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Abstract. A coupled system of partial differential equations modeling the

interaction of a fluid and a structure with delay in the feedback is studied.
The model describes the dynamics of an elastic body immersed in a fluid that

is contained in a vessel, whose boundary is made of a solid wall. The fluid

component is modeled by the linearized Navier-Stokes equation while the solid
component is given by the wave equation neglecting transverse elastic force.

The spectral properties and exponential or strong stability of the interaction

model under appropriate conditions on the damping factor, delay factor and
the delay parameter is established.

Consider an elastic body occupying a domain Ωs ⊂ Rd, where d = 2 or d = 3, and
it is immersed in a fluid that is contained in a vessel. Suppose that the boundary
Γf of the vessel is made of a solid wall. We denote by Ωf ⊂ Rd the region where the
fluid is occupied and Γs the interface between the solid and the fluid. All throughout
this paper, we assume that Γs and Γf are sufficiently smooth and that Γs∩Γf = ∅.
Let u : (0,∞)×Ωf → Rd, p : (0,∞)×Ωf → R and w : (0,∞)×Ωs → Rd represent
the velocity field of the fluid, the pressure in the fluid and the displacement of the
structure, respectively. A linear model describing the interaction of the fluid and
the structure is given by the coupled linearized Navier-Stokes-wave system

ut(t, x)−∆u(t, x) +∇p(t, x) = 0, in (0,∞)× Ωf ,

divu(t, x) = 0, in (0,∞)× Ωf ,

u(t, x) = 0, on (0,∞)× Γf ,

u(t, x) = wt(t, x), on (0,∞)× Γs,

wtt(t, x)−∆w(t, x) = F (t, x), in (0,∞)× Ωs,
∂w

∂ν
(t, x) =

∂u

∂ν
(t, x)− p(t, x)ν(x), on (0,∞)× Γs,

u(0, x) = u0(x), in Ωf ,

w(0, x) = w0(x), wt(0, x) = w1(x), in Ωs.

(0.1)

Here, F can be viewed as a source or control on the structure. The unit vector
ν is outward normal to the fluid domain Ωf and hence it will be inward to the
structure domain Ωs. In this model, the boundary of the solid is stationary and
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as mentioned in [6], this assumption is suitable under small and rapid oscillations,
that is, when the displacement of the solid is small compared to its velocity. The
boundary conditions on the interface Γs represent the continuity of the velocities
and stresses for the fluid and solid components. On the other hand, on Γf we have
the no-slip boundary condition.

In this paper, we study the system (0.1) using the velocity of the structure as
the feedback law

F (t, x) = −k0wt(t− τ, x)− k1wt(t, x), in (0,∞)× Ωs, (0.2)

where k1 > 0 is the damping factor, k0 > 0 is the delay factor and τ > 0 is a
constant delay. Physically, this means that a fraction of the feedback will be felt
by the system after some time. The initial history for the velocity of the structure
is denoted by

wt(θ, x) = g(θ, x), in (−τ, 0)× Ωs. (0.3)

Recent interest in fluid-structure models includes numerical and experimental
studies and lately there are works that lean towards rigorous mathematical analy-
sis. The model (0.1) is based on the the works of Avalos and Trigianni [2, 4]. Their
system is similar to the one considered earlier by Du et. al [12]. Nonlinear versions
have been also considered by Barbu et. al [6, 7] and Lasiecka and Lu [15]. Without
any external force F and with transversal elastic force in the wave component, i.e.,
with the wave equation wtt−∆w+w = 0, it was shown in [2] using semigroup meth-
ods that the solutions of (0.1) are strongly asymptotically stable. The result holds
for every initial data in the state space excluding those that lie in the kernel of the
associated generator and also under additional conditions, which is related to the
geometry of the structure. It relies on whether a certain over-determined boundary
value problem has a solution. Later, the authors studied the same model in [4]
but with internal damping in the structure. This additional dissipative mechanism
allows the energy of the solution to decay to zero exponentially.

Systems that are stable may turn into an unstable one if there is delay, see for
example the classical works of Datko et. al [9] and Datko [8]. This is because delay
induces a transport phenomena in the system that generate oscillations which may
lead into instability. Since then, several authors studied the effect of delay in various
multidimensional wave equations and as well in heat and Schrödinger equations.
In the absence of the fluid and with homogeneous Dirichlet condition on a part
of the boundary, the stability and instability properties of the wave equation with
the feedback law (0.2) was considered by Nicaise and Pignotti [18]. It is shown
in their work that if the damping factor is larger than the delay factor, then the
energy of the system decays to zero exponentially. On the other hand, if these
coefficients are equal it was established that there is a sequence of delays that
yield solutions with constant energies. Even when the damping and delay factors
are equal, the presence of other dissipative mechanisms such as viscoelasticity can
provide asymptotic stability for the wave equation, see for example [14]. We would
like to extend the study to the fluid-structure model (0.1)–(0.3) and analyze for the
influence of the fluid on the wave equation.

Due to the absence of the displacement term, the wave equation will be formu-
lated as a first order system in terms of the velocity wt and stress ∇w, in contrast to
the formulation in terms of the displacement and velocity in [2]. This formulation
requires a different state space representation of the interaction model and leads
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to a different structure on the kernel of the corresponding generator, the space of
steady states, and different analysis and tools will come in place. The construction
of the semigroup and the well-posedness for (0.1)–(0.3) will be discussed in Section
2. It will be shown in Section 3 that under the condition k1 > k0, the energy of the
solutions decay to zero exponentially using the frequency domain method. Under
the case k1 = k0, together with an additional geometric condition or except pos-
sibly for a countably infinite number of delays which is related to the spectrum of
the Dirichlet Laplacian on Ωs, the energy decays asymptotically to zero. This will
be done using a generalized Lax-Milgram method as in [10]. Thus, under certain
circumstances, the dissipative effect of the fluid due to diffusion is strong enough
to stabilize the coupled system even when the damping and delay factors are the
same.

1. Semigroup Construction and Well-Posedness

The first step in writing the system (0.1)–(0.3) into an abstract evolution equa-
tion is to eliminate the pressure term p. More precisely, we express p in terms of
u and w. Following [2], it can be shown that p satisfies an elliptic boundary value

problem. To do this, define the Dirichlet map Ds : H
1
2 (Γs) → H1(Ωf ) and the

Neumann map Nf : H
3
2 (Γf )→ H1(Ωf ) as follows. Given g ∈ H 1

2 (Γs), let h = Dsg
be the weak solution of the elliptic problem

∆h = 0, in Ωf ,
∂h

∂ν
= 0, on Γf ,

h = g, on Γs.

Given h ∈ H 3
2 (Γf ), let g = Nfh be the weak solution of

∆g = 0, in Ωf ,
∂g

∂ν
= h, on Γf ,

g = 0, on Γs.

From the classical elliptic regularity in [16], we can see thatDs ∈ L(Hr(Γs), H
r+ 1

2 (Ωf ))

and Nf ∈ L(Hr(Γf ), Hr+ 3
2 (Ωf )). If the pressure term p, along with u and w sat-

isfies (0.1), then taking the divergence of the first equation in (0.1) and using the
boundary conditions yield

∆p = 0, in (0,∞)× Ωf ,

∂p

∂ν
= ∆u · ν, on (0,∞)× Γf ,

p =
∂u

∂ν
· ν − (∇w · ν) · ν, on (0,∞)× Γs.

In terms of the Dirichlet and Neumann maps defined above, the pressure can be
written in terms of ∇w and u as

p = −Ds((∇w · ν) · ν) +Ds

(
∂u

∂ν
· ν
)

+Nf (∆u · ν).

Let v(t, x) = wt(t, x), σ(t, x) = ∇w(t, x) for (t, x) ∈ (0, T ) × Ωs and z(θ, t, x) =
wt(t + θ, x) for (θ, t, x) ∈ (−τ, 0)× (0, T )× Ωs. The fluid-structure system will be
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posed in the state space

H := L2(Ωs)
d × L2(Ωs)

d×d × L2(−τ, 0;L2(Ωs)
d)×Hf

where Hf := {u ∈ L2(Ωf )d : div u = 0 in Ωf , u · ν = 0 on Γf}. The space H is
equipped with the inner product

((v1, σ1, z1, u1), (v2, σ2, z2, u2))H

:=

∫
Ωs

(v1 · v2 + σ1 · σ2) dx+ k0

∫ 0

−τ

∫
Ωs

z1 · z2 dxdθ +

∫
Ωf

u1 · u2 dx

with the dot representing the inner product in Cd or Cd×d.
Let L2

div(Ωs)
d×d = {σ ∈ L2(Ωs)

d×d : div σ ∈ L2(Ωs)
d}, where div denotes

the distributional divergence, and is endowed with the graph norm. There is a
generalized normal trace operator σ 7→ σ · ν which is continuous from L2

div(Ωs)
d×d

into H−
1
2 (Γs)

d. Moreover, the following generalized Green’s identity∫
Ωs

divσ · udx = −〈σ · ν, u〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

σ · ∇udx

holds for all σ ∈ L2
div(Ωs)

d×d and u ∈ H1(Ωs)
d. Recall that ν is inward to Γs. The

space Y (Ωs) := {σ ∈ L2(Ωs)
d×d : divσ = 0 in Ωs, σ · ν = 0 on Γs} is a closed

subspace of L2(Ωs)
d×d and there holds the Helmholtz orthogonal decomposition

L2(Ωs)
d×d = Y (Ωs)⊕G(Ωs)

where G(Ωs) = {σ ∈ L2(Ωs)
d×d : σ = ∇% for some % ∈ H1(Ωs)

d}.
Consider the operators L1 : L2

div(Ωs)
d×d → L2(Ωf )d and L2 : H1(Ωf )d ∩ {u ∈

Hf : ∂u∂ν ∈ H
− 1

2 (Γs)
d, ∆u · ν ∈ H− 3

2 (Γf )} → L2(Ωf )d defined as follows

L1σ = −Ds((σ · ν) · ν),

L2u = Ds

(
∂u

∂ν
· ν
)

+Nf (∆u · ν).

These operators are well-defined from the elliptic regularity stated above. Define
the linear operator A : D(A) ⊂ H → H by

A =


−k1I div −k0γ|θ=−τ 0
∇ 0 0 0
0 0 ∂θ 0
0 −∇L1 0 ∆−∇L2


with domain D(A) comprising of all elements (v, σ, z, u) ∈ H such that v ∈
H1(Ωs)

d, σ ∈ L2
div(Ωs)

d×d, z ∈ H1(−τ, 0;L2(Ωs)
d), u ∈ H1(Ωf )d ∩ Hf , u = v

on Γs, z(0) = v in Ωs,
∂u
∂ν − σ · ν = πν in H−

1
2 (Γs)

d, ∆u · ν ∈ H−
3
2 (Γf ), and

∆u − ∇π ∈ Hf where π = L1σ + L2u. Here, γ|θ=−τ is the trace operator. The
system (0.1)–(0.3) can now be recast as a first order evolution equation in H{

Ẋ(t) = AX(t) for t > 0,

X(0) = X0,
(1.1)

where X0 = (w1,∇w0, g, u0).
In characterizing the kernel N(A) of A, we need the following result.
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Proposition 1.1. For every f = (f1, . . . , fd) ∈ L2(Ωs)
d and φ ∈ H− 1

2 (Γs)
d satis-

fying the compatibility condition∫
Ωs

fj dx+ 〈φ, ej〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

= 0, for j = 1, . . . , d,

where ej is the canonical unit vector in Rd, the boundary value problem{
divσ = f, in Ωs,

σ · ν = φ, on Γs,
(1.2)

admits a unique solution σ ∈ L2
div(Ωs)

d×d∩G(Ωs). This solution is given by σ = ∇ψ
where ψ ∈ H1(Ωs)

d is a solution of the Neumann problem∆ψ = f, in Ωs,
∂ψ

∂ν
= φ, on Γs.

(1.3)

Moreover, σ satisfies the estimate

‖σ‖L2
div(Ωs)d×d ≤ C(‖f‖L2(Ωs)d + ‖φ‖

H− 1
2 (Γs)d

). (1.4)

Proof. The problem (1.3) admits a solution ψ ∈ H1(Ωs)
d unique up to an additive

constant vector and it satisfies the stability estimate

‖ψ‖H1(Ωs)d/Rd ≤ C(‖f‖L2(Ωs)d + ‖φ‖
H− 1

2 (Γs)d
). (1.5)

Clearly, σ = ∇ψ lies in L2
div(Ωs)

d×d ∩ G(Ωs) and it satisfies (1.2). The estimate
(1.4) follows from (1.5) and the fact that divσ = f . If σ̃ ∈ L2

div(Ωs)
d×d ∩G(Ωs) is

also a solution of (1.2) then σ − σ̃ ∈ G(Ωs) ∩ Y (Ωs) = {0} and hence the solution
is unique in L2

div(Ωs)
d×d ∩G(Ωs). �

Theorem 1.2. Assume that k1 ≥ 0 and k0 > 0. Let Id be the d×d identity matrix
and 〈Id〉 = {cId : c ∈ C}. Then N(A) = {0} × (〈Id〉 ⊕ Y (Ωs)) × {0} × {0} and in
particular

N(A)⊥ = L2(Ωs)
d × (G(Ωs)/〈Id〉)× L2(−τ, 0;L2(Ωs)

d)×Hf (1.6)

where

G(Ωs)/〈Id〉 = {σ ∈ G(Ωs) :

∫
Ωs

Tr(σ) dx = 0}

and Tr denotes the trace of a matrix.

Proof. Suppose that (v, σ, z, u) ∈ N(A). From the definition of A we immediately
see that z(θ) = v for every θ ∈ (−τ, 0), v is constant, σ satisfies the boundary value
problem divσ = (k0 + k1)v, in Ωs,

σ · ν =
∂u

∂ν
− πν, on Γs,

(1.7)

and u satisfies the Stokes equation
∆u−∇π = 0, in Ωf ,

divu = 0, in Ωf ,

u = 0, on Γf ,

u = v, on Γs.

(1.8)
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Taking the inner product of the differential equation in (1.7) with v, applying
the divergence theorem and using the boundary condition u = v on Γs yield

(k0 + k1)

∫
Ωs

|v|2 dx = −
〈
∂u

∂ν
− πν, u

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

(1.9)

Recall that ν is inward to Ωs. Multiplying the Stokes equation by u, integrating
over Ωf and then using Green’s identity one can see that (1.9) becomes

(k0 + k1)

∫
Ωs

|v|2 dx+

∫
Ωf

|∇u|2 dx = 0.

Since k0 + k1 is nonnegative, it follows that u is constant, and according to the
boundary condition on Γf in (1.8), this constant must be zero. As a consequence,
the boundary condition on Γs of the same system implies that v must be also zero,
and so is z. Moreover, the first equation in (1.8) and the compatibility condition for
(1.7) show that π is a constant satisfying π

∫
Γs
νj ds = 0 for j = 1, . . . , d. According

to the divergence theorem the second factor vanishes and therefore π is arbitrary.
Replacing σ by −σ/π in (1.7), we can see that σ satisfies the problem (1.2) with

f = 0 and φ = ν. According to Proposition 1.1, all solutions to this problem lies
in 〈Id〉 ⊕ Y (Ωs). Therefore the kernel of A is given as stated, and since Id ∈ G(Ωs)
we have a direct sum in the second component of N(A).

Identifying the orthogonal complement of 〈Id〉 in G(Ωs) to the factor space
G(Ωs)/〈Id〉, one can easily see that

(〈Id〉 ⊕ Y (Ωs))
⊥ = G(Ωs)/〈Id〉

where the left hand side is taken with respect to L2(Ωs)
d×d. This proves (1.6). The

characterization of G(Ωs)/〈Id〉 is a direct consequence of the fact that σ · Id is the
trace of σ. �

Now we prove the invariance of N(A)⊥ under A. This space will be the state
space for our stability problem.

Theorem 1.3. The space N(A)⊥ is invariant under A, i.e. A(D(A) ∩N(A)⊥) ⊂
N(A)⊥.

Proof. Let (v, σ, z, u) ∈ D(A) ∩ N(A)⊥. In order for A(v, σ, z, u) ∈ N(A)⊥, the
component v must satisfy∫

Ωs

div v dx =

∫
Ωs

Tr(∇v) dx = 0,

or equivalently, by the divergence theorem∫
Γs

v · ν ds = 0. (1.10)

Since u is divergence free in Ωf and it vanishes on Γf we have∫
Γs

u · ν ds =

∫
Ωf

divudx = 0

and hence (1.10) holds because u = v on Γs. �

Define Ã to be the part of A in N(A)⊥, i.e. the operator Ã : D(A) ∩N(A)⊥ →
N(A)⊥ given by ÃX = AX for X ∈ N(A)⊥. This operator is well-defined according
to Theorem 1.3.
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Theorem 1.4. Suppose that k1 ≥ k0 > 0. The linear operator Ã is dissipative and
generates a strongly continuous semigroup of contractions on N(A)⊥.

In order to prove the theorem, we need to solve certain Stokes equations. For
this, we recall the following classical result whose proof can be found in [21].

Proposition 1.5. Let m ≥ −1 be an integer and Ω ⊂ Rd be a bounded Cr-domain,
where d = 2, 3 and r = max(2,m+2). For every f ∈ Hm(Ω)d and φ ∈ Hm+ 3

2 (∂Ω)d

such that
∫
∂Ω
φ · ν ds = 0, where ν is the unit normal outward to Ω, the system

∆u−∇p = f, in Ω,

div u = 0, in Ω,

u = φ, on ∂Ω,

(1.11)

has a unique solution (u, p) ∈ Hm+2(Ω)d × (Hm+1(Ω)/R) satisfying the estimate

‖u‖Hm+2(Ω)d + ‖p‖Hm+1(Ω)/R ≤ C(‖f‖Hm(Ω)d + ‖φ‖
Hm+3

2 (∂Ω)d
)

for some C > 0 independent of u, p, f and φ.

Proof of Theorem 1.4. A standard procedure provides the estimate

Re(AX,X)H ≤ −
∫

Ωf

|∇u|2 dx− (k1 − k0)

∫
Ωs

|v|2 dx (1.12)

for every X = (v, σ, z, u) ∈ D(A). This means that A and Ã are dissipative when-
ever k1 ≥ k0.

It is clear that Ã is injective. Let us show that Ã is surjective, first for suffi-
ciently large k1. Given (η, κ, ζ, ϕ) ∈ H, the equation Ã(v, σ, z, u) = (η, κ, ζ, ϕ) with

unknown (v, σ, z, u) ∈ D(Ã) is equivalent to the system where v satisfies

∇v = κ, in Ωs, (1.13)

u is the solution of the Stokes equation
∆u−∇π = ϕ, in Ωf ,

divu = 0, in Ωf ,

u = 0, on Γf ,

u = v, on Γs.

(1.14)

and σ ∈ G(Ωs)/〈Id〉 satisfies the boundary value problem divσ = k0z(−τ) + k1v + η, in Ωs,

σ · ν =
∂u

∂ν
− πν, in Γs,

(1.15)

where the delay variable z is given by

z(θ) = v −
∫ 0

θ

ζ(ϑ) dϑ, in L2(Ωs)
d. (1.16)

Recall that π is the solution of the elliptic problem
∆π = 0, in Ωf ,

π =
∂u

∂ν
· ν − (σ · ν) · ν, on Γs,

∂π

∂ν
= ∆u · ν, on Γf .

(1.17)
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From (1.16) it is clear that z ∈ H1(−τ, 0;L2(Ωs)
d). On the other hand, since

κ ∈ G(Ωs)/〈Id〉 ⊂ G(Ωs), it follows that (κ, ρ)L2(Ωs)d = 0 for every divergence-free

vector field ρ ∈ C∞0 (Ωs)
d. By a classical result, there exists ṽ ∈ H1(Ωs)

d, which
is unique up to an additive constant vector, that satisfies (1.13), see [20, Lemma
2.2.2] for example. Applying the divergence theorem we obtain∫

Γs

ṽ · ν ds = −
∫

Ωs

div ṽ dx = −
∫

Ωs

Tr(κ) dx = 0. (1.18)

As been said, v = ṽ + v∗, where v∗ is a constant vector, also satisfies (1.13). The
vector v∗ will be chosen so that the data in (1.15) are compatible.

Taking m = −1 in Proposition 1.5, the Stokes equation (1.14) admits a solution
pair (u, π̃) ∈ (H1(Ωf )d ∩Hf )× L2(Ωf ). The function π̃ is harmonic since

∆π̃ = div(ϕ−∆u) = ∆(divu) = 0.

Therefore, π̃ has the following traces π̃|Γs
∈ H− 1

2 (Γs)
d and ∂π̃

∂ν |Γf
∈ H− 3

2 (Γf ) while

u satisfies ∂u
∂ν |Γs

∈ H− 1
2 (Γs)

d and ∆u · ν in H−
3
2 (Γf ), refer to [3, Lemma 3.1].

For every constant π∗, (u, π) with π = π̃+π∗ is also a solution pair for (1.14). The
constant π∗ will be determined below by imposing the condition σ ∈ G(Ωs)/〈Id〉
where σ solves (1.15).

Consider the decomposition u = ũ+
∑d
j=1 v

∗
jwj and π = π̃0 +

∑d
j=1 v

∗
j %j , where

v∗ = (v∗1 , . . . , v
∗
d) ∈ Cd and the pairs (ũ, π̃0), (wj , %j) ∈ (H1(Ωf )d ∩Hf ) × L2(Ωf )

satisfy the following Stokes equations
∆ũ−∇π̃0 = ϕ, in Ωf ,

div ũ = 0, in Ωf ,

ũ = 0, on Γf ,

ũ = ṽ, on Γs.

(1.19)

and 
∆wj −∇%j = 0, in Ωf ,

divwj = 0, in Ωf ,

wj = 0, on Γf ,

wj = ej , on Γs,

(1.20)

respectively. The boundary data in (1.19) and (1.20) are admissible according to
(1.18) and

∫
Γs
ν · ej ds =

∫
Γs
νj ds = 0, respectively. The compatibility condition

for (1.15) is given by, for l = 1, . . . , d

0 = (k0 + k1)

∫
Ωs

(ṽl + v∗l ) dx− k0

∫ 0

−τ

∫
Ωs

ζl(ϑ) dϑ+

∫
Ωs

ηl dx

+

〈
∂u

∂ν
− π̃ν, el

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

,

where we used π∗
∫

Γs
ν · el ds = 0. Using the above decomposition and Green’s

identity, the last term in the above equation can be written as∫
Ωf

( d∑
j=1

v∗j∇wj · ∇wl +∇ũ · ∇wl + ϕ · wl
)

dx =

〈
∂u

∂ν
− π̃ν, el

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

.
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The last two equations provide us a d × d system of equations Mv∗ = F for
some vector F = F (η, κ, ζ, ϕ) independent of v∗ and the matrix M has the entries
Mjj = (k0 + k1)|Ωs| + ‖∇wj‖2L2(Ωf )d×d , and Mjl = (∇wl,∇wj)L2(Ωf )d×d for j 6= l.

Here, |Ωs| denotes the Lebesgue measure of Ωs. For sufficiently large k1, the matrix
M is strictly diagonally dominant, and hence invertible according to the well-known
Levy-Desplanques Theorem, see [13] for instance. Thus we can solve for v∗ in the
linear system.

Let f∗ ∈ L2(Ωs)
d denote the right hand side of (1.15), i.e.,

f∗ = (k0 + k1)v − k0

∫ 0

θ

ζ(ϑ) dϑ+ η.

From Proposition 1.1, the function σ = ∇ψ − π∗Id ∈ L2
div(Ωs)

d×d ∩ G(Ωs), where

ψ satisfies the Neumann problem (1.3) with f = f∗ and φ = ∂u
∂ν − π̃ν, is a solution

of (1.15). In order for σ to be an element of G(Ωs)/〈Id〉 we must have∫
Ωs

Tr(∇ψ) dx− dπ∗|Ωs| = 0.

Choosing π∗ = −(d|Ωs|)−1
∫

Ωs
ψ · ν ds yields σ ∈ G(Ωs)/〈Id〉.

It remains to show that π satisfies (1.17). We already know that π is harmonic.

The second line in (1.17) holds in H−
1
2 (Ωs) by taking the inner product, in the

sense of traces, of the second line in (1.15) with ν. Also, ϕ ∈ Hf and the first

equation of (1.17) imply that ∂π
∂ν = ∇π · ν = ∆u · ν in H−

3
2 (Γf ).

The operator Ã is therefore bijective and by the closed graph theorem, 0 lies
in the resolvent set of Ã. By the Lumer-Phillips Theorem, Ã generates a strongly
continuous semigroup of contractions on N(A)⊥. This completes the proof of the
theorem in the case where k1 is sufficiently large. However, by the bounded pertur-
bation theorem for semigroups, this imply that the conclusion of the theorem also
holds for every k1 ≥ k0. �

Corollary 1.6. Suppose that k1 ≥ k0 > 0. The operator A generates a strongly
continuous semigroup of contractions on H. In particular, the Cauchy problem (1.1)
admits a unique weak solution X ∈ C([0,∞);H) for every initial data X0 ∈ H.

Proof. It is enough to prove the range conditions R(I−A) = H = R(I−A∗). Given
Y ∈ H, write Y = Y1 + Y2 where Y1 ∈ N(A)⊥ and Y2 ∈ N(A). From Theorem 1.4,

it follows that there exists X1 ∈ D(Ã) such that (I − Ã)X1 = Y1. If X = X1 + Y2

then
(I −A)X = (I − Ã)X1 + Y2 = Y.

Therefore I −A is surjective. The case of A∗ is analogous. �

To close this section, we determine the adjoint of the closed operator A.

Theorem 1.7. The adjoint A∗ : D(A∗)→ X of A is given by

A∗ =


−k1I −div k0γ|θ=0 0
−∇ 0 0 0

0 0 −∂θ 0
0 ∇L1 0 ∆−∇L2

 . (1.21)

The domain D(A∗) of A∗ is the set of all elements in X such that

(η, κ, ζ, ϕ) ∈ H1(Ωs)
d × L2

div(Ωs)
d×d ×H1(−τ, 0;L2(Ωs)

d)× (H1(Ωf )d ∩Hf )
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with the properties ϕ = η on Γs, ζ(−τ) = −η in Ωs,
∂ϕ
∂ν + κ · ν = pν in H−

1
2 (Γs)

d,

∆ϕ · ν ∈ H−
3
2 (Γs) and ∆ϕ − ∇p ∈ Hf where p = −L1κ + L2ϕ. Moreover, the

kernels of A and A∗ coincide.

Proof. Define the operator B : D(B) → H by the right hand side of (1.21) where
the domain D(B) is the set in the description of D(A∗). With the isometric iso-
morphism J : H → H defined by

J(v, σ, z(θ), u) = (−v, σ, z(−θ − τ),−u),

which satisfies J−1 = J , the operators A and B are similar, that is, JAJ = B
and D(JAJ) = D(B). This implies that B is m-dissipative and N(A) = N(B).
We show that A∗ is an extension of B and since A∗ is the adjoint of a generator
of a strongly continuous semigroup of contractions, A∗ does not contain a strict
m-dissipative operator and so we must have A∗ = B.

We show that

(AX,Y )H = (X,BY )H (1.22)

holds whenever X = (v, σ, z, u) ∈ D(A) and Y = (η, κ, ζ, ϕ) ∈ D(B), so that
Y ∈ D(A∗) and consequently A∗ is an extension of B. By definition, we have

(AX,Y )H = −
∫

Ωs

(k1v − div σ + k0z(−τ)) · η dx+

∫
Ωs

∇v · κdx (1.23)

+ k0

∫ 0

−τ

∫
Ωs

∂θz(θ) · ζ(θ) dx dθ +

∫
Ωf

(∆u−∇π) · ϕdx.

Integrating by parts, using Green’s identities and ζ(−τ) = −η we obtain∫
Ωs

div σ · η dx = −〈σ · ν, η〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

σ · ∇η dx∫
Ωs

∇v · κdx = −〈κ · ν, v〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
∫

Ωs

v · div κdx∫ 0

−τ

∫
Ωs

∂θz(θ) · ζ(θ) dxdθ =

∫
Ωs

(v · ζ(0) + z(−τ) · η) dx

−
∫ 0

−τ

∫
Ωs

z(θ) · ∂θζ(θ) dxdθ∫
Ωf

(∆u−∇π) · ϕdx =

〈
∂u

∂ν
− πν, ϕ

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

−
〈
∂ϕ

∂ν
− pν, u

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

+

∫
Ωf

u · (∆ϕ−∇p) dx.

Using these equations in (1.23) together with the boundary conditions u = v, ϕ = η

on Γs and ∂ϕ
∂ν + κ · ν = pν, ∂u∂ν − σ · ν = πν in H−

1
2 (Γs)

d, it can be seen that (1.22)
is satisfied. �

2. Spectral Properties and Stability

In the absence of delay, it was shown in [2] the partial compactness of the resol-
vents of the operator A. More precisely, the projection of a resolvent onto the state
space corresponding to the velocity fields for the fluid and structure components
is compact. Here, we will show that even though the operator A does not have
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compact resolvents, the spectrum comprises of only eigenvalues except possibly on
the negative real axis. This will be established in a more straightforward manner
through a variational method, deviating from the methods provided in [2]. To this
end, we introduce the following Hilbert spaces

H0 := L2(Ωs)
d ×Hf ,

H1 := {(v, u) ∈ H1(Ωs)
d × (H1(Ωf )d ∩Hf ) : v = u on Γs},

equipped with the inner products

((v, u), (w,ψ))H0
:=

∫
Ωs

v · w dx+

∫
Ωf

u · ψ dx

((v, u), (w,ψ))H1
:=

∫
Ωs

(v · w +∇v · ∇w) dx+

∫
Ωf

∇u · ∇ψ dx,

respectively. The embedding H1 ⊂ H0 is continuous, dense and compact.
For each nonzero complex number λ, define the sesquilinear form aλ : H1×H1 →

C by

aλ((v, u), (w,ψ)) := q(λ)

∫
Ωs

v · w dx+
1

λ

∫
Ωs

∇v · ∇w dx

+ λ

∫
Ωf

u · ψ dx+

∫
Ωf

∇u · ∇ψ dx

where q(λ) = λ+k1+k0e
−λτ . For a given Y = (η, κ, ζ, ϕ) ∈ H define the anti-linear

form FY,λ : H1 ×H1 → C by

FY,λ(w,ψ) :=

∫
Ωs

(
η · w − 1

λ
κ · ∇w

)
dx− k0

∫ 0

−τ

∫
Ωs

e−λ(τ+θ)ζ(θ) · w dxdθ

+

∫
Ωf

ϕ · ψ dx.

In the sequel, ρ(A), σ(A) and σp(A) denote the resolvent set, spectrum and point
spectrum of a closed operator A, respectively.

Theorem 2.1. The spectrum of A in C\ (−∞, 0] consists of only eigenvalues, that
is, σ(A) ∩ (C \ (−∞, 0]) = σp(A). The same property holds for A∗.

The proof of this theorem is based on the following result whose proof can be
found in [10, Theorem 3] or [19, Lemma 2.1].

Lemma 2.2 (Lax-Milgram-Fredholm). Let H1 and H0 be Hilbert spaces such that
the embedding H1 ⊂ H0 is compact and dense. Suppose that a1 : H1×H1 → C and
a2 : H0 ×H0 → C are two bounded sesquilinear forms such that a1 is H1-coercive
and F : H1 → C is a continuous conjugate linear form. The variational equation

a1(u, v) + a2(u, v) = F (v), ∀v ∈ H1,

has either a unique solution u ∈ H1 for all F ∈ H ′1 or has a nontrivial solution for
F = 0.

Proof of Theorem 2.1. The fact thatA andA∗ are generators of strongly continuous
semigroups of contractions implies that {λ ∈ C : Reλ > 0} lies in their respective
resolvent sets. Let λ 6= 0 with Reλ ≤ 0. The equation

(λI −A)(v, σ, z, u) = (η, κ, ζ, ϕ) (2.1)
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for (v, σ, z, u) ∈ D(A) and Y := (η, κ, ζ, ϕ) ∈ H is equivalent to the system of
differential equations

(λ+ k1)v − divσ + k0z(−τ) = η, (2.2)

λσ −∇v = κ, (2.3)

λz(θ)− ∂θz(θ) = ζ(θ), (2.4)

λu−∆u+∇π = ϕ, (2.5)

and supplied with the boundary conditions listed in the definition of D(A). Ap-
plying the variation of parameters formula to (2.4) yields the following equation in
L2(Ωs)

d

z(θ) = eλθv +

∫ 0

θ

eλ(θ−ϑ)ζ(ϑ) dϑ, θ ∈ (−τ, 0). (2.6)

Let w ∈ H1(Ωs)
d. Multiplying (2.2) by w, integrating over Ωs, applying the

divergence theorem, and then rearranging the terms give us

q(λ)

∫
Ωs

v · w dx+

∫
Ωs

σ · ∇w dx+ 〈σ · ν, w〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

=

∫
Ωs

η · w dx− k0

∫ 0

−τ

∫
Ωs

e−λ(τ+θ)ζ(θ) · w dxdθ. (2.7)

Taking the inner product of (2.3) with ∇w yields

λ

∫
Ωs

σ · ∇w dx−
∫

Ωs

∇v · ∇w dx =

∫
Ωs

κ · ∇w dx. (2.8)

Suppose that ψ ∈ H1(Ωf )d ∩Hf . Taking the inner product of (2.5) with ψ and
using the divergence theorem we have

λ

∫
Ωf

u · ψ dx+

∫
Ωf

∇u · ∇ψ dx−
〈
∂u

∂ν
− πν, ψ

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

=

∫
Ωf

ϕ · ψ dx.(2.9)

If ψ = w on Γs, then dividing (2.8) by −λ and then adding the result to (2.7) and
(2.9), it can be seen that the boundary terms cancels, which leads to the variational
equation

aλ((v, u), (w,ψ)) = FY,λ(w,ψ), (2.10)

where aλ and FY,λ are the forms stated preceding the theorem. We have shown
that if (2.1) holds then (2.10) is satisfied for every (w,ψ) ∈ H1.

Let us verify the other direction. Assume that there exists (u, v) ∈ H1 such that
(2.10) is true for all (w,ψ) ∈ H1. Taking w = 0 and ψ ∈ H1

0 (Ωf )d∩Hf leads to the
equation (2.9) without the duality pairing. This implies that u ∈ Hf satisfies (2.5)
for some π̃ ∈ L2(Ωf )d. For every constant π∗, the pair (u, π) where π = π̃+π∗ also

satisfies (2.5). As in the proof of Theorem 1.4, ∂u∂ν − πν ∈ H
− 1

2 (Γs)
d.

Define z ∈ H1(−τ, 0;L2(Ωs)
d) by (2.6) and σ ∈ L2(Ωs)

d×d by

σ =
1

λ
(κ+∇v).

By construction σ and z satisfies (2.3) and (2.4), respectively. Setting ψ = 0 and
w ∈ H1

0 (Ω) in (2.10) and rearranging the terms∫
Ωs

σ · ∇w dx =

∫
Ωs

(η − (λ+ k1)v − k0z(−τ)) · w dx.
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This implies that (2.2) is satisfied in H−1(Ωs)
d, and a posteriori in L2(Ωs)

d since
the right hand side lies in L2(Ωs)

d. As a result σ ∈ L2
div(Ωs)

d×d. Now we choose
the constant π∗ according to

π∗ =
1

|Γs|

〈
∂u

∂ν
− π̃ν − σ · ν, ν

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

and from this choice we have〈
∂u

∂ν
− πν − σ · ν, ν

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

= 0. (2.11)

Given φ ∈ H 1
2 (Γs)

d, let ϕ = φ − φν ∈ H 1
2 (Γs)

d where φ is the average of φ · ν
on Γs, i.e.

φ =
1

|Γs|

∫
Γs

φ · ν ds.

By construction, it holds that
∫

Γs
ϕ·ν ds = 0. We know from trace theory that there

exists w ∈ H1(Ωs)
d such that w = ϕ on Γs. On the other hand, from Proposition

1.5, the Stokes equation 
−∆ψ +∇% = 0, in Ωf ,

divψ = 0, in Ωf ,

ψ = 0, on Γf ,

ψ = ϕ, on Γs.

admits a solution (ψ, %) ∈ (H1(Ωf )d∩Hf )×L2(Ωf ). Choosing the pair (w,ψ) ∈ H1

in (2.10) and then using Green’s identitiy and the divergence theorem, we have〈
∂u

∂ν
− πν − σ · ν, ϕ

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

= 0.

From (2.11) and the equation φ = ϕ + φν, we can see that this equality is also

true if we replace the function ϕ by φ. Since φ ∈ H 1
2 (Γs)

d is arbitrary, we obtain
∂u
∂ν − πν − σ · ν = 0 in H−

1
2 (Γs)

d. Combining the above observations shows that
(v, σ, z, u) ∈ D(A) and (2.1) holds.

Decompose aλ into aλ = a1
λ+a2

λ where the sesquilinear forms a1
λ : H1×H1 → C

and a2
λ : H0 ×H0 → C are defined by

a1
λ((v, u), (w,ψ)) :=

∫
Ωs

v · w dx+
1

λ

∫
Ωs

∇v · ∇w dx+

∫
Ωf

∇u · ∇ψ dx,

a2
λ((v, u), (w,ψ)) := (q(λ)− 1)

∫
Ωs

v · w dx+ λ

∫
Ωf

u · ψ dx.

Notice that the form a2
λ is bounded. On the other hand, for every nonzero element

of (v, u) in H1 there holds

|a1
λ((v, u), (v, u))|
‖(v, u)‖2H1

=

∣∣∣∣ 1 +

(
1

λ
− 1

)∫
Ωs

|∇v|2

‖(v, u)‖2H1

dx

∣∣∣∣.
Thus, a1

λ is H1-coercive if infε≥0 |1+( 1
λ−1)ε| > 0 holds. This inequality is satisfied

provided that Imλ 6= 0. From the compactness of the embedding H1 ⊂ H0, it
follows from Lemma 2.2 that λ 6= 0 with Reλ ≤ 0 is either in the resolvent set or
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an eigenvalue of A. Combined with the earlier remark that the right-half part of
the complex plane lies in ρ(A), this is equivalent to what the theorem stated.

For the operator A∗, notice that it is almost the same with A except for a change
of signs on its definition as well as on its domain. These differences of signs will
not affect the applicability of the analysis presented above. �

We would like to note that the method and results presented in the previous
theorem can be adapted to the fluid-structure system presented in [2, 4].

The spectrum of the generator A on the imaginary axis and the stability of
the corresponding semigroup is connected to the solvability of the over-determined
boundary value problem on the structure domain

−∆ϕ = µϕ, in Ωs,

ϕ = 0, on Γs,

∂ϕ

∂ν
= kν, on Γs,

(2.12)

where µ ∈ σ(−∆D), k ∈ R and −∆D : H2(Ωs)
d ∩ H1

0 (Ωs)
d → L2(Ωs)

d is the
Dirichlet Laplacian. The spectrum of −∆D consists of only a countable number
of positive eigenvalues, and we let σ(−∆D) = {µn}∞n=1. If k = 0 then the unique
continuation condition for elliptic operators in [22, Corollary 15.2.2] implies that
ϕ = 0. We consider the following hypothesis.

(H) The over-determined problem (2.12) has the trivial solution ϕ = 0 and
hence k = 0.

The condition (H) depends on the geometry of the structure domain and it
has been studied in [4] under certain domains. In fact they considered the over-
determined problem where the Neumann boundary condition appears only on a
subset of the boundary. Condition (H) is satisfied for partially flat domains, how-
ever, this is not the case for spherical domains.

Theorem 2.3. Let τ > 0 be fixed.

(1) If k1 > k0 then A and A∗ have no purely imaginary eigenvalues, that is,

σ(A) ∩ iR = σ(A∗) ∩ iR = {0}. (2.13)

(2) Suppose that k1 = k0. If condition (H) holds then (2.13) is satisfied.
(3) Assume that k1 = k0 and (2.12) has nontrivial solutions ϕnj

, j = 1, . . . , J
where possibly J = ∞. Let M be the set of all m ∈ N such that µm =
π2

τ2 (2n+ 1)2 for some nonnegative integer n. Then

σ(A) ∩ iR = σ(A∗) ∩ iR = {±i√µm}m∈M . (2.14)

Eigenfunctions of A corresponding to ±i√µm for m ∈M are

Xm,j =


ϕnj

(±i√µm)−1∇ϕnj

e±iθ
√
µmϕnj

0

 , j = 1, . . . , J. (2.15)
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Similarly, eigenfunctions of A∗ associated with ±i√µm for m ∈M are

X∗m,j =


−ϕnj

(±i√µm)−1∇ϕnj

e∓i(θ+τ)
√
µmϕnj

0

 , j = 1, . . . , J. (2.16)

Proof. Let us determine the nonzero purely imaginary eigenvalues, if there are any.
Take X = (v, σ, z, u) ∈ D(A) with AX = irX where r 6= 0 is a real number. Then
(AX,X)H = ir‖X‖2H and from (1.11) we have∫

Ωf

|∇u|2 dx+ (k1 − k0)

∫
Ωs

|v|2 dx ≤ −Re(AX,X)H = 0.

It follows that u is constant and from the boundary condition on Γf this constant
must be zero. If k1 > k0 then the latter inequality implies that v is zero. Conse-
quently, σ = (ir)−1∇v = 0 and z(θ) = 0 for every θ ∈ (−τ, 0). This proves the first
part.

The equationAX = irX is equivalent the system (2.2)–(2.5) with λ = ir together
with the boundary conditions stated in the domain of A, which is in turn equivalent
to the variational equality (2.10), where the right hand side is equal to zero. Using
these, it is not hard to see that ϕ = − v

ir satisfies the over-determined problem
−∆ϕ = −ir(ir + k1 + k0e

−irτ )ϕ, in Ωs,

ϕ = 0, in Γs,

∂ϕ

∂ν
= πν, in Γs.

(2.17)

Suppose that k1 = k0. Let λ = −ir(ir + k1 + k0e
−irτ ). If λ /∈ σ(−∆D) then the

first two equations in (2.17) can be written as (λI −∆D)ϕ = 0 and hence ϕ = 0.
Therfore v = 0, σ = 0 and z = 0 and we established the second part.

Finally, suppose that k1 = k0 and λ = µm for some integer m. For this to
hold then necessarily we must have cos rτ = −1 and r2 = µm. These imply that

rτ = (2n + 1)π and hence π2

τ2 (2n + 1)2 ∈ σ(−∆D). This proves (2.14) in the
case of A. The representation of the eigenfunctions in (2.15) can be obtained from
(2.2)–(2.5). According to the isomorphism J given in the proof of Theorem 1.7, the
eigenvectors for A∗ are given by (2.16). Indeed, we have

A∗X∗m,j = A∗JXm,j = JAXm,j = J(±i√µmXm,j) = ±i√µmX∗m,j .
This proves the last part of the theorem. �

From the previous theorem and the classical result of Arendt-Batty [1] and
Lyubich-Phong [17] we have the following strong stability result.

Theorem 2.4 (Asymptotic Stability). Suppose that k1 = k0 > 0 and τ > 0. The

semigroup generated by Ã is strongly stable, that is, etÃX0 → 0 in H as t→∞ for
every X0 ∈ N(A)⊥, if one of the following properties is satisfied.

(1) The condition (H) holds.
(2) It holds that τ 6= π√

µ (2n+ 1) for every integer n ≥ 0 and µ ∈ σ(−∆D).

Moreover, if Π is the projection of H onto N(A) then etAX0 → ΠX0 in H as
t→∞ for every X0 ∈ H.
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This means that even though (H) is not satisfied, the system is still stable except
for a countable number of delays.

If k1 > k0 then we expect to have exponential stability. This is the content of
the following theorem whose proof is based on the frequency domain method.

Theorem 2.5 (Exponential Stability). If k1 > k0 then the semigroup generated

by Ã is uniformly exponentially stable, that is, there are constants M ≥ 1 and

α > 0 such that ‖etÃX0‖H ≤ Me−αt‖X0‖H for every X0 ∈ N(A)⊥ and t ≥ 0. In
particular, for each t ≥ 0 and X0 ∈ H we have ‖etAX0−ΠX0‖H ≤Me−αt‖X0‖H .

Proof. Assume on the contrary that the semigroup generated by Ã is not expo-
nentially stable. According to the Gearhart-Prüss Theorem, see [11, Theorem

V.1.11], we have sup{‖(λI − Ã)−1‖L(H) : Reλ > 0} = ∞. By the Banach-
Steinhaus Theorem and the uniform boundedness of the resolvents on compact
sets, there exists a sequence of complex numbers (λn)n with Reλn > 0 such that

|λn| → ∞ and a sequence of unit vectors Xn := (vn, σn, zn, un) ∈ D(Ã) such that

‖(λnI − Ã)Xn‖H → 0. Let Yn := (ηn, κn, ζn, ϕn) = (λnI − Ã)Xn. The latter equa-
tion is equivalent to the system (2.2)–(2.5) with (v, σ, z, u) and (η, κ, ζ, ϕ) replaced
by (vn, σn, zn, un) and (ηn, κn, ζn, ϕn), respectively.

From the dissipativity of the operator Ã we have

Re(Yn, Xn) = Re(λn − (ÃXn, Xn)H)

≥ Reλn +

∫
Ωf

|∇un|2 dx+ (k1 − k0)

∫
Ωs

|vn|2 dx.

Since Reλn > 0 and k1 > k0 we have Reλn → 0,

vn → 0 strongly in L2(Ωs)
d, (2.18)

un → 0 strongly in H1(Ωf )d, (2.19)

where the second limit is due to the Poincaré inequality. Consequently, |Imλn| →
∞. The delay variable zn satisfies the estimate∫ 0

−τ

∫
Ωs

|zn(θ)|2 dxdθ ≤ Cτ
(∫ 0

−τ

∫
Ωs

|ζn(θ)|2 dxdθ +

∫
Ωs

|vn|2 dx

)
(2.20)

for some constant Cτ > 0. Using (2.18) and the fact that ζn → 0 in L2(−τ, 0;L2(Ωs)
d)

we obtain

zn → 0 strongly in L2(−τ, 0;L2(Ωs)
d). (2.21)

Taking the inner product in H both sides of Yn = (λnI − Ã)Xn with Xn yields the
following set of equations∫

Ωs

ηn · vn dx = (λn + k1)

∫
Ωs

|vn|2 dx+

∫
Ωs

σn · ∇vn dx (2.22)

+ 〈σn · ν, vn〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

+ k0

∫
Ωs

zn(−τ) · vn dx∫
Ωs

κn · σn dx = λn

∫
Ωs

|σn|2 dx−
∫

Ωs

∇vn · σn dx (2.23)∫ 0

−τ

∫
Ωs

ζn(θ) · zn(θ) dx dθ = λn

∫ 0

−τ

∫
Ωs

|zn(θ)|2 dx dθ (2.24)
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−
∫ 0

−τ

∫
Ωs

znθ(θ) · zn(θ) dxdθ∫
Ωf

ϕn · un dx = λn

∫
Ωf

|un|2 dx+

∫
Ωf

|∇un|2 dx (2.25)

−
〈
∂un
∂ν
− πnν, un

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

.

Since Xn is bounded and Yn → 0 in H, each of these terms tend to 0 as n→∞.
Dividing (2.25) by Imλn, taking the imaginary part and applying (2.19) yield

1

Imλn
Im

〈
∂un
∂ν
− πnν, un

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

→ 0. (2.26)

Similarly, if we divide (2.24) by Imλn, take the imaginary part and use (2.21) then
we obtain

1

Imλn

∫ 0

−τ

∫
Ωs

Im(znθ(θ) · zn(θ)) dxdθ → 0. (2.27)

On the other hand, if we take the real part of (2.24) we get

Reλn

∫ 0

−τ

∫
Ωs

|zn(θ)|2 dxdθ − 1

2

∫
Ωs

(|vn|2 − |zn(−τ)|2) dx→ 0

and by applying (2.18) and (2.21) we have

zn(−τ)→ 0 strongly in L2(Ωs)
d. (2.28)

Now, if we take the sum of (2.23)–(2.25), subtract the result from (2.22) and use

the equations vn = un on Γs and σn · ν = ∂un

∂ν − πnν in H−
1
2 (Γs)

d then we have

λn

(
1− 2

∫
Ωs

|vn|2 dx

)
− k1

∫
Ωs

|vn|2 dx− 2

∫
Ωs

Re(∇vn · σn) dx

− k0

∫
Ωs

zn(−τ) · vn dx−
∫ 0

−τ

∫
Ωs

znθ(θ) · zn(θ) dxdθ +

∫
Ωf

|∇un|2 dx

− 2

〈
∂un
∂ν
− πnν, un

〉
H− 1

2 (Γs)d×H
1
2 (Γs)d

→ 0.

Dividing by Imλn, taking the imaginary part and using (2.18), (2.26)–(2.28) give
us ‖vn‖2L2(Ωs)d →

1
2 , which is a contradiction to (2.18). Therefore the semigroup

generated by Ã must be exponentially stable. This completes the proof of the
theorem. �
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Birkhäuser, Berlin, (2001)
[21] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, AMS Chelsea Pub-

lishing, Providence, Rhode Island, (2001)

[22] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser-
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