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We study a state constrained Dirichlet optimal control problem and derive
a priori error estimates for its finite element discretization. Additional control
constraints may or may not be included in the formulation. The pointwise
state constraints are prescribed in the interior of a convex polygonal domain.
We obtain a priori error estimates for the L2(Γ)-norm of order h1−1/p for
pure state constraints and h3/4−1/(2p) when additional control constraints are
present. Here, p is a real number that depends on the largest interior angle
of the domain. Unlike in e.g. distributed or Neumann control problems, the
state functions associated with L2-Dirichlet control have very low regularity,
i.e. they are elements of H1/2(Ω). By considering the state constraints in the
interior we make use of higher interior regularity and separate the regularity
limiting influences of the boundary on the one-hand, and the measure in the
right-hand-side of the adjoint equation associated with the state constraints

∗The first author was partially supported by the Spanish Ministerio of Economı́a y Competitividad
under project MTM2011-22711.
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on the other hand. We note in passing that in case of control constraints,
these may be interpreted as state constraints on the boundary.

1 Introduction

PDE constrained optimal control problems with pointwise state constraints are known
to cause certain theoretical and numerical difficulties. Some progress has recently been
made regarding the numerical analysis of such problems. A priori discretization error es-
timates and convergence results are available for different classes of problems, including
linear-quadratic distributed control problems [7, 10, 15, 17, 23, 24], problems with Neu-
mann boundary control [18], problems with finitely many state constraints [8, 22, 19], or
problems with finitely many control parameters [21, 22]. In [21] the control parameters
may influence a linear combination of nonhomogeneous Dirichlet boundary data with
high-regularity. In this work, we are concerned with a Dirichlet boundary control prob-
lem, which admits less regularity for L2-control functions than for instance Neumann
boundary control problems. We will focus on presenting a priori error estimates for
the finite element discretization of such linear-quadratic problems with pointwise state
constraints in the interior of the domain.

We prove an error rate for the L2(Γ)-norm of the control of O(h1−1/p) for problems
without control constraints (cf. Theorem 6.4), which seems to be optimal regarding
the existing results in the literature. The error rate will be limited by the effects of the
boundary term to h1−1/p (cf. [11, 20]) and the effects of having a measure as the Lagrange
multiplier associated to the state constraints. If we include also control constraints in
our analysis, we obtain an order of convergence of O(h3/4−1/(2p)) (cf. Theorem 6.11).
To the authors’ knowledge, results on discretization error estimates for state-constrained
problems in the literature deal with distributed or Neumann boundary control problems,
only. The order of almost O(h) obtained by Deckelnick and Hinze [15] or by Meyer [23]
for distributed controls is for domains with smooth boundary. In [23] a comment about
convex polygons is made, and an order O(h1/2) is obtained. The estimate of order
O(h| log h|) obtained by Casas, Mateos and Vexler in [10] is based on the fact that, for
the problem treated in that work, an enhanced regularity of the Lagrange multiplier
can be proven under mild assumptions. The same order is obtained in [17, Corollary
3.3] under the assumption of uniform boundedness of the distributed controls in the
L∞(Ω)-norm.

In [17, Remark 3.4] it is noticed that for both distributed and Neumann boundary
state-constrained control problems (and using a variational discretization) an easy argu-
ment can be used to show that in the presence of control constraints the same proof made
for the pure state-constrained case applies also for the control-and-state-constrained case.
This can be done due to the high regularity of both the control and the state. Unfor-
tunately, such argument cannot be transferred to our problem due to the low regularity
of the involved functions. Therefore, we must use two completely different methods of
proof for the two cases.

Let us present an outline of the paper. In the next section we introduce the problem
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and the notation that will be used throughout the work. In Section 3 we collect and
prove the regularity results we are going to need. Section 4 is devoted to the derivation
of optimality conditions, as well as the regularity properties of the optimal solution that
can be derived from these. Next, in Section 5, we discretize the problem using finite
elements. Our main results are presented and proven in Section 6. After introducing a
technical assumption on the mesh and proving an approximation result for the normal
derivative of the adjoint state, we split the presentation and use different techniques
of proof for the no-control-constrained and the control-constrained cases. The proofs
are presented in Subsections 6.1 and 6.2, respectively, and the aforementioned orders of
convergence of O(h1−1/p) and O(h3/4−1/(2p)) are obtained in each setting. Finally, we
remark that if we use the technique of Subsection 6.1 to the control-constrained case or
the technique of Subsection 6.2 to the no-control-constrained case, we get worse orders
of convergence in both cases.

2 The control problem

Throughout the article, we are dealing with the following linear-quadratic optimal control
problem:

min J(u) =
1

2
‖yu − yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ)

−∆yu = 0 in Ω, yu = u on Γ

a(x) ≤ yu(x) ≤ b(x) for a.e. x ∈ Ω̄1

α(x) ≤ u(x) ≤ β(x) on Γ.


(P)

Here, Ω ⊂ R2 is an bounded convex domain with polygonal boundary Γ and Ω1 ⊂⊂ Ω
is an open set. With this notation, we mean that the closure of Ω1 is included in Ω:
Ω̄1 ⊂ Ω.

We denote by π/3 ≤ ω < π the largest interior angle of Γ, and by

pΩ = 2/(2− π/max{ω, π/2}) > 2 and sΩ = 1 + π/ω ∈ (2, 4]

the exponents giving the maximal elliptic regularity in W 2,p(Ω) for p < pΩ (cf. [16,
Theorem 4.4.3.7]) and Hs(Ω) for s < sΩ (cf. [16, Theorem 5.1.1.4]). We consider a
target state yd regular enough, i.e., we will assume yd ∈ Lp(Ω)∩Hs−2(Ω) for all p < pΩ

and all s < sΩ.
Moreover, for the state constraints, we consider two functions a, b ∈ C(Ω̄1) such that

a(x) < b(x) on Ω̄1 and, for the control constraints, two functions α, β ∈W 1−1/pΩ,pΩ(Γ),
such that α(x) < β(x) on Γ. With an abuse of notation, we will include in our for-
mulation the absence of one or several constraints allowing the cases a ≡ −∞, b ≡ ∞,
α ≡ −∞ or β ≡ ∞. Further assumptions on the regularity of the state constraints will
be made in order to obtain error estimates. Finally, consider ν > 0 a regularization
parameter.
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To end this section, let us introduce some short notation. As usual, (·, ·) is the inner
product in L2(Ω), (·, ·)Γ is the inner product in L2(Γ) and 〈·, ·〉 is the duality product
between C(Ω̄1) and its dual M(Ω̄1), the space of regular Borel measures on Ω̄1. To
handle the constraints, we will use the sets

K = {y ∈ C(Ω̄1) : a(x) ≤ y(x) ≤ b(x) ∀x ∈ Ω̄1},

Uα,β = {u ∈ L2(Γ) : α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Γ},

and
Uad = {u ∈ Uα,β : yu ∈ K}.

We will denote by Proj[a,b](c) = min{b,max{a, c}} for any real numbers a, b, c the pro-
jection of c onto the interval [a, b]. Finally, we will denote by {χj}mj=1 the vertices of Γ
counted counterclockwise, with χm+1 = χ1, and by Γj the part of Γ joining vertices χj
and χj+1.

3 Some regularity results for the related PDEs

It is well known that in a polygonal domain, for any u ∈ L2(Γ) there exists a unique
yu ∈ H1/2(Ω) solving the state equation in the transposition sense:∫

Ω
yu∆zdx =

∫
Γ
u∂nzds ∀z ∈ H2(Ω) ∩H1

0 (Ω).

Moreover, the estimate
‖yu‖H1/2(Ω) ≤ C‖u‖L2(Γ) (1)

holds; see [1, Theorem 2.4] for a proof even in non-convex polygonal domains. This
defines a linear and continuous control-to-state operator

S : L2(Γ)→ H1/2(Ω).

In this section we will collect some regularity results for the state and the adjoint state
equation that will be needed in the rest of the work.

Lemma 3.1. The control-to-state mapping is continuous from Hs−3/2(Γ) to Hs−1(Ω)
for all s < sΩ.

Proof. Consider u ∈ Hs−3/2(Γ): from the trace theorem [16, Theorem 1.5.2.8] we know
that there exists U ∈ Hs−1(Ω) such that trace(U) = u. Consider z = U − yu. This
function satisfies

−∆z = −∆U in Ω, z = 0 on Γ.

Since −∆U ∈ Hs−3(Ω) and s − 3 < sΩ − 2, then [16, Theorem 5.1.1.4] implies that
z ∈ Hs−1(Ω) and consequently yu belongs to Hs−1(Ω) as well.

Lemma 3.2. For any open set Ω′ ⊂⊂ Ω, the control-to-state mapping
S : L2(Γ)→ H1/2(Ω), Su = yu is continuous
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1. from L2(Γ)→ C(Ω̄′);

2. from W 1−1/p,p(Γ) to W 2,p(Ω′) for all p < pΩ;

3. and from Hs−3/2(Γ) to Hs(Ω′) for all s < sΩ.

Proof. The proof follows the usual techniques for interior regularity results. We will
prove in detail the first statement.

1. Since yu is a harmonic function, and hence continuous in Ω, we have that yu ∈ C(Ω̄′)
and T is well defined from L2(Γ)→ C(Ω̄′). In R2, we have that H1/2(Ω) ↪→ L4(Ω), and
using (1) we can write

‖yu‖L4(Ω) + ‖∇yu‖W−1,4(Ω) ≤ C‖u‖L2(Γ). (2)

Consider now a cut-off function η ∈ D(Ω), 0 ≤ η ≤ 1 and η ≡ 1 on Ω̄′, as well as η ≡ 0
on Ω \ Ω′′, with some subdomain Ω′′ satisfying Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Taking into account
that ∆yu = 0, we have that ηyu satisfies the equation

−∆(ηyu) = −y∆η − 2∇η · ∇yu in Ω, ηyu = 0 on Γ. (3)

Since 4 > 2, using the classical estimate by Stampacchia [26], we obtain

‖yu‖L∞(Ω′) ≤ ‖ηyu‖L∞(Ω) ≤ ‖y∆η +∇η · ∇yu‖W−1,4(Ω)

and the first result follows from this inequality and (2)

2. We make use of yu ∈ W 1,p(Ω) (see [1, Lemma 2.3]), and hence ∇yu ∈ Lp(Ω). We
repeat the process from Step 1, taking into account the W 2,p(Ω) regularity of ηyu, which
follows from [16, Theorem 4.4.3.7].

3. From Lemma 3.1 we have yu ∈ Hs−1(Ω), and therefore ∇yu ∈ Hs−2(Ω). Since
s < sΩ, we can apply [16, Theorem 5.1.1.4] to (3) to obtain ηyu ∈ Hs(Ω), and hence
yu ∈ Hs(Ω′).

To eventually obtain regularity results for the control via the optimality system, we
proceed by discussing regularity of adjoint equations. For u ∈ L2(Γ) and µ ∈M(Ω̄1) we
define ϕr(u) ∈ H1

0 (Ω) and ϕs(µ) ∈W 1,t
0 (Ω) for all t < 2 the unique solutions of

−∆ϕr(u) = yu − yd in Ω, ϕr(u) = 0 on Γ,

−∆ϕs(µ) = µ in Ω, ϕs(µ) = 0 on Γ,

where the last equation must be understood in the transposition sense:

(ϕs(µ),−∆z) = 〈µ, z〉 ∀z ∈ H1
0 (Ω) s.t. ∆z ∈ L2(Ω). (4)

Notice that if ∆z ∈ L2(Ω), then z ∈ H2
loc(Ω) and hence z ∈ C(Ω̄1), so the definition is

meaningful.
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Lemma 3.3. If u ∈ L2(Γ), then

ϕr(u) ∈W 2,q(Ω), ∂nϕr(u) ∈W 1−1/q,q(Γ) ∀q ≤ 4, q < pΩ. (5)

If, further, u ∈ H1/2(Γ), then we also have that

ϕr(u) ∈W 2,p(Ω), ∂nϕr(u) ∈W 1−1/p,p(Γ) ∀p < pΩ, (6)

ϕr(u) ∈ Hs(Ω), ∂nϕr(u) ∈
m∏
j=1

Hs−3/2(Γj) ∀s ≤ 3, s < sΩ, (7)

and
∂nϕr(u) ∈ Hs−3/2(Γ) ∀s < min{3, sΩ}. (8)

Proof. Suppose u ∈ L2(Γ). Then yu ∈ H1/2(Ω) ↪→ L4(Ω) and usual regularity results
(cf. [16, Theorem 4.4.3.7]) will give us that ϕr(u) ∈ W 2,q(Ω) for q ≤ 4, q < pΩ. The
trace theorem (e.g. [16, Theorem 1.6.1.5]) states then that

∂nϕr(u) ∈
m∏
j=1

W 1−1/q,q(Γj) ∀q ≤ 4, q < pΩ.

Since ϕr(u) = 0 on Γ, we have that ∂nϕr(u)(χj) = 0 (see [9, Lemma A.2] and [6, §4]) and
∂nϕr(u) ∈ C(Γ). This compatibility condition is enough (cf. [16, Theorem 1.5.2.3(b)] to
obtain the global regularity in Γ.

If u ∈ H1/2(Γ), then yu ∈ H1(Ω) ⊂ Lp(Ω) for all p < pΩ. Relations in (6) follow now
in the same way as we proved (5). The regularity result [16, Theorem 5.1.1.4] gives us
ϕr(u) ∈ Hs(Ω) for all s ≤ 3, s < sΩ and the trace theorem hence yields

∂nϕr(u) ∈
m∏
j=1

Hs−3/2(Γj) ∀s ≤ 3, s < sΩ.

If sΩ ≤ 5/2 (i.e., for ω ≥ 2π/3), the already mentioned global continuity of ∂nϕr is
enough to obtain the desired global regularity on the boundary. If 5/2 < sΩ < 3 (this is,
for angles π/2 < ω < 2π/3) this continuity condition gives us also that ∂nϕr(u) ∈ H1(Γ);
on the other hand, the definition of the Sobolev space Hs−3/2(Γj) for s > 5/2 gives that

∂τ∂nϕr(u) ∈
m∏
j=1

Hs−5/2(Γj).

Since s < 3, it is known (cf. [16, Theorem 1.5.2.3(a)]) that no compatibility condition is
required at the corners to have

m∏
j=1

Hs−5/2(Γj) = Hs−5/2(Γ). (9)

All together, we obtain that ∂nϕr(u) ∈ H1(Γ) and its derivative satisfies ∂τ∂nϕr(u) ∈
Hs−5/2(Γ). These are precisely the conditions that define the space Hs−3/2(Γ) (for
5/2 < s < 7/2), and therefore ∂nϕr(u) ∈ Hs−3/2(Γ) by definition.

For sΩ ≥ 3 and s = 3, (9) is no longer true in general.
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Lemma 3.4. For every open set Ω2 with smooth boundary Γ2 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω
and every µ ∈M(Ω̄1)

ϕs(µ) ∈W 1,t
0 (Ω) ∩W 2,p(Ω \ Ω̄2) ∩Hs(Ω \ Ω̄2) ∀t < 2, p < pΩ, s < sΩ, (10)

∂nϕs(µ) ∈W 1−1/p,p(Γ) ∩
m∏
j=1

Hs−3/2(Γj) ∀p < pΩ, s < sΩ, (11)

and
∂nϕs(µ) ∈ Hs−3/2(Γ) ∀s < min{3, sΩ}. (12)

Proof. Since ϕs(µ) is harmonic in Ω \ Ω̄1, we have that ϕs(µ) ∈ C∞loc(Ω \ Ω̄1).
For any open set Ω2 with smooth boundary Γ2 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω, ϕs(µ) is

the solution of the following boundary value problem:

−∆ϕs(µ) = 0 in Ω \ Ω̄2, ϕs(µ) = 0 on Γ, ϕs(µ) = g on Γ2, (13)

where g is the trace of ϕs(µ) on Γ2 and is a C∞(Γ2) function. Therefore, using [16,
Theorems 4.4.3.7 and 5.1.1.4] we obtain (10). Notice that now we do not have the
restriction s ≤ 3, since the right hand side of (13) is zero.

The regularity of its normal derivative is proven using the trace theory as in Lemma
3.3.

Some further interior regularity will also be useful later.

Lemma 3.5. For any open sets Ω2 and Ω3 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω

ϕs(µ) ∈W 2,∞(Ω3 \ Ω̄2)

and
‖ϕs(µ)‖W 2,∞(Ω3\Ω̄2) ≤ C‖µ‖M(Ω̄1),

where C depends on the distance from Ω̄1 to Ω3 \ Ω̄2.

Proof. The first statement is obvious since ϕs(µ) is harmonic Ω\Ω̄1 and Ω3\Ω̄2 ⊂⊂ Ω\Ω̄1.
The proof of the continuity estimate is that of Lemma 3.2. Here we need to use a

bootstrapping argument with two open sets Ω′ and Ω′′ such that Ω3 \ Ω̄2 ⊂⊂ Ω′′ ⊂⊂
Ω′⊂⊂ Ω \ Ω̄1 ⊂⊂ Ω to obtain the intermediate results

‖ϕs(µ)‖W 2,∞(Ω3\Ω̄2) ≤ ‖ϕs(µ)‖W 4,t(Ω3\Ω̄2) ≤ C1‖ϕs(µ)‖W 3,t(Ω′′)

≤ C2‖ϕs(µ)‖W 2,t(Ω′) ≤ C3‖ϕs(µ)‖W 1,t(Ω) ≤ C‖µ‖M(Ω̄1).
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4 Optimality conditions and regularity of the solution

Define the Lagrangian of the problem, L : L2(Γ)×M(Ω̄1)×M(Ω̄1)→ R as

L(u, µ+, µ−) = J(u) + 〈µ+, yu − b〉+ 〈µ−, a− yu〉.

We have that for any u, v ∈ L2(Γ) and µ+, µ− ∈ M(Ω̄1), with µ = µ+ − µ− the first
derivatives are given by the expressions (see [11])

J ′(u)v = (−∂nϕr(u) + νu, v)Γ

∂uL(u, µ+, µ−)v = (−∂nϕr(u)− ∂nϕs(µ) + νu, v)Γ

and the second derivatives are independent of u, µ+, and µ− since the problem is
quadratic and the constraints are linear:

J ′′(u)v2 = ∂2
uuL(u, µ+, µ−)v2 = ‖yv‖2L2(Ω) + ν‖v‖2L2(Γ).

Definition 4.1. We will say that u is a feasible point for (P) if u ∈ Uad. We will say
that u0 ∈ Uad is a feasible Slater point for (P) if there exist δ > 0 and ε > 0 such that

α(x) + δ ≤ u0(x) ≤ β(x)− δ for a.e x ∈ Γ,

a(x) + ε ≤ yu0(x) ≤ b(x)− ε for a.e. x ∈ Ω̄1.

Theorem 4.2. Suppose problem (P) has a feasible point. Then it has a unique solution
ū ∈ Uad with related state ȳ = yū ∈ K. If, further, (P) has a feasible Slater point, then
there exist two nonnegative measures µ̄+, µ̄− ∈M(Ω̄1) such that

−∆ȳ = 0 in Ω, ȳ = ū on Γ (14a)

−∆ϕ̄ = ȳ − yd + µ̄ in Ω, ϕ̄ = 0 on Γ (14b)

ū(x) = Proj[α(x),β(x)]

(
1

ν
∂nϕ̄(x)

)
on Γ (14c)

〈µ̄, y − ȳ〉 ≤ 0 ∀y ∈ K (14d)

and

supp µ̄+ ⊂ {x ∈ Ω̄1 : ȳ(x) = b(x)} (15a)

supp µ̄− ⊂ {x ∈ Ω̄1 : ȳ(x) = a(x)} (15b)

where µ̄ = µ̄+ − µ̄− and ϕ̄ = ϕr(ū) + ϕs(µ̄).

Proof. Since Problem (P) is strictly convex and we are supposing the existence of a
feasible point, existence and uniqueness of a solution ū ∈ L2(Γ) is immediate.

Thanks to Lemma 3.2 and our assumption on the existence of a Slater point, from the
expression of the derivative of the Lagrangian, we obtain (see, e.g., [5]) the existence of
two nonnegative measures µ̄+ and µ̄− such that (14d) holds and

∂uL(ū, µ̄+, µ̄−)(u− ū) ≥ 0 ∀u ∈ Uα,β,
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which in our case means

(−∂nϕ̄+ νū, u− ū)Γ ≥ 0 ∀u ∈ Uα,β, (16)

that leads directly to the projection formula (14c). Relations like (15a) and (15b) are
well known in the context of state constrained problems. See e.g. [10] for a proof for
non-constant constraints.

Remark 4.3. The Lagrange multiplier µ̄ and the adjoint state ϕ̄ need not be unique.
Consider the following one-dimensional problem. Ω = (−1, 1), Ω1 = (−1/2, 1/2), yd ≡
−1/2, ν = 1, b ≡ −1/2. Then ȳ ≡ −1/2, ū ≡ −1/2 is the unique solution of the
problem. But both pairs

ϕ̄1 =
1

2
(1− |x|), µ̄1 = δ0

and

ϕ̄2 =

{
(1− |x|)/2 if |x| > 1/2
−x2/2 + 3/8 if |x| < 1/2,

µ̄2 = χΩ1

satisfy the optimality system.

Remark 4.4. It is also possible to state first order necessary optimality conditions with-
out the use of measures. Due to the convexity of Uad and the expression for the derivative
of J , we have that

(−∂nϕr(ū) + νū, u− ū) ≥ 0 ∀u ∈ Uad.

This would lead to the expression

ū = ProjUad

(
1

ν
∂nϕr(ū)

)
in the sense of L2(Γ).

This strategy is used in [24].

Corollary 4.5. If (P) has a feasible Slater point, then

ū ∈W 1−1/p,p(Γ), ȳ ∈W 1,p(Ω) ∀p < pΩ. (17)

Moreover, if α(x) < ū(x) < β(x) for all x ∈ Γ, then we also have

ū ∈
m∏
i=1

Hs−3/2(Γi) ∀s ≤ 3, s < sΩ (18)

and
ū ∈ Hs−3/2(Γ), ȳ ∈ Hs−1(Ω) ∀s < min{3, sΩ}. (19)

Proof. On the one hand, using Lemma 3.4 we know that ∂nϕs(µ̄) ∈ W 1−1/p,p(Γ) for all
p < pΩ.

To consider ∂nϕr on the other hand, note that Equation (5) implies that ∂nϕr(ū) ∈
W 1−1/q,q(Γ) for all q ≤ 4, q < pΩ. So the projection relation (14c) gives us that
ū ∈ W 1−1/q,q(Γ) ⊂ H1/2(Γ). We can now use a bootstrap argument using the relations
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(6) to obtain (17). The regularity of the state is an immediate consequence of the trace
theorem; see [1, Lemma 2.3] for details.

Let us check (18) and (19) now. Since the control constraints are not attained, (14c)
now reads

ū(x) =
1

ν
∂nϕ̄(x) on Γ.

Thanks to (17), already proved, we have that ū ∈ H1/2(Γ) and we can also apply (7)
and (11) to deduce (18). Relation (19) follows from (8) and (12). The regularity of the
state follows directly from Lemma 3.1.

5 Discretization

Let {Th}h be a quasi-uniform family of triangulations of Ω̄. For the discretization of the
state and the adjoint state we use the space of linear finite elements Yh ⊂ H1(Ω),

Yh = {y ∈ C(Ω̄) : yh ∈ P 1(T ) ∀T ∈ Th}.

As usual, we will abbreviate Yh0 = Yh ∩ H1
0 (Ω). For the control we use the space Uh

of continuous piecewise linear functions that are the trace of some element of Yh. We
define the set of boundary nodes Bh = {j : xj ∈ Γ} for later use. Finally, for the discrete
Lagrange multiplier we use the spaceMh ⊂M(Ω̄1) which is spanned by Dirac measures
corresponding to the nodes {xj}j∈I1h of the finite element mesh that are elements of Ω̄1.

For any function y ∈ C(Ω̄) (resp. u ∈ C(Γ)) we denote by Ihy ∈ Yh (resp. Ihu ∈ Uh)
its nodal interpolator and for any function u ∈ L2(Γ), we will denote by Πhu ∈ Uh its
projection onto Uh in the L2(Γ) sense, i.e.,

(Πhu, vh)Γ = (u, vh)Γ ∀vh ∈ Uh.

Notice that for uh ∈ Uh, Πhuh = uh. It is known (see [3, Eq. (2.20)], [11, Eq. (4.1)] or
[14, Eq. (3.8)]) that if u ∈ Ht(Γ), 0 ≤ t ≤ 2

‖u−Πhu‖L2(Γ) ≤ ‖u‖Ht(Γ) for 0 ≤ t ≤ 2. (20)

We will also use the space

Y Γ
h = {yh ∈ Yh : yh(xj) = 0 if xj 6∈ Γ}.

We discretize the state equation without penalization, (using variational crime) (see [2,
Theorem 5.2]): for any u ∈ L2(Γ), yh(u) ∈ Yh is the solution of

(∇yh(u),∇zh) = 0 ∀zh ∈ Yh0, (yh(u), vh)Γ = (u, vh)Γ ∀vh ∈ Uh.

It is customary to say that yh(u) is the discrete harmonic extension of u. Notice that
yh(u) ≡ Πhu on Γ and hence, if uh ∈ Uh, yh(uh) ≡ uh on Γ.

The discrete objective functional is defined as

Jh(u) =
1

2
‖yh(u)− yd‖2L2(Ω) +

ν

2
‖u‖2L2(Γ).

10



We will denote by

Uα,β,h = {uh ∈ Uh : α(xj) ≤ uh(xj) ≤ β(xj) ∀j ∈ Bh},

Kh = {yh ∈ Yh : a(xj) ≤ yh(xj) ≤ b(xj) ∀xj ∈ Ω̄1},

and
Uad,h = {uh ∈ Uα,β,h : yh(uh) ∈ Kh}.

Our discrete control problem then reads as

min Jh(uh)
uh ∈ Uad,h.

}
(Ph)

We will discuss some properties of problem (Ph) similar to those of problem (P).

Definition 5.1. We will say that uh is a feasible point for (Ph) if uh ∈ Uad,h. We will
call uh0 ∈ Uad,h a feasible Slater point for (Ph) if there exist δh > 0 and εh > 0 such that

α(xj) + δh ≤ uh0(xj) ≤ β(xj)− δh ∀j ∈ Bh,
a(xj) + εh ≤ yh(u0)(xj) ≤ b(xj)− εh∀xj ∈ Ω̄1.

Theorem 5.2. Suppose that (P) has a regular feasible Slater point
u0 ∈W 1−1/p,p(Γ), for some p > 2. Then there exists h0 > 0 such that for all 0 < h < h0

the discrete problem (Ph) has a Slater feasible point uh0 = Πhu0.
Moreover, the quantities δh and εh can be taken independent of h for h small enough.

Remark 5.3. Different assumptions on the regularity of the Slater point are not rare
in the related literature on control problems with both control and state constraints. See
e.g [23, Assumption 6.2], [8, Remark 3.8] or [24, Assumption 2.1].

Proof. Let u0 ∈ Uad be the feasible Slater point for problem (P), and define uh0 = Πhu0.
With an inverse inequality, usual interpolation error estimates, and estimate (20) we
obtain

‖u0 −Πhu0‖L∞(Γ)

≤ ‖u0 − Ihu0‖L∞(Γ) + ‖Ihu0 −Πhu0‖L∞(Γ)

≤ Ch1−1/p‖u0‖W 1−1/p,p(Γ) + Ch−1/2‖Ihu0 −Πhu0‖L2(Γ)

≤ Ch1−1/p‖u0‖W 1−1/p,p(Γ)

+ Ch−1/2(‖Ihu0 − u0‖L2(Γ) + ‖u0 −Πhu0‖L2(Γ))

≤ Ch1−1/p‖u0‖W 1−1/p,p(Γ) + Ch−1/2(h1−1/p‖u0‖H1−1/p(Γ)) ≤ Ch
1/2−1/p.

From this uniform convergence, and the fact that α(x) < u0 < β(x) for all x ∈ Γ, we
deduce the existence of some h0 > 0 such that for all 0 < h < h0, α(xj) < uh0(xj) <
β(xj) holds for all xj ∈ Γ.

11



Since uh0 → u0 in L2(Γ), Lemma 3.2 allows to deduce that

lim
h→0
‖yu0 − yuh0

‖L∞(Ω1) = 0. (21)

On the other hand, using the interior error estimate from [25, Theorem 5.1] we have
that for some open set Ω2 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω the estimate

‖yuh0
− yh(uh0)‖L∞(Ω1)

≤ C(| log h|‖yuh0
− Ihyuh0

‖L∞(Ω2) + ‖yuh0
− yh(uh0)‖L2(Ω))

holds. The first addend in this expression converges to zero since yuh0
is harmonic in Ω,

and the second one as a consequence of [2, Theorem 5.5]. So we obtain

lim
h→0
‖yuh0

− yh(uh0)‖L∞(Ω1) = 0. (22)

From the triangle inequality, (21), and (22), we conclude yh(uh0)→ yu0 in L∞(Ω1). Since
a(x) < yu0(x) < b(x) for all x ∈ Ω̄1, there exists h0 > 0 such that a(xj) < yh(uh0)(xj) <
b(xj) holds for all 0 < h < h0 and all xj ∈ Ω̄1. Hence, uh0 is a Slater point.

The independence of δh and εh with respect to h is clear from the definition of the
Slater point u0 and the proven uniform convergences.

For any u ∈ L2(Γ) and µ ∈ M(Ω̄1), we define ϕr,h(u), ϕs,h(µ) ∈ Yh0 to be the unique
solutions of

(∇ϕr,h(u),∇zh) = (yh(u)− yd, zh) ∀zh ∈ Yh0

(∇ϕs,h(µ),∇zh) = 〈µ, zh〉 ∀zh ∈ Yh0.

Let us now introduce the discrete variational normal derivative. For any linear operator
Th : Yh → R, let ϕh ∈ Yh0 be the solution of

(∇zh,∇ϕh) = Th(zh) ∀zh ∈ Yh0.

Then its discrete variational normal derivative ∂hnϕh ∈ Uh is the unique solution of

(∂hnϕh, zh)Γ = (∇zh,∇ϕh)− Th(zh) ∀zh ∈ Y Γ
h .

The Lagrangian Lh : L2(Γ)×Mh ×Mh → R of (Ph) is defined by

Lh(u, µ+
h , µ

−
h ) = J(u) + 〈µ+

h , yh(u)− b〉+ 〈µ−h , a− yh(u)〉.

We have that for any u, v ∈ L2(Γ) and any µ+
h , µ

−
h ∈ Mh, with µh = µ+

h − µ
−
h , the first

derivatives of Jh and Lh are given by the expression

J ′h(u)v = (−∂hnϕr,h(u) + νu, v)Γ

∂uLh(u, µ+
h , µ

−
h )v = (−∂hnϕr,h(u)− ∂hnϕs,h(µh) + νu, v)Γ,

and again the second derivatives are independent of u, µ+
h , and µ−h since the problem is

quadratic and the constraints are linear:

J ′′h(u)v2 = ∂2
uuLh(u, µ+

h , µ
−
h )v2 = ‖yh(v)‖2L2(Ω) + ν‖v‖2L2(Γ).
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Corollary 5.4. If (P) has a regular feasible Slater point, then there exists h0 > 0 such
that for all 0 < h < h0 the discrete problem (Ph) has a unique solution ūh ∈ Uad,h with
related discrete state ȳh ∈ Kh. Moreover, there exist nonnegative measures µ̄+

h , µ̄
−
h ∈Mh

such that

(∇ȳh,∇zh) = 0 ∀zh ∈ Yh0, (ȳh, vh)Γ = (ū,vh)Γ ∀vh ∈ Uh (23a)

(∇zh,∇ϕ̄h) = (ȳh − yd, zh) + 〈µ̄h, zh〉 ∀zh ∈ Yh0 (23b)

〈µ̄h, yh − ȳh〉 ≤ 0 ∀yh ∈ Kh (23c)

(νūh − ∂hnϕ̄h, uh − ūh) ≥ 0 ∀uh ∈ Uα,β,h (23d)

where µ̄h = µ̄+
h − µ̄

−
h and ϕ̄h = ϕr,h(ūh) + ϕs,h(µ̄h).

Proof. Problem (Ph) is a finite dimensional strictly convex optimization problem whose
feasible set is not empty due to Theorem 5.2, so it has a unique solution ūh ∈ Uad,h.

The optimality system is immediately obtained from the expression for the first deriva-
tive of the discrete Lagrangian.

Lemma 5.5. Under the assumptions of Corollary 5.4, the discrete Lagrange multipliers
are bounded independently of h.

Proof. Consider uh0 the sequence of feasible Slater points for problems (Ph) found in
Theorem 5.2. Since uh0 → u0 in L2(Γ), it is a bounded sequence, and the continuity of
the solution operator from L2(Γ) to L2(Ω), together with [2, Theorem 5.5], implies that
yh(uh0) is also bounded in L2(Ω). So we may deduce the existence of C > 0 such that

‖ūh‖L2(Γ) ≤
2

ν
Jh(ūh) ≤ 2

ν
Jh(uh0) ≤ C.

With the same reasoning made for the discrete states related to the Slater points, we
deduce that the sequence of discrete optimal states ȳh is also bounded in L2(Ω).

Since uh0 is a Slater point for problem (Ph), there exists ρ > 0 such that

a(xj) ≤ yh(uh0)(xj)− ρ < yh(uh0)(xj) + ρ ≤ b(xj) ∀xj ∈ Ω̄1.

Notice that µ̄h = µ̄+
h − µ̄

−
h ∈Mh, and hence it is a combination of Dirac deltas centered

at the nodes of the mesh. There exist λ̄j ∈ R for all j such that xj ∈ Ω̄1 such that

µ̄h =
∑

λ̄jδxj .

Define zh ∈ Yh as

zh(xj) =


ρ if λ̄j ≥ 0
−ρ if λ̄j < 0
0 if xj 6∈ Ω̄1

Clearly, yh0 + zh ∈ Kh, and using (23c) we have

〈µ̄h, yh(uh0) + zh − ȳh〉 ≤ 0.
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So we have, using the definition of the discrete normal derivative of ϕs,h(µ̄h), the fact that
ϕs,h(µ̄h) ∈ Yh0 together with the definition of discrete state, the discrete Euler-Lagrange
condition (23d) together with the boundary conditions satisfied by the discrete states,
the definition of discrete normal derivative of ϕr,h(ūh), the fact that ϕr,h(ūh) ∈ Yh0

together with the definition of discrete state and the already proved boundedness in
L2(Γ) of the discrete optimal controls and the discrete Slater controls and in L2(Ω) of
its related states:

ρ‖µ̄h‖M(Ω̄1) = ρ
∑
|λj | = 〈µ̄h, zh〉

≤ 〈µ̄h, ȳh − yh(uh0)〉
= (∇(ȳh − yh(uh0)),∇ϕs,h(µ̄h))− (∂hnϕs,h(µ̄h), ȳh − yh(uh0))Γ

≤ (νūh − ∂hnϕr,h(ū), ūh − uh0)Γ

= (νūh, ūh − uh0)Γ

+ (∇(ȳh − yh(uh0)),∇ϕr,h(ūh))− (ȳh − yd, ȳh − yh(uh0))

= (νūh, ūh − uh0)Γ ≤ C.

Hence the assertion is proven.

6 Error estimates

To obtain error estimates, we will make the following technical assumption on the tri-
angulation, which is not difficult to fulfill in practice:

Assumption (H) There exists some h̄ > 0 and an open set Ω2,h̄ such that Ω1 ⊂⊂
Ω2 ⊂⊂ Ω2,h̄ ⊂⊂ Ω for some open set Ω2 with smooth boundary Γ2 such that for all
0 < h < h̄

Ω̄2,h̄ = ∪{T ∈ Th : s.t. xj ∈ Ω̄2,h̄ ∀xj vertex of T}.

Notice that for every T ∈ Th, either intT ∈ Ω2,h̄ or intT ∈ Ω \ Ω̄2,h̄ and {Th}h<h̄
induces a quasi-uniform family of triangulations {T2,h}h<h̄ on Ω \ Ω̄2,h̄ . We define

Ỹh = {yh ∈ C(Ω̄ \ Ω2,h̄) : yh ∈ P 1(T ) ∀T ∈ T2,h}

and
Ỹh,0 = Ỹh ∩H1

0 (Ω \ Ω̄2,h̄).

We will denote by (·, ·)Ω\Ω̄2,h̄
the inner product in L2(Ω \ Ω̄2,h̄). We will also use the

space Ũh of the traces of the elements of Ỹh on Γ2,h̄, the boundary of Ω2,h̄.
We can also define a variational discrete normal derivative on Γ2,h̄. For any eh ∈ Uh,

and Th : Ỹh → R linear, let φh ∈ Ỹh be the unique solution of

(∇φh,∇zh)Ω\Ω̄2,h̄
= Th(zh) for all zh ∈ Ỹh,0, φh = eh on Γ, φh = 0 on Γ2,h̄.
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Then it can be shown as in [11] that there exists a unique ∂hnφh ∈ Ũh such that

(∂hnφh, zh)Γ2,h̄
= (∇φh,∇zh)Ω\Ω̄2,h̄

− Th(zh) ∀zh ∈ Ỹh. (24)

We have the following relation between the boundary data on Γ and the discrete normal
derivative on Γ2,h̄.

Lemma 6.1. Suppose that Assumption (H) is satisfied, consider eh ∈ Uh and let φh ∈ Ỹh
be the unique solution of

(∇φh,∇zh)Ω\Ω̄2,h̄
= 0 ∀zh ∈ Ỹh,0, φh = eh on Γ, φh = 0 on Γ2,h̄.

Then, there exist h0 > 0 and C > 0 such that for all 0 < h < h0

‖∂hnφh‖L2(Γ2,h̄) ≤
C

h
‖eh‖L2(Γ)

is satisfied.

Proof. Take any vh ∈ Ũh and let ηh ∈ Ỹh be the unique solution of

(∇ηh,∇zh)Ω\Ω̄2,h̄
= 0 ∀zh ∈ Ỹh,0, ηh = 0 on Γ, ηh = vh on Γ2,h̄.

Then, with (24) and using the appropriate inverse inequality (cf. [4, Theorem (4.5.11)],
we obtain

(∂hnφh, vh)Γ2,h̄
= (∇φh,∇ηh)Ω\Ω̄2,h̄

≤ ‖∇φh‖L2(Ω\Ω̄2,h̄)‖∇ηh‖L2(Ω\Ω̄2,h̄)

≤ C‖eh‖H1/2(Γ)‖vh‖H1/2(Γ2,h̄)

≤ C 1

h1/2
‖eh‖L2(Γ)

1

h1/2
‖vh‖L2(Γ2,h̄)

and the result follows.

Lemma 6.2. For any u ∈ W 1−1/p,p(Γ) there exists some h1 > 0 and some C > 0
independent of u such that for all 0 < h < h1 the following estimate holds

‖∂nϕr(u)− ∂hnϕr,h(u)‖L2(Γ) ≤ Ch1−1/p‖u‖W 1−1/p,p(Γ) ∀p < pΩ. (25)

Suppose further that assumption (H) is satisfied. Then, for any µ ∈M(Ω̄1), there exist
some h2 > 0 and C > 0 independent of µ such that for all 0 < h < h2 the following
estimate holds

‖∂nϕs(µ)− ∂hnϕs,h(µ)‖L2(Γ) ≤ Ch1−1/p‖µ‖M(Ω̄1) ∀p < pΩ. (26)

Proof. The proof of the estimates for both the regular part and the singular part is
similar. We will write the details for the singular part, since it requires some more
tricks. We will drop the dependence on µ in the following lines. First we write

‖∂nϕs − ∂hnϕs,h‖2L2(Γ) = ‖∂nϕs −Πh∂nϕs‖2L2(Γ) + ‖Πh∂nϕs − ∂hnϕs,h‖2L2(Γ).
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From Lemma 3.4 and estimate (20) it follows that

‖∂nϕs −Πh∂nϕs‖L2(Γ) ≤ Chs‖µ‖M(Ω̄1) ∀s < min{3/2, sΩ − 3/2}.

For the second addend, denote by eh = Πh∂nϕs − ∂hnϕs,h and define φh ∈ Ỹh as the
unique solution of

(∇φh,∇zh)Ω\Ω̄2,h̄
= 0 for all zh ∈ Ỹh,0, φh = eh on Γ, φh = 0 on Γ2,h̄.

We use the definition of Πh and the value of φh on Γ to write

‖eh‖2L2(Γ) = ‖Πh∂nϕs − ∂hnϕs,h‖2L2(Γ)

= (Πh∂nϕs − ∂hnϕs,h,Πh∂nϕs − ∂hnϕs,h)Γ

= (∂nϕs − ∂hnϕs,h,Πh∂nϕs − ∂hnϕs,h)Γ

= (∂nϕs, φh)Γ − (∂hnϕs,h, φh)Γ. (27)

Since φh = 0 on Γ2,h̄, the extension of φh to Ω2,h̄ by 0 is an element of Yh. With an abuse

of notation we well also refer to this extension as φh. Now we can use that φh ∈ H1(Ω)
and apply Green’s formula to obtain

(∂nϕs, φh)Γ = −(φh, µ) + (∇φh,∇ϕs) = (∇φh,∇ϕs) = (∇φh,∇ϕs)Ω\Ω̄2,h̄
, (28)

where we have used that supp µ̄ ⊂ Ω̄1 ⊂ Ω2 ⊂⊂ Ω2,h̄ and φh ≡ 0 in Ω2,h̄. In the same
way we use that φh ∈ Yh and the definition of the discrete normal derivative to obtain

(∂hnϕs,h, φh)Γ = −(φh, µ) + (∇φh,∇ϕs,h)

= (∇φh,∇ϕs,h) = (∇φh,∇ϕs,h)Ω\Ω̄2,h̄
. (29)

Now we use (27)–(29) and insert the zero ±(∇φh,∇Ihϕs)Ω\Ω̄2,h̄
to write

‖eh‖2L2(Γ) = (∇φh,∇ϕs −∇Ihϕs)Ω\Ω̄2,h̄
+ (∇φh,∇Ihϕs −∇ϕs,h)Ω\Ω̄2,h̄

. (30)

Let us discuss the second term of (30). For any zh ∈ Ỹh such that zh = 0 on Γ, using
the definition of discrete normal derivative, we have

(∇φh,∇zh)Ω\Ω̄2,h̄
= (∂hnφh, zh)Γ2,h̄

and therefore

(∇φh,∇Ihϕs −∇ϕs,h)Ω\Ω̄2,h̄
= (∂hnφh, Ihϕs − ϕs,h)Γ2,h̄

= (∂hnφh, Ihϕs − ϕs)Γ2,h̄
+ (∂hnφh, ϕs − ϕs,h)Γ2,h̄

.

From Lemma 3.5, we know that ϕs is regular in Ω3 \ Ω̄2 for some Ω3 ⊂⊂ Ω such that
Γ2,h̄ ⊂ Ω3 \ Ω̄2, so we use interpolation error estimates (see e.g. [13, Theorem 17.2])
and Lemma 6.1 for the first term. For the second one we also use Lemma 6.1 and the
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uniform estimate for Green functions [25, Theorem 6.1(i)]. This result is proved for
Dirac measures, but the proof is the same (with the obvious changes) for any measure
with compact support. We obtain

(∇φh,∇Ihϕs −∇ϕs,h)Ω\Ω̄2,h̄
≤ Ch| log h|‖eh‖L2(Γ)‖µ‖M(Ω̄1).

For the first term in (30)

(∇φh,∇ϕs −∇Ihϕs)Ω\Ω̄2,h̄
≤ ‖φh‖W 1,p′ (Ω\Ω̄2,h̄)‖ϕs − Ihϕs‖W 1,p(Ω\Ω̄2,h̄)

≤ C‖eh‖W 1−1/p′,p′ (Γ)h‖ϕs‖W 2,p(Ω\Ω2,h̄)

≤ C‖eh‖H1−1/p′ (Γ)h‖µ‖M(Ω̄1) (31)

≤ Ch1/p′−1‖eh‖L2(Γ)h‖µ‖M(Ω̄1)

= Ch1−1/p‖eh‖L2(Γ)‖µ‖M(Ω̄1).

Collecting all the estimates the proof is complete. For the regular part, it is easier, since
we can define φh ∈ Yh and we avoid the second term in (30).

To obtain error estimates, we will follow two different methods of proof for problems
with pure state constraints and problems with additional control constraints. We discuss
the main differences of these methods along with the advantages and disadvantages of
each of them at the end of the paper.

6.1 No control constraints

The main result of this part is the error estimate proved in Theorem 6.4. A technical
lemma necessary for the proof is provided first.

Lemma 6.3. Suppose that (P) has a regular feasible Slater point,
a, b ∈ W 2,p(Ω1) for all p < pΩ and α(x) < ū(x) < β(x) for all x ∈ Γ. Let ū and
ūh be the solutions of problems (P) and (Ph), respectively, and µ̄ and µ̄h Lagrange mul-
tipliers associated to these solutions. Then

(∂hnϕs,h(µ̄)− ∂hnϕs,h(µ̄h), ū− ūh)Γ ≤ Ch2(1−1/p) ∀p < pΩ.

Proof. Using the definition of the L2(Γ) projection, the definition of the discrete normal
derivative, the equalities yh(ū) ≡ Πhū, ȳh ≡ ūh on Γ, the fact that both ϕs,h(µ̄h), ϕs,h(µ̄) ∈
Yh0 and the discrete state equation, we obtain

(∂hnϕs,h(µ̄)− ∂hnϕs,h(µ̄h), ū− ūh)Γ = (∂hnϕs,h(µ̄)− ∂hnϕs,h(µ̄h),Πhū− ūh)Γ

= (∇(ϕs,h(µ̄)− ϕs,h(µ̄h)),∇(yh(ū)− ȳh))

− 〈µ̄− µ̄h, yh(ū)− ȳh〉
= 〈µ̄h − µ̄, yh(ū)− ȳh〉
= 〈µ̄+, ȳh − yh(ū)〉 − 〈µ̄−, ȳh − yh(ū)〉
+ 〈µ̄+

h , yh(ū)− ȳh〉 − 〈µ̄−h , yh(ū)− ȳh〉.

17



For the first two addends we use that ȳ = b on suppµ+, ȳ = a on suppµ−, Iha ≤ ȳh ≤ Ihb
and the estimates for the interpolation error to obtain

〈µ̄+, ȳh − yh(ū)〉 − 〈µ̄−, ȳh − yh(ū)〉
≤ 〈µ̄+, b− yh(ū)〉+ 〈µ̄+, Ihb− b〉+ 〈µ̄−,−a+ yh(ū)〉+ 〈µ̄−, a− Iha〉
= 〈µ̄+, b− ȳ〉 − 〈µ̄−, a− ȳ〉+ 〈µ̄+ − µ̄−, ȳ − yh(ū)〉

+ 〈µ̄+, Ihb− b〉+ 〈µ̄−, a− Iha〉
= 〈µ̄, ȳ − yh(ū)〉 + 〈µ̄+, Ihb− b〉+ 〈µ̄−, a− Iha〉

≤ ‖µ̄‖M(Ω̄1)

(
‖ȳ − yh(ū)‖L∞(Ω1)

+ Ch2−2/p(‖a‖W 2,p(Ω1) + ‖b‖W 2,p(Ω1))
)
∀p < pΩ.

To finish, we use that ȳh = b on supp µ̄+
h , ȳ − b ≤ 0, ȳh = a on supp µ̄−h , and ȳ − a ≥ 0

to obtain

〈µ̄+
h , yh(ū)− ȳh〉 − 〈µ̄−h , yh(ū)− ȳh〉

= 〈µ̄+
h , yh(ū)− b〉 − 〈µ̄−h , yh(ū)− a〉

= 〈µ̄+
h , yh(ū)− ȳ〉+ 〈µ̄+

h , ȳ − b〉 − 〈µ̄
−
h , yh(ū)− ȳ〉 − 〈µ̄−h , ȳ − a〉

≤ 〈µ̄h, yh(ū)− ȳ〉
≤ ‖µ̄h‖M(Ω̄1)‖ȳ − yh(ū)‖L∞(Ω1).

All together we arrive at

(∂hnϕs,h(µ̄)− ∂hnϕs,h(µ̄h), ū− ūh)Γ

≤ (‖µ̄‖M(Ω1) + ‖µ̄h‖M(Ω1))‖ȳ − yh(ū)‖L∞(Ω1)

+ Ch2−2/p(‖a‖W 2,p(Ω1) + ‖b‖W 2,p(Ω1)) ∀p < pΩ.

Thanks to the boundedness of µ̄h proved in Lemma 5.5, it only remains to estimate
‖ȳ − yh(ū)‖L∞(Ω1). We use the interior error estimates [25, Theorem 5.1], interpolation
error estimates, finite element error for non-regular problems (cf. [4, Theorem (12.3.5)],
the interior regularity results of Lemma 3.2, Lemma 3.1 and the regularity of the optimal
control state of Corollary 4.5. For any open set Ω2 such that Ω1 ⊂⊂ Ω2 ⊂⊂ Ω, all p < pΩ

and s < min{3, sΩ} we obtain

‖ȳ − yh(ū)‖L∞(Ω1) ≤ C
(
| log h|‖ȳ − Ihȳ‖L∞(Ω2) + ‖ȳ − yh(ū)‖L2(Ω2)

)
≤ C

(
| log h|h2−2/p‖ȳ‖W 2,p(Ω2) + hs−1‖ȳ‖Hs−1(Ω)

)
≤ C

(
| log h|h2−2/p‖ū‖W 1−1/p,p(Γ) + hs−1‖ū‖Hs−3/2(Γ)

)
. (32)

Choosing s = 3− 2/p (which is smaller than 3 and sΩ), the proof is complete. Since the
result is valid for all p < pΩ, the | log h| term can be neglected.

Theorem 6.4. Let ū and ūh be the solutions of problems (P) and (Ph), respectively,
and suppose that (P) has a regular feasible Slater point, Assumption (H) is satisfied,
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a, b ∈ W 2,p(Ω1) for all p < pΩ and α(x) < ū(x) < β(x) for all x ∈ Γ. Then there exists
some h0 > 0 and C > 0 such that for all 0 < h < h0

‖ū− ūh‖L2(Γ) ≤ Ch1−1/p ∀p < pΩ.

Proof. Since J is quadratic, we can write

ν

2
‖ū− ūh‖2L2(Γ) ≤ J

′′
h(uξ)(ū− ūh)2 = J ′h(ū)(ū− ūh)− J ′h(ūh)(ū− ūh)

= (−∂hnϕr,h(ū) + νū, ū− ūh)Γ − (−∂hnϕr,h(ūh) + νūh, ū− ūh)Γ

with some uξ = ūh + ξ(ū− ūh), 0 ≤ ξ ≤ 1. Inserting the term ±∂nϕr(ū) and taking into
account that in the absence of control constraints first order optimality conditions read
like

νū− ∂nϕr(ū)− ∂nϕs(µ̄) = 0 (33)

νūh − ∂hnϕr,h(ūh)− ∂hnϕs,h(µ̄h) = 0, (34)

we get to

ν‖ū− ūh‖2L2(Γ) ≤ (∂nϕs(µ̄)− ∂hnϕs,h(µ̄h), ū− ūh)Γ

+ (∂nϕr(ū)− ∂hnϕr,h(ū), ū− ūh)Γ

= (∂nϕs(µ̄)− ∂hnϕs,h(µ̄), ū− ūh)Γ

+ (∂hnϕs,h(µ̄)− ∂hnϕs,h(µ̄h), ū− ūh)Γ

+ (∂nϕr(ū)− ∂hnϕr,h(ū), ū− ūh)Γ. (35)

The result then follows from (35) and Lemmas 6.2 and 6.3.

6.2 Control constrained case.

We provide hence a different proof from the one done for the no-control-constrained
case, where we use a technique similar to that followed by Meyer in [23] or Rösch and
Steinig [24], where we show an order of convergence of O(h3/4−1/(2p)). Before stating
and proving the main result of this section, we will collect some auxiliary results. We
begin with the error estimates for the L2(Γ) projections.

Lemma 6.5. The L2-projection Πh fulfills the projection error estimates

‖u−Πhu‖L2(Γ) ≤ Ch1−1/p‖u‖W 1−1/p,p(Γ) (36)

as well as
‖u−Πhu‖H−1/2(Γ) ≤ Ch

3/2−1/p‖u‖W 1−1/p,p(Γ) (37)

for all u ∈W 1−1/p,p(Γ) and all p < +∞.
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Proof. Estimate (36) follows from [12, Theorem 2.1] and usual interpolation error esti-
mates. The proof of estimate (37) is a bit more delicate. It involves a duality argument
that relies on the approximation property (20).

To shorten notation let us define F = {v ∈ H1/2(Γ) : ‖v‖H1/2(Γ) = 1}. Using the
definition of Πh and of the dual norm we may write

‖u−Πhu‖H−1/2(Γ) = sup
v∈F
〈u−Πhu, v〉H−1/2(Γ),H1/2(Γ)

= sup
v∈F

(u−Πhu, v)

= sup
v∈F

(u−Πhu, v −Πhv)

≤ sup
v∈F
‖u−Πhu‖L2(Γ)‖v −Πhv‖L2(Γ)

≤ sup
v∈F

ch1−1/p‖u‖W 1−1/p,p(Γ)h
1/2‖v‖H1/2(Γ)

= ch3/2−1/p‖u‖W 1−1/p,p(Γ),

and the proof is complete.

The reader may compare (37) with [23, Eq. (4.2)] or [24, Eq. (3.4)] and wonder why
we have not used the norm of W 1−1/p,p(Γ)∗ instead of the norm in H−1/2(Γ), which
would have lead to an estimate of order h2−2/p. The reason is that we will need the
continuity of the solution operator into L2(Ω) in (44), and this is not possible for data
in W 1−1/p,p(Γ)∗.

Le us now state properly the meaning of the state equation for data u ∈ H−1/2(Γ).
We will say that y = Su if∫

Ω
y∆zdx = 〈u, ∂nz〉H−1/2(Γ),H1/2(Γ) ∀z ∈ H

2(Ω) ∩H1
0 (Γ).

Since z = 0 on Γ, ∂nz ∈ H1/2(Γ) and the definition makes sense (see [9, Lemma A.2]).

Lemma 6.6. The control-to-state-mapping Su = yu is well defined and continuous from
H−1/2(Γ) to L2(Ω). For any open set Ω′ ⊂⊂ Ω, it is also continuous from H−1/2(Γ) to
C(Ω̄′).

Proof. The proof of the first part follows the usual duality argument. To shorten nota-
tion, let us denote F = {f ∈ L2(Ω): ‖f‖L2(Ω) = 1} and for every f ∈ L2(Ω), let z be
the unique element in H2(Ω) ∩H1

0 (Ω) such that −∆z = f in Ω. Then

‖y‖L2(Ω) = sup
f∈F

∫
Ω
yfdx = sup

f∈F
−〈u, ∂nz〉H−1/2(Γ),H1/2(Γ)

≤ sup
f∈F
‖u‖H−1/2(Γ)‖∂nz‖H1/2(Γ)

≤ sup
f∈F

C‖u‖H−1/2(Γ)‖f‖L2(Ω) = C‖u‖H−1/2(Γ).

The interior regularity can be proven using a similar discussion to that of Lemma 3.3
and a bootstrap argument like in Lemma 3.5
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Lemma 6.7. Suppose that (P) has a regular feasible Slater point and that Assumption
(H) is satisfied. Then the sequence of discrete optimal controls ūh of Problem (Ph) is
bounded in the W 1−1/p,p(Γ)-norm independently of h for all p < pΩ.

Proof. For the proof we refer to [11, Theorem 6.2]. This proof is based on the stability of
the L2(Γ)-projections in W 1−1/p,p(Γ) stated in [12] and can be adapted with the obvious
changes starting with our Lemma 6.2.

Lemma 6.8. Suppose that (P) has a regular feasible Slater point. Let ūh be the optimal
control of (Ph). There exists a sequence u∗ = u∗(h) of controls, uniformly bounded in
W 1−1/p,p(Γ) for all p < pΩ, that are feasible for (P), and a constant C > 0 independent
of h such that

‖ūh − u∗(h)‖H−1/2(Γ) ≤ Ch
3/2−1/p ∀p < pΩ. (38)

Proof. For h > 0 consider uh0 = Πhu0 the discrete Slater point introduced in Theorem
5.2. For κ = κ(h) to be determined define the auxiliary control

u∗ = ūh + κ(uh0 − ūh).

The boundedness of the sequences u∗ follows directly from Lemma 6.7 and the stability of
Πh stated in [12, Theorem 2.3]. Then, clearly the error ‖ūh−u∗‖H−1/2(Γ) is determinded
by κ(h). Notice, for instance,

u∗ = (1− κ)ūh + κuh0 ≤ (1− κ)β + κ(β − δh) = β − κδh ≤ β,

where δh is introduced in Definition 5.1. Repeating these calculations for the lower bound
results in feasibility of u∗ with respect to the control constraints. To check feasibility
regarding the state constraints, observe that in Ω̄1 we have

y(u∗) = yh(u∗) + y(u∗)− yh(u∗)

≤ (1− κ)yh(ūh) + κyh(uh0) + ‖y(u∗)− yh(u∗)‖L∞(Ω1).

Similar to (32), we obtain with [11, Theorem 5.4]

‖y(u∗)− yh(u∗)‖L∞(Ω1)

≤ C
(
| log h|‖y(u∗)− Ihy(u∗)‖L∞(Ω2) + ‖y(u∗)− yh(u∗)‖L2(Ω)

)
≤ C

(
| log h|h2−2/p‖y(u∗)‖W 2,p(Ω2) + h3/2−1/p‖u∗‖W 1−1/p,p(Γ)

)
≤ C

(
| log h|h2−2/p‖u∗‖W 1−1/p,p(Γ) + h3/2−1/p‖u∗‖W 1−1/p,p(Γ)

)
≤ Ch3/2−1/p‖u∗‖W 1−1/p,p(Γ). (39)

Taking into account that u∗(h) is bounded in W 1−1/p,p(Γ), all the estimates yield

y(u∗) = yh(u∗) + y(u∗)− yh(u∗)

≤ (1− κ)b+ κ(b− εh) + Ch3/2−1/p

≤ b− κεh + Ch3/2−1/p.
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Noting that for h small enough, εh > 0 is independent of h (cf. Theorem 5.2), we
obtain for κ = Ch3/2−1/p/εh feasibility with respect to the upper bound. Analogous
calculations for the lower bound and the definition of κ = κ(h) yields the assertion
including the required error estimate.

Lemma 6.9. Suppose that (P) has a regular feasible Slater point. Let ū be the optimal
control of (P). There exists a sequence u∗h of controls, uniformly bounded in W 1−1/p,p(Γ)
for all p < pΩ, that are feasible for (Ph) and a constant C > 0 independent of h such
that

‖ū− u∗h‖L2(Γ) ≤ Ch1−1/p ∀p < pΩ, (40)

‖ū− u∗h‖H−1/2(Γ) ≤ Ch
3/2−1/p ∀p < pΩ. (41)

Proof. The proof is similar to the one of Lemma 6.8. Define

u∗h = Πhū+ κ(uh0 −Πhū),

and note that uh0 = Πhu0. The boundedness of the sequence u∗h follows again directly
from the stability of Πh stated in [12, Theorem 2.3]. Obviously, for κ sufficiently small,
u∗h ∈ Uα,β,h is instantly verified. To discuss the state constraints in the interior of Ω,
by means of the projection error estimate from Lemma 6.5 together with the interior
regularity result in Lemma 6.6 and estimate (37), and the interior L∞-error estimate for
the state which is obtained as in the proof of the previous lemma, see (39), we obtain

yh(u∗h) = y(u∗h) + yh(u∗h)− y(u∗h)

= (1− κ)ȳ + κy(u0) + (1− κ)y(Πhū− ū)

+κy(Πhu0 − u0) + yh(u∗h)− y(u∗h)

≤ (1− κ)b+ κ(b− ε) + C(1− κ)h3/2−1/p‖ū‖W 1−1/p,p(Γ)

+Cκh3/2−1/p‖u0‖W 1−1/p,p(Γ) + Ch3/2−1/p‖u∗h‖W 1−1/p,p(Γ)

≤ b− κε+ Ch3/2−1/p, (42)

and thus we may choose κ = Ch3/2−1/p/ε. To obtain the estimates (40) and (41), we
use that κ ≤ Ch3/2−1/p and (36) and (37), respectively.

‖u∗h − ū‖L2(Γ) ≤ ‖Πhū− ū‖L2(Γ) + Ch3/2−1/p‖uh0 −Πhū‖L2(Γ) ≤ Ch1−1/p

as well as

‖u∗h − ū‖H−1/2(Γ) ≤ ‖Πhū− ū‖H−1/2(Γ) + Ch3/2−1/p‖uh0 −Πhū‖H−1/2(Γ)

≤ Ch3/2−1/p.

Lemma 6.10. There exists C > 0 such that the following estimate holds:

‖y(ūh)− yh(ūh)‖L2(Ω) + ‖y(u∗h)− yh(u∗h)‖L2(Ω) ≤ Ch3/2−1/p ∀p < pΩ. (43)
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Proof. The assertion follows from the error estimate for semilinear equations in [11,
Theorem 5.4] and the uniform bounds stated in Lemmas 6.7 and 6.9.

‖y(ūh)− yh(ūh)‖L2(Ω) + ‖y(u∗h)− yh(u∗h)‖L2(Ω)

≤ Ch3/2−1/p
(
‖ūh‖W 1−1/p,p(Γ) + ‖u∗h‖W 1−1/p,p(Γ)

)
≤ Ch3/2−1/p.

With the preceding results, we are now in the position to prove our error estimates in
the control-constrained case.

Theorem 6.11. Let ū and ūh be the solutions of problems (P) and (Ph), respectively,
and suppose that (P) has a regular feasible Slater point and Assumption (H) is satisfied.
Then there exists some h0 > 0 and C > 0 such that for all 0 < h < h0

‖ū− ūh‖L2(Γ) ≤ Ch
3
4
− 1

2p ∀p < pΩ.

Proof. We follow closely the technique of proof in [23], Lemma 7 and Theorem 3. We
use the auxiliary controls u∗ and u∗h from Lemmas 6.8 and 6.9, that are feasible for
Problems (P) and (Ph), respectively, to test the variational inequalities for (P) and (Ph).
This leads to

0 ≤ (νū− ∂nϕ̄, u∗ − ū)Γ = ν(ū, u∗ − ū)Γ + (ȳ − yd, y(u∗ − ū))

0 ≤ (νūh − ∂hnϕ̄h, u∗h − ūh)Γ = ν(ūh, u
∗
h − ūh)Γ + (ȳh − yd, yh(u∗h − ūh)),

where the Lagrange multiplier terms disappear because of feasibility of u∗ and u∗h with
respect to the state constraints. Then, adding both inequalities and straight forward
computations lead to

0 ≤− ν‖ū− ūh‖2L2(Γ) + ν ((ū, u∗ − ūh)Γ + (ū, u∗h − ū)Γ + (ūh − ū, u∗h − ū)Γ)

− ‖ȳh − ȳ‖2L2(Ω) + (yh(ūh)− y(ū), yh(u∗h)− y(u∗h) + y(u∗h)− y(ū))

+ (y(ū)− yd, y(u∗)− y(ūh) + y(u∗h)− y(ū)

+ y(ūh)− yh(ūh) + yh(u∗h)− y(u∗h)).

Rearranging terms and estimating the right-hand-side of the last inequality further, we
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arrive at

ν

2
‖ū− ūh‖2L2(Γ) +

1

2
‖ȳ − ȳh‖2L2(Ω)

≤ ν‖ū‖H1/2(Γ)

(
‖u∗ − ūh‖H−1/2(Γ) + ‖u∗h − ū‖H−1/2(Γ)

)
+
ν

2
‖u∗h − ū‖2L2(Γ) + ‖yh(u∗h)− y(u∗h)‖2L2(Ω) + ‖y(u∗h)− y(ū)‖2L2(Ω)

+ ‖y(ū)− yd‖L2(Ω)

(
‖y(u∗)− y(ūh)‖L2(Ω) + ‖y(u∗h)− y(ū)‖L2(Ω)

)
+ ‖y(ū)− yd‖L2(Ω)

(
‖y(ūh)− yh(ūh)‖L2(Ω) + ‖yh(u∗h)− y(u∗h)‖L2(Ω)

)
≤ ν

2
‖u∗h − ū‖2L2(Γ) + C‖u∗h − ū‖2H−1/2(Γ)

+ ‖y(u∗h)− yh(u∗h)‖2L2(Ω)

+
(
ν‖ū‖H1/2(Γ) + C‖y(ū)− yd‖L2(Ω)

)
(
‖u∗ − ūh‖H−1/2(Γ) + ‖u∗h − ū‖H−1/2(Γ)

)
+ ‖y(ū)− yd‖L2(Ω)

(
‖y(ūh)− yh(ūh)‖L2(Ω) + ‖yh(u∗h)− y(u∗h)‖L2(Ω)

)
,

where we applied in particular Young’s inequality, the Cauchy-Schwarz inequality, as
well as the estimate

‖y(u∗h)− y(ū)‖L2(Ω) ≤ C‖u∗h − ū‖H−1/2(Γ). (44)

which follows from Lemma 6.6.
We now use estimates (38), (40), (41) and (43). Collecting all estimates yields the

assertion after taking the square root.

6.3 Comparison between the two methods of proof

Let us end this manuscript with a short comment on the different methods of proof in
Sections 6.1 and 6.2. If we try to write the proof of Subsection 6.2 for the non-control-
constrained case, and we want to get an order O(h1−1/p) as we obtained in Subsection
6.1, somehow we should use the norm in Hs−3/2(Γ) (s < 3, s < sΩ) instead of the norm in
W 1−1/p,p(Γ). Indeed, the optimal control has that regularity, which would improve the
error for the L2-projection, estimate (37). But to improve the FEM estimates (39), (42),
and (43), using the same technique as in (32), we would need the norm in Hs−3/2(Γ) of
the discrete optimal controls to be bounded, as we state in Lemma 6.7 for the norm in
W 1−1/p,p(Γ). To have that bound, we would have to prove stability of Πh in Hs−3/2(Γ),
(this is not proved in [12] but it can be proven with the same technique used therein)
and an error estimate for the approximation of the adjoint state analogous to that of
Lemma 6.2. The key point is that we are not able to improve the order of convergence
O(h1−1/p) in (31), so the subsequent argument in the proof of Theorem 6.2 in [11], which
eventually uses an inverse estimate, would not lead to the desired result.

On the other hand, to adapt the method of Section 6.1 to the control constrained
case, we have to use the inequality form of the first order necessary conditions (16) and
(23d) instead of (33) and (34). One idea to compare both inequalities is to use the
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interpolate introduced by Casas and Raymond cf. [11, Equation (7.9)] as test function,
but this only leads to an order of O(h1/2−1/(2p)). The main reason for this is that in the
analogous of Lemma 6.3, we would find the term ‖ȳ− yh(uCR

h )‖L∞(Ω1), where uCR
h is the

afore-mentioned interpolate, which will be bounded by the finite element error estimate
plus the interpolation error ‖ū − uCR

h ‖X in some appropriate norm. The finite element
error is of order O(h3/2−1/p) (in contrast to the unconstrained case, where it is O(h2−2/p)
due to the higher regularity of the control as shown in (32)), but the interpolation error
‖ū − uCR

h ‖L2(Ω) is of order O(h1−1/p) (cf. [11, Lemma 7.5]). To obtain a final order of

O(h3/4−1/(2p)), it would be enough to prove that ‖ū − uCR
h ‖H−1/2(Γ) ≤ Ch3/2−1/p, but

we have not been able to prove such an estimate. The key difference is that with the
technique used in Section 6.2 we are able to use the L2-projection instead of the Casas
and Raymond interpolate, and we obtain an interpolation error in H−1/2(Γ) of order
O(h3/2−1/p) (see eq. (37)). Notice also that we do not need to assume a, b ∈ W 2,p(Ω1)
to obtain the final error estimate in Theorem 6.11.
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[22] P. Merino, F. Tröltzsch, and B. Vexler. Error estimates for the finite element
approximation of a semilinear elliptic control problem with state constraints and
finite dimensional control space. M2AN Math. Model. Numer. Anal., 44(1):167–188,
2010.

26



[23] C. Meyer. Error estimates for the finite-element approximation of an elliptic control
problem with pointwise state and control constraints. Control Cybernet., 37(1):51–
83, 2008.
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