GLOBAL SMOOTH SOLUTION TO A HYPERBOLIC SYSTEM
ON AN INTERVAL WITH DYNAMIC BOUNDARY CONDITIONS

GILBERT PERALTA AND GEORG PROPST

ABSTRACT. We consider a hyperbolic two component system of partial differ-
ential equations in one space dimension with ODE boundary conditions de-
scribing the flow of an incompressible fluid in an elastic tube that is connected
to a tank at each end. Using the local-existence theory together with entropy
methods, the existence and uniqueness of a global-in-time smooth solution is
established for smooth initial data sufficiently close to the equilibrium state.
Energy estimates are derived using the relative entropy method for zero order
estimates while constructing entropy-entropy flux pairs for the corresponding
diagonal system of the shifted Riemann invariants to deal with higher order es-
timates. Finally, using the linear theory and interpolation estimates, we show
that the solution converges exponentially to the equilibrium state.

1. INTRODUCTION

Consider a horizontal elastic tube of length ¢ filled with an incompressible liquid.
Each end of the tube is connected to a vertical tank, each of which has horizontal
cross-section Ap. The velocity u(t, ) of the fluid inside the tube, the cross-section
A(t,x) of the tube and level heights ho(t) and hy(t) of the fluid in the tanks are
modeled by an hyperbolic PDE on (¢,z) € (0,00) x (0,¢) with ODE boundary
conditions

A +uA, + Au, =0, t>0,0<x<d,

u + K2A72 Ay + wu, = —Pu, t>0,0<z</,

Arh () = —A(t, 0)u(t, 0), t>0,

Arhl(t) = A(t, Oult, ), £ 0, (L.1)
A(t,0) = (ag + bho(t))?, t>0,
A(t, 0) = (ag + bhe(t))?, t>0,

and initial conditions
A(0,z) = A%(z), uw(0,z) = u’(z), ho(0) = A, he(0) = h).  (1.2)

A prime ’ denotes a derivative with respect to time ¢.
Physically, the coefficients in (1.1) are given by
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where 1 represents the inner rest radius of the circular tube, Ay is the corresponding
rest cross-section, F and s are the Young’s modulus and thickness of the tube
material, p and p are the constant density and viscosity of the fluid, pso and py,
are constant pressures above the fluid in the left and right tank respectively, and g
is the gravitational constant. All parameters appearing in the model are positive
except for the viscosity p which is only nonnegative. However, for global existence
the assumption p > 0, or equivalently 8 > 0, will be reinforced. For the derivation
of this model we refer to [15, 19].

The first two equations in (1.1) have the same form as isentropic flow in Eulerian
coordinates of a thermoelastic polytropic fluid in a duct, e.g. [5, p. 198]. Mod-
els similar to (1.1) have been considered in the literature both for bounded and
unbounded intervals, for instance, [2, 3, 7, 15, 20]. In a recent work [18], the
linearized model has been analyzed with respect to stability and controllability. We
will use the stability result to prove the exponential convergence of the state to the
equilibrium for the nonlinear system (1.1).

The goal of the present paper is to use the local-existence theory together with
entropy and energy methods to prove a global existence result and describe the
asymptotic behavior of the solution, at least for sufficiently smooth data close to
the equilibrium state, for the nonlinear system (1.1).

It is well-known that in general, solutions of first order quasilinear hyperbolic
partial differential equations even with smooth initial data may not exist globally
in time and singularities may develop in finite time, such as shocks, mass explosion,
etc. However, it is observed that the presence of a linear damping term can prevent
shock formation at least for small and smooth initial data. A simple example
illustrating these phenomena is given by the Burger’s equation, see for instance
[5, Section 4.2]. Necessary and sufficient conditions for the existence of global
solutions both for general and physical systems have been developed in the past
years, see [4, 8, 10, 11, 20]. However, there are only a few works dealing with
bounded domains. In one-space dimension, Ruan et al. [20] investigated the global
existence of smooth solutions of a network of 2 x 2 systems of balance laws in
bounded intervals under a dissipative condition on the boundary conditions. This
condition is similar to what has been considered in [10, Chapter 5]. However,
the dissipative condition is not satisfied for instance by the isentropic Euler system,
systems with relaxation, for boundary conditions arising in blood flow models, nor
by system (1.1).

Two main tools are used to prove the global existence of solutions, namely, the
entropy and energy methods. The energy method was used by Nishida [14] and
Kawashima [9] for hyperbolic and hyperbolic-parabolic equations. This was then
used by several authors for isothermal Euler equations [4], partially dissipative
systems with convex entropies [1, 8, 23], relaxation models with nonconvex flux
[13], systems arising in blood flow models [20] and others. The main idea is to
define an energy functional and to derive an estimate for this functional. Lower
order estimates can be obtained using the relative entropy method [8]. The relative
entropy associated with a strictly convex entropy, loosely speaking, can serve as a
distance between solutions, e.g., classical, strong, weak, of conservation laws or
balance laws, cf. [5]. For higher order estimates involving terms that do not have a
dissipative term one useful criterion, at least for Cauchy problems, is the Shizuta-
Kawashima condition which was formulated in [21]. However on a bounded interval,
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a different method was used in [20], namely the construction of entropy-entropy flux
pairs for the Riemann invariants in deriving higher order estimates. In the case of
bounded domains, boundary terms arise and this causes some difficulty in obtaining
the necessary estimates. The dissipative condition plays a crucial role in the proof
of the estimates. Most of the existence results use the smallness assumptions on
the initial data. Even with this restriction the proofs are not trivial.

Here, we will also use the relative entropy method to obtain lower order estimates
for the energy functionals and use appropriate entropy-entropy flux pairs for higher
order estimates. The main idea is to construct entropy-entropy flux pairs (7, q)
such that

N+ gz = M
for some source term M which is, roughly speaking, dominated by the damping
term, which is the velocity u in our case, or its derivatives. We will not assume the
dissipative condition as in [20] but we use the special structure of the boundary
conditions in (1.1).

2. EQUILIBRIUM AND STATEMENT OF THE MAIN RESULT

The volume of the fluid inside the tube and the tanks at time ¢ > 0 is given by
¢
Vi) = / Aty 2) dz + Apho(t) + Arha(t). (2.1)
0

If (A,u,ho, he) is a smooth solution of (1.1) on [0,7] then V() is conserved on
[0,T],i.e., V(t) =V(0) for all t € [0,T]. This can be seen immediately by taking the
derivative of V' and using the first, third and fourth equations in (1.1). In this paper,
by a smooth solution we mean that each state component is at least continuously
differentiable. The equilibrium state of (1.1) is given by (A, 0, hoe, hee) where

Ac = (ag + bhoe)® = (ag + bhy.)?. (2.2)

For a given fixed volume and with the assumption that the pressures psg or py, are
given (not too large), the equilibrium is uniquely determined. Indeed, if V denotes
the fixed volume then we have Vi = A.l + Arhge + Arhge. The latter equality
together with (2.2) provide explicit expressions for A., hg. and hye in terms of V.

In [17], the mth order compatibility condition of the initial data is defined and
the following local-in-time existence result and blow-up criterion is shown.

Theorem 2.1 (Local Existence and Blow-up Criterion). Let (A% u® hQ, 1Y) €
H™(0,0) x H™(0,£) x R? be compatible up to order m — 1 for some integer m > 3.
Suppose that the range of (A%, u®) lies on a compact and conver subset of U =
{(A,u) € (0,00) x R : |u| < kAY4}. Then there exists T > 0 such that (1.1)~(1.2)
has a unique solution (A, u,hg,he) such that A,u € NI ,C™=*([0,T); H™(0,¢))
and ho, hy € H™1(0,T). Furthemore, if the mazimal time T* of existence is finite
then either (A, u, ho, he) leaves every compact set of U x R? or

Jim (42 (0 (0.0 + 2 ()l f0.) = 00

If the maximal time is finite, the first scenario is typical for ODEs while the
second one is called shock formation. For the first one, the state approaches the
boundary of & and as a result the flux matrix will become singular. In the region
U, there is one negative eigenvalue and one positive eigenvalue for the flux matrix
and the flow in this case is subsonic. On the other hand, the shock formation is a
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typical behavior for first order quasilinear PDEs where waves are compressed within
finite time and therefore wave profiles can have arbitrary large slope. However, for
data close enough to an equilibrium state and with dissipative terms these will not
happen. This assertion with regard to (1.1) is the main result of this paper.

Theorem 2.2 (Global Existence). In the framework of Theorem 2.1 and § > 0,
there ezists 69 > 0 such that if Eq := ||A° — Ac||%2 + [|u®|%2 + [h§ — hoe|* + |h —
hee|? < 8o then there is a unique global solution (A,u,hg,he) of (1.1)—(1.2) such
that

A u € C(]0,00); H*(0,£)) N CH([0,00); H(0,£)),  ho, he € C?[0,00),
and

sup (|A(t) - Acllzr + lu(®)lI72 + |ho(t) — hoel® + [he(t) = heel?)

" / IO + [u(®) |20 dt < CE
for some C > 0.

3. ENTROPY-ENTROPY FLUX PAIRS

Entropies of the system (1.1) can be obtained by solving a wave equation as
shown in the following. For a more general result of a similar model and in the case
of =0 we refer to the paper of Lions, Perthame and Tadmor [12].

Proposition 3.1. Letn € C?((0,00) xR)NCL([0, 00) xR) satisfy the wave equation
82 . 82

TAZ(A,u) = K%A? 8u727 (A, u), in (0,00) x R. (3.1)

Then any smooth functions A and u satisfying the first two equations in (1.1) also

satisfy the entropy dissipation identity

0 0 0 .
an(A,u) + %q(A,u) = —Bu%n(z‘l,u)7 in (0,00) X R, (3.2)

where g € C?((0,00) x R) is given by

u A
q(A,u) = / (A, v) + Ana(A,v) dv + / k20" 2n,(a,0) da. (3.3)
0 0

Proof. The regularity of ¢ stated above follows immediately from the regularity of
7. Since u and A satisfy the first two equations in (1.1), the PDE (3.2) is equivalent
to

_1
U (Gu — uny — Ana) + Ap(qa — K2 A7 210, —una) = 0. (3.4)
The first term vanishes due to the construction of ¢ since g, = un, + Ana. We
show that the second term also vanishes. Differentiating the latter equality with
respect to A and using (3.1) we have
QAu = Gua = Wlua + 104 + Anaa = (una + K2A730,) . (3.5)

Integrating (3.5) twice, first with respect to v and then with respect to A, we have

A 1
q(Au) = /0 una(a,u) + k*a"2n,(a,u) da + F(A) (3.6)
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for some function F. Taking v =0 in (3.3) and (3.6) shows that F' = 0. Thus, dif-
ferentiating (3.6) with respect to A shows that the second term in (3.4) is identically
zero. Hence (3.4) is satisfied and so is (3.2). O

The function 7 is called an entropy and q is the corresponding entropy flux. The
entropy dissipation identity (3.2) is commonly called a companion law to the first
two equations in (1.1). Let n, = aiu+asA+asuA+as where the a;’s are constants.
Notice that the wave equation is invariant under perturbations of the form 7,, i.e.,
if n satisfies (3.1) then so does 7 + 7,.

A common entropy of the above system is

n(A,u) = L2 4 2248,
2 3
called the mechanical energy and it is strictly convex in the variables (A, Au) €
(0,00) x R. This particular entropy satisfies the boundary conditions n(0,u) = 0
and n4(0,u) = %u2. Such entropies are called weak entropies [12]. However, for our
purpose we will modify this entropy. We want an entropy 7y such that 79(4.,0) = 0

and Drg(Ae,0) = (0,0). This can be done by choosing
no(A,u) = n(A u) —n(Ae,0) — (Dn(Ae, 0), (A — Ac,u))
1 4 3 3 1
= §Au2 + §m2(A§ — A2) —2K%AZ(A - A,). (3.7)

In the literature, ng is referred to as the relative entropy with respect to the state
(A.,0). Notice that the difference of the mechanical energy 7 and its modified
version ng is a function of the form 7, stated above. By invariance, 79 also satisfies
the wave equation (3.1) and therefore if (A, u) satisfies the first two equations in
(1.1), no also satisfies the entropy dissipation identity (3.2) with the corresponding
entropy flux

1, 3 2/ 41 3
qo(A,u) = §Au +2r%(A2 — A2)uA. (3.8)

obtained from (3.3). Moreover, 7o is also strictly convex in the variables (A, uA).
This entropy-entropy flux pair will be used in the next section to obtain zero order
estimates. By a second order Taylor expansion we can see that there exist constants
¢k, Ck > 0 such that

cr(JuA]? + |A = A?) < no(A,u) < Cr([ud]? + |A — Al?) (3.9)

for every (A,u) € K where K C (0,00) x R is a compact set containing (A, 0).
Thus the relative entropy serves as a distance between the smooth solutions of the
system and the constant equilibrium state.

The next step is to develop entropy-entropy flux pairs to deal with first order
and second order estimates as done by Ruan et al. [20]. This will be done using
an appropriate diagonal form of the system. The eigenvalues of the associated flux
matrix of (1.1) are A = u— kAT and o= u-+ kAT, Multiplying the first two
equations in (1.1) by (kA~%,1) and by (kA~1,—1) we obtain a diagonal system

Wy + N, 2, =

gt +/a(u~}72)2'r = -
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where @ = —u+4kAT, Z = u+4kAT, A = —20+ 22 and i = — 3w+ 3. If (A, u)
1 1
is close to the equilibrium state (A.,0) then (w, z) is close to (4kAd,4kAd). With
1
this in mind, we shall consider the shifted Riemann invariants w = @ — 4k A¢ and
1
z =2 —4kA2 so that

w:—u—|—4n(Ai —Aé), z:u+4f-£(A% —Aé). (3.10)

Therefore the state variables (A, u) and the shifted Riemann invariants (w, z) are
related by
1

u= i(z—w), A zi(z—kw). (3.11)

Using the Riemann invariants, the system (1.1) can be written in diagonal form

NG

—A

(LN

wt—i—)\(w,z)ww:g(z—w), t>0,0<x</,
zt—&-u(w,z)zzz—g(z—w), t>0,0<ax<{,
By () = —0(w(t,0), (1, 0)) (=(t,0) — w(t,0)), ¢ >0, 312)
() = O(t,0), 2(t, ) (=(2, 1) — w(t, ), 10,
2(,0) +w(t, 0) = Co(ho(t))(ho(t) — hoe), t>0,
2(t,0) + w(t, £) = Co(he(t)) (he(t) — hee), t>0,
where the coefficient functions are given by
Mw,z) = —gw + gz - iCe, C. = 4/<;A§ (3.13)
wlw,z) = —gw + gz + iCe (3.14)
1
H(UJ, Z) = m(w + z + 205)4 (315)
(k) = b(\ar +bh+ Va, +bhe)™t, k=00 (3.16)

Differentiating the first two equations in (3.12) with respect to x once and twice
we have

(OFw)y + ANw, 2)(*w), = Fi (3.17)
(052)e + p(w, 2)(052), = Gy (3.18)
for k = 1,2 where
-~ B
= —\w,+ 5(295 — wy) (3.19)
G1 = —gzy — g(zT — wy,) (3.20)
Fy = —2X\Wep — AppWy + g(zm — Wey) (3.21)
Gy = —2UpZps — MPozZz — é(zm — Wyz)- (3.22)

2
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Consider differentiable functions ¢ = @i (¢, x, W) and oy, = ¢y (t, 2, Z) for k = 1, 2.
Using the equation (3.17) we have for a smooth solution (w, z) of the system (3.12),
Okt 2, Opw(t, 2)) + a(A(t 2)0k (t, 2, Ofw(t, 2))
= Gra(t, 2, 05w (t, ) + drw (¢, 2, Fw(t, )8, (Fyw(t, x))
+ Ao (t, 2)pp(t, z, 08w (t, ) + A(t, ) bpo (t, x, OFw(t, x))
+ At ) drw (¢, @, Ogw(t, 1)) 0 (O5w(t, o))
= ¢pe(t, , 0Fw(t, ) + Mo (t, )b (t, , OFw(t, ) + N(t, ) Ppa (L, 2, OFw(t, z))
+ bpw (t, x, O%w(t, z)) Fi(t, x) (3.23)
for k =1,2. Similarly, using (3.18) we get

3751/%(757 z, 852({;’ SL')) + aﬁ(/u’(tv x)wk(tv z, 852({;’ 1’)))
= e (t, 2, 0% 2(t, ) + o (t, 2)p (8, 2, 08 2(t, ) 4 pu(t, 2) s (t, , O 2(t, 2))
+ Yz (t,z,082(t, 2))Gi(t, x) (3.24)

for k = 1,2. Subtracting (3.23) from (3.24) we obtain the partial differential equa-
tion

O (Vr — Or) + Oz (ur — Aor) = M (., Or) (3.25)

where

My, k) = (ke — Ort) + (HaVr — Aar) + (10kz — A\dkz)
+ (YkzGr — dxw Fr)- (3.26)

Integrating (3.25) over [0,t] x [0, /] and using Fubini’s theorem we have

¢ ¢
/ nx(t, ) — np (0, z) dz + / qr(7,0) — q(7,0) d7
0 0

t 14
0 JO
where
nk(tv Z) - wk(t7m’8§w(t7x)) - d)k(ta x,afw(t,x))
Qk(t’x) = H(ta$)¢k(t7$aa§w(ta$)) - )‘(t7x)¢k(taxva§w(tvx))'

The point is that solutions (w, z) of (3.12) that are sufficiently smooth satisfy (3.27)
for k = 1,2. Equation (3.27) will be of great importance in deriving the energy
estimates. This is done by choosing appropriate functions ¢ and ¢ such that the
term M), will be, in some sense, dominated by the velocity u or its derivatives.

4. ENERGY ESTIMATES
For T > 0 define the solution space
Xr = (C([0,T]; H*(0,0)*)nC* ([0, T); H'(0,£)*) N C*([0,T); L*(0,£)*)) x C*[0,T]?.

By using classical embedding results we can see that Xp is continuously embedded
in C1([0,T] x [0,€])* x C?[0,T)?. All throughout this section (A, u, ho, he) will be
a smooth solution to the system on the time interval [0,T], provided that such
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solution exists on such interval. Define the energy functionals Ny, : [0, 00) — [0, 00)
for k=0,1,2 by

Ni(t) = St[l(}ot(HU( 3w + 145 () = A& 3 + 1ho(7) = hoel® + [he(T) = heel?)
TE

/ () 20 + KII(AD ) () 2 d

In the following estimates, and Cs and Cjs will denote generic positive constants
that depend on the system parameters and may depend on é > 0, and
Cs and Cjs remain bounded as long as § stays on a bounded set in (0,00). (4.1)

Before we proceed we state the following equivalence of norms of the state variables
u, A and the Riemann invariants

2|0y u(t)Z- + 3267105 (AT (8) = AT = 05w (®)l|72 + 05272 (4.2)

for k =0,1,2 and for ¢ € [0,T]. This follows immediately from the identity 2w? +
222 = (2 —w)?+ (2 + w)? in R and the transformations given in (3.11). This norm
equivalence will be used in converting an estimate involving the Riemann invariants
into an estimate involving the state variables and vice versa. Furthermore, if 0 <
§ < A, then |A — A.| < § implies that

CuslA = A| < |41 = AF| < CoslA - A, (43)
This can be seen from the elementary identity A— A, = (A7 — Aé)(A% +A§)(A% +
1
AZ2) whenever A, A, > 0.

Lemma 4.1 (Zero Order Estimate). There exist 6 > 0 and Cs > 0 such that
for any solution (A, u, ho,he) € Xt satisfying N2(T) < § also satisfies the energy
estimate

NG (t) <Ca< 5(0) + sup [ju(r HHl/ lu(r) I dT) (4.4)
T€[0,t]
for allt €10,T7.

Proof. Recall that ng and go given in (3.7) and (3.8), respectively, satisfy the entropy
dissipation identity (3.2). Integrating (3.2) over [0,¢] x [0,¢] and using Fubini’s
Theorem yield

¢
/0 no(A(t, z), u(t,z)) —no(A(0, z),u(0, z)) dz (4.5)
t t b
+/O qo(A(1,£),u(7,£)) — go(A(7,0),u(r,0))dr = —B/O /0 (Au®) (7, x) dzdr.

Let us estimate the left hand side of (4.5) from below and its right hand side

from above. According to (3.9) and (4.3) it holds that, choosing ¢ > 0 sufficiently
small,

¢
/0 no(A(t, z), u(t, z)) — no(A(0, x),u(0,x)) dz (4.6)

> Cs(l(uA) D32 + AT (@) = AL |2 ~ [(wA)(O)[13> — [ 4%(0) — AZ[3.)
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Using (2.2) and the last four equations of (1.1) in (3.8) we have
q0 (A(Ta E), ’U,(’T, g)) =

qo(A(7,0),u(r,0)) = %

Plugging these in the second integral in (4.5) and using the Sobolev embedding
theorem we have

/0 qo(A(7, €),u(T,£)) — qo(A(7,0),u(r,0)) dr

%(Aug)(r, 0) + 2ATn2b(hg(7') — hee)hy(T)
(Au?)(1,0) — 2A7K2b(ho(T) — hoe )by (T).

> C(|ho(t) — hoe|? + [he(t) — heel® — |h) — hoel® — |R] — heel?) (4.7
t
G5 sup [Ju(r) e / Ju(r) |2, dr
T€[0,¢] 0

Moreover, the Sobolev embedding theorem again implies that

-5 / t / (4u?)(r,2) e dr < —AC; / ()2 dr (4.8)

Now it can be seen that (4.4) follows from (4.5)—(4.8) and the fact that the L*-
norm of (uA)(t) and wu(t) are equivalent for each t provided that § > 0 is small
enough. O

The next step is to derive estimates involving the spatial derivatives of the state
components u and A1. To this end we recall two classical inequalities frequently
used in deriving estimates. The first one is Young’s inequality: For each real
numbers a,b and € > 0 we have ab < %az + ibQ. The second one is the following
modified Sobolev embedding.

Proposition 4.2. Let a < b. For every 9 > 0 there exists C(a,b,d) > 0 such that

Hu”%w(a,b) < 79““1“%?@,{;) + C(a, b, 19)Hu||%2(a,b) (4.9)
for all u € H'(a,b).
Proof. Let a < xg < b, Consider the linear multiplier m(z) = b—2r0 (x —x9)—1

satisfying [m|| pec(z,,e) = 1. Thus

b 9 b b
/ (mu?), dz = / wlda +2 / muug dz
xo b - xo xo To

4 1
Oluzl|72 () + <b—a + 19> [l 22 20.0)

where we use Young’s inequality in the last step. A similar process can be done
for the case “E2 < z9 < b, now using the multiplier n(z) = —2-(z — 20) + 1 and
integration over [a, o). These estimates imply (4.9). O

[u(zo)|* + |u(b)|*

IN

To—a

The proposition is useful when dealing with higher order estimates. For example,
in obtaining estimates for z, and w, we will put a small factor, if necessary, to these
terms, but the drawback is the occurrence of a large factor to lower order terms.
However, this will not cause problems when we have already derived estimates for
the lower order terms, specifically, the one given in Lemma 4.1.
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Lemma 4.3 (First Order Estimate). There exist § > 0 and Cs > 0 such that for
any solution (A,u, ho, he) € Xt satisfying N2(T) < & we have

II%(t)H%z+||(Ai)m(t)H%z+/O luz(7)[Z2 A7 < CsNF(0) (4.10)

1 t 1
+ GCs St[l(yﬂ(HU(T)lle +[|A7(7) —A§\|H2)/O lu() Iz + I(AT)o(7) 122 d7
T€|(0,

for all t €]0,T).

Proof. To prove the lemma we will utilize the system satisfied by the (shifted)
Riemann invariants (3.12). Let us consider the entropy n; = ¢ — ¢1 where
Uit e, Z) = O(w(t,x), 2(t,2))u(t, z)Z*
Gi(t,z, W) = O(w(t,z),z(t, ) A(t, z)W?.
We will estimate each integral in (3.27) with these particular functions.

Suppose that N3(T) < 6. If § > 0 is sufficiently small then there exist positive
constants Cjs such that Chs < (i (hir(t)) < Cys for k = 0,€, —Cs5 < A\(t,z) < —Clys,
Css < u(t,z) < Cgs and Crs < O(w(t, ), 2(t,x)) < Cgs for all (¢,x) € [0,T] x [0, £].
We shall use these properties all throughout without mentioning them anymore.

We estimate each of the integrals on the left hand side of (3.27) from below
and estimate the integral on the right hand side from above. For ease of reading,
we divide the process into three steps. To make the terms more compact we also

introduce the variable V' = (w, 2).
Step 1. Estimate from below. The preceding remarks about 6, A and p show that

Crs(wi(t, @) + 22(t,x)) < m(t,x) < Cos(wi(t, x) + 22(t,2)) (4.11)
for all (t,x) € [0,T] x [0,¢]. Thus

¢
/O m(t,x) —m(0,2) dz > Cs([|Va(r)[1 22 — [IVa(0)[172)- (4.12)
Next, we deal with boundary terms. Let us note the identity

= 0w, 2)((nz)? = (Mws)?)

- 9(’[1),2)((_215 - g(z —w)>2_(_wt + g(z _w)>2)

= O(w,2)(zf —wi+ Bz +wi)(z — w))

obtained from the first two equations in (3.12). Each term of the above equality is
evaluated at either (¢,0) and (¢, £). Consider the case where it is evaluated at (¢,0).
Differentiating the fifth equation in (3.12) and using the third equation we arrive
at

2(t,0) +w(t,0) = [¢o(ho(t))(ho(t) = hoe) + Go(ho(t)]ho(t)  (4.13)
= =Sy (t)(2(t,0) — w(t,0)). (4.14)

) — wi(t,0)
— BO(w(t,0), 2(t,0))S1(t)(2(t,0) — w(t,0))? =: Wy () + Wa(t). (4.15)
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Using the estimate in Propostion 4.2, the Sobolev embedding theorem and the
equality 2u = z — w we have

t t t
/ Uy(r)dr > —Cyd / e (7)|25 dr — Cs.9 / lu(r)22dr.  (4.16)
0 0 0
Differentiating the third equation in (3.12) gives

ho(t) = — 6i(w(t,0), 2(t,0))(2(t,0) + wi(t,0))(2(£,0) — w(t, 0))
— O(w(t,0), 2(t,0))(2(t,0) — w(t,0)) (4.17)

where 61 (w, 2) = s A (w + 2z + 2C,)3. Multiplying the left hand side of (4.13)
with the right hand side of (4.17), rearranging the terms and then using (4.14) we
obtain

T1(1) = Sa(8)(=(1,0) — w(t.0))" + L S5(8) W (D) (118)
where So(t) = 61 (w(t,0), 2(¢,0))SZ(t) and S3(t) = ¢} (ho(t))(ho(t) —hoe) +Co(ho(t)).

Let us integrate (4.18) from 0 to t. The first term of the integral can be estimated
as follows

/ $20)(-(1,0) = (10" 2 ~Cs v ()i / lu(r)2 dr. (4.19)
0

For the remaining term we integrate by parts, use the the third equation in (1.1),
apply the Sobolev embedding and Proposition 4.2 to obtain

3 [ S DR ar = S 0IROF - SO0

-3 / 16§ (ho()) (ho(r) — hie) + 263 (o) ()
0

>—Cs (ﬂux(t)lliz + Collu(®)||Z> + [[u(0)] 7

T+ sup Jlu(m)]m / (o) dT) (4.20)

T€[0,t]

Therefore, (4.15) and the inequalities (4.16), (4.19) and (4.20) give us the estimate

_/thl(T,o)dT - /thfl(T)dH/otxpg(T)dT

t t
>—Cs (ﬁlum(t)Ilia + 19/0 luz (P22 A7 + Collu(D) 12 + Cﬂ/o lu(r)|Z- dr

t
O+ sup ) [ ) df).

T€[0,¢

In an analogous manner we can obtain the same form of estimate from below for
the integral fg q1(7,¢) dr. Combining the estimates that we have obtained so far,
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we have the following estimate from below for the left hand side of (3.27)
¢ t
/ m(t,x) —n(0,2) de +/ q1(1,0) — q1(7,0)dr
0 0
t
> Ca((l —N)Va@®)ll72 — 79/0 l[ue (1) 22 dT = Co ||V (1) 72 (4.21)

t
e / )l dr = IV Ol — s () e / lu(r ||H1d7)

T€[0,t

Step 2. FEstimate from above. First we will express the derivative of the eigen-
values A and p with respect to ¢ in terms of the Riemann invariants w and z. A
straightforward calculation and application of the two PDEs in (3.12) gives us

3C 5C, I5]
pe = —3—2611)9; - 3—26235 - E(Z —w)+ Ry
5C 3C, I5]
At = —3—2611)9; - 3—26235 - E(Z —w) + Ry
where Ry, = cpiwwy + Cra2Wy + Cr3Wzy + Crazzy, k= 1,2, for some constants cy;.
Therefore, each term of u; and A; contains at least one factor among z — w, wy, 2.
Consequently, the same is true for w; and z; according to the PDE and in turn

for 0:(w, z) = 61 (w, z)(w; + 2¢). This observation is important because we want to

avoid the term fot |A3 () — AZ| 1> d= which is not present in the energy functional
Ny.
Now the first three pairs appearing in (3.26) for k = 1 are given by

Y1y — o1 = (O + eut)zi — (A + GAt)wi
fathl — A1 = Oppgz? — AN w?
e — Ab1e = p(Opp+ Oug) 22 — MO\ + 0N )w?

From the previous remarks we notice that the factors of 22 and w? appearing on

the right hand sides of the last three equations are polynomials of degree at least
1in z,w, z,,w,. Applying the Sobolev embedding theorem for these factors and
then taking the supremum over [0,t] we have

t ol
[ [ =010+ Gutn = Aat) + e = M)
0 J0
<Cs sup V)l / IVa(r)|2: dr (1.22)

The last term in M; is more delicate since it contains second order terms. Indeed,
we have

V17G1 — prwFL = 20uz,G1 — 200w, Fy

=20z, <,ugczac — é(zx — w$)> — 20 \w, ()\gcwgC + g(zx — w:c))

2
0.C.
=T ﬁ(zx —w;)? + Ry (4.23)




GLOBAL SOLUTION TO A HYPERBOLIC SYSTEM 13

where 6. > 0 is the constant term of 6. Here R3 are terms of degree at least 3 that

. . 2 2
contain either z2,wz, or w;z,. Hence

t ¥/ t
/ / wlZGl — ¢1wF1 de!L‘ S — C/ HUZL’(T)H%? dT (424)
0JO 0
+Cs s Vir nfpt/’nv' )2 dr

where C' = %8 > (0, if B > 0, independent of . Adding (4.22) and (4.24) we

arrive at

t ¥/ t
//JMMMMst—c/wmwéw (4.25)
0JO 0
+Cs s Vi mp/Hv )12 dr.
0,t

Step 3. Let us combine the estimates obtained from Step 1 and Step 2. Choosing
¥ > 0 small enough so that C' — Cs9 > 0 we have

t
IIVz(t)HszJr/ lue(7) 22 dm < Cs|V(B)I22 + Cs[V(0) 13 (4.26)
+05/ lu(r)l|72 dr + C5 sup [[V(r ||H2/ Ve (r)IIZ2 + lu(r)l|Z2 dr.

T€[0,¢]

We can use Lemma 4.1 to bound the first and third terms on the right hand side
of (4.26) from above. Consequently, (4.10) follows from (4.26), (4.4) and (4.2). O

To complete the estimate for the energy functional N; we need the following
additional estimate.

Lemma 4.4. There exist 6 > 0 and Cs > 0 such that for any solution (A, u, ho, h¢) €
Xt satisfying N3(T) < & we have

/ [(A%)o(7)]|2. dr < C5NZ(0) (4.27)
1 t 1
+ Cs it{lp}(HtL( )|l a2 +IIAZ(T)—AeZHm)/0 u(m) 13 + (A7) 2 (7)||72 d7
for allt €10,T7.

Proof. The proof of the lemma is basically the same as the proof of Lemma 4.3
and the main difference is the particular choice of the entropy appearing in (3.27).
In the current situation we consider the entropy 7; = 1[)1 — (;31 with corresponding
entropy flux §; = ui)n — Ad1 where

: _ Ot sta) (o o B
hitew) = DD (M aw - Satt,0) - wit.o))
Pt ), (1, 2) :

it @, Z) = <u(t, z)Z + 5(2(15, z) —w(t, x)))

p(t, )
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Let Fy = 2(2 — w). Using Young’s inequality

o= Op "t (pP2k 4 2uFoz, + FY) — 0N (2wl — 20 Fow, + F)
= 0 (pz2 — M2 +2Fyz, + 2Fyw, + (n' — A1 ES)

Cs(w? + 22) — C’(;(ez + 27 FE + ew?) + CsF}

Cs(wi + 23) — Cs(w® + 2%)

for some € € (0,1) small enough. Similarly, 71 < Cs(w? + 22 + w? + 2?). Thus

L
/0 i (t,2) = 71(0,2) dz > Cs([Va ()72 = [VOIL2 = IVO)IF).  (4.28)

From (3.12), (4.18), (4.19) and (4.20) and according to the statement following
(4.20) we immediately get

/ G(r0) — du(r,0)d / 0(w(r,0), 2(r, 0)) (22(r, 0) — w2(r, 0)) dr
0
> — Cs (19||Uz(t)||%2 + Cyllu@®)||72 + u(0)]|F:

+ sup u(r) / Ju(r |H1dr) (4.29)

The remaining task is to obtain estimates from above. As in the previous lemma,
we need to look carefully at each pair appearing in M since some of them contain
terms of degree only 2. For the rest of the proof R; will denote terms that are
degree at least 3 and contain at least two factors among z — w, w,, z;. Note that
using (3.12) we have

ztfwt:—%(szrwm)fﬂ(sz)JrRo (4.30)

where Ry = cpww, + cozw, + cgwz, + c422, for some constants ¢;. Thus have

~ ~ 0, — 0 20
e — o1 = (2 + FO)Q% + ;(,Uzac + Fo)(peze + For)
NG — O\ 20
- (wy — FO)Z% = 5 O = Fo)(Mize — Fr)
1 1 1
= 20 <Za: + Wy + (M - /\) F0> For + /\TMQR4
C.p0

=~ S e b wa)? — BBz + w2z~ )

O 3) e - 5 (G- ) -

1
+ 5t

By Young’s inequality and the Sobolev embedding theorem we have

96%5 Rs.  (4.31)

U1t — p1r < ( + C’aé) (2o +we)? + Cse(z — w)? +

1
222
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For the second pair we can see that

0 1

~Ae(Mw, — Fy)* = —Re. 4.32
e 0) VR (4.32)

The third pair can be computed as in the first pair and we get

/ﬂyzlw - AQEII = (/U’Zl + FO)

~ ~ 0
wal - )\z¢1 = ;Ma:(ﬂzz + F0)2 -

0, —0
2%71‘3? + 20(:U’Z.L + FO)(/J’JJZI + FOI)

~ O — FO)QM — 200wy — Fo) Ay — Fop)

= 2 (et 56-w) + (s = 56— 0) ) S - wa)

1
—R
+ o 7
0.C. 1
= 1 'B(Zx —wy)® + ERS (4.33)

Finally, for the last pair we use (3.19) and (3.20) to obtain
- - 20 20
VizG1 — dw k= ;(sz + Fo)uGr — T()\wz — Fo)AFy

Ce
= 20 <4zz + g(z —w)+ Rl) (uzzr — g(zx — wx)>

—26 <—C416wdc — g(z —w) + Rg) (—/\xwx + g(z;c — w£)>

_ 0L iR, (4.34)

where Rl, Rz are of degree 2 and have the same form as Ro.

Taking the sum of (4.31)-(4.34), choosing € > 0 small enough so that C; =
W — Cse > 0, using the Sobolev embedding theorem and the transformations
(3.11) we obtain

t Y4 t
/ / M@, d)dedr < — Gy / 1A}, (7). dr (4.35)
0JO 0

¢

+ Cs sup IIV(T)IIHZ/ Ve (r)lI72 + lu(r)lI2 dr.
T€[0,t] 0

Now it can be seen that (4.27) follows from (4.28), (4.29), (4.35), Lemma 4.1, and

from the equivalence of norms in (4.2). O

Remark 1. It is worth pointing out that by an appropriate modification of the
entropy-entropy flux pair we saw in the proof of Lemma 4.4 that the term u2, or
equivalently (z, —w,)?, which appears on the right hand side of (3.27) cancels when
adding (4.33) and (4.34). Moreover it was replaced by a term involving (A%)2,
equivalently (z, + wy)2. The appearance of (A%)2 is precisely what we want in
order to prove Lemma 4.4. This observation will also be used in the following two
lemmas.

or

Before we proceed in obtaining estimates for the second spatial derivatives of the
state variables, we will derive some identities from the two PDEs in the diagonal
system (3.12). In the following, we concentrate on the linear terms and state only
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the properties of the higher degree terms. Differentiating the first equation in (3.12)
with respect to t we get

AWzt = —wit — Mwy + g(zt — wy). (4.36)

However, we note from (3.17) for & = 1 that
Mty = =AWy + AFY. (4.37)

Thus, according to (4.36), (4.37) and (3.19) we have

Wit = MWy + g(zt —wi) — %(zx —Wg) + AWy — AWy (4.38)

In a similar way we have the equation for z;
fe = 1220~ e w) + Py ) s -z (439

Taking the derivative with respect to = of both sides of (4.30) we have

2ty — Wiy = —%(zm + Wea) = Blze — wy) + Ry (4.40)

where Ry = D k=2 cjk(03w) (9% 2) for some constants c;. Subtracting (4.38) from
(4.39) and using (4.30) we have

c? BC.

ze + B2z —w) + Ry (4.41)

Rt — Wit =
where R, are terms of degree at least 2 and contain at least one factor among
Z— W, Wy, 2z, Zaz, Wez, NOWever, each term has at most one factor among wyy, 22z -
Lemma 4.5 (Second Order Estimate). There exist § > 0 and Cs > 0 such that for
any solution (A,u, ho,he) € Xt satisfying N3(T) < § it holds that

t
1
e (D172 + A%z ()12 +/ luza(7)[72 dm < CsN3(0) (4.42)
0
L t
+ Cs S?p](IIU(T)IIHz + A% (7) - A3||H2)/ ()32 + 1(AT) o (7) 51 dr
T€[0,t 0
for allt €10,T7.

Proof. Again we will proceed in the same manner, now with the entropy 7y =
P9 — o where

2
volt,x,Z) = G(u;,z) (MQZ — g(zt —wy) + %(Zz — Wy) + P2y — Mt%)

2
pa(t,x, W) = 9(“;\7 2) ()\2W + g(zt —wy) — '82—)\(,21 —wy) + ANz wy, — )\twm) .

We estimate (3.27) with these particular functions and as before we divide the
procedure in three steps, namely, the derivation of estimates of the left hand side of
(3.27) from below, estimates of the right hand side of (3.27) from above and finally
to combine the two.
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Step 1. Estimate from below. For brevity let us set

N= —g(zt —wy) + %u(zm — Wy) + P Ze — WtZa (4.43)
- A
P = g(zt —wy) — %(zx — Wy) + AWy — AWy (4.44)
Using Young’s inequality we have, for § > 0 small enough,
Uo(t, @, 200 (t, ) = Op t(u'22, + 20220 N + NQ)

> 022, — Ou(ez?, + C.N?) + 0p~IN?
= (0p® — Oue)z2, — (BuC. — Ou~H)N2.
for every € > 0, we removed the arguments (¢, ) on the right hand sides for sim-

plicity. Using the definition of N, and replacing the term z — w; by the right hand
side of (4.30) we can see that

N(t, z)? < Cs(w(t,2)? + 2(t, 2)* + we(t, )% + 2,(t, )?).

This follows immediately from the fact that N consists of terms that are at least
degree 1 in w, z, wy, 2z, and so N2 will have at least degree 2 terms in these vari-
ables. Then we retain two factors and take the supremum of the rest, employing
the Sobolev embedding theorem to estimate the supremum and finally use the as-
sumption that N2(T) < §, for § > 0 small enough.
Now, choosing € > 0 sufficiently small we have

Uo(t, @, 2pe(t, ) > Cs22,(t,x) — C5(|V(t, )| + |Va(t, z)[?). (4.45)
for all (t,z) € [0,T] x [0,4]. Recall that V = (w, z). Similarly, we have the upper
bound

Yo(t, @, 222 (t, ) < Cs22,(t, ) + Cs(|V (¢, 2)|? + |Va(t, z)[?). (4.46)
for all (¢,z) € [0,T] x [0, ¢]. Doing the same process with ¢ and recalling that A is
negative for small enough § > 0 we have

~Cswiy — Cs(IVI + |Val?) < ¢2 < —Cswi, + Cs(IV +|Val) (4.47)

From (4.45)—(4.47) we have

l
/0 m2(t, @) = n2(0,2) dz > Cs(|[Vaa (7)1 72 — IV (0)[12). (4.48)

According to (4.38) and (4.39) we have

—/ g2(1,0)dr = —/ O(w(r,0), z(T, 0))(272_7_(7', 0) — sz(T, 0))dr. (4.49)
0 0

Let us use the boundary conditions to rewrite the integrand in terms of w, z and
their first derivatives with respect to z. For convenience, the functions in the
following discussions are to be evaluated at (¢,0) or ¢, or with other variables
representing time, where they make sense. First, we notice from (4.13) that

2zt + wy = S(ho)0(w, 2)(z — w) (4.50)
where S(ho) = —Cé(ho)(ho — hoe) — Co(ho) Let

pl(wvzaw.”mzx) = 7f(zr+wx)7ﬂ(sz)+éo (451)
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and from (4.30) we have z; — w; = p1(w, 2, Wy, 2;;). Using (4.50) in (4.17) yields

hy = —S(ho)bi(w, 2)0(w, 2)(z — w)* — O(w, 2)p1 (w, 2,1y, 2;)
=t pa(W, 2, Wy, 2z). (4.52)
Taking the derivative of both sides of (4.13) gives us
aetwe =[G (ho)(ho — hoe) + 260 (ho)](hg)* + [6h(ho) (ho — hoe) + Co(ho)lhg
= S1(ho)(hy)? + Sa(ho)hy. (4.53)
Thus, (4.52) implies that
et wy = Si(ho)d(w,2)(z —w)? + Sy (ho)p2(w, 2, Wy, 2)
= p3(w, 2, Wy, 2z). (4.54)
We also take the derivative of (4.17) and apply (4.50) and (4.54) to obtain
h((f’) = —Oo(w,2)(z +w) (2 — w) — 01(w, 2) (26 + wie) (2 — w)
=201 (w, 2) (2t + we)(ze — wy) — O(w, 2) (20 — wyt)
= pa(w, z, Wy, 25) — O(w, 2) (21t — W) (4.55)
where 03 (w, 2) = 42 (w + z + 2C.)? and
pa(w, 2, wy, 2,) = —S(ho)*0a2(w, 2)0(w, 2)*(z — w)3
- Hl(w,z)(z—w)pg(w,z,wx,zx) (456)

— 261 (w, 2)S(ho)B(w, 2)(z — w)p1 (w, 2, Wy, 2z).

Note that p1, p2 and ps contain terms that are degree at least 1 and have at least
one factor among z —w, wy, z,, while p4 has terms with degree at least 2 that contain
at least two factors among z —w, w;, 2. Moreover, we note that each .S; is bounded
as long as its arguments stay on a bounded subset of (0, 00), which is the case due
to the assumption that |ho(t) — hoe|? < & for small enough § > 0.

From (4.53), (4.54) and (4.55) we can now rewrite (4.49) as

t t
_ / Go(r,0)dr = / (WY — pa(w, 2,105, 2))(S1 (o) (h)? + Sa(ho) i) dr
0 0
t 1 t d
- / 81 (o) () *hS dr + = / Sa(ho) L |hg? dr
o 2 J, dt

t
- / p4(w7 Z, Wy, Z:v)p3(w7 2, Wy, Z:c) dr
0
= J1+ Jo+ J3.
Integrating by parts and using (4.52)

Ji = Si(ho(r))ho(r)hg ()

T=t t
= [ St h + 25 o iy 1) o
=0 Jo

T=t

= Sy(ho(1))b(w, 2)2(2 — w)ng(w, 2y Way Za)

7=0
+ / S (ho)(w, 2% (2 — 10)ps + 251 (ho)B(uw, 2)(z — w)gR dr.

Applying Proposition 4.2 to the terms having either z,(7,0) or w,(7,0) appearing
in the first term of the above last expression and using the Sobolev embedding



GLOBAL SOLUTION TO A HYPERBOLIC SYSTEM 19

theorem for the rest we obtain the inequality

i = = Cst|[Vaa @72 = CoollV(O)IF — CsllV(O)]7

— Cs sup |[V(7)|w> / IVa (D)7 + [lu(r)]|22 dr
T€[0,t]
In the above computations it is important to note the properties of po.
In a similar way we can integrate by parts and use the same techniques to obtain

Jo = = CsV|[Vaa ()72 = CoollV I3 — CsllV(0) 17

-0 s VG ||H2/||v 2 + lu(r)|[2s dr.

T€[0,t

Furthermore, invoking the properties of p3 and ps we have

1z =Cs s V() ||Hz/ V()20 + [fu(r) |22 dr.
T7€l[0,t

Adding the lower bounds for Jy, Jo and J3 gives us a lower bound of — f(f g2(7,0)dr,
which has essentially the form of the lower bound for J;. We can repeat the same
process for fot q2(1,¢) d7 and obtain a lower bound having the same form as stated
above. With these we finally obtain

t
/ ¢2(7,0) = ga2(7,0) d7 > = C50|[ Vo (1) 72 = Co0llV (D)1 712 — Cs IV (0) 2
0

- Co s Ve [ IV + Do) (4.57
T7€[0,t
Inequalities (4.48) and (4.57) give us the desired estimate from below.
Step 2. Estimate from above. In this step R; will denote terms of degree at least
3 containing at least two factors among z — w, Wy, 2z, Zzz, Wee and containing at
most two among z,, Wg,. First, we have

~ 0, —0 20
Yoy — oy = (NQZI:L’ + Nﬁ% * M( oz — 5(21& —wy) + %(zm — wy)
+ a2 — um) <2MMt2mm — g(ztt —wy) + é/it(za: —wy) + %(Ztm Wiy)
~ o A0 — O 20
+ (,u,uxzx - ,Utzac)t> - (>‘2wmc + P)Z% )\ <>\2w$ac + g(zt - wt)

A
_ %(zw —Wg) + AMpw, — /\tw$> <2)\)\twm + g(ztt —wy) — gx\t(zw — wy)

_BA

2 (th wta:) + ()\)\wwa: - )\th>t)

2
= — 08(p2ez + Mzz) (2er — Wit) + —— b5 ( - 1) (2t — wy) (26t — wet)

2 \p A
032 R
+ 0ﬁ(ﬂ22ww + )\szw)(ztw - wtw) + %(/J/ - )\)(Zz - wx)(ztw - wtw) + )\27;2
Ry
=: Il+I2+13+I4+7 (458)

222
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Consider each I;. According to (4.41) and Young’s inequality we have

0.Ce C? Ce
L = - 1 ﬁ(zwz — wmw) (1§(me — wmu) + ﬁ2 2 J,-BQ(z — w)) + Ro
3
< (_ ecgfe + 06€> (Za:w - wa:a:)2 + Cﬁ,e('zi + (Z - ’LU)Q) + Ry (459)

Also, from (4.30) and (4.41)

0.8 (1 1 C. c?
I = 25 (u - A) (—4(% +wg) — Bz — w)) (lﬁ(zm — Waz)

Ce
+ 52 Ze + B2 (2 — w)) + R3
< Cs€(zpn — wm)2 + C(;,E(zi + wi +(z— w)z) + R3. (4.60)
From (4.40) we see that
0.5C? C,
_ QC/BCS 2 gcﬂQCeQ
= ~~e1 (Zoa + Wae)® — 16 (Zea + Wan) (20 — wy) + Ry (4.61)
and
0.5%C, C.
22 3
— —00’61)606 (Zzz + Waz) (20 — wy) — 00/84 Ce (20 —wz)? + Rs  (4.62)
Adding (4.59)—(4.62) we have
0.5C3 0.5C3
T N bC + Cse ) (2o — Wep)? — bC. (Zow + Wwez)®  (4.63)
64 64
0.52C?
- 68 (222 + Waz ) (22 — Wa) + 05,6('2% + wgzc +(z— w)2)
Ry
+Osle —wal 't g
It can be checked that
1
_ = — Ra. 4.64
Hatha — A2 )\uRs (4.64)
Similarly for the third pair we have
~ 0, — O,
/J/w2z - A¢2x = (/-1122193 + N)Qu + 28 (Mzzwx - g(zt - ’U)t)
+ %(zw - w:r) + Pz — Ntzac) (2,u,uzzwz - g(zm - wtz) + gﬂm(«zz - wz)
- o A0, — O,

A
— 20 (/\zwm + g(zt —wy) — %(zgc —Wy) + AW, — /\th) <2/\)\xwm
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A
+ g(ztx - wtm) - 5)\1(21’ - wx) - %(me - w:cm) + ()\)\zwm - Ath)x>
2 2 05
= _aﬁ(/i Zya + A wmz)(ztz - wtz) - 9 (,U/ - )\)(Z:r - wx)(ztx - wtx)
3 3 05>
+ aﬁ(ﬂ Zxx + )\ wmz)(zazm - wza:) - T(N - )\)(Zt - wt)(z:vz - w:r:v)
952 2 2 Ry
+ 7( - A )(Zz—wz)(zx:v_wzx)'i'w
. Rg
= 15+16+I7+18+19+)\2—N2. (4.65)

From (4.30), (4.40) and Young’s inequality we have

o= B ) (- S ) B = 0)) + R

= G T e < R (469
Is = —%ZCE(Z@ — wy) <—C;(Zm + Weo) — B2 — wa:)) + Ry

= P e + P e Ry e
po= YOO ) i (1.68)
o= O ) e ) 4 Rig

= o —wan) (<t ) = 8- 0)) + Rug

S Cotere =00 + Cpol(20 4 w0 + (2= 0)) (4.69
Iy = Ru. (4.70)

The last equation is due to the fact that the terms in u? — A2 are of degree at least
1. Therefore from (4.66)—(4.70) we have

0.5C3 0.5C3
Vor — P2z < b = 4 Cse (Z:Ew - wa;ac)Q + 5 < (Za::v + wwa:)2 (471)
64 64
0.5%C?
+ %(Zaw + wwa:)(zz‘ - wm) + 0576((211 + w$)2 + (Z - w)2)

+ Cé(zx, - ww)2 + R15

Finally for the last pair in My we use (3.21) and (3.22) to obtain

260 ~
wZZG2 - ¢2WF2 = ;(/142211 + N)M2 <_§(me - wzx) - QMIZm - Nmmzm>

—%(Azwm + 15)/\2 <§(zm — Wgg) — 2Nz Wy — )\mwm>
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= ocﬁ(_,ugzxx(zx:c - wxw) - /\waac(zxx - wxm)) + Rie
0.5C3
= - gfe (Z"cx - w.’rr)2 + R17 (472)

=: Ijo+ Ri7.

Adding (4.63), (4.64), (4.71), (4.72), choosing € > 0 small enough so that Cy =

3
ch’fﬁ — Cse > 0, where the first term is independent of § and e, using the Sobolev

embedding for the terms R; and finally invoking (3.11) yields

t 14
/ / Ma(th2, o) dzdr
< — 02/ ||um |L2dT+C§</ ||’LL ||H1 dT+/ || % ||L2d7'

+ s V(e / Va2 + >||L2df) (4.73)
TE t

Step 3. The estimate (4.42) immediately follows from (4.48), (4.57), (4.73),
Lemmas 4.1-4.4, (4.2) and by choosing ¥ > 0 in Proposition 4.2 small enough. O

As in the case of first order estimates, we shall also need the following estimate
in order to complete an estimate for the full energy functional Nj.

Lemma 4.6. There existd > 0 and Cs > 0 such that for any solution (A, u, hg, he) €
Xt satisfying N3(T) < 6 it holds that
t
[ IAha@ar < congo) (4.74)
0

t
1 1 1
+ Cs Sl[lop](HU(T)IIHz +[|A%(7) - Aé‘IIm)/ [u(m)[1F2 + 1(AT) 2 (7)[[72 dr
T€(0,t 0
for allt €10,T7.
Proof We modify the entropy of the previous lemma. We consider the entropy
= 1)y — ¢>2 with corresponding entropy flux g, = /u/)g — )\¢2 where

- 0 (g B ’
¢2(t7 Zz, Z) = ; Z+ — ( ww) + o2y — P2
2
ng(t,l’, W) = % <)\2W — %( Zp — Wy ) + AgwWy — )\th> .

Doing the same process as in the first step of the Lemma 4.5 we can show that

¢
/ a2 (t, ) = 712(0, ) dz > Cs([| Vi (1) [ 72 — [V (0)[[72)- (4.75)
0
Using (4.39) and (4.38), a simple computation gives us
)

G2 = 0w, 2)((zu + (B/2)(z —we))* = (we — (8/2)(2 — wy))?)
= 0w, 2)(z, — wiy) + BO(w, 2) (24 + wir) (20 — wy)
= Q2 + ﬂ@(w,z)pg(mz,wm,zm)pl(w,z,wm,zr). (476>
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where g3 is the entropy flux in the previous lemma and p; and p3 are defined by
(4.51) and (4.54), respectively. A straightforward calculation gives

pg(w,z,ww,zm)pl(w,z,wz,zm) = —H(w,z)p%(w,z,ww,zx) +é3
> — Os(zp +ws)? — Cs(z —w)? + Ry

where R3 and Ry are terms of degree at least 3 and contain at least two factors
among z — w, W, z,. By the estimate Proposition 4.2 and (4.2) we have

/ B(Opspr) (r.£) — B(Bpspr)(,0) dr

1 1

>—0m9/ 1(A%). >||de7—cm/|\ AR ()20 + Ju(r) |2 dr

- Cs bl[lp]llV HH2/ Ve (T)[Fr + [lu(r)l[72 d7. (4.77)
T€(0,t

Integrating (4.76) from 0 to ¢ and using (4.57) and (4.77) we have

t
/ @27, 0) = Gao(7,0) d7 = — C50|[Vau (1) [ 72 — CoallV (D171 — Cs IV (0) 2

1 1

—cw/ (A ) o (1) 22 dr — OM/H AD) ()2 + ()20 dr

= Cs s V)l / V()2 + lu(r) |2 dr. (4.78)
TE

Observe that the deviation of ¥5 and ¢o from ¥ and (;32, respectively, is that
the former terms contain g(zt — w;) while the latter terms do not. This means
that Mg will consist of the same terms as M, but without those that stem from
g(zt — wy). Thus, crossing out the terms that appear due to the said extra term, a

careful analysis in the second step of the proof of Lemma 4.5 shows that

Ris
22

where Rig is again terms of degree at least 3 containing at least two factors among
Z—W, Wy Zg, Zpz, Wre and contains at most two among z,,, ws,. Therefore we have,
according to Young’s inequality,

~ 2 212
i, < 0B 0.82C?

> 64 (Zax + wam‘)Q - 3
< - éB(Za:w + wa:a:)2 + C(Zw - ww)Q + ng.

M2—13+I4+I7+Ig+110+

(zwz + wlw)(zx - wz) + Ry

for some Cs > 0. With the same explanations as above we have
t e t
/ / Mg(’(/)g,(ﬁg) dxdr S *Cg/ ||(A%)xr(7-)”2L2 dr (479)
+ 5 [ s ar+ s 1Vl [ VI + ) ar )

T€[0,t]

From (4.75), (4.78), (4.79), choosing ¥ > 0 in Proposition 4.2 small enough and
using Lemmas 4.1-4.5, the estimate (4.74) follows. O
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5. PROOF OF THE GLOBAL EXISTENCE AND STABILITY IN H! x H! x R?

An immediate consequence of the results in the previous section is the following
estimate for the energy Ns.

Corollary 5.1. Let T > 0 be such that (1.1) has a solution that belongs to Xr.
Then there is a § > 0 such that if N3(T) <6 then N2(t) < Cs(N2(0) + N3(t)) for
all t € [0,T] and for some Cs > 0 independent of T. In particular, there exists a
6 > 0 such that if N2(T) < & then N2(T) < C5N2(0) for some Cs > 0 independent
of T.

Proof. According to Lemmas 4.1, 4.3—4.6, there is a § > 0 such that N2(t) <
Cs(N2(0) + N3(t)) for all t € [0,T] whenever N2(T) < §. In particular, N2(T) <
C5(N3(0) + v/oN3(T)). Since (4.1) holds, one may choose § > 0 small enough so

that Cs := C5(1 — C5v/3)~' > 0 and thus N2(T) < C5NZ(0). 0
Proof of Theorem 2.2. The proof is standard, however, we include it here for com-
pleteness. According to Corollary 5.1 we have a § > 0 such that N2(T) < CsN3(0)
for some Cs > 0 whenever N3(T) < §. Take 6y = min(6/(2Cs),5/4) > 0. Suppose
that the maximal time of existence T* > 0 is finite. Then either (A, u) leaves every

compact subset of U or |[(Ag, uz)(t)||Lc[0,q — 00 as t T T*. Classical embedding
results imply that

(A, u) = (A, 0)[[w1.0 ([0,4)x[0,6)2 < CsNa(t).
5

In any case, by continuity there exists 0 < Ty < T* such that N3(T}) = 5 and

NZ(t) > % for all t € (T1, Ty + €) where € > 0 and T} + € < T*. Because N3(T1) <
§, there exists Ty € (T3, Ty + €) satisfying N3(Tz) < §. Corollary 5.1 implies

that N3(Ty) < CsN2(0) < %, which is a contradiction. Therefore we must have

T = +oo and this proves that a global-in-time solution exists. Furthermore, we
have the estimate N3(t) < CsN3(0) for all ¢ > 0. O

By applying the PDEs, the estimate in Theorem 2.2 implies the following esti-
mate on the time-derivatives of the state.

Corollary 5.2. In the situation of Theorem 2.2. there exists a Cs > 0 such that
sup (A + 1A @Ol 22 + a1 + e ()]Z2)

+/0 (A (D + 1A (DL + lur (D + e (7)][72 d7) < CsEo.

Now we are ready to prove the following asymptotic behaviour of the solutions.
Theorem 5.3 (Asymptotic Stability). In the framework of Theorem 2.2 we have
Tim ([A() ~ Aellan 0.0+ [0l 10,0 + 1ho(t) = hoel + [e(t) — heel) =0 (5.1)

Proof. As functions of time ”u(')Hiﬂ(o,z) and ||Ar(')||%2(o,z) belong to W1(0, c0)
according to Theorem 2.2 and Corollary 5.1 . Hence

(lw®llm 0,0 + [ A2 ()l 2(0,0)) = 0 (5.2)
Using a Gagliardo-Nirenberg-Moser interpolation, see [22], we have

IA(®) — Acll (0.0 < CellO AN oo 0 | AE) — Acll 7.0,

lim
t—o0
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Theorem 2.2 implies that [|A(t) — Ac||£2(0,¢) is uniformly bounded in ¢ € [0, 00) and
thus from (5.2) we get [|A(t) — Ac||(0,¢) — 0 as t — oo. In particular, this implies
that ||A(t) — Aellz2(0,0) — 0, A(t,0) — A. and A(t,£) — Ac as t — oo. The latter
two further imply that ho(t) — hoe and he(t) — hge as t — oo. Combining these
with (5.2) we obtain (5.1). O

The decay rate at which the state converges to the equilibrium can be shown to
be exponential, however, if one uses the norm in L?(0,¢)? x R2. This is the goal of
the next section.

6. EXPONENTIAL CONVERGENCE TO THE EQUILIBRIUM IN L?(0,¢)? x R?

The exponential stability result for (1.1) is based on linear stability and treating
the higher order terms as perturbation of the linearized system. The basic ingre-
dients are the exponential stability derived from semigroup theory, the variation
of parameters formula and interpolation estimates. However, care should be taken
since the linearization yields a nontrivial kernel and therefore stability for the lin-
earized problem is only possible in a factor space. The smallness of the data and
the order of nonlinearity play an important role in the proof, specifically the appli-
cability of a Gronwall-type estimate. In this way the decay rate for the nonlinear
system is the same as the decay rate for the linearized system.

First, we revisit the stability result in [18]. Define the following constants

/{/2

VA,

Let X = L%(0,£)? x R? be equipped with the weighted norm

’YAT
(

o =

v = 2b(ag + bhoe) = 2b(ag + bhye).

(A, u, ho, he)ll7 = ||A||L2(oe) +*||U\|L2<oe) + e (lhol* + [hef*).

Consider the linear operator A :D(A) — X with domain D(A) ={(A,u, ho, he) €
H1(0,0)? x R? : A(0) = ~vho, A(£) = vh,} defined by

A — Ay
—aA,; — Bu
al v _ :
ho _,12; (0)
he L=u(l)

This operator is obtained by linearizing the system (1.1) including its boundary
conditions about the equilibrium state (A, 0, hoe, hee). The operator A has a non-
trivial kernel N'(A) = {c(y,0,1,1) : ¢ € R}. The orthogonal complement N/(A)"
of N(A) coincides with the kernel of the volume functional V : X — R

4
V(A, u, ho, h[) = / A(l‘) do + Arho + Arhy.
0

In the following theorem o(A) will denote the spectrum of A, which consists of
eigenvalues since the operator is discrete. For the proof and explicit values of o and
k we refer to [18].

Theorem 6.1. The operator A is a discrete spectral operator that generates a
strongly continuous group T(t), t € R, on X. If § > 0 then there exists M > 1
such that

1T ey < ML +EF)e", t>0,
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where 0 = —Supygy(a) A > 0 and k is either 0 or 1.

To use this result for the nonlinear system (1.1), we need further tools. The first
one is the following Gronwall-type lemma whose proof can be found in [6].

Lemma 6.2. Let u € Lip([0,00),Ry) and suppose that for some C > 0
¢
u(t) < C(1 +t*)e™u(0) + C/ (14 (t — s)F)e 7 E=y(s)2ds, t >0,
0

for some o > 0, 0 > 1 and nonnegative integer k. Then there exists € > 0 and
C > 0 such that if u(0) < € then

ut) <C(1+the o, t>0.

The next tool is a simple interpolation estimate obtained from the well-known
Gagliardo-Nirenberg inequality, see [22] for example.

Theorem 6.3 (Gagliardo-Nirenberg). Let m be a positive integer. There exists
Cy > 0 such that for all uw € H™(0,¢) and j < m we have

) 1—j/m j/m
HU(J)HLM/J(O,E) < C[HUHLOQ](/QQ||u||JI—;m(0,€)'

As a consequence, we have the following estimate.

Corollary 6.4. There exists C > 0 such that for all u € H?(0,() it holds that

7/8
et | o 0.0y < Cllull a0 el ot

Proof. Using the Gagliardo-Nirenberg-Moser estimate in [22], Holder’s inequality
and Theorem 6.3 with m = 2 and 7 = 1 we have, for generic constants C' > 0,

luallzeoey < Cllusall o o luell 0.,
< OH“MHLZ(Q 0 ||u£||L4(0 0)
< Cllta | g0 Il 12 0.0 1l 002
< Clluaall 2.0 (luall Pat o lull oto. lell 2 0 )72
This clearly implies the estimate given in the corollary. [

Now we are in position to prove the following stability result.

Theorem 6.5 (Exponential Stability). Consider the framework of Theorem 2.2.
There exists 6o > 0 such that if Ey < &g then the solution of (1.1) satisfies

|A®) = Acllr20,0) + 1w L20,0) + [Ro(t) = hoe| + |he(t) — hee| < C(1 + tF)e ™

for all t > 0 and for some constant C = C(Ey) > 0. The constants k and o are
those of Theorem 6.1.

Proof. Let z = (B,v,n0,m¢) = (A — Ae,u, hg — hoe, he — hge) denote the deviation
of the state from the equilibrium. The system (1.1) can be rewritten in terms of
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the deviations as

By = —Acvy — (A — Ae)uz — udy,

ve = —aB, — fu+ aA~3(Ab + AZ)" (A - A)A, — uug,
1o(t) = —4=0(t,0) — 2= (A(t,0) — Ac)u(t,0),

m(t) = (t 0+ 4= (A(M) — Ae)u(t, 0),

B(t, ) yo(t) + b (ho(t) — hoe)?,

B(t, 0) = yn(t) + b2 (h(t) — hee)?.

In order to use the results for abstract homogeneous linear time-invariant systems
via semigroup theory, we consider a new state variable w := z — (¢, 0,0,0) where

o(t,x) = é ; T2 (ho(t) — hoe)? + %bQ(hg(t) ~ hee)?.

This is introduced in order to compensate for the nonlinearity in the boundary
conditions. It is easy to see that w(t) € D(A) for all ¢ > 0 and it satisfies the
system

w(t) = Aw(t) + F(t), t >0, (6.1)
where
( ( )I_Ae)uw( ) (t>Aw( ) ¢t( )
Ft) = QA(t)TE(A(L)E + A2)THA() — A Au(t) — u(t)ua(t) — ada(t)

_AilT(A(v ) Ae)u(t,O)
a7 (At 0) — Ac)u(t, 0).

Because u € C*([0,00); H1(0,¢)) it follows that uu, € C*([0,00); L?(0,¢)). Using
the regularity of A,u,ho and hy stated in Theorem 2.2 together with a similar
argument as in the previous statement one can show that F € C*([0,00); X). A
standard result in semigroup theory, see [16, Section 4.2] for example, shows that
(6.1) has a unique solution in X and it is given by the variation of parameters
formula

w(t) = T(t)w(0) + /0 T(t — 5)F(s) ds. (6.2)

By uniqueness, this function w must coincide with the function z— (¢, 0,0, 0) above.

Since the semigroup T'(t) is exponentially stable only in N/ (A)J', we will decom-
pose the solution w into two parts. First decompose F' as a sum F = Fy + (Fa);
where Fy = (—¢,0,0,0). By construction, Fy(s) € N(A)" for all s > 0. This can
be easily seen since Fj(s) lies in the kernel of V for all s > 0. Let I : X — N (A)
be the orthogonal projection of X onto N (A). Conservation of volume implies that
V(A u®, hY, hY) = V(A.,0, hoe, hee) or equivalently z(0) € N(A)*. Furthermore,
we have Fy(s) + (I — IT)(Fy)(s) € N(A)* for all s > 0. We write

wit) = wy () + wa(t)
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wi(t) = T(t)(2(0) + (I = I F5(0)) +/O T(t = s)(Fi(s) + (I = I)(F2)4(s)) ds

wa(t) = T(t)IIF»(0) + /0 T(t — s)II(Fy)+(s) ds.
Because T'(¢t)II = II and TI(F3):(s) = (ILFx(s)); we actually have wy(t) = ILF5(¢).
Using (6.2) and Theorem 6.1 we have
lw®)llx < M1+ t")e " 2(0) + (I - T F2(0) | + |[TIF (1)l

M / (14 (= $)F)e ") | Fy(s) + (I — D) (Fa)e(s)ll ds. (6.3)

The next task is to estimate each term of (6.3) in terms of the norm | z(¢)||x of
the deviation z(t). Since || —1II||z(x) < 1 it holds that for all ¢ > 0
1/2
1T = F@))x < Cllg®)llrz0,0 < CllBIF < CE2@)x (6.4)
for some C > 0 independent of Ey. Similarly, for all ¢ > 0
1/2
lw@)llx = [12(6) + Fa(#)llx > (1= CE®)|2(2)] - (6.5)
From Corollary 6.4 we obtain
7/8 9/8 7/16 9/8
(e ()22 < [u@®)e2 lua@)lle < Clu@lE w7 < CEY 207"

The other terms in the first and second rows of F} can be estimated similarly. Now
we estimate the third and fourth rows of F;. By Sobolev embedding we have

((A(t,y) — Ac)u(t, y)| < C([(AQR) — Ac)u(®)l|z2(0.0) + [I[(A(E) = Ae)u(®)]allL2(0,0))

for y = 0,¢. Expanding the term [(A(¢) — Ae)u(t)], = Az (B)u(t) + (A(t) — Ae)ug(t),
it can be seen that each term can be estimated in the same manner as we estimated
u(t)uy(t) above. For the first term, we apply the Gagliardo-Nirenberg-Moser inter-
polation once more to get

I(A(#) = AJu®) 2000 < [A(#) = Aellz2 0,0 [[w(®) ]| Lo 0.0)

< CJA®) = Acllzz . lua Ol 50,0 1Bl 570 .
< C(E 3/2 9/8
< CE) =0 < CE)IOI

Combining all of our estimates yields
9/8
IR (®)]l2c < C(ED)[2(0)]1¥ (6.6)

The next step is to estimate ||(1 — II)(F2)¢(¢)||x. Using the differential boundary
conditions, the derivative of ¢ with respect to t is given by

p(t,x) = — 2A00*07 (0 — ) (ho(t) — hoe) A(t, 0)u(t, 0)
+ 2A70% 0 x(ho(t) — hee) A(t, £)u(t, £)
and by interpolation we can estimate its L?-norm by
l6e 200 < Clholt) = hoel + he(t) = hee DI A®) | o 0.0 (B = 0.0
CEY(Iho(t) = hoel + [he(t) = hee DIIAW®) [ 50,0 4B 55 0
C(E)I|=(II".

IN

IN
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Consequently,
11— I (F2)i(8)]| 2 < C(Eo)l|=(0)13°. (6.7)
Using (6.4), (6.5), (6.6), (6.7) in (6.3) we have
MC(Eo)

[z)]x < B ((1 +15)e™7)2(0) ¢
- 0

t — 8)F)e o= |1 4(5)||%/8 ds
s [ase-sm 1)1 d) (6.8)

whenever C’Eé/2 < 053/2 < 1.
Finally, we check the Lipschitz continuity of the map ¢ — ||z(¢)||x. From the
continuity equation, it holds that

II[A() — Acllz2(0,6) — [ A(s) — AellL2 (0,0
[A(t) — A(s)ll2(0,0)

‘ /t T u(F) A7) + A(F)ua(r) dr o

|t = smax[|u(7) Au () + A(T)ua(7) | 22 0,0)

IN

IA

IA

A

< Cft = slmax([lu(r)ll a0, A2 (T) | 220,00 + [ AT | 110,00 [0 (T 22 0,0))
< C(Ep)|t — s|.

for all s,t > 0. The same estimate can be obtained for w and hg, hy using the
momentum equation and the ODE boundary conditions, respectively. Therefore
[lz(:)]|x € Lip([0, 00), R4). The result now easily follows from (6.8) and the Gronwall-
type estimate Lemma 6.2. (]
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