(︁
𝜎𝛼−𝛽 |𝑓 |𝑟

2
𝑝

)︁(︁
𝜎𝛼+1+𝛽 |𝑓𝑟|𝑟

2
𝑞

)︁
𝑑𝑟𝑑𝜔

≤ 𝐶

(︃∫︁
𝒮

∫︁ 𝑅

0

𝜎𝑝(𝛼−𝛽)|𝑓 |𝑝𝑟2𝑑𝑟𝑑𝜔

)︃1/𝑝(︃∫︁
𝒮

∫︁ 𝑅

0

𝜎𝑞(𝛼+1+𝛽)|𝑓𝑟|𝑞𝑟2𝑑𝑟𝑑𝜔

)︃1/𝑞

≤ 𝐶‖𝜎𝛼−𝛽𝑓‖𝐿𝑝(Ω)‖𝜎𝛼+1+𝛽∇𝑓‖𝐿𝑞(Ω).

For 𝑝 = 1 or 𝑝 = ∞ the estimate is similar.
The next lemma is a three dimensional version of Lemma 2.4 in [31]. The analysis in three dimensions is

more involved than the corresponding analysis in two dimensions. The main difficulty lies in the fact that we need
to deal with odd powers of the weight function 𝜎 and this causes serious technical difficulties. In the proof we mix
two popular techniques from the finite element literature on pointwise estimates.

LEMMA 2.6. There exists a constant 𝐶 > 0 independent on ℎ, such that for any 𝑣ℎ ∈ 𝑉ℎ,∑︁
𝜏∈𝒯

(︀
‖∆𝑣ℎ‖𝐿1(𝜏) + ‖[[𝜕𝑛𝑣ℎ]]‖𝐿1(𝜕𝜏)

)︀
≤ 𝐶|lnℎ| 12

(︁
‖𝜎 3

2 ∆ℎ𝑣ℎ‖Ω + ‖𝜎 1
2∇𝑣ℎ‖Ω

)︁
.

Proof. We define 𝑣 as the solution of

−∆𝑣 = −∆ℎ𝑣ℎ in Ω,

𝑣 = 0 on 𝜕Ω.
(2.15)

Thus, by construction 𝑣ℎ is the Ritz projection of 𝑣, i.e., 𝑅ℎ𝑣 = 𝑣ℎ and 𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) with

‖𝑣‖𝐻2(Ω) ≤ 𝐶‖∆𝑣‖Ω = 𝐶‖∆ℎ𝑣ℎ‖Ω.
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Using the fact that jumps of 𝑣 are zero, the trace inequality and the inverse inequality we have∑︁
𝜏

‖[[𝜕𝑛𝑣ℎ]]‖𝐿1(𝜕𝜏) =
∑︁
𝜏

‖[[𝜕𝑛[𝑣ℎ − 𝑣]]]‖𝐿1(𝜕𝜏)

≤ 𝐶
∑︁
𝜏

(︀
ℎ−1‖∇(𝑣 − 𝑣ℎ)‖𝐿1(𝜏) + ‖∇2(𝑣 − 𝑣ℎ)‖𝐿1(𝜏)

)︀
≤ 𝐶

∑︁
𝜏

(︀
ℎ−1‖∇(𝑣 − 𝑣ℎ)‖𝐿1(𝜏) + ‖∇2(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏) + ‖∇2(𝑣ℎ − 𝐼ℎ𝑣)‖𝐿1(𝜏)

)︀
≤ 𝐶

∑︁
𝜏

(︀
ℎ−1‖∇(𝑣 − 𝑣ℎ)‖𝐿1(𝜏) + ‖∇2(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏) + ℎ−1‖∇(𝑣ℎ − 𝐼ℎ𝑣)‖𝐿1(𝜏)

)︀
≤ 𝐶

∑︁
𝜏

(︀
ℎ−1‖∇(𝑣 − 𝑣ℎ)‖𝐿1(𝜏) + ℎ−1‖∇(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏) + ‖∇2(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏)

)︀
.

(2.16)
Similarly, we obtain for the Laplacian of 𝑣ℎ∑︁

𝜏

‖∆𝑣ℎ‖𝐿1(𝜏) ≤
∑︁
𝜏

(︀
‖∆𝑣‖𝐿1(𝜏) + ‖∆(𝑣ℎ − 𝑣)‖𝐿1(𝜏)

)︀
≤ 𝐶

∑︁
𝜏

(︀
‖∇2𝑣‖𝐿1(𝜏) + ℎ−1‖∇(𝑣 − 𝑣ℎ)‖𝐿1(𝜏) + ℎ−1‖∇(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏) + ‖∇2(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏)

)︀
. (2.17)

Combining (2.16) and (2.17), using the properties of 𝜎 and Lemma 2.2, we obtain∑︁
𝜏

(︀
‖∆𝑣ℎ‖𝐿1(𝜏) + ‖[[𝜕𝑛[𝑣ℎ − 𝑣]]]‖𝐿1(𝜕𝜏)

)︀
≤ 𝐶

∑︁
𝜏

(︀
‖∇2𝑣‖𝐿1(𝜏) + ℎ−1‖∇(𝑣 − 𝑣ℎ)‖𝐿1(𝜏) + ℎ−1‖∇(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏) + ‖∇2(𝑣 − 𝐼ℎ𝑣)‖𝐿1(𝜏)

)︀
≤ 𝐶‖𝜎− 3

2 ‖Ω
(︁
‖𝜎 3

2∇2𝑣‖Ω + ℎ−1‖𝜎 3
2∇(𝑣 − 𝑣ℎ)‖Ω + ℎ−1‖𝜎 3

2∇(𝑣 − 𝐼ℎ𝑣)‖Ω + ‖𝜎 3
2∇2(𝑣 − 𝐼ℎ𝑣)‖ℎ,Ω

)︁
≤ 𝐶|lnℎ| 12

(︁
ℎ−1‖𝜎 3

2∇(𝑣 − 𝑣ℎ)‖Ω + ‖𝜎 3
2∇2𝑣‖Ω

)︁
,

To conclude the proof, we need to establish that

ℎ−1‖𝜎 3
2∇(𝑣 − 𝑣ℎ)‖Ω + ‖𝜎 3

2∇2𝑣‖Ω ≤ 𝐶
(︁
‖𝜎 3

2 ∆ℎ𝑣ℎ‖Ω + ‖𝜎 1
2∇𝑣ℎ‖Ω

)︁
,

which we will show in the next two lemmas separately.
In the next lemma we will treat the ‖𝜎 3

2∇2𝑣‖Ω term.
LEMMA 2.7. There exists a constant 𝐶 > 0 independent on ℎ, such that for any 𝑣ℎ ∈ 𝑉ℎ and the corre-

sponding 𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) defined by (2.15) the following estimate holds,

‖𝜎 3
2∇2𝑣‖Ω ≤ 𝐶

(︁
‖𝜎 3

2 ∆ℎ𝑣ℎ‖Ω + ‖𝜎 1
2∇𝑣ℎ‖Ω

)︁
.

Proof. Since

𝜕2
𝑖𝑗(𝜎

3
2 𝑣) = 𝜎

3
2 𝜕2

𝑖𝑗𝑣 + (𝜕𝑖(𝜎
3
2 )𝜕𝑗𝑣 + 𝜕𝑗(𝜎

3
2 )𝜕𝑖𝑣) + 𝜕2

𝑖𝑗(𝜎
3
2 )𝑣,

and by properties of 𝜎, |∇(𝜎
3
2 )| ≤ 𝐶|𝜎 1

2 | and |∇2(𝜎
3
2 )| ≤ 𝐶𝜎− 1

2 , we obtain

‖𝜎 3
2∇2𝑣‖Ω ≤ ‖∇2(𝜎

3
2 𝑣)‖Ω + 𝑐‖𝜎 1

2∇𝑣‖Ω + 𝑐‖𝜎− 1
2 𝑣‖Ω. (2.18)

Using Lemma 2.5 with 𝛼 = − 1
2 , 𝛽 = 0 and 𝑝 = 2 we have

‖𝜎− 1
2 𝑣‖Ω ≤ 𝐶‖𝜎 1

2∇𝑣‖Ω. (2.19)

By the global 𝐻2(Ω) regularity, we have

‖∇2(𝜎
3
2 𝑣)‖Ω ≤ 𝐶‖∆(𝜎

3
2 𝑣)‖Ω.
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For ∆(𝜎
3
2 𝑣) we obtain

∆(𝜎
3
2 𝑣) = ∆(𝜎

3
2 )𝑣 + 3𝜎

1
2∇𝜎 · ∇𝑣 + 𝜎

3
2 ∆𝑣

and thus by the properties of 𝜎 we get

‖∇2(𝜎
3
2 𝑣)‖Ω ≤ 𝐶‖𝜎− 1

2 𝑣‖Ω + 𝐶‖𝜎 1
2∇𝑣‖Ω + 𝐶‖𝜎 3

2 ∆𝑣‖Ω

and by using (2.19) we obtain

‖∇2(𝜎
3
2 𝑣)‖Ω ≤ 𝐶

(︁
‖𝜎 1

2∇𝑣‖Ω + ‖𝜎 3
2 ∆𝑣‖Ω

)︁
= 𝐶

(︁
‖𝜎 1

2∇𝑣‖Ω + ‖𝜎 3
2 ∆ℎ𝑣ℎ‖Ω

)︁
, (2.20)

where we applied the definition of 𝑣 (2.15) in the last step. It remains to estimate ‖𝜎 1
2∇𝑣‖Ω. There holds

‖𝜎 1
2∇𝑣‖2Ω = (𝜎∇𝑣,∇𝑣) = (𝜎∇𝑣,∇(𝑣 − 𝑣ℎ)) + (𝜎

1
2∇𝑣, 𝜎

1
2∇𝑣ℎ)

≤ (𝜎∇𝑣,∇(𝑣 − 𝑣ℎ)) +
1

2
‖𝜎 1

2∇𝑣‖2Ω +
1

2
‖𝜎 1

2∇𝑣ℎ‖2Ω

and therefore

‖𝜎 1
2∇𝑣‖2Ω ≤ 2(𝜎∇𝑣,∇(𝑣 − 𝑣ℎ)) + ‖𝜎 1

2∇𝑣ℎ‖2Ω.

For the first term we get

(𝜎∇𝑣,∇(𝑣 − 𝑣ℎ)) = −(∇ · (𝜎∇𝑣), 𝑣 − 𝑣ℎ) = −(∇𝜎 · ∇𝑣 + 𝜎∆𝑣, 𝑣 − 𝑣ℎ)

= −(𝜎
1
2∇𝜎 · ∇𝑣 + 𝜎

3
2 ∆𝑣, 𝜎− 1

2 (𝑣 − 𝑣ℎ))

≤ 1

4
‖𝜎 1

2∇𝑣‖2Ω + 𝐶‖𝜎 3
2 ∆𝑣‖2Ω + 𝐶ℎ−1‖𝑣 − 𝑣ℎ‖2Ω

≤ 1

4
‖𝜎 1

2∇𝑣‖2Ω + 𝐶‖𝜎 3
2 ∆ℎ𝑣ℎ‖2Ω + 𝐶ℎ−1ℎ4‖𝑣‖2𝐻2(Ω)

≤ 1

4
‖𝜎 1

2∇𝑣‖2Ω + 𝐶‖𝜎 3
2 ∆ℎ𝑣ℎ‖2Ω + 𝐶ℎ3‖∆𝑣‖2Ω

≤ 1

4
‖𝜎 1

2∇𝑣‖2Ω + 𝐶‖𝜎 3
2 ∆ℎ𝑣ℎ‖2Ω,

where we used again (2.15) and that ℎ ≤ 𝜎. This results in

‖𝜎 1
2∇𝑣‖2Ω ≤ 𝐶‖𝜎 3

2 ∆ℎ𝑣ℎ‖2Ω + ‖𝜎 1
2∇𝑣ℎ‖2Ω,

which together with (2.20) completes the proof.
As the next step we have to estimate ℎ−1‖𝜎 3

2∇(𝑣−𝑣ℎ)‖Ω. In the proof of this estimate we will make a heavy
use of pointwise estimates for the Green’s function and its derivatives. The proof of the next lemma for a general
second order elliptic equation can be found in [18].

LEMMA 2.8. Let Ω ⊂ R3 be a convex domain of polyhedral type. Let 𝐺(𝑥, 𝑦) denotes the elliptic Green’s
function of the Laplace operator on the domain Ω. Then the following estimates hold,

|𝐺(𝑥, 𝑦)| ≤ 𝐶|𝑥− 𝑦|−1, (2.21a)

|∇𝑥𝐺(𝑥, 𝑦)| ≤ 𝐶|𝑥− 𝑦|−2. (2.21b)

Sharper Hölder type estimates for the Green’s function are derived for three dimensional polyhedral domains in
[19, Theorem 1]. We summarize them in the following lemma.

LEMMA 2.9. Let Ω ⊂ R3 be a convex domain of polyhedral type. There exist 0 < 𝜆 < 1 that depends on
geometry of Ω and a constant 𝐶 such that the estimates

|𝜕𝑘𝐺(𝑥, 𝜉) − 𝜕𝑘𝐺(𝑦, 𝜉)|
|𝑥− 𝑦|𝜆

≤ 𝐶
(︀
|𝑥− 𝜉|−2−𝜆 + |𝑦 − 𝜉|−2−𝜆

)︀
, for 𝑘 = 1, 2, 3,
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are satisfied for all 𝑥, 𝑦, 𝜉 ∈ Ω, 𝑥 ̸= 𝑦. Now we are ready to establish an estimate for ‖𝜎 3
2∇(𝑣 − 𝑣ℎ)‖Ω.

LEMMA 2.10. There exists a constant 𝐶 > 0 independent on ℎ, such that for any 𝑣ℎ ∈ 𝑉ℎ and the corre-
sponding 𝑣 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) defined by (2.15) and for 𝐾 sufficiently large, the following estimate holds

‖𝜎 3
2∇(𝑣 − 𝑣ℎ)‖Ω ≤ 𝐶ℎ

(︁
‖𝜎 3

2 ∆ℎ𝑣ℎ‖Ω + ‖𝜎 1
2∇𝑣ℎ‖Ω

)︁
.

Proof. To obtain the estimate we use a dyadic decomposition of Ω. Denote 𝑑𝑗 = 2−𝑗 diam(Ω) for 𝑗 =
0, 1, . . . and define innermost set

Ω* = {𝑥 ∈ Ω | |𝑥− 𝑥0| ≤ 𝐶*ℎ }

where the constant 𝐶* to be determined later and

Ω𝑗 = {𝑥 ∈ Ω | 𝑑𝑗+1 < |𝑥− 𝑥0| ≤ 𝑑𝑗 } .

Let 𝐽 be chosen such that 𝑑𝐽+1 ≤ 𝐶*ℎ* ≤ 𝑑𝐽 . Note that by construction diam(Ω𝑗) ≤ 𝑑𝑗 , 𝐽 ≤ 𝐶|lnℎ|, and

𝜎 ≤
√︁
𝑑2𝑗 + (𝐾ℎ)2 ≤ 𝑑𝑗 + 𝐾ℎ on Ω𝑗 . Furthermore, for 𝑘 > 𝑗 + 1 so that 𝑑𝑗 > 𝑑𝑘 there holds

1

2
𝑑𝑗 ≤ dist(Ω𝑘,Ω𝑗) ≤ 𝑑𝑗 . (2.22)

We have the decomposition

Ω = Ω* ∪
𝐽⋃︁

𝑗=0

Ω𝑗 .

Moreover, in the following analysis we will need the following sets

Ω′
𝑗 = Ω𝑗−1 ∪ Ω𝑗 ∪ Ω𝑗+1 and Ω′′

𝑗 = Ω𝑗−2 ∪ Ω𝑗−1 ∪ Ω𝑗 ∪ Ω𝑗+1 ∪ Ω𝑗+2.

Denote by 𝑒 := 𝑣 − 𝑣ℎ. We have

‖𝜎 3
2∇(𝑣 − 𝑣ℎ)‖2Ω = ‖𝜎 3

2∇𝑒‖2Ω ≤ (𝐶* + 𝐾)3ℎ3‖∇𝑒‖2Ω*
+ 𝐶

𝐽∑︁
𝑗=0

(𝑑𝑗 + 𝐾ℎ)3‖∇𝑒‖2Ω𝑗

≤ 𝐶(𝐶* + 𝐾)3ℎ3‖∇𝑒‖2Ω + 𝐶

𝐽∑︁
𝑗=0

𝑑3𝑗‖∇𝑒‖2Ω𝑗
.

By global best approximation result, elliptic 𝐻2-regularity, and ℎ ≤ 𝜎
𝐾 , we have

ℎ
3
2 ‖∇𝑒‖Ω ≤ 𝐶ℎ

3
2 ‖∇(𝑣 − 𝐼ℎ𝑣)‖Ω ≤ 𝐶ℎ

3
2+1‖∇2𝑣‖Ω ≤ 𝐶ℎ

3
2+1‖∆𝑣‖Ω ≤ 𝐶𝐾− 3

2ℎ‖𝜎 3
2 ∆ℎ𝑣ℎ‖Ω.

Using local energy estimates [29], we have for any 𝜒 ∈ 𝑉ℎ,

‖∇𝑒‖2Ω𝑗
≤ 𝐶

(︁
‖∇(𝑣 − 𝜒)‖2Ω′

𝑗
+ 𝑑−2

𝑗 ‖𝑣 − 𝜒‖2Ω′
𝑗

+ 𝑑−2
𝑗 ‖𝑒‖2Ω′

𝑗

)︁
. (2.23)

Taking 𝜒 = 𝐼ℎ𝑣 and using the approximation theory, ℎ ≤ 𝑑𝑗 and that 𝑑𝑗 ≤ 𝑐𝜎 on Ω′
𝑗 , we have

𝐽∑︁
𝑗=0

𝑑3𝑗

(︁
‖∇(𝑣 − 𝜒)‖2Ω′

𝑗
+ 𝑑−2

𝑗 ‖𝑣 − 𝜒‖2Ω′
𝑗

)︁
≤ 𝐶ℎ2

𝐽∑︁
𝑗=0

𝑑3𝑗‖∇2𝑣‖2Ω′
𝑗
≤ 𝐶ℎ2‖𝜎 3

2∇2𝑣‖2Ω. (2.24)

Later on, we will control the term on the right-hand side of (2.24) using Lemma 2.7. Thus, we need to estimate∑︀𝐽
𝑗=0 𝑑𝑗‖𝑒‖2Ω′

𝑗
. First we notice that

∑︀𝐽
𝑗=0 𝑑𝑗‖𝑒‖2Ω′

𝑗
≤ 7

2

∑︀𝐽,*
𝑗=0 𝑑𝑗‖𝑒‖2Ω𝑗

, where the notation
∑︀𝐽,*

𝑖=0 means that
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the sum includes the innermost set Ω*. For 𝑗 = *, 𝐽, 𝐽 − 1 using that 𝑑𝐽−1 = 2𝑑𝐽 ≤ 4𝐶*ℎ and the global
approximation result, we obtain

𝐽,*∑︁
𝑗=𝐽−1

𝑑𝑗‖𝑒‖2Ω𝑗
≤ 𝐶𝐶*ℎ

5‖∇2𝑣‖2Ω ≤ 𝐶𝐶*ℎ
5‖∆𝑣‖2Ω = 𝐶𝐶*𝐾

−3ℎ2‖𝜎 3
2 ∆ℎ𝑣‖2Ω. (2.25)

To estimate
∑︀𝐽−2

𝑗=0 𝑑𝑗‖𝑒‖2Ω𝑗
, we use a duality argument. Let 𝑤 be the solution of the following problem

−∆𝑤 = 𝑒 · 1Ω𝑗
, in Ω,

𝑤 = 0, on 𝜕Ω,
(2.26)

where 1Ω𝑗 is the characteristic function of Ω𝑗 . Then

‖𝑒‖2Ω𝑗
= (∇𝑤,∇𝑒)Ω = (∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω =

𝐽,*∑︁
𝑖=0

(∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω𝑖
.

We now consider three cases:
Case 1: |𝑖 − 𝑗| ≤ 2. In this case 1

2𝑑𝑖 ≤ 𝑑𝑗 ≤ 2𝑑𝑖 and Ω𝑖 ⊂ Ω′
𝑗 . Using the Cauchy-Schwarz inequality and

the 𝐻2-regularity we obtain∑︁
|𝑖−𝑗|≤1

(∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω𝑖
≤ 𝐶ℎ‖∇2𝑤‖Ω‖∇𝑒‖Ω′

𝑗
≤ 𝐶ℎ‖𝑒‖Ω𝑗

‖∇𝑒‖Ω′
𝑗
,

and as a result, we obtain

𝐽−2∑︁
𝑗=0

𝑑𝑗
∑︁

|𝑖−𝑗|≤1

(∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω𝑖
≤ 𝐶ℎ

𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖Ω𝑗
‖∇𝑒‖Ω′

𝑗
:= 𝑆1.

Hence,

𝑆1 ≤ 𝐶

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2
⎛⎝𝐽−1∑︁

𝑗=0

𝑑𝑗ℎ
2‖∇𝑒‖2Ω𝑗

⎞⎠ 1
2

≤ 𝐶

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

𝐾−1

⎛⎝𝐽−1∑︁
𝑗=0

‖𝜎 3
2∇𝑒‖2Ω′

𝑗

⎞⎠ 1
2

≤ 𝐶𝐾−1

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

‖𝜎 3
2∇𝑒‖Ω,

where we used that ℎ
𝜎 ≤ 𝐾−1 and 𝑑𝑗 ≤ 2𝜎 on Ω𝑗 .

Case 2: 𝑖 < 𝑗 − 2. In this case 𝑑𝑖 > 𝑑𝑗 and 1
2𝑑𝑖 ≤ dist(Ω𝑗 ,Ω𝑖) ≤ 𝑑𝑖.∑︁

𝑖<𝑗−2

(∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω𝑖 ≤
∑︁

𝑖<𝑗−2

‖∇(𝑤 − 𝐼ℎ𝑤)‖Ω𝑖‖∇𝑒‖Ω𝑖 ≤ 𝐶ℎ
∑︁

𝑖<𝑗−2

‖∇2𝑤‖Ω𝑖‖∇𝑒‖Ω𝑖 .

Using that 𝑤 is harmonic on Ω𝑖 and the Hölder inequality, we have

‖∇2𝑤‖Ω𝑖 ≤ 𝐶𝑑−1
𝑖 ‖∇𝑤‖Ω′

𝑖
≤ 𝐶𝑑

1
2
𝑖 ‖∇𝑤‖𝐿∞(Ω′

𝑖)
.

Using Green’s function representation, Green’s function estimate (2.21b) and that 1
2𝑑𝑖 ≤ dist(Ω𝑗 ,Ω

′
𝑖) ≤ 𝑑𝑖, for

𝑥 ∈ Ω′
𝑖 we have

|∇𝑤(𝑥)| =

⃒⃒⃒⃒
⃒
∫︁
Ω𝑗

∇𝑥𝐺(𝑥, 𝑦)𝑒(𝑦)𝑑𝑦

⃒⃒⃒⃒
⃒ ≤ 𝐶

∫︁
Ω𝑗

|𝑒(𝑦)|
|𝑥− 𝑦|2

𝑑𝑦 ≤ 𝐶𝑑−2
𝑖 ‖𝑒‖𝐿1(Ω𝑗) ≤ 𝐶𝑑−2

𝑖 𝑑
3
2
𝑗 ‖𝑒‖Ω𝑗

.
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As a result

‖∇2𝑤‖Ω𝑖 ≤ 𝐶𝑑
− 3

2
𝑖 𝑑

3
2
𝑗 ‖𝑒‖Ω𝑗 ,

and hence the total contribution of this term to the sum is

𝐽−2∑︁
𝑗=0

𝑑𝑗
∑︁

𝑖<𝑗−2

(∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω𝑖
≤

𝐽−2∑︁
𝑗=0

𝑑𝑗
∑︁

𝑖<𝑗−2

ℎ‖∇2𝑤‖Ω𝑖
‖∇𝑒‖Ω𝑖

≤ 𝐶ℎ

𝐽−2∑︁
𝑗=0

𝑑
5
2
𝑗 ‖𝑒‖Ω𝑗

∑︁
𝑖<𝑗−2

𝑑
− 3

2
𝑖 ‖∇𝑒‖Ω𝑖

:= 𝑆2.

Changing the order of summation we obtain

𝑆2 ≤ 𝐶ℎ

𝐽−2∑︁
𝑖=0

𝑑
− 3

2
𝑖 ‖∇𝑒‖Ω𝑖

𝐽−2∑︁
𝑗=𝑖+3

𝑑
5
2
𝑗 ‖𝑒‖Ω𝑗

.

Now using the properties of geometric series, we have

𝐽−2∑︁
𝑗=𝑖+3

𝑑
5
2
𝑗 ‖𝑒‖Ω′

𝑗
≤

⎛⎝ 𝐽∑︁
𝑗=𝑖+2

𝑑4𝑗

⎞⎠ 1
2
⎛⎝𝐽−2∑︁

𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

≤ 𝐶𝑑2𝑖

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

.

As a result using that 𝑑𝑖 ≤ 2𝜎 on Ω𝑖

𝑆2 ≤ 𝐶ℎ

𝐽−2∑︁
𝑖=0

𝑑
1
2
𝑖 ‖∇𝑒‖Ω𝑖

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

≤ 𝐶

(︃
𝐽∑︁

𝑖=0

‖𝜎 3
2∇𝑒‖2Ω𝑖

)︃ 1
2
(︃

𝐽∑︁
𝑖=0

(︂
ℎ

𝑑𝑖

)︂2
)︃ 1

2

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

≤ 𝐶𝐶−1
* ‖𝜎 3

2∇𝑒‖Ω

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

,

(2.27)

where we used that
∑︀𝐽

𝑖=0

(︁
ℎ
𝑑𝑖

)︁2
≤ 𝐶𝐶−2

* .

Case 3: 𝑖 > 𝑗 + 2. In this case 𝑑𝑖 < 𝑑𝑗 and 1
2𝑑𝑗 ≤ dist(Ω𝑗 ,Ω𝑖) ≤ 𝑑𝑗 . In this case, using the Hölder

inequality and the approximation theory, we have

𝐽,*∑︁
𝑖=𝑗+3

(∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω𝑖
≤

𝐽,*∑︁
𝑖=𝑗+3

‖∇(𝑤 − 𝐼ℎ𝑤)‖𝐿∞(Ω𝑖)‖∇𝑒‖𝐿1(Ω𝑖)

≤ 𝐶ℎ𝜆
𝐽∑︁

𝑖=𝑗+3

‖𝑤‖𝐶1,𝜆(Ω𝑖)𝑑
3
2
𝑖 ‖∇𝑒‖Ω𝑖

+ 𝐶ℎ𝜆‖𝑤‖𝐶1,𝜆(Ω*)(𝐶*ℎ)
3
2 ‖∇𝑒‖Ω* ,

where 𝜆 depends on the domain Ω and such that 𝑤 ∈ 𝐶1,𝜆(Ω) cf. [25]. Following [19], for 𝑥, 𝑦 ∈ Ω𝑖 by
Lemma 2.9 for 𝑘 = 1, 2, 3 we have

|𝜕𝑘𝑤(𝑥) − 𝜕𝑘𝑤(𝑦)|
|𝑥− 𝑦|𝜆

≤
∫︁
Ω𝑗

|𝜕𝑥𝑖𝐺(𝑥, 𝜉) − 𝜕𝑦𝑖𝐺(𝑦, 𝜉)|
|𝑥− 𝑦|𝜆

|𝑒(𝜉)|𝑑𝜉

≤ 𝐶 max
𝜉∈Ω𝑗

(|𝑥− 𝜉|−2−𝜆 + |𝑦 − 𝜉|−2−𝜆)

∫︁
Ω𝑗

|𝑒(𝜉)|𝑑𝜉

≤ 𝐶𝑑−2−𝜆
𝑗 𝑑

3
2
𝑗 ‖𝑒‖Ω𝑗 ≤ 𝐶𝑑

− 1
2−𝜆

𝑗 ‖𝑒‖Ω𝑗 .
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Thus, we obtain

‖𝑤‖𝐶1,𝜆(Ω𝑖) ≤ 𝐶𝑑
− 1

2−𝜆
𝑗 ‖𝑒‖Ω𝑗

, 𝑖 = 𝑗 + 2, . . . , 𝐽, *.

As a result, the total contribution to the sum is

𝐽−2∑︁
𝑗=0

𝑑𝑗

𝐽,*∑︁
𝑖=𝑗+3

(∇(𝑤 − 𝐼ℎ𝑤),∇𝑒)Ω𝑖
≤ 𝐶ℎ𝜆

𝐽−2∑︁
𝑗=0

𝑑
1
2−𝜆
𝑗 ‖𝑒‖Ω𝑗

⎛⎝ 𝐽∑︁
𝑖=𝑗+3

𝑑
3
2
𝑖 ‖∇𝑒‖Ω𝑖

+ (𝐶*ℎ)
3
2 ‖∇𝑒‖Ω*

⎞⎠ := 𝑆3.

Changing the order of summation we obtain

𝑆3 ≤ 𝐶ℎ𝜆

(︃
𝐽∑︁

𝑖=0

𝑑
3
2
𝑖 ‖∇𝑒‖Ω𝑖

+ (𝐶*ℎ)
3
2 ‖∇𝑒‖Ω*

)︃
𝑖−3∑︁
𝑗=0

𝑑
1
2−𝜆
𝑗 ‖𝑒‖Ω𝑗

.

Using the properties of the geometric series we get

𝑖−3∑︁
𝑗=0

𝑑
1
2−𝜆
𝑗 ‖𝑒‖Ω𝑗 ≤

⎛⎝𝑖−3∑︁
𝑗=0

𝑑−2𝜆
𝑗

⎞⎠ 1
2
⎛⎝𝐽−2∑︁

𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

≤ 𝐶𝑑−𝜆
𝑖

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

.

Hence,

𝑆3 ≤ 𝐶

(︃
𝐽∑︁

𝑖=0

(︂
ℎ

𝑑𝑖

)︂2𝜆

+

(︂
𝐶*

𝐾

)︂3
)︃ 1

2
(︃

𝐽,*∑︁
𝑖=0

‖𝜎 3
2∇𝑒‖2Ω𝑖

)︃ 1
2
⎛⎝𝐽−2∑︁

𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

≤ 𝐶

(︃
𝐶−𝜆

* +

(︂
𝐶*

𝐾

)︂ 3
2

)︃
‖𝜎 3

2∇𝑒‖Ω

⎛⎝𝐽−2∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗

⎞⎠ 1
2

,

(2.28)

where we used that
∑︀𝐽

𝑖=0

(︁
ℎ
𝑑𝑖

)︁2𝜆
≤ 𝐶𝐶−2𝜆

* and ℎ ≤ 𝜎
𝐾 . Using (2.25) and combining the cases 1,2, and 3 and

canceling by
(︁∑︀𝐽−2

𝑗=0 𝑑𝑗‖𝑒‖2Ω𝑗

)︁ 1
2

, we obtain

𝐽,*∑︁
𝑗=0

𝑑𝑗‖𝑒‖2Ω𝑗
≤ 𝐶

(︃
𝐾−2 + 𝐶−2

* + 𝐶−2𝜆
* +

(︂
𝐶*

𝐾

)︂3
)︃
‖𝜎 3

2∇𝑒‖2Ω + 𝐶ℎ2‖𝜎 3
2 ∆ℎ𝑣ℎ‖2Ω. (2.29)

Combining the above estimate with (2.23) and (2.24), we obtain

‖𝜎 3
2∇𝑒‖2Ω ≤ 𝐶ℎ2‖𝜎 3

2∇2𝑣‖2Ω + 𝐶

(︃
𝐾−2 + 𝐶−2

* + 𝐶−2𝜆
* +

(︂
𝐶*

𝐾

)︂3
)︃
‖𝜎 3

2∇𝑒‖2Ω + 𝐶ℎ2‖𝜎 3
2 ∆ℎ𝑣ℎ‖2Ω.

Taking 𝐾 = 𝐶2
* and selecting 𝐶* sufficiently large we conclude that

‖𝜎 3
2∇𝑒‖2Ω ≤ 𝐶𝐶*,𝐾ℎ2‖𝜎 3

2∇2𝑣‖2Ω + 𝐶ℎ2‖𝜎 3
2 ∆ℎ𝑣ℎ‖2Ω.

Applying Lemma 2.7 to the first term on the right hand side and taking square root concludes the proof.
The following Lemma provides a discrete analog of the embedding 𝐻2(Ω) →˓ 𝐿∞(Ω) and will be used in

Section 4.
LEMMA 2.11. There exists a constant 𝐶 independent of ℎ such that

‖𝑣ℎ‖𝐿∞(Ω) ≤ 𝐶‖∆ℎ𝑣ℎ‖Ω, ∀𝑣ℎ ∈ 𝑉ℎ.
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Proof. To establish this lemma, we similarly to the proof of Lemma 2.6 define 𝑣 as the solution of

−∆𝑣 = −∆ℎ𝑣ℎ in Ω,

𝑣 = 0 on 𝜕Ω.
(2.30)

Thus, by construction 𝑣ℎ is the Ritz projection of 𝑣, i.e., 𝑅ℎ𝑣 = 𝑣ℎ and 𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) with

‖𝑣‖𝐻2(Ω) ≤ 𝐶‖∆𝑣‖Ω = 𝐶‖∆ℎ𝑣ℎ‖Ω.

By the triangle inequality,

‖𝑣ℎ‖𝐿∞(Ω) ≤ ‖𝑃ℎ𝑣‖𝐿∞(Ω) + ‖𝑣ℎ − 𝑃ℎ𝑣‖𝐿∞(Ω).

Using the stability of the 𝐿2-projection in 𝐿∞ norm, see, e.g., [10] and the Sobolev embedding theorem, we have

‖𝑃ℎ𝑣‖𝐿∞(Ω) ≤ 𝐶‖𝑣‖𝐿∞(Ω) ≤ 𝐶‖𝑣‖𝐻2(Ω) ≤ 𝐶‖∆ℎ𝑣ℎ‖Ω.

On the other hand, using the inverse inequality first, then the triangle inequality and the standard error estimates,
we obtain

‖𝑣ℎ − 𝑃ℎ𝑣‖𝐿∞(Ω) ≤ 𝐶ℎ− 3
2 ‖𝑣ℎ − 𝑃ℎ𝑣‖Ω ≤ 𝐶ℎ− 3

2 (‖𝑣 − 𝑃ℎ𝑣‖Ω + ‖𝑣 − 𝑣ℎ‖Ω) ≤ 𝐶ℎ
1
2 ‖∆ℎ𝑣ℎ‖Ω.

This establishes the lemma.

3. Stability of the Ritz projection in 𝐿∞-norm. Using the technical Lemmas 2.5-2.6 we can establish
several important results. The first result shows stability (modulo logarithm) of the Ritz projection in 𝐿∞-norm.
This result is known for smooth domains Ω ⊂ R𝑁 and for polygonal domains in R2. To the best of our knowledge
this result is new for convex polyhedral domains Ω ⊂ R3.

THEOREM 3.1. There exists a constant 𝐶 independent of ℎ such that for the solution 𝑢 of (1.1) and its Ritz
projection 𝑢ℎ = 𝑅ℎ𝑢 ∈ 𝑉ℎ holds

‖𝑢ℎ‖𝐿∞(Ω) ≤ 𝐶|lnℎ|‖𝑢‖𝐿∞(Ω).

Proof. Let 𝑥0 ∈ 𝜏0 such that ‖𝑢ℎ‖𝐿∞(Ω) = |𝑢ℎ(𝑥0)|. For such 𝑥0 define a regularized Green’s function 𝑔,
that satisfies

−∆𝑔(𝑥) = 𝛿(𝑥), 𝑥 ∈ Ω,

𝑔(𝑥) = 0, 𝑥 ∈ 𝜕Ω,
(3.1)

where 𝛿(𝑥) := 𝛿𝑥0
(𝑥) is the regularized Delta function from (2.5). We define 𝑔ℎ = 𝑅ℎ𝑔 ∈ 𝑉ℎ, i.e.

(∇𝑔ℎ,∇𝜒) = (𝛿, 𝜒) ∀𝜒 ∈ 𝑉ℎ. (3.2)

Then using the Galerkin orthogonality, integration by parts, and Lemma 2.6, we obtain

𝑢ℎ(𝑥0) = (∇𝑢ℎ,∇𝑔ℎ) = (∇𝑢,∇𝑔ℎ) =
∑︁
𝜏∈𝒯

(︀
(𝑢, [[𝜕𝑛𝑔ℎ]])𝜕𝜏 + (𝑢,−∆𝑔ℎ)𝜏

)︀
≤ ‖𝑢‖𝐿∞(Ω)

∑︁
𝜏∈𝒯

(︀
‖[[𝜕𝑛𝑔ℎ]]‖𝐿1(𝜕𝜏) + ‖∆𝑔ℎ‖𝐿1(𝜏)

)︀
≤ 𝐶|lnℎ| 12 ‖𝑢‖𝐿∞(Ω)

(︁
‖𝜎 3

2 ∆ℎ𝑔ℎ‖Ω + ‖𝜎 1
2∇𝑔ℎ‖Ω

)︁
.

(3.3)
The equation (3.2) for 𝑔ℎ is equivalent to −∆ℎ𝑔ℎ = 𝑃ℎ𝛿, and then using Lemma 2.4 we easily obtain

‖𝜎 3
2 ∆ℎ𝑔ℎ‖Ω = ‖𝜎 3

2𝑃ℎ𝛿‖Ω ≤ 𝐶. (3.4)

To estimate ‖𝜎 1
2∇𝑔ℎ‖Ω, we set 𝜒 = 𝑃ℎ(𝜎𝑔ℎ) in (3.2) and obtain

(∇𝑔ℎ,∇𝑃ℎ(𝜎𝑔ℎ)) = (𝛿, 𝑃ℎ(𝜎𝑔ℎ)).
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Using the fact that

(∇𝑔ℎ,∇𝑃ℎ(𝜎𝑔ℎ)) = (∇𝑔ℎ,∇(𝜎𝑔ℎ)) + (∇𝑔ℎ,∇(𝑃ℎ(𝜎𝑔ℎ) − 𝜎𝑔ℎ))

= ‖𝜎 1
2∇𝑔ℎ‖2Ω + (∇𝑔ℎ,∇𝜎𝑔ℎ) + (∇𝑔ℎ,∇(𝑃ℎ(𝜎𝑔ℎ) − 𝜎𝑔ℎ)),

and

(𝛿, 𝑃ℎ(𝜎𝑔ℎ)) = (𝑃ℎ𝛿, 𝜎𝑔ℎ) = (𝜎
3
2𝑃ℎ𝛿, 𝜎

− 1
2 𝑔ℎ)

we have

‖𝜎 1
2∇𝑔ℎ‖2Ω ≤ ‖𝜎 1

2∇𝑔ℎ‖Ω
(︁
‖𝜎− 1

2∇𝜎𝑔ℎ‖Ω + ‖𝜎− 1
2∇(𝑃ℎ(𝜎𝑔ℎ) − 𝜎𝑔ℎ)‖Ω

)︁
+ ‖𝜎− 1

2 𝑔ℎ‖Ω‖𝜎
3
2𝑃ℎ𝛿‖Ω.

Using that |∇𝜎| ≤ 𝐶, Lemma 2.3, and Lemma 2.4, and kicking back ‖𝜎 1
2∇𝑔ℎ‖2Ω, we obtain

‖𝜎 1
2∇𝑔ℎ‖2Ω ≤ 𝐶

(︁
‖𝜎− 1

2 𝑔ℎ‖2Ω + 1
)︁
. (3.5)

To estimate ‖𝜎− 1
2 𝑔ℎ‖Ω we use Lemma 2.5, with 𝛼 = 𝛽 = − 1

2 and 𝑝 = 3, to obtain

‖𝜎− 1
2 𝑔ℎ‖Ω ≤ 𝐶‖𝑔ℎ‖

1
2

𝐿3(Ω)‖∇𝑔ℎ‖
1
2

𝐿
3
2 (Ω)

. (3.6)

Using the inverse and the triangle inequalities,

‖𝑔ℎ‖𝐿3(Ω) ≤ ‖𝑔‖𝐿3(Ω) + ‖𝑔 − 𝑔ℎ‖𝐿3(Ω) ≤ ‖𝑔‖𝐿3(Ω) + ‖𝐼ℎ𝑔 − 𝑔ℎ‖𝐿3(Ω) + ‖𝑔 − 𝐼ℎ𝑔‖𝐿3(Ω)

≤ ‖𝑔‖𝐿3(Ω) + 𝐶ℎ− 1
2 ‖𝐼ℎ𝑔 − 𝑔ℎ‖Ω + ‖𝑔 − 𝐼ℎ𝑔‖𝐿3(Ω)

≤ ‖𝑔‖𝐿3(Ω) + 𝐶ℎ− 1
2 ‖𝑔 − 𝑔ℎ‖Ω + 𝐶ℎ− 1

2 ‖𝑔 − 𝐼ℎ𝑔‖Ω + ‖𝑔 − 𝐼ℎ𝑔‖𝐿3(Ω).

Using the approximation theory (2.3), the standard 𝐿2 estimate, and the properties of 𝛿 function, we have

ℎ− 1
2 ‖𝑔 − 𝑔ℎ‖Ω + ℎ− 1

2 ‖𝑔 − 𝐼ℎ𝑔‖Ω + ‖𝑔 − 𝐼ℎ𝑔‖𝐿3(Ω) ≤ 𝐶ℎ
3
2 ‖𝑔‖𝐻2(Ω) ≤ 𝐶ℎ

3
2 ‖𝛿‖Ω ≤ 𝐶. (3.7)

Next we will show

‖𝑔‖𝐿3(Ω) ≤ 𝐶|lnℎ| 13 . (3.8)

To establish that we use a Green’s function representation

𝑔(𝑥) =

∫︁
𝜏0

𝐺(𝑥, 𝑦)𝛿(𝑦)𝑑𝑦.

Define 𝐵ℎ = 𝐵3ℎ(𝑥0) ∩ Ω and 𝐵𝑐
ℎ = Ω∖𝐵ℎ and consider two cases: 𝑥 ∈ 𝐵ℎ and 𝑥 ∈ 𝐵𝑐

ℎ. In the case 𝑥 ∈ 𝐵ℎ,
we obtain using spherical coordinates centered at 𝑥 as well as (2.5) and (2.21a)

|𝑔(𝑥)| ≤ ‖𝛿‖𝐿∞(𝜏0)

∫︁
𝜏0

|𝐺(𝑥, 𝑦)|𝑑𝑦 ≤ 𝐶ℎ−3

∫︁ 𝑐ℎ

0

1

𝜌
𝜌2𝑑𝜌 ≤ 𝐶ℎ−1.

Hence,

‖𝑔‖3𝐿3(𝐵ℎ)
≤ 𝐶ℎ−3

∫︁
𝐵ℎ

𝑑𝑥 ≤ 𝐶. (3.9)

In the case 𝑥 ∈ 𝐵𝑐
ℎ, we have for any 𝑦 ∈ 𝜏0 by the triangle inequality

|𝑥− 𝑦| ≥ |𝑥− 𝑥0| − |𝑦 − 𝑥0| ≥ |𝑥− 𝑥0| − ℎ

and therefore again by (2.5) and (2.21a)

|𝑔(𝑥)| ≤ ‖𝛿‖𝐿1(𝜏0)
𝐶

|𝑥− 𝑥0| − ℎ
≤ 𝐶

|𝑥− 𝑥0| − ℎ
.
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Hence,

‖𝑔‖3𝐿3(𝐵𝑐
ℎ)

≤ 𝐶

∫︁
𝐵𝑐

ℎ

𝑑𝑥

(|𝑥− 𝑥0| − ℎ)3
≤ 𝐶|lnℎ|.

Together with (3.9) that shows (3.8). Combining (3.7) and (3.8) we have established

‖𝑔ℎ‖𝐿3(Ω) ≤ 𝐶|lnℎ| 13 . (3.10)

To treat ‖∇𝑔ℎ‖
1
2

𝐿
3
2 (Ω)

we use the Hölder’s inequality and (2.7a). We have

‖∇𝑔ℎ‖
3
2

𝐿
3
2 (Ω)

≤ ‖𝜎− 3
4 ‖𝐿4(Ω)‖𝜎

3
4 |∇𝑔ℎ|

3
2 ‖

𝐿
4
3 (Ω)

≤ ‖𝜎− 3
2 ‖

1
2

Ω‖𝜎
1
2∇𝑔ℎ‖

3
2

Ω ≤ 𝐶|lnℎ| 14 ‖𝜎 1
2∇𝑔ℎ‖

3
2

Ω.

Hence,

‖∇𝑔ℎ‖
𝐿

3
2 (Ω)

≤ 𝐶|lnℎ| 16 ‖𝜎 1
2∇𝑔ℎ‖Ω. (3.11)

Thus, combining (3.5), (3.6), (3.10), and the above estimate, we have

‖𝜎 1
2∇𝑔ℎ‖2Ω ≤ 𝐶

(︁
‖𝜎− 1

2 𝑔ℎ‖2Ω + 1
)︁
≤ 𝐶

(︁
‖𝑔ℎ‖𝐿3(Ω)‖∇𝑔ℎ‖

𝐿
3
2 (Ω)

+ 1
)︁

≤ 𝐶
(︁
|lnℎ| 13+ 1

6 ‖𝜎 1
2∇𝑔ℎ‖Ω + 1

)︁
≤ 𝐶|lnℎ| 12 ‖𝜎 1

2∇𝑔ℎ‖Ω.

(3.12)

Dividing both sides by ‖𝜎 1
2∇𝑔ℎ‖Ω, we finally obtain

‖𝜎 1
2∇𝑔ℎ‖Ω ≤ 𝐶|lnℎ| 12 ,

which together with (3.3) and (3.4) establishes the theorem.

4. Resolvent Estimates. In this section we establish some resolvent estimates. Since we will be dealing with
complex valued function spaces, we need to modify the definition of the 𝐿2-inner product as

(𝑢, 𝑣)Ω =

∫︁
Ω

𝑢(𝑥)𝑣(𝑥) 𝑑𝑥,

where 𝑣 is the complex conjugate of 𝑣 and the finite element space as Vℎ = 𝑉ℎ + 𝑖𝑉ℎ.
In the continuous case for Lipschitz domains the following result was shown in [42]: There exists a constant

𝐶 such that

‖(𝑧 + ∆)−1𝑣‖𝐿𝑝(Ω) ≤
𝐶

1 + |𝑧|
‖𝑣‖𝐿𝑝(Ω), 𝑧 ∈ C ∖ Σ0,𝛾 , 1 ≤ 𝑝 ≤ ∞, 𝑣 ∈ 𝐿𝑝(Ω), (4.1)

where Σ0,𝛾 is defined in (1.7). Using the identity ∆(𝑧 + ∆)−1 = Id−𝑧(𝑧 + ∆)−1, one immediately obtains,

‖∆(𝑧 + ∆)−1𝑣‖𝐿𝑝(Ω) ≤ 𝐶‖𝑣‖𝐿𝑝(Ω), 𝑧 ∈ 𝐶 ∖ Σ0,𝛾 , 1 ≤ 𝑝 ≤ ∞, 𝑣 ∈ 𝐿𝑝(Ω). (4.2)

In the following analysis we will also require a Green’s function estimate for the resolvent equation with a real
parameter 𝑠 > 0, i.e. for (𝑠− ∆)−1.

LEMMA 4.1. Let 𝑠 > 0 and Γ𝑠(𝑥, 𝑦) be the Green’s function for the operator 𝑠 − ∆ with zero Dirichlet
boundary conditions. Then there exists a constant 𝐶 independent of 𝑠 such that

Γ𝑠(𝑥, 𝑦) ≤ 𝐶

|𝑥− 𝑦|
. (4.3)

Proof. The Green’s function Γ𝑠(𝑥, 𝑦) for 𝑠− ∆ has a representation

Γ𝑠(𝑥, 𝑦) =

∫︁ ∞

0

𝑒−𝑠𝑡𝐻(𝑡, 𝑥, 𝑦)𝑑𝑡, (4.4)
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where 𝐻(𝑡, 𝑥, 𝑦) is the Green’s function for the heat equation. Because of zero Dirichlet boundary data, 𝐻(𝑡, 𝑥, 𝑦)
is bounded by the fundamental solution of the heat equation and satisfies, cf. [14, Chapter 2.3],

𝐻(𝑡, 𝑥, 𝑦) ≤ 𝐶

𝑡
3
2

𝑒−𝑐
|𝑥−𝑦|2

𝑡 .

The integral estimate (cf. [21, Appendix])∫︁ ∞

0

𝑒−
𝑑2

𝑡 −𝑠𝑡

𝑡
3
2

𝑑𝑡 ≤ 𝐶

𝑑
, for all 𝑑 > 0, (4.5)

gives us the lemma.
First we prove a discrete resolvent estimate with respect to 𝐿2(Ω) norm.
LEMMA 4.2. For any 𝛾 ∈ (0, 𝜋

2 ) there exists a constant 𝐶 = 𝐶𝛾 independent of ℎ and 𝑧 such that for any
𝜆 ∈ [0, 𝜆0] with 𝜆0 > 0 being the smallest eigenvalue of −∆ with homogeneous Dirichlet boundary conditions
holds

‖(𝑧 + ∆ℎ)−1𝜒‖Ω ≤ 𝐶𝛾

|𝑧 − 𝜆|
‖𝜒‖Ω, ∀𝑧 ∈ C∖Σ𝜆,𝛾 , ∀𝜒 ∈ 𝑉ℎ,

where Σ𝜆,𝛾 is defined in (1.7). The constant 𝐶𝛾 behaves like 𝛾−1 for small values of 𝛾.
Proof. For given 𝜒 ∈ 𝑉ℎ let 𝑢ℎ ∈ Vℎ be the solution of

−𝑧𝑢ℎ − ∆ℎ𝑢ℎ = 𝜒.

The existence and uniqueness of 𝑢ℎ (cf., e. g., [17]) follow by the fact that all eigenvalues of the discrete Laplacian
∆ℎ are real and positive and for the smallest discrete eigenvalue 𝜆0,ℎ there holds 𝜆0,ℎ ≥ 𝜆0. Testing this equation
with �̄�ℎ, we obtain

−𝑧‖𝑢ℎ‖2Ω + ‖∇𝑢ℎ‖2Ω = (𝜒, 𝑢ℎ)Ω

and therefore

(𝜆− 𝑧)‖𝑢ℎ‖2Ω + ‖∇𝑢ℎ‖2Ω − 𝜆‖𝑢ℎ‖2Ω = (𝜒, 𝑢ℎ)Ω. (4.6)

By definition of 𝜆0 we have

‖∇𝑢ℎ‖2Ω ≥ 𝜆0‖𝑢ℎ‖2Ω

and hence

𝛿 := ‖∇𝑢ℎ‖2Ω − 𝜆‖𝑢ℎ‖2Ω ≥ (𝜆0 − 𝜆)‖𝑢ℎ‖2Ω ≥ 0.

Thus the equation (4.6) can be rewritten as

|𝜆− 𝑧|‖𝑢ℎ‖2Ω𝑒𝑖𝜑 + 𝛿 = (𝜒, 𝑢ℎ)Ω,

with |𝜑| ≤ 𝜋 − 𝛾. Multiplying this equation with 𝑒−
𝑖𝜑
2 , taking real part and exploiting 𝛿 ≥ 0 and cos

(︁
𝜑
2

)︁
> 0,

we obtain

|𝜆− 𝑧|‖𝑢ℎ‖2Ω ≤ 1

cos
(︁

𝜑
2

)︁ |(𝜒, 𝑢ℎ)Ω| ≤
1

sin
(︀
𝛾
2

)︀ |(𝜒, 𝑢ℎ)Ω| = 𝐶𝛾 |(𝜒, 𝑢ℎ)Ω|.

This results in

‖𝑢ℎ‖Ω ≤ 𝐶𝛾

|𝜆− 𝑧|
‖𝜒‖Ω.

This completes the proof.
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Using the continuous resolvent results, (4.3), Lemma 4.2, and results from Section 2, we establish the discrete
resolvent estimate for the 𝐿∞ norm.

THEOREM 4.3. For any 𝛾 ∈ (0, 𝜋
2 ), there exists a constant 𝐶 = 𝐶𝛾 independent of ℎ and 𝑧 such that

‖(𝑧 + ∆ℎ)−1𝜒‖𝐿∞(Ω) ≤
𝐶|lnℎ|
|𝑧 − 𝜆|

‖𝜒‖𝐿∞(Ω), ∀𝑧 ∈ C∖Σ𝜆,𝛾 , ∀𝜒 ∈ 𝑉ℎ, ∀𝜆 ∈ [0, 𝜆0],

where Σ𝜆,𝛾 is defined in (1.6) and 𝜆0 is the smallest eigenvalue of −∆.
Proof. First, we establish the theorem with 𝜆 = 0, i.e.

‖(𝑧 + ∆ℎ)−1𝜒‖𝐿∞(Ω) ≤
𝐶|lnℎ|
|𝑧|

‖𝜒‖𝐿∞(Ω), ∀𝑧 ∈ C∖Σ0,𝛾 , ∀𝜒 ∈ 𝑉ℎ, (4.7)

and then following the argument of [3] at the end of Section 6, we establish the theorem with 𝜆 ∈ [0, 𝜆0]. To show
(4.7), we follow ideas of [43], Thm. 6.5, and [2]. The argument in [43] is purely two-dimensional and we have to
adapt it to our three-dimensional setting.

Let 𝑥0 ∈ Ω be a fixed point and let 𝛿 = 𝛿ℎ𝑥0
be the smooth Delta function introduced in Section 2. Then,

|(𝑧 + ∆ℎ)−1𝜒(𝑥0)| = |((𝑧 + ∆ℎ)−1𝜒, 𝑃ℎ𝛿)| = |(𝜒, (𝑧 + ∆ℎ)−1𝑃ℎ𝛿)|.

We define an adjoint regularized Green’s function 𝐺 = 𝐺𝑥0(𝑥, 𝑧) by

𝐺 = 𝐺𝑥0(𝑥, 𝑧) = (𝑧 + ∆)−1𝛿

and its discrete analog 𝐺ℎ = 𝐺𝑥0

ℎ (𝑥, 𝑧) ∈ Vℎ by

𝐺ℎ = 𝐺𝑥0

ℎ (𝑥, 𝑧) = (𝑧 + ∆ℎ)−1𝑃ℎ𝛿,

which we can write in the weak form as

𝑧(𝜙,𝐺ℎ) − (∇𝜙,∇𝐺ℎ) = (𝜙, 𝛿), ∀𝜙 ∈ Vℎ. (4.8)

Using (2.7a) we get

|(𝑧 + ∆ℎ)−1𝜒(𝑥0)| = |(𝜒,𝐺ℎ)| ≤ ‖𝜎− 3
2 ‖Ω‖𝜒‖𝐿∞‖𝜎 3

2𝐺ℎ‖Ω ≤ 𝐶|lnℎ| 12 ‖𝜒‖𝐿∞‖𝜎 3
2𝐺ℎ‖Ω.

Thus we only need to establish

‖𝜎 3
2𝐺ℎ‖Ω ≤ 𝐶|lnℎ| 12 |𝑧|−1. (4.9)

Consider the expression

− 𝑧‖𝜎 3
2𝐺ℎ‖2Ω + ‖𝜎 3

2∇𝐺ℎ‖2Ω = −𝑧(𝜎3𝐺ℎ, 𝐺ℎ) + (∇(𝜎3𝐺ℎ),∇𝐺ℎ) − 3(𝜎2∇𝜎𝐺ℎ,∇𝐺ℎ). (4.10)

By taking 𝜒 = −𝑃ℎ(𝜎3𝐺ℎ) in (4.8) and subtracting it from (4.10), we obtain

− 𝑧‖𝜎 3
2𝐺ℎ‖2Ω + ‖𝜎 3

2∇𝐺ℎ‖2Ω = 𝐹, (4.11)

where

𝐹 = 𝐹1 + 𝐹2 + 𝐹3 := −(𝑃ℎ(𝜎3𝐺ℎ), 𝛿) + (∇(𝜎3𝐺ℎ − 𝑃ℎ(𝜎3𝐺ℎ)),∇𝐺ℎ) − 3(𝜎2∇𝜎𝐺ℎ,∇𝐺ℎ).

Since 𝛾 ≤ |arg 𝑧| ≤ 𝜋, this equation is of the form

𝑒𝑖𝛼𝑎 + 𝑏 = 𝑓, with 𝑎, 𝑏 > 0, 0 ≤ |𝛼| ≤ 𝜋 − 𝛾,

by multiplying it by 𝑒−
𝑖𝛼
2 and taking real parts, we have

𝑎 + 𝑏 ≤
(︁

cos
(︁𝛼

2

)︁)︁−1

|𝑓 | ≤
(︁

sin
(︁𝛾

2

)︁)︁−1

|𝑓 | = 𝐶𝛾 |𝑓 |.
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From (4.11) we therefore conclude

|𝑧|‖𝜎 3
2𝐺ℎ‖2Ω + ‖𝜎 3

2∇𝐺ℎ‖2Ω ≤ 𝐶𝛾 |𝐹 |, for 𝑧 ∈ Σ0,𝛾 .

Using the Cauchy-Schwarz inequality, Lemma 2.4, and the arithmetic-geometric mean inequality we obtain,

|𝐹1| = |(𝜎3𝐺ℎ, 𝑃ℎ𝛿)| ≤ ‖𝜎 3
2𝐺ℎ‖Ω‖𝜎

3
2𝑃ℎ𝛿‖Ω ≤ 𝐶‖𝜎 3

2𝐺ℎ‖Ω ≤ 𝐶𝐶𝛾 |𝑧|−1 +
|𝑧|

2𝐶𝛾
‖𝜎 3

2𝐺ℎ‖2Ω.

To estimate 𝐹2 we use Lemma 2.3 and the Cauchy-Schwarz and the arithmetic-geometric mean inequalities,

|𝐹2| ≤ ‖𝜎− 3
2∇(𝜎3𝐺ℎ − 𝑃ℎ(𝜎3𝐺ℎ))‖Ω‖𝜎

3
2∇𝐺ℎ‖Ω ≤ 1

4𝐶𝛾
‖𝜎 3

2∇𝐺ℎ‖2Ω + 𝐶𝐶𝛾‖𝜎
1
2𝐺ℎ‖2Ω.

Finally, using the properties of 𝜎, we obtain

|𝐹3| ≤ 𝐶‖𝜎 1
2𝐺ℎ‖Ω‖𝜎

3
2∇𝐺ℎ‖Ω ≤ 1

4𝐶𝛾
‖𝜎 3

2∇𝐺ℎ‖2Ω + 𝐶𝐶𝛾‖𝜎
1
2𝐺ℎ‖2Ω.

Combining estimates for 𝐹 ′
𝑖𝑠 and kicking back, we obtain

|𝑧|‖𝜎 3
2𝐺ℎ‖2Ω + ‖𝜎 3

2∇𝐺ℎ‖2Ω ≤ 𝐶
(︁
|𝑧|−1 + ‖𝜎 1

2𝐺ℎ‖2
)︁
. (4.12)

Thus, in order to establish (4.7), we need to show

‖𝜎 1
2𝐺ℎ‖2Ω ≤ 𝐶|lnℎ||𝑧|−1. (4.13)

To accomplish that, we consider the expression

−𝑧‖𝜎 1
2𝐺ℎ‖2Ω + ‖𝜎 1

2∇𝐺ℎ‖2Ω = −𝑧(𝐺ℎ, 𝜎𝐺ℎ) + (∇𝐺ℎ,∇(𝜎𝐺ℎ)) − (∇𝐺ℎ,∇𝜎𝐺ℎ).

Testing (4.8) with 𝜙 = 𝑃ℎ(𝜎𝐺ℎ) we obtain similarly as above

|𝑧|‖𝜎 1
2𝐺ℎ‖2Ω + ‖𝜎 1

2∇𝐺ℎ‖2Ω ≤ 𝐶𝛾 |𝑓 |, for 𝑧 ∈ C ∖ Σ0,𝛾 ,

where

𝑓 = 𝑓1 + 𝑓2 + 𝑓3 := −(𝑃ℎ(𝜎𝐺ℎ), 𝛿) + (∇(𝜎𝐺ℎ − (𝑃ℎ(𝜎𝐺ℎ)),∇𝐺ℎ) − (∇𝜎𝐺ℎ,∇𝐺ℎ).

Using the Cauchy-Schwarz inequality, Lemma 2.4, and the arithmetic-geometric mean inequality we obtain,

|𝑓1| = |(𝜎𝐺ℎ, 𝑃ℎ𝛿)| ≤ ‖𝜎− 1
2𝐺ℎ‖Ω‖𝜎

3
2𝑃ℎ𝛿‖Ω ≤ 𝐶‖𝜎− 1

2𝐺ℎ‖Ω.

To estimate 𝑓2 we use Lemma 2.3 and the Cauchy-Schwarz and the arithmetic-geometric mean inequalities,

|𝑓2| ≤ ‖𝜎− 1
2∇(𝜎𝐺ℎ − (𝑃ℎ(𝜎𝐺ℎ)))‖Ω‖𝜎

1
2∇𝐺ℎ‖Ω ≤ 1

4𝐶𝛾
‖𝜎 1

2∇𝐺ℎ‖2Ω + 𝐶𝐶𝛾‖𝜎− 1
2𝐺ℎ‖2Ω.

Finally, using properties of 𝜎, we obtain

|𝑓3| ≤ 𝐶‖𝜎− 1
2𝐺ℎ‖Ω‖𝜎

1
2∇𝐺ℎ‖Ω ≤ 1

4𝐶𝛾
‖𝜎 1

2∇𝐺ℎ‖2Ω + 𝐶𝐶𝛾‖𝜎− 1
2𝐺ℎ‖2Ω.

Combining estimates for 𝑓 ′
𝑖𝑠 and kicking back, we obtain

|𝑧|‖𝜎 1
2𝐺ℎ‖2Ω + ‖𝜎 1

2∇𝐺ℎ‖2Ω ≤ 𝐶
(︁
‖𝜎− 1

2𝐺ℎ‖Ω + ‖𝜎− 1
2𝐺ℎ‖2Ω

)︁
≤ 𝐶

(︁
‖𝜎− 1

2𝐺ℎ‖2Ω + 1
)︁
. (4.14)

Now we proceed as in the proof of Theorem 3.1. To estimate ‖𝜎− 1
2𝐺ℎ‖Ω we use Lemma 2.5, with 𝛼 = 𝛽 = − 1

2
and 𝑝 = 3, to obtain

‖𝜎− 1
2𝐺ℎ‖Ω ≤ 𝐶‖𝐺ℎ‖

1
2

𝐿3(Ω)‖∇𝐺ℎ‖
1
2

𝐿
3
2 (Ω)

. (4.15)
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Using the inverse and the triangle inequalities, we obtain

‖𝐺ℎ‖𝐿3(Ω) ≤ ‖𝐺‖𝐿3(Ω) + 𝐶ℎ− 1
2 ‖𝐺−𝐺ℎ‖Ω + 𝐶ℎ− 1

2 ‖𝐺− 𝐼ℎ𝐺‖Ω + ‖𝐺− 𝐼ℎ𝐺‖𝐿3(Ω).

Using the approximation result (2.3), 𝐿2-norm error estimates, 𝐻2-regularity, and the properties of 𝛿 function, we
have

ℎ− 1
2 ‖𝐺−𝐺ℎ‖Ω + ℎ− 1

2 ‖𝐺− 𝐼ℎ𝐺‖Ω + ‖𝐺− 𝐼ℎ𝐺‖𝐿3(Ω) ≤ 𝐶ℎ
3
2 ‖𝐺‖𝐻2(Ω) ≤ 𝐶ℎ

3
2 ‖𝛿‖Ω ≤ 𝐶. (4.16)

The 𝐿2-norm error estimates and 𝐻2 regularity is shown for example in [17, Theorem 3.1] for convex polygonal
domains, but the proof there works for convex polyhedral domains as well. Next we will show

‖𝐺‖𝐿3(Ω) ≤ 𝐶|lnℎ| 13 . (4.17)

To establish that, we use

‖𝐺‖𝐿3(Ω) = ‖(𝑧 + ∆)−1𝛿‖𝐿3(Ω) = ‖(|𝑧| − ∆)(𝑧 + ∆)−1(|𝑧| − ∆)−1𝛿‖𝐿3(Ω)

≤ (1 + 2|𝑧|‖(𝑧 + ∆)−1‖𝐿3→𝐿3)‖(|𝑧| − ∆)−1𝛿‖𝐿3(Ω) ≤ 𝐶‖(|𝑧| − ∆)−1𝛿‖𝐿3(Ω),

where we used continuous resolvent estimate (4.1) with 𝑝 = 3 and

(|𝑧| − ∆)(𝑧 + ∆)−1 = (𝑧 + |𝑧| − 𝑧 − ∆)(𝑧 + ∆)−1 = (𝑧 + |𝑧|)(𝑧 + ∆)−1 − Id .

Now to estimate ‖(|𝑧| − ∆)−1𝛿‖𝐿3 we use the Green’s function representation

‖(|𝑧| − ∆)−1𝛿‖𝐿3(Ω) = ‖(Γ𝑠(·, 𝑦), 𝛿(𝑦))Ω‖𝐿3(Ω),

and exactly as in the proof of Theorem 3.1 using Lemma 4.1, we obtain

‖(|𝑧| − ∆)−1𝛿‖𝐿3(Ω) ≤ 𝐶|lnℎ| 13 .

Combining, we have established

‖𝐺ℎ‖𝐿3(Ω) ≤ 𝐶|lnℎ| 13 . (4.18)

Using same analysis as in Theorem 4.3, we get

‖∇𝐺ℎ‖
𝐿

3
2 (Ω)

≤ 𝐶|lnℎ| 16 ‖𝜎 1
2∇𝐺ℎ‖Ω. (4.19)

Thus, using (4.14) and the above estimates, we have

|𝑧|‖𝜎 1
2𝐺ℎ‖2Ω + ‖𝜎 1

2∇𝐺ℎ‖2Ω ≤ 𝐶
(︁
‖𝐺ℎ‖𝐿3(Ω)‖∇𝐺ℎ‖

𝐿
3
2 (Ω)

+ 1
)︁

≤ 𝐶
(︁
|lnℎ| 12 ‖𝜎 1

2∇𝐺ℎ‖Ω + 1
)︁

≤ 𝐶|lnℎ| +
1

2
‖𝜎 1

2∇𝐺ℎ‖2Ω.

Kicking back ‖𝜎 1
2∇𝐺ℎ‖2Ω, we finally obtain

‖𝜎 1
2𝐺ℎ‖2Ω ≤ 𝐶|lnℎ||𝑧|−1,

which shows (4.13) and hence the theorem for 𝜆 = 0.
To show the result with 𝜆 ∈ [0, 𝜆0], we use the argument similar to [3, Lemma 6.1]. We decompose C∖Σ𝜆,𝛾

as C∖Σ𝜆,𝛾 = 𝐷1 ∪𝐷2, where

𝐷1 =

{︂
𝑧 ∈ C∖Σ𝜆,𝛾

⃒⃒⃒⃒
𝛾

2
≤ |arg 𝑧| ≤ 𝜋 and |𝑧| ≥ 𝜆

2

}︂
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and

𝐷2 =
{︁
𝑧 ∈ C∖Σ𝜆,𝛾

⃒⃒⃒
|arg 𝑧| ≤ 𝛾

2

}︁
∪
{︂
𝑧 ∈ C

⃒⃒⃒⃒
|𝑧| ≤ 𝜆

2

}︂
.

Since |𝑧 − 𝜆| ≤ 3|𝑧| for 𝑧 ∈ 𝐷1, the theorem follows from (4.7). Thus, it remains to establish the bound for
𝑧 ∈ 𝐷2. Using ∆ℎ(𝑧 + ∆ℎ)−1 = Id−𝑧(𝑧 + ∆ℎ)−1, and Lemma 2.11, we have

‖(𝑧 + ∆ℎ)−1𝜒‖𝐿∞(Ω) ≤ 𝐶‖∆ℎ(𝑧 + ∆ℎ)−1𝜒‖Ω ≤ 𝐶
(︀
1 + |𝑧| ‖(𝑧 + ∆ℎ)−1‖𝐿2→𝐿2

)︀
‖𝜒‖Ω. (4.20)

For 𝑧 ∈ 𝐷2 using Lemma 4.2, we obtain

‖(𝑧 + ∆ℎ)−1‖𝐿2→𝐿2 ≤ 𝐶

|𝑧 − 𝜆|
.

Inserting this in (4.20) we obtain

‖(𝑧 + ∆ℎ)−1𝜒‖𝐿∞(Ω) ≤ 𝐶

(︂
1 +

|𝑧|
|𝑧 − 𝜆|

)︂
‖𝜒‖Ω ≤ 𝐶 (|𝑧| + |𝑧 − 𝜆|)

‖𝜒‖𝐿∞(Ω)

|𝑧 − 𝜆|
.

To complete the proof of the theorem, we notice that the term |𝑧| + |𝑧 − 𝜆| is uniformly bounded on 𝐷2 by a
constant depending only on 𝛾 and 𝜆0.

Appendix. Proof of Lemma 2.1. Adding and subtracting 𝐼ℎ(𝜙2𝑃ℎ𝑣) and using the Cauchy-Schwarz inequal-
ity, we have

‖𝜙𝑃ℎ𝑣‖2Ω = (𝑃ℎ𝑣, 𝜙
2𝑃ℎ𝑣)Ω = (𝑃ℎ𝑣, 𝜙

2𝑃ℎ𝑣 − 𝐼ℎ(𝜙2𝑃ℎ𝑣))Ω + (𝑣, 𝐼ℎ(𝜙2𝑃ℎ𝑣))Ω

≤ ‖𝜙𝑃ℎ𝑣‖‖Ω‖𝜙−1
(︀
𝜙2𝑃ℎ𝑣 − 𝐼ℎ(𝜙2𝑃ℎ𝑣)

)︀
‖Ω + ‖𝜙𝑣‖Ω‖𝜙−1𝐼ℎ(𝜙2𝑃ℎ𝑣)‖Ω.

(4.21)

Adapting the notation of [13], define

𝜙
𝜏

= min
𝜏

𝜙 and 𝜙𝜏 = max
𝜏

𝜙

for each element 𝜏 . First we notice that ℎ|∇𝜙| ≤ 𝜀𝜙 implies

𝜙𝜏 ≤ 𝐶𝜙
𝜏
, (4.22)

for 𝜀 sufficiently small with the constant 𝐶 independent of 𝜏 . Indeed, the inequality

𝜙𝜏 ≤ 𝜙
𝜏

+ ℎ‖∇𝜙‖𝐿∞(𝜏),

and the assumption

ℎ‖∇𝜙‖𝐿∞(𝜏) ≤ 𝜀𝜙𝜏 ,

imply (4.22) for 𝜀 sufficiently small.
Thus, using (4.22), the triangle inequality, and the property that for the nodal Lagrange interpolant holds

𝐼ℎ(𝜙2𝑃ℎ𝑣) = 𝐼ℎ(𝐼ℎ(𝜙2)𝑃ℎ𝑣),

we have

‖𝜙−1
(︀
𝜙2𝑃ℎ𝑣 − 𝐼ℎ(𝜙2𝑃ℎ𝑣)

)︀
‖𝜏 ≤ 𝜙−1

𝜏
‖𝜙2𝑃ℎ𝑣 − 𝐼ℎ(𝜙2𝑃ℎ𝑣)‖𝜏

≤ 𝜙−1
𝜏

‖
(︀
𝜙2 − 𝐼ℎ(𝜙2)

)︀
𝑃ℎ𝑣)‖𝜏 + 𝜙−1

𝜏
‖𝐼ℎ(𝜙2)𝑃ℎ𝑣 − 𝐼ℎ(𝐼ℎ(𝜙2)𝑃ℎ𝑣)‖𝜏

:= 𝐽1 + 𝐽2.

Using the approximation properties of 𝐼ℎ and the assumption that ℎ|∇𝜙| ≤ 𝜀𝜙, we obtain

𝐽1 ≤ 𝐶𝜙−1
𝜏

ℎ‖∇(𝜙2)‖𝐿∞(𝜏)‖𝑃ℎ𝑣‖𝜏 ≤ 𝐶𝜀‖𝜙𝑃ℎ𝑣‖𝜏 . (4.23)
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To estimate 𝐽2, we first notice that on each element 𝜕𝛾(𝑃ℎ𝑣) = 0 and 𝜕𝛾(𝐼ℎ(𝜙2)) = 0 for all multi-indices
𝛾 ∈ N3 with |𝛾| = 𝑘 + 1. Thus, using the approximations theory and the Leibniz’s formula, we have

𝐽2 ≤ 𝐶𝜙−1
𝜏

ℎ𝑘+1|𝐼ℎ(𝜙2)𝑃ℎ𝑣|𝐻𝑘+1(𝜏) ≤ 𝐶𝜙−1
𝜏

ℎ𝑘+1
𝑘∑︁

𝑙=1

|𝐼ℎ(𝜙2)|𝑊 𝑙
∞(𝜏)|𝑃ℎ𝑣|𝐻𝑘+1−𝑙(𝜏).

Using the stability of the interpolant in 𝑊 𝑙
∞ and the inverse inequality, we obtain

𝐽2 ≤ 𝐶𝜙−1
𝜏

‖𝑃ℎ𝑣‖𝜏
𝑘∑︁

𝑙=1

ℎ𝑙|𝜙2|𝑊 𝑙
∞(𝜏).

Finally, using the assumption ℎ𝑙|∇𝑙𝜙| ≤ 𝜀𝜙, we obtain

𝐽2 ≤ 𝐶𝜀‖𝜙𝑃ℎ𝑣‖𝜏 .

Thus combining the estimates for 𝐽1 and 𝐽2 and summing over the element, we have established that

‖𝜙−1
(︀
𝜙2𝑃ℎ𝑣 − 𝐼ℎ(𝜙2𝑃ℎ𝑣)

)︀
‖Ω ≤ 𝐶𝜀‖𝜙𝑃ℎ𝑣‖Ω. (4.24)

The above estimate by the triangle inequality also implies that

‖𝜙−1𝐼ℎ(𝜙2𝑃ℎ𝑣)‖Ω ≤ 𝐶(𝜀 + 1)‖𝜙𝑃ℎ𝑣‖Ω. (4.25)

Inserting the estimates (4.24) and (4.25) into (4.21), we obtain

‖𝜙𝑃ℎ𝑣‖2Ω ≤ 𝐶𝜀‖𝜙𝑃ℎ𝑣‖2Ω + 𝐶(𝜀 + 1)‖𝜙𝑣‖Ω‖𝜙𝑃ℎ𝑣‖Ω,

which for 𝜀 sufficiently small implies the lemma.
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Finite Elemente (Tagung, Univ. Bonn, Bonn, 1975), Inst. Angew. Math., Univ. Bonn, Bonn, 1976, pp. 92–114. Bonn. Math.
Schrift., No. 89.

[16] I. FRIED, On the optimality of the pointwise accuracy of the finite element solution, Internat. J. Numer. Methods Engrg., 15 (1980),
pp. 451–456.



22 DMITRIY LEYKEKHMAN AND BORIS VEXLER

[17] H. FUJITA AND A. MIZUTANI, On the finite element method for parabolic equations. I. Approximation of holomorphic semi-groups, J.
Math. Soc. Japan, 28 (1976), pp. 749–771.
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[43] V. THOMÉE, Galerkin finite element methods for parabolic problems, vol. 25 of Springer Series in Computational Mathematics,

Springer-Verlag, Berlin, second ed., 2006.
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