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ABSTRACT. This work is concerned with the optimal control problems governed by the 1D wave equation
with variable coefficients and the control spaces Mr of either measure-valued functions L*(I, M(£2))
or vector measures M(£2, L?(I)). The cost functional involves the standard quadratic terms and the
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1. INTRODUCTION

This work is concerned with the discretization and numerical analysis of optimal control problems
involving the 1D linear generalized wave equation (with variable coefficients) and controls taking
values in certain measure spaces. The discretization of the state equation is based on a space-time
finite element method (FEM) introduced in [46]. Related methods are also discussed and analyzed
in [1,20]. See also [2]. The measure-valued control is not directly discretized, cf. the variational control
discretization from [24]. However, there exists optimal controls consisting of Dirac measures in the
spatial grid points which can be computed, see also [11,30]. The numerical analysis of the control
problem is based on FEM error estimates for the second order hyperbolic equations from [46] and
techniques developed in [11,30]. It requires to overcome significant technical difficulties caused by
non-smoothness of controls and states. To the best of our knowledge, this is the first paper providing
such numerical analysis for the studied control problems.

Motivated by industrial applications as well as applications in the natural sciences, in which one
is interested to place actuators in form of point sources in an optimal way, see, e.g., [4,8] or in the
reconstruction of point sources from given measurements, see, e.g., [31,41], measure valued optimal
control problems involving PDEs gained attention in the last years. These problems can be translated
into optimization problems in terms of the coordinates and coefficients of the point sources. However,
these optimization problem are non-convex since the solution of the state equation (PDE) depends in
a non-linear way on the coordinates of the point sources. Thus one has to deal with multiple local
minima. Several authors suggested to cast the control problem resp. inverse problem in form of an
optimization problem over a suitable measure space M involving a convex regularization functional
R which favors point sources as solutions. In our case we introduce the following problem formulation
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involving the 1D wave equation
J(u) = F(y) + R(u) - min
ueMr (1.1)
subject to  pOuy — 0x(k0zy) =u for (t,z) € I x 2 =(0,T) x (0,L)

with additional initial and boundary conditions. The functional F' is given by a quadratic tracking
functional involving y|rxn, y(T,-)|n and 0yy(T,-)|n. The regularization functional R and the control
space M are chosen in a way such that M contains point sources of the desired form and R promotes
controls of such a form, i.e. linear combinations of point sources with time-dependent intensities or
more general controls with a small spatial support. Since problem (1.1) is convex, one need not to deal
with several local minima. However, it is not longer guaranteed that the solution consists of a sum of
point sources. We enforce such controls via the regularization functional R. Problems of the form (1.1)
(also involving other PDESs) have been analysed from theoretical, numerical and algorithmic points
of view, see [6,10-17,30,31,41,42]. Optimal control problems governed by the linear wave equation
were discussed in several different aspects, see [21,22,26-29,32,33,37,38,47]. In our particular case
we consider the control spaces My of measure-valued functions L?(I, M(£2)) and vector measures
M(£2,L3(I)) with R(u) = a|[ul| s, These two different choices imply different structural properties
of the optimal controls. A typical non-regular element from the space M (f2, L2(I)) is given by

u=> ui(t)0s,, u; € L*(I), z; € £, (1.2)
=1

where 0, are the Dirac delta functions. Point sources of such type with fixed positions and time-
dependent intensities are of interest in acoustics or geology, see [31,41]. If one is interested in controls
involving moving point sources of the form

n

u = Zui(t)éxi(t), u; € L*(I), x;: 1 — £ is measurable, (1.3)

i=1
then the control space L?(I, M(£2)) rather than M (f2, L?(I)) is more appropriate. The space
M(£2, L*(I)) and the functional || - || M(0,L2(1)) are also related to the term directional sparsity resp.
joint sparsity, see [19,23].

The problem like (1.1) for a parabolic/heat state equation is analyzed with My = M(£2, L*(I))
in [30] and My = L*(I, M(£2)) in [11]. In particular, the authors prove existence of optimal controls
and derive optimality conditions and FEM error estimates. Our analysis is partly based on these
results of [30]. In [31] a similar problem involving the linear wave equation with constant coefficients
as state equation is analyzed. In particular, existing regularity results for a Dirac right-hand side are
extended to sources from M(£2, L2(I)). Based on these regularity results existence of optimal controls
is proved as well as optimal conditions are derived in the 3D case.

Now we briefly sum up the contents of this work. First of all we collect and partially prove
required existence and regularity results for the linear wave equation in the 1D setting. In particular,
we check that the notions of a weaker solution defined in [46] and more commonly used very weak
solution, e.g. [35], are equivalent. Most importantly we prove that the solution of the linear wave
equation with variable coefficients from H'(§2) for any source term u € M(£2, L?(I)) is an element of
C(I, HY(£2)) nCL(I, L?(£2)) provided that the initial data have relevant regularity. The proof is based
on a non-standard energy type bound in space, not only in time, cf. [18,34]. In [31] the same result
is proved based on duality techniques which do not extend to the case of variable coefficients. Then,
existence of optimal controls and the derivation of optimality conditions are discussed on the basis of
results from [30,31]. In the case My = M(£2, L?(I)) we prove that the optimal control % belongs to
CH(I, M(£2)).

Further, the FEM discretization of the state equation is introduced. The state variable ¥, » belongs
to the space of bilinear finite elements and is defined by the regularized Galerkin method. The
resulting numerical scheme is a three-level method in time. Moreover, we pose and prove the FEM
error estimates in C(I, L?(£2)) for the discrete state equation which we need for the numerical analysis
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of the control problem. We base this study mainly on the results from [46] concerning error analysis
of FEMs for the second order hyperbolic equations in the classes of the data having integer Sobolev or
fractional Nikolskii order of smoothness. Note that their sharpness in a strong sense was stated in [45].

Then we consider a semi-discrete optimal control problem in which the continuous state equation
is replaced by its discretized version whereas the controls are not discretized. We prove convergence
of the discrete optimal controls to the continuous one and derive optimality conditions based on
the Lagrange techniques. Most importantly we derive the discrete adjoint state equation. We can
conclude that the first-discretize-then-optimize and first-optimize-then-discretize approaches commute.
Therefore an analysis of the discrete adjoint state equation including the error estimates in C(I x £2)
and L2(1,Cy($2)) can also be based on techniques from [46]. Then we use results from [30] to represent
the numerical error of state variable and of the cost functional in terms of FEM errors of the state
equation and the adjoint state equation. Let u and y be the optimal control and the corresponding
optimal state, and the variables u, 5 and y, 5 be their discrete counterparts. As the main result of this
paper we prove the error estimates

”Zj - gT,hHL2(I><_Q) - O((T + h)a)v ’J(ﬁ) - J(ﬂ’T,h)’ = O((T + h)2/3>

where 7 is the step in time, & is the maximal step in space and o = 1/3 for My = L?(I, M(2)) or
a = 2/3 for My = M(£2,L*(I)). The latter higher order is due to the above mentioned improved
regularity results for the state and optimal control. Such estimates are proved for the measure-valued
controls in the hyperbolic case for the first time. Similar estimates are impossible in multidimensional
settings due to much less fractional Sobolev regularity of optimal states and controls.

Finally we discuss the numerical computation of the discrete control .. Based on a control
discretization wuy, » that given by the sum like (1.2) with z; at the spatial grid points and u; in the space
of linear finite elements, a solution of the semi-discrete control problem can be calculated similarly
to [30]. For the actual numerical computation of the optimal control we add the term (v/ 2)Hu\|%2( Ix0)
v > 0, to (1.1). This regularized problem is solved by a semi-smooth Newton method, see [40]. In
a continuation strategy the regularization parameter « is made sufficiently small. We complete this
work with a numerical example for My = M(£2, L*(I)).

The paper is organized in the following way. In Section 2 we introduce the problem setting and the
control spaces resp. the regularization functionals. Section 3 is concerned with regularity properties of
the linear wave equation with variable coefficients in the 1D setting. In Section 4 the control problem
is analyzed from a theoretical point of view. Section 5 deals with discretization of the state equation.
Then we obtain stability bounds and error estimates for the discrete state equation in Section 6.
Section 7 is concerned with the analysis of the semi-discrete optimal control problem. The next section
discusses stability bounds and error estimates for the discrete adjoint sate equation. In Sections 9 resp.
10 error estimates for the optimal state and cost functional are derived being the main theoretical
results of the study. Section 11 deals with the time stepping formulation of the discrete state equation.
In Section 12 we discuss the control discretization with Dirac measures at the grid points. Then we
introduce the L?(I x {2) regularized problem and describe its solutions by a semi-smooth Newton
method. Finally Section 13 provides a numerical example.

2. PROBLEM SETTING

We consider optimal control problems of the following form
Iy, u) = Fy) + aljul vz — min (P)

with the parameter o > 0 and the tracking functional

F(y) = 5(lly = 2172, + 19(T) = 22l + 1p0y(T) = 251, )
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using z := (21,22, 23) € Y := L*>(I x £2) x L*(£2) x H~'(£2), subject to the state equation which is an
initial-boundary value problem for the 1D generalized wave equation
POy — Ox(kOzy) =u in I x £2:=(0,T) x (0,L)
y=0 onlxof (2.1)
y=1° dy=y' in {0} x 0.

Here, in particular, the initial data y = (y°,y') € H}(2) x L*(2), and L > 0 and T > 0. The
coefficients p, x € H'(§2) satisfy p(x) > v > 0 and x(z) > v on 2.

For brevity we denote H = L*(2), V = H}(2), V2 = HX(2)NV and V3 = {v € V|0, (k0,v) € V}
equipped with the norms

- llv =00z la, (- 1lve = 10w - L, |- lvs = [102(k0°) |lv-
Moreover, we utilize the equivalent coeflicient-dependent Hilbert norms on H, V, V* and Y

lwlia, = IVewlla, Nwllv, = IVedewlu, lwllyy = sup (w,v)e,

vy, <1

1/2

Izlly = (111321, + 1221, + lzslle)
where (-, ) is the duality relation on V* x V.

For the control space M7 we consider two choices, either the space of vector measures M ({2, L%(I))
or the space of weak measurable, M(2)-valued functions L*(I, M(£2)) := L2 (I, M(£2)). Let corre-
spondingly Cr be chosen as Co(£2, L?(I)) or L*(I,Co(£2)) where Co(£2) = {v € C(2)| v|z=0,. = 0}. The
following identifications of dual spaces hold

Co(82, LX(I))* = M(Q,LX(I)), L*(I.Co(2))" = LA(I, M(92)),

i.e. My =Cj, see [11] resp. [30], where more details on the properties of these spaces and the norm
| - llm, can be found. In particular, the following embeddings hold

M2, L2(I)) = L*(I, M(R2)) — L*(I,V*). (2.2)

Y

3. EXISTENCE AND REGULARITY OF THE STATE

3.1. Weak formulations and preliminary existence, uniqueness and regularity results. In
this section we introduce our solution concepts for the state equation (2.1). We begin with defining a
weak formulation of (2.1).

Definition 3.1. Let (u, 3% y') € X x V x H with X = L*(I, H) or H'(I,V*) or M(2, L*(I)). Then
y € C(I,V)NCYI, H) is called a weak solution of (2.1) if it satisfies the integral identity

B(y,v) + (p0wy(T),v(T)) ,, = /I<u,v>g dt + (py',v(0)),, Vo€ L*(I,V)NH'(I,H) (3.1)
with the indefinite symmetric bilinear form
B(y,v) == _(patyyatv)L2(I><Q) + (’ia:cyﬂxv)m(lxﬂ)a (3.2)
and the initial condition y(0) = y°.
The right-hand side in (3.1) is well defined for X = M(£2, L?(I)) too due to embeddings (2.2).

Remark 3.2. It is possible (and more common) to suppose that v(7) = 0 in (3.1) when the last
term on the left disappears (for example, see [46]). This leads to an equavalent formulation. To check
this, it is enough to replace there v by vfs, where S5(t) = min (1,(T —t)/6), 0 < § < T. Then
Or(vBs) = (Oww)Bs — (1/6)vX(r—s1), Where x(r—s 1) is the characteristic function of (T'— 4, T)). Passing
to the limit as § — 0 with the help of the dominated convergence theorem and the properties of y and
v leads to the result.

Another definition of the weak solution is possible.
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Definition 3.3. Let (u,3°,y") € X x V x H with X = L*(I x £2) or H'(I,V*) or M(£2,L*(I)). A
function y € C(I,V) N H%(I,V*) < H(I, H) is called a weak solution of (2.1) if it satisfies

/ (0O, )2 + (rOpy, ) gy dt = / (w,0)p dt Vo € LA(I,V) (3.3)
I I

and y(0) = 3° as well as 9;y(0) = y'.
Proposition 3.4. Definitions 3.1 and 3.3 are equivalent.

Proof. The equivalence of (3.3) and (3.1) can be proved using integration by parts in time and the
density of C*(I,V) in L*(I,V) N H(I, H), cf. [35, Chapter 1, Theorem 2.1]. O

Proposition 3.5. (1) Let (u,y° y') € X x V x H with X = L*(I x £2) or H'(I,V*). Then (2.1)
has a unique weak solution satisfying y € C(I,V)NCYI, H)N H?*(I,V*) and

lleczany + 10ller,my + 10uyll L2y < e (llullx + lyllvxm)- (3.4)

Hereafter ¢ >0, ¢y > 0, etc., are independent of y and the data.
In the case X = H'(I,V*) there even holds y € C2(I,V*) as well as

HattyHC(f,V*) <c (||U||H1(I,V*) + [lyllvsxm)-

(2) Let (u,y°,y') € X x VExV with X = L*(1,V) or H'(I,H). Then the weak solution y satisfies
yeC(I, V) nCcY(I, V)N H(I, H) and

yllervzy + 10wllecryy + 10yl L2,y < e (lullx + lyllvexy)- (3.5)
In the case X = H'(I, H) there even holds y € C*(I, H) as well as
10uyllecr,my < ¢ lullmrm + 1Y llvexy)-

Moreover, y satisfies the equation pOuy — Or(k0py) = u in L*>(I x £2), d.e. it is the strong
solution.

Proof. For example, see [46, Propositions 1.1 and 1.3]. O

Item 2 ensures the regularity of weak solution for more regular data.

For less regular data (u,y",y') € L?(I,V*) x H x V* one can use other weak formulations. To
state the first of them, we define the integration operator (Z;v)(t) := [¢v(s) ds and its adjoint
(Ziv)(t) == ftTv(s) ds on I.

Definition 3.6. Let (u,1°,y') € L2(I,V*) x H x V*. A function y € C(I, H) with Z,y € C(I,V) is

called a weaker solution of (2.1) if it satisfies

| (v 00)s + (50,Tuy, B0 At + (ou(T), (D))
= /I (u, Iv), dt + (py°, v(0)) , + (¥, (Z;0)(0)) Vv € L*(I,V)NH' (I, H). (3.6)

As in the case of Definition 3.1, it is sufficient to take v(T") = 0 in (3.6), cf. Remark 3.2.

Proposition 3.7. Let (u, YO, yt) € L2(I,V*) x H x V*. Then there exists a unique weaker solution
y € C(I,H)NCYI,V*) and it satisfies the bound

1Wllec,m + 1 Zeyllevy + 10lle ey < e (lullzzye) + 1yllmx-)-
Proof. See [46, Proposition 1.2]. O

We infer that there are other weak formulations of (2.1) for solutions y € C(I, H) NCY(I,V*). One
can use the concept of very weak solutions.
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Definition 3.8. Let (u,y°,y') € L*(I,V*) x H x V*. A function y € C(I, H) NCY(I,V*) satisfying
/1 (s POV — Ou(KOv)) fy dt — (py(T), 0v(T)) fy + (POy(T), v(T)) 2
= [t dt = (0" 00(0)) ; + (o' o0} (37)
for any v € L2(I,V2) N H?*(I,H) — H'(I,V) is called a very weak solution of (2.1).
Actually, these two last solution concepts are equivalent for the considered data spaces.
Theorem 3.9. Definitions 3.6 and 3.8 are equivalent.

Proof. First of all, we consider the auxiliary integrated in ¢ problem (2.1):

POt — Op(KOLT) = Tyu + py' in I x 0
7=0 on I x 0f2 (3.8)
§j=0, Oj=1° in {0} x 2

for (u,y%,y') € L2(I,V*) x H x V*. Thus, we have Zyu € H*(I,V*). According to Proposition 3.5
problem (3.8) has a unique weak solution § € C(I,V)NCY(I, H). Moreover, we set y = d;jj. Thus
the weak formulation of (3.8) involving 7 coincides with the weaker formulation of (2.1) involving y.
Furthermore there holds y = 9,5 € C(I, H) and

oy = Ouy = (1/p)(Tyu + 0 (k0:9) + py') € C(I,V*). (3.9)
Now we take any v € C*°(I,V?) and test (3.6) with —9;v in the role of v:
A(py7 8ttv)H - (/‘Ga:czt% axatv)H dt — (py(T)7 8tU(T))H
=/I<u7 ~Z(9w)) g, dt = (py”, 00(0)) y + {py", —(Z; 90)(0)) .
Next we rearrange a term on the left integrating by parts in x and ¢:
_/I (K0: L1y, 0x0pv) 5y dt = /I (Zvy, Low) , dt = _/I (y, Lv) ; dt + (Zey)(T), Lo(T)) ; ~ (3.10)
with Lv := 0,(k0yv). Since Zyy € C(I,V), we get
[ w000 = 01(10,0) At (py(T), B0(T)) ; + (D10, Teg) (T, v(T))
= /1 (u,0) o, dt — (Zew)(T),v(T)) 2 — (py°, 0v(0)) ;; + (py*, v(0))2 — (py", v(T)) -
Then (3.9) and the density of C>(I,V?) in L?*(I,V?)n H?(I, H) imply that y is a very weak solution
of (2.1).

Now let y € C(I, H) NCY(I,V*) be a very weak solution of (2.1). Then we take any v € C(I,V?)
and test (3.7) with Z;v. Thus, we get

] =000} = (402600 dt + (py(T),0(T))

= [T}y e+ oy o) + 0 T O (3:1)
and then

/I (5, —p0h0) b1 + (T, — 0 (5O0)) 11t + (py(T), 0(T)) ,, = /I (Tout py'sv),, dt + (o3 0(0))
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The last equation yields that LT;y = —pdyy + Lyu + py* € C(I,V*). Thus Zyy € C(I,V) and we can
transform a term on the left in (3.11) by replacing v by Z;v in (3.10):

/I (v, —8x(f£8xZ;‘v))H dt = /1 (kO L1y, 8xv)H dt.

Then the density of C*°(I,V?) in L*(I,V) N H(I, H) shows that y is a weaker solution of (2.1). [
Moreover, there is the concept of solutions by transposition.

Definition 3.10. Let (u,y°,y") € L2(I,V*) x H x V*. A solution by transposition y € C(I,H) N
CY(I,V*) of (2.1) is defined by

/](py,qﬁ)H dt — (py(T),p") ;; + (pOy(T), ") 2 = /I<u,p>g dt + (py',p(0)) 2 — (py°, 8ip(0)) ,; (3.12)

for all (¢, p°, p') € L2(I x 2) x V x H where p € C(I,V)NC(I, H) is the weak solution of the adjoint
problem

pOup — az(’ﬁamp) =pp inlx {2
p=0 onlxaf (3.13)
p=7p° Op=p' in{T}xN

Proposition 3.11. Definitions 3.8 and 3.10 are equivalent too.
Proof. For ¢ € HY(I, H) or L?(I, V), p° € V2 and p! € V there holds p € C(I,V?)NC (I, V)NH?*(I, H),
see Proposition 3.5. Due to the density of H'(I,H) resp. L*(I,V) in L*(I x £2) as well as V? in
V and V in H a very weak solution is a solution by transposition. Now let p € C>®(I,V?) and set
¢ = Oup— (1/p)0x(k0,p) € C(I, H), p° = p(T) € V* and p' = 8yp(T') € V2. Thus p is the solution of
(3.13). Then the density of C*°(I,V?) in L*(I,V?)N H?(I, H) implies that a solution by transposition
is a very weak solution. (Il

Remark 3.12. For (u,3°,y') € L?(I, H) x V x H, the weaker solution coincides with the weak one.

3.2. Existence and regularity of the state. In this section we study the existence, uniqueness
and regularity of solution of the state equation for measure valued source terms. We will carry out
the analysis for both control spaces. We use the distinct properties of each space in order to show
improved regularity of the state.

3.2.1. The control space M(£2,L*(I)). The space M(£2, L*(I)) is not so broad as L?(I, M(£2)) and
contains no moving point sources but contains the standing d-sources (1.2). Therefore, we expect that
the state has better regularity properties in this case and prove that y € C(I,V)NC(I, H). The proof
will be based on a priori bound and a density argument. First we state the following density result.

Lemma 3.13. Let u € M(£2, L*(I)). Then there exists a sequence {u,} C C°(2, L*(I)) such that
Uy —*u in M(2,L*(I)) as n — oo, unll s,z < lullamqe,r2ayy Y > 1. (3.14)
Proof. We denote by X the locally convex space M(§2, L?(I)) endowed with its weak-star topology
and define the absolutely convex set
E={uecX(,L*(N)lullpr(arzm) <1} C X.
Assume that (3.14) is wrong. Then there exists ug € M(£2, L*(I)), ||uoll m(e,r2(ry) = 1 such that

ug ¢ E where F is the closure of E in X. Owing to the corollary of a theorem on the separation of
convex sets [25, Ch. III, Theorem 6] there exists v € Co(§2, L?(I)) such that

[(u, ) ma, 2y co2, 2yl <1 Yu € B, 1< (o, v) pm(o,22(1)),co(2,22(1) < Vlleo,z2(ry)- (3:15)
On the other hand, C2°(§2, L?(I)) is dense in L'(§2, L*(I)) thus

sup |(ws V) pm(2,22(0)) co2,22(0) | = 1Vlleg(2,02()
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that contradicts (3.15). O

Note that clearly C°(§2, L?(I)) C L*(1,V).
Preliminarily we prove the following crucial a priori bound.

Lemma 3.14. Let (u,y°,y') € LY (2, L3(I)) x V x H and y be the corresponding strong solution of
problem (2.1). Then y satisfies the following a priori bound

Wllervy + 10wllermy + 1K0xlleia.2y + 10Wllcoa,c2my < clllulliaeay + I¥llvxe).  (3.16)
Proof. We first remind the energy equality for problem (2.1)

IVPBey O + IV&dey )7 = IVey |1 F + IVR0u° |7 + 2Ze(u(t), Oy () on 1.
After setting
E(t) = 18OIH + 1109017, B = Iy I1E + 1029 1% co = max ([lpll oo (@), [15llLos (),
the energy equality implies

Bl < B+ 2max| [ / udey dtda| < 0B + 20 ull g, 20y PO ey 2y (3-17)

We also multiply the equation in (2.1) by —2k0,y and integrate over I. Integration by parts in ¢
yields the equality

pre (101321 ) + 02 (150201321 ) = 200 (Oy(T)0uy(T) = 402 ) = 2(u, KDay) p2(z) o1 2. (3.18)

We define a function P := ,0/<;||6ty||L2(1 + ||/<81y||2L2(I) on (2. Since the left-hand side of (3.18) equals
0x P — (0z(pr)) \|8ty||L2(I , taking the modulus and integrating over any (a,b) C 2 we derive

102 Pll 1 (ap) < G(E(T) + E°) + 2l|ull 1o, 20y 16023l e, 21y + 1@ (pr) 10601 221l L2 (a1)
1/2
< (1Bllecr + E°) +2llull (e, 20 ||PHC/Q) + 172 00(pR) | L () 1P ey (3:19)

Let wg € £2 be such that [ Pllc(y = P(xo) hold and let now [a,b] > zg. Then the mean value theorem
for integrals implies

1Plleny < (b— a) Pl L1 ap) + 102Pl 11 (a)- (3.20)
By the above definitions we clearly have
1PNz ) < Bl < GTIEles. (3.21)

Inserting (3.19) into (3.20) and using (3.21), we obtain

1Plleqey < 61+ T = a)™ ) (1Elleqry + E) + 2llullpr o, 12 HPIIC
T (b—a)l/QHp%HHl(n)IIPIIC(Q)- (3.22)

Owing to (3.17) we can write

1/2

VHEHC(D < C%EO + 2V71HUHLl(Q,LQ(I))HPHC(Q)' (3.23)

Using this in (3.22) and choosing a small enough (a,b) such that v=2(b — a)l/QHanm(Q) <1/2, we
derive

1Plleqay < et (B + llullfr o, 12(ry)- (3.24)
Inserting the last bound in (3.23), we also get

1Elle() co(E° + HUHLl 2, 12(1))-
Finally, this yields bound (3.16). O
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Remark 3.15. Lemma 3.14 remains valid for p, s € W11(£2). Owing to the absolute continuity of the
Lebesgue integral we have [|0:(pr)| 11(qp) < (b — a), where limg_, 1o () = 0, thus one can replace

(b— a)1/2||p/£HH1(Q) by u(b—a) in (3.22) and below in the proof.

Theorem 3.16. Let (u,y",y*) € M(£2,L*(I)) x V x H. Then there exists a unique weak solution y
and it satisfies the bound

1llevy + 10wllem < e lullmea.czay + 1y llvxm)- (3.25)

Proof. 1. Let first u = 0. According to Proposition 3.5 were exists a unique weak solution y of (2.1)
for any y € V x H and it satisfies

lyllezvy + 10wller,my < cllyllvxa
2. Now it suffices to consider the case y* = y' = 0. Let first w € M(2, HY(I)) — HY(I,V*)
since dyu € M(£2,L*(I)) — L*(I,V*). Then according to Proposition 3.5 there exists a unique weak
solution y € C(I,V) N CY(I,H) of (2.1) and it satisfies bound (3.4). Moreover, it is also a weaker

solution.
So it remains to prove the bound

Yllevy + 10lle.am < cllullme, L2y for we M2, HY(I)). (3.26)

To this end, according to Lemma 3.13 we approximate u by functions {u,} C L?(I,V) satisfying
(3.14). The strong solution y,, of (2.1) corresponding to u = u,, satisfies the bound like (3.16) and in
particular
HynHC(iV) + Hatyn”()(l_,H) <c HunHM(Q, L2(1) < CHUHM(Q,L2(I))-

Therefore there exists a subsequence of {y,} (not relabelled) and § € L°(I,V) N W1°(I, H) such
that y,, converges to § in the weak-star sense of L°°(I,V) N W% (I, H). This is sufficient to pass to
the limit in the last bound and in (3.6) for y = y,, u = u, and v(T) = 0, see Remark 3.2. Thus ¢
both satisfies the bound

191l oo 7,1y + 10T wrroo (1,m) < €Nl ma, z2(ry)

and is a weaker solution of (2.1). Due to its uniqueness there holds § = y, and bound (3.26) is proved.

2. Let now u € M(§2, L?(I)) and y be the corresponding weaker solution of (2.1), see Proposition
3.7. Since M(£2, H'(I)) is dense in M(£2, L*(I)), cf. [31, Proposition 2.1], there exists a sequence
{u,} € M(£2,HY(I)) such that u, — u in M(£2,L%(I)) as n — oo. Let y, € C(I,V)NCY(I, H)
be the above weak solution of (2.1) corresponding to u = u,. Since {u,} is a Cauchy sequence in
M(82,L(I)), {yn} is a Cauchy sequence in C(I, V)N CY(I, H) too due to bound (3.26) for u = u,,.
Thus y, — ¢ in C(I,V)NCY(I, H) and

9llectvy + 100l ey < cllullma, z2ay)-

Then we pass to the limit in (3.1) for y = y,, u = u, and v(T) = 0 and see that § is a weak solution
of (2.1). Due to uniqueness of the weaker solution we get § = y, and the proof is complete. (I

3.2.2. The control space My = L*(I, M(S2)). Recall that the space Mp = L?(I, M(£2)) contains the
moving point sources (1.3). We set

HY=v* HO =g gO=v, H® =v2 H® =v3
and introduce the interpolation spaces

HY = (HO, HED) 0= |A],

for non-integer A € (—1, 3) using the real K ;-interpolation method of Banach spaces for ¢ = oo, see [3].
Recall that the value ¢ = 0o leads to the broadest intermediate spaces. Their explicit description in
terms of the subspaces in the Nikolskii spaces is known, see [39,44,46]. In particular,

HY = H*2(2) for 0<A < i, HV =FY22(2) for A=1L, HY = H}*(Q) for L <A<1,
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where HY22(02) := {w € HY??(2)|ow € H'/??(—L,2L)} and ow is the odd extension of w with
respect to x = 0, L oustide 2. It is well known that the last space contains discontinuous but piecewise
continuously differentiable functions.

Lemma 3.17. The following embeddings hold
L2(I, M(R2)) < L*(I, H=1/?)), (3.27)
CHI, M(£2)) — H' (I, HY?), (3.28)

Proof. Both the embeddings follow from M(£2) — H(=1/2), Due to [3] the last embedding means that

sup_ K2 inf (Jw — olly- + hllelln) < elwlaga) Yo € M(R).
0<h<X veH
Equivalently, for any 0 < h < L, there exists wy € H such that
lw = wpllv- < ath'?|lwl ey, Nwnlla < ah™ P lwlpme) Yw e M(R2). (3.29)

Any w € M(§2) can be represented as w = D W with |[w||y0) = varg W, where D, is the
distributional derivative of a function W € NBV(£2) [9, Ch. 2]. Here NBV ({2) is the space of
normalized functions of bounded variation on {2 that are continuous from the right at = 0 and
continuous from the left at any = € (0, L]. Notice that the following inequalities hold

W = W(0)|| ooy < varg W, sup [[0-pW | pi(p0) < varg W YW € NBV(£2), (3.30)
0<h<L

where 6_, W (z) := h™1 (W (z) — W(z — h)) is the backward difference quotient (the latter inequality
follows from the definition of the Riemann integral).

We can choose W (0) = 0 and extend W(z) = 0 for x < 0. Then for 0 < h < L we define the
backward average Wj(x) := h™! fEh W(z +¢) d§ and set wy, := 0, W), = d_p,W. Owing to the

inequalities

1/2 1/2

lella < llellfoolellfiq) Ve e L>(2)

and (3.30) we can prove estimates (3.29):
1/2 1/2
oo wnll < W = Walls < W oeqon) (0 sup [543V ) < s W,

lwnllzr = 10-aW [ < (2h7HW || oo (52 >”2H6 hwum < ch™Y2varp W.

4. ANALYSIS OF THE CONTROL PROBLEM

According to Theorem 3.16 and Proposition 3.7 the state equation (2.1) is uniquely solvable for
any u in either M(£2, L?(I)) or L?(I, M(£2)) and the solution y depends continuously on the data.
Therefore, we can introduce the linear and bounded operator S: (u,y°,y") — (y,y(T), pdyy(T)). The
control-to-state mapping

S:Mp =Y, e (y,y(T), pOry(T))
is given by Su = S(u,0,0) + 5(0,1°,y") for fixed y° and y' and it is an affine and bounded operator.
So we can rewrite the original control problem (P) in its reduced form

. 1 2 .
= 1|Su— — .
() = § 18w =21 + allulty — min

Proposition 4.1. Problem (P) has a unique solution u € Mr.

Proof. The control-to-state operator S is weak-star-to-strong sequential continuous, i.e., if {u,} C Mp
and u, —* u in Mp, then Su, — Swu in Y. The proof of this continuity property is similar to [31,
Lemma 6.1] in the case of solutions by transposition resp. very weak solutions. The strong continuity
follows from the compact embeddings and well known Aubin-Lions-Lemma. Then the direct method
of calculus of variations combined with the sequential Banach-Alaoglu theorem (Cr is separable) can
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be applied to show existence of an optimal control. Additionally the control is unique since the
control-to-state operator S is injective and the data tracking functional is strictly convex. [l

Owing to Proposition 3.7 the optimal control 4 € M satisfies the inequalities

_ . ) 2
al|tf amy < (@) < §(0) = 5115(0) = 2|3 < c(llg°lla + Iy v- + llzlly) (4.1)
and thus
_ 2
lullmr < c(llyllmxvs +zlly)” < C. (4.2)

Hereafter C' > 0 depends on the norms of data.

Next we discuss first order optimality conditions. We introduce the adjoint control-to-solution
operator S*: Y — CO(I,V) < Cr, (¢,p",p°) = p where p is a weak solution of (3.13). This operator
is well defined and bounded according to Proposition 3.5.

We also need the operator A~': V* — V', f — w where w € V is the unique solution of

(KOzw, Opv)g = (f,v)o YveV. (4.3)
The next result provides the necessary and sufficient optimality condition for the optimal pair (p, u).
Proposition 4.2. An element u € My is an optimal control of (P) if and only if
—p € adl|ullmy, (4.4)
or equivalently
(=p,u — Wer, mp + alltlpy < allullymy Yu € My (4.5)
where p = S*(§ — 21, —(§(T) — 22), A" (p0yy — 23)) with (5, 5(T), pdyi(T)) = S (1, 4%, y").
Proof. For Mg = M(£2,L?(I)) a proof in [31] remains valid; for My = L2(I, M(£2)) it is similar. O
To discuss further the properties of the optimal control u, we introduce the Jordan decomposition of
a signed measure p € M(2), see [5]. There exists unique elements u* € M(£2)" such that p = pt—p~.
Moreover, we recall the polar decomposition of a vector measure y € M(§2, L*(I)): dp = p/d|p|, where

' is the Radon-Nikodym-derivative of p with respect to |ul.
The subgradient condition in Proposition 4.2 implies the following conditions.

Proposition 4.3. Let u € My be the optimal control of (P) and p € Cr be the corresponding adjoint
state. Then there holds ||p|lc, < c.
In the cases Mg = L*(I, M(£2)) and Mz = M(2,L?*(I)) there respectively hold

suppa=(t) C {z € 2|p(t,x) = F||p(t, Meo(2yy  fora.a. tel
and
supp|a| C {z € Q| B(, 2)| 2y = @}, @ =—a'p in LY, al, L*(1)). (4.6)

Proof. A detailed discussion of the proof of these results can be found in [11,30]. O

The regularity of the adjoint state p is now applied to show improved regularity of the optimal
control u.

Theorem 4.4. Let M = M({2, L3(I)),ze Y = L*(I,V)xV xH,y € Vx H and u be the optimal
control of (P). Then u € C*(I, M(£2)) and the following bound holds

tller (7 a1(2)) < C =Clyllvsm, l2lly1).

Proof. There holds 3 € C(I,V)nC\(I, H) according to Theorem 3.16. Thus, the optimal adjoint
state has the following regularity p € C(I,V?) N C*(I,V) by Proposition 3.5. We have 4 = —a~'j |
according to (4.6). Moreover, we define the function

w = —a” (9p)il
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and show that it serves the time derivative of @. For any to,t € I and tq # t, we define the difference
quotient u(to;t) = (u(t) — u(to))/(t — to). Then we consider

|a(to, t) — w(to)llame) = @' sup / (P(to,t) — Op(to)) ¢ dlul
[6llcy()<1/2
< o H|p(to, t) — Op(to)llco ()l me,z2(1)
< ca™|p(to, t) — dep(to) v |l pmqe,L2r)) = O
as t — tg since p € C'(I,V). Next, quite similarly we get
lw(t) = w(to) lme) < ca™ 18ip(t) — Beblto) v @l pee,z2ry) — O
as t — tg. Consequently 0yt = w € C(I, M(£2)). Finally, we bound 0y as follows
10kl et ey < ca 10Dl ecr vy lallamee,z2 )
<o (l§ — 21l + 10(T) — 22llv + 1p0g(T) — 23]l ) lall meo,z2(r)
< e M (llall pmez2y + 1¥vse + zly)dlmee,z2 )
owing to Proposition 3.5 and Theorem 3.16. Utilizing bound (4.2) for 4, we complete the proof. [

5. DISCRETIZATION OF THE STATE EQUATION

We introduce the uniform grid ¢,, = m7 in time with the step 7 = T/M and a non-uniform grid
0 =20 <21 <...<any = L in space with the steps h; = x; — z;_1, where M > 2 and N > 2.
Let also h = max;=1, . N hj, Amin = minj—;,__n h; and ¥ = (7,h). We assume that the space grid is
quasi-uniform, i.e., h < c1hmin. Hereafter ¢, c1, C, etc., are grid-independent.

Let V;, ¢ HY(I) and V}, C V be the spaces of piecewise linear finite elements with respect to the
introduced grids on I and £2.

We approximate the state variable y by yy € Vy := V, @ V}, € H'(I,V) and additionally 0;y(T) by
y;lph € Vi,. For (u,y°,y') € My x H x V* the discrete state equation has the following form

Ba(yl%v) + (py%‘hvv(T))H = <u7U>MT,CT + (pyl,v(O)m Vo € Vy, (51)
(pys(0), ) = (py°, ) Ve € Vi, (5.2)

involving the indefinite symmetric bilinear form
By (y,v) := —(p0ry, 0rv) 12(1x2) — (0 = §) 72 (KDeOry, 02010) 121 % 2) + (KO2Y, ) 12(1x ), (5.3)

with the grid independent parameter o, cf. (3.1). This definition follows [46] but notice carefully that
normally vy is uniquely defined by (5.1) with v(7) = 0 and (5.2). To treat general v, we need yi-,.

Remark 5.1. The second term in (5.3) regularizes the Galerkin (i.e. projection) method with respect
to bilinear form (3.2). It is included to ensure unconditional stability for suitable values of o. Moreover,
the term —(1/6) 72(k0, 0y, 004v) 12(1x) 18 the error term of the compound trapezoidal rule applied
for the calculation of the temporal integral in (k0.y, 0zv)2(7x ). So that, in particular, for o =0 in
(5.3) this temporal integral is calculated using this rule whereas for o = 1/6 it is not approximated.

Next we recall the inverse inequality

lellve < anllella, Vo€ Va (5-4)

where the least constant satisfies c;h™! < ap, < eoh™! for the quasi-uniform grid. For o < 1 /4 we need
to state conditions linking the temporal and spatial grids to ensure stability of the numerical method.

Assumption 5.2. In what follows, let
if o<, then 72a}(} —0) <1—¢} for some 0<¢ep <1, (5.5)

1+5%
4

if o< %, then 7'204}21( —0) <1 forsome 0<e <1. (5.6)
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Remark 5.3. The parameters €3 and ; can be chosen arbitrarily small but then constants in the
stability and error estimates for our FEM can tend to infinity.

Remark 5.4. As we see below in Section 11, the method is related to well known time-stepping
methods, in particular, to the explicit Leap-Frog-method for ¢ = 0. Then conditions (5.5) and (5.6)

reduce to a CFL-type one Tay, < 24/1 —&3. For 0 = 1/4 the method is related to the Crank-Nicolson
scheme and is unconditionally stable but in a weaker norm than we need to derive our error estimates
so that we impose a very weak CFL-type condition 7oy, < 2/e;.

Below in proofs we utilize the auxiliary squared norms
o120 = loli3, + (0 = Hr210lZ. 1913, a1y = mass<omear (2l — o130 + 2l + w113,
for p € Vi and y € V; ® V. We need to bound them by standard norms.
Lemma 5.5. Under conditions (5.5) and (5.6) the following inequalities hold
eollellu, < llellmo Yo € Vi, (5.7)
9lle, ) = maxocmenr [y(tm) v, < ElWle, 1) Yo € Vo
with g9 :=1 for 0 > 1/4 and &1 := /4o — 1 for o > 1/4.

Proof. For o > 1/4, the first inequality is obvious; for o < 1/4 it can be checked by a direct calculation
using (5.4). The proof of the second inequality is covered in [46, Corollary 2.1]. O

Now we discuss some properties of yilph and Oyy(T') that are essential below.

Proposition 5.6. Let (yg,y+;,) € Vy x Vi, be the solution of (5.1)-(5.2). Then there holds

(pyrn: )1 = _(ﬁax/lyﬂ dt,axtp)H + /I<u790>n dt+ (py', o) Y € Vi (5.8)

Proof. This is proved by testing (5.1) with time constant functions v = ¢ € Vj,. ]

The non-local in time identity (5.8) is convenient for our error analysis but not for the implementation;
for the latter issue see Section 11. Identities similar to (5.8) also hold on the continuous level.

Proposition 5.7. (1) Lety € C(I,V)NCY(I, H) be the weak solution of (2.1) for My = M(£2, L*(I)).
Then there holds

(POey(T), o) = —(ﬂax/ly dt,ﬁxw)H + </Iu dt’<p>9 +(oy' o) Ve V. (5.9)

(2) Lety € C(I, H)NCY (I, V*) be the weaker (very weak) solution of (2.1) for Mg = L*(I, M(£2)).
Then there holds

(dey(T), p)o = —(ff&p/ly dt,(?w)H + /I<u, ple dt+(py',p)e Yo V. (5.10)

Proof. For Mr = M(£2, L*(I)) identity (5.9) is proved by testing (3.1) with time constant function
v = €V. For My = L*(I, M(£2)) we test (3.7) with any ¢ € V2 and get

(POry(T), 02 = (Zey)(T),

According to Proposition 3.7 we have Z;y € C(I, V). Thus there holds
(pOwy(T),0) 2 = — (KO (Tey)(T), 8ap) 1y + (U, ©) M cr + (Y, )2

The density of V2 in V implies (5.10). O

8;,;(&3:590))111 + <Uu 90>MT,CT
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For our analysis, we need some projection and interpolation operators. We introduce the standard
projectors 772: H, — Vj and 77111: V. — Vp, defined by
(pmhw, ©) i = (pw, )i Ve € Vi, (5.11)
(kOumiw, Op )it = (KOpw, Bpp)g Voo € V. (5.12)
Clearly ||mjwl| g, < ||w|g, and [|[7iw|lv, < |lw|y,. Identity (5.2) means that yy(0) = 7}y°.
Moreover the following property holds
(w, D)y, — (mpw, Tid)y, = (w— 7w, ® — 7pb)y, Yw,d € V. (5.13)

Following [46], we also introduce the regularized H, projector 70+ V — Vj defined by

h,o0
(PTh,ooW, P i + 00T (K2 Th gy w, O2p) it = (pw, )i Vi € Vi (5.14)
with the gridﬁindependent parameter og > o — 1/4. Clearly 7, 5, = 7r2 for o9 = 0.
Let i;: C(I) — V; be the interpolation operator such that i;w(ty,) = w(ty,) for allm =0,..., M.
Next we define the operator Agl: V* = Vi, f — wp where wy, € V}, is the unique solution of

(kOpwh, Oxp)a = ([, 0)2 Vo € V. (5.15)

Clearly A,:l = 7r}1LA—1, see (4.3) with w = A~!f, and the norm in V* and its discrete counterpart can
be written as

1Flve = 1A fllve=llwllve, 1l = 145 fllve= llwnllv, < llwlly,-
Moreover, we set rp A~ = A~ — A,:l =A"1— W,llAfl. First we note that
A7 HOY 5 gO+2) 1< a <. (5.16)
Then by the standard FEM error analysis [7] and operator interpolation theory we have
InA v = lw = mhwlly < b fl o V€ HY, —1<A <0, (5.17)
lrn A~ flla = llw = mywll g < ch® | fllgoy VF e HY, -1 <x<o. (5.18)

6. STABILITY AND ERROR ESTIMATES FOR THE DISCRETE STATE EQUATION
In this section we present error estimates for the state equation. We begin with an auxiliary result.

Lemma 6.1. For og > o0 —1/4 >0, the following estimate holds

[Th,oow — mhwl| o < o7 + h)Mwl| gy Yw e HY, for 1<A<2. (6.1)

Proof. We recall the well known estimates
Imhwllv < cllwlly Yw eV, (6.2)
|w — 7wy < chljw|y2 Yw e VZ, (6.3)

which are valid using the inverse inequality (5.4). We also remind inequality (5.7) and notice also that
for og > 0 the following additional inequality holds

Voorllellv, < llellme Ve € Vi (6.4)
Let w € V and ¢ € V},. We apply identities (5.11) and (5.14) and get

(p(w%aow — mhw), ©) g + ooT? (m@x(ﬂg’gow — mhw), dep) y = —007? (KO W, 9ep)
= 0072 (K0z (w — Thw), dup) yy + 00720, (KO, W), ©) 0.
Now we set ¢ = 7'['2’0011) — m9w and from the former and latter equalities together with estimates (6.2)
and (6.3) we obtain the estimate
175 oy w — mhwll o < em(T + R Hlwll o

for A = 1, 2 respectively.
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By using the K o-method, we complete the proof. Il
Now we get a stability bound and error estimates in C(I, H) x H h ! for the discrete state equation.

Proposition 6.2. Let y and (ylg,y%ph) be the solutions to the state equation (2.1) and the discrete
state equation (5.1)-(5.2).

(1) For (u,3°,y') € L>(I,V*) x V x V*, the following stability bound holds:
lyoller,my + pri}“hHH;l <c(llullpzryey + [¥llvxve)- (6.5)
(2) For (u,y°,y") € L2(I, H=Y2) x V x H=Y/2) | the following error estimate holds:
ly = wolle(z.ar) + 1P@e(T) = yin)ll g1 < e (4 )PPl gor oy + 1Y v smcrrm). (6.6)
(3) For (u,y°,y") € HY(I,H-Y?)) x V x H, the higher order error estimate holds:
ly = yolle(z.m + 10O(T) =yl g1 < e (m+ 1P ([ul g vy + I¥lvsn).  (6.7)
Proof. 1. According to [46, Theorem 2.1 (1)], the bound

lollecrm + || [0 @t], < e Qullzairy + lvo@ g + 1y Iv-) (6.8)

is valid for any yy(0) € Vj,. We have y5(0) = 79y°. In the case o < 1/4, there clearly holds
Ry e < Imhy°lla, < l1y°la, -
For o > 1/4, we alternatively get using (6.1) for A =1
Imhy o < ImRy” — 7 oot a0 + 17k 008 Lo < (7 + W)y llv + 115° 1,

for any o9 > o — 1/4.
We proceed with the bound for y]. Identity (5.8) and bound (6.8) together with the generalized
Minkowski inequality imply

lowf e < e (| fooat], + | [uce] .+ vt Iv-) < e Qullzaye + vy (69)

Finally we derive bound (6.5).
2. Let gy be the solution of equation (5.1) for gy(0) = W27goy0. From [46, Theorem 4.1] we get the
error estimate

ly = golle,m + H /I(ﬂ-}lzy — ) dtHV < e(r+ ) B (lull g2, g1y + 1Y mam cac-e)-

In the case 0 < 1/4 we can choose op = 0, then yy(0) = m4,5,y° = 7hy" and Gy = yy. In the case
o > 1/4 we can use the stability bound (6.8) and estimate (6.1) to get

0 ~olecrny + | o —v0) @], < elimhags =Ny < ca(r+ Wl (6.10)

Then by subtracting (5.8) from (5.10) and applying identity (5.12) we find

(P(O(T) — yhy), Phe = — (mam [ at axsa)H _— (nax [ty o) at, m)H Vi € Vi,

consequently

I0@(T) = i)l < | [ (ko= vo) ] (6.11)

Thus we obtain (6.6).
3. Once again we apply [46, Theorem 4.1] and first get the estimate

Iy =Golleqrm + || [ (mhy = 90) | < 7+ mP2(ullzaqran + Iyl ).
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Combining it together with (6.10), we derive

Iy = volleqrmy + | [[(rhy — o) @t < e+ W2 ullzgm +Iylva) (612)

In this proof, we apply this estimate in the case u = 0 only (but in general case below).
In the remaining case y = 0, from [46, Theorem 4.1] we also get the higher order error estimate

Iy =volleqrm + || [ (mhy =) de] | < clr+m " ullpm for Yue H'(L ). (6.13)

Moreover owing to Proposition 3.7 and bound (6.5) (both for y = 0) we have

ly = volleqr,mn + | /1(7”1’y — y) dtHV < Wylleq iy + lTylle) + Ivollea + | /Iyﬁ dtHV
< cllullp2rv+) for Vu € LX(I,V™).
The last bound and estimate (6.13) imply by the K 5 o-method:

ly = volleqr,m + | /I(w,iy —yo) | <c(r+n* P ulls,, Vue By = (LI V), HNL H))y o
Due to the simple embedding

HNI,HY?) = (HNI V), HY (I H)) 1 jg,00 = (B V), HY (I H)) .00
and inequality (6.11) we complete the proof. O
(Rer)n(ark)6.3. A priori stability bound (6.5) implies the unique solvability of the discrete state equation
5.1)-(5.2).

Remark 6.4. According to the given proof, for gy in place of yy the norms of y in (6.5) and (6.6)
can be weakened down to respectively ||y||lmxv+ and ||yl a2y g-1/2). For o < 1/4, we have Gy = yy.
The same can be shown for yy also for o > 1/4 provided that Tay, < ¢y with any ¢g > 0.

7. DISCRETE CONTROL PROBLEM

First we introduce the discrete mapping Sy : (u,y0,y1) — (Yo, y9(T), pya,) and the discrete affine
linear control-to-state mapping

So: My = Vg = Vg x Vi, x (p x Vi), w = (yo,y9(T), pyrs)
defined by Syu = Sy(u,0,0) + S@(O, Y0, Yy1)- The mapping Sy is a composition of

w4 = {{u, e%n)MT,CT}%’T]LV:_ll, Myp — RMIN=1)

where {efmn} is a basis in Vy, and @ — (yg,y9(T), pys;,). The former mapping is bounded due to
U € Cr and the latter one is finite dimensional. Thus Sy is a bounded operator. Then we consider

em,n
the following semi-discrete optimal control problem

: _ 1 2 .
go(u) = 3 [|Sou —2lly, +afulsv, — min (Pg)
with the squared semi-norm corresponding to the inner product

(z,2)y, = (p21,21) L2(1x ) + (p22, 22)m + (A,lea,A;l%:a)vn Vz,z € ).

Using the similar argument as in the continuous case it can be shown that (Py) has a solution wuy
which is not unique in general, and due to the optimality, the stability bound (6.5) and property (5.16)
(for A = —1) one gets

_ - . 2
oyl pr < Jo(is) < 5o(0) = 51189(0) = 2[13, < c(lyllvxrv-+[Iz])",
cf. (4.1), and consequently
_ 2
[wsllmr < c(llyllvayvs +lzlly)” < C. (7.1)
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Theorem 7.1. Letz € Y,y € V x H=VY2 and a,u9 € My be the optimal controls of respectively
problems (P) and (Py). Then there holds

Uy —* % in M, HﬂgHMT — ||ﬂ||MT as 9 — 0.

Proof. Owing to (7.1) there exists a sequence {9, }, ¥, — 0, and u € My such that uy, —* u in My
as n — 0o. Next we prove that this implies that
159, @9, — 2zlly,, — 15w — 2[ly. (7.2)

To this end, we write the chain of inequalities

1Sy, o, — 2lly,, — 1Su —zlly| < |[|Sy, 09, — zlly,, — ISu— 2|y, | +|ISu—zly, — ISu—z|yl
< ||Ss, s, — Sully,, + |[ISu—zlly, — I[Su—z[y|
< |So, ws, — Stug,lly,, + ISws, — Sully, +|IISu—zly, —I[Su—z[y|.

The first term on the right in the last inequality converges to zero according to the error estimate (6.6).
The convergence of the second term follows from the weak-star-to-strong continuity of S: Mp — Y
and the stability of 7i in V. Finally, property (5.13) for @ = w implies the convergence of the last
term. Then (7.2) and the weak-star lower semicontinuity of || - ||y, in M7 implies

j(u) < liminf jy, (ag,) < limsup jg, (49, ) < limsup jy, (@) = j(@).
n—oo n—oo n—oo

Thus, the uniqueness of u means that v = 4 and in addition implies the convergence of the whole
sequence U4y —* u in Mp as ¥ — 0. Moreover, we have jy(uy) — j(u). This and (7.2) lead to

1@yl ar = []latr- O

For convenience we set F},(z) = (1/2) HzH%,h In the following the directional derivative of a functional
g: Mr — R at u € My in direction du € My is denoted by Dg(u)du. In the case Dg(u) € M7, g is
the Gateaux differentiable in u. Moreover, we make use of the convex subdifferential of || - || r,. Let
@ € My and p € Cp. Then there holds p € 9||4||m, if and only if

<p7 U= ﬁ’>CT7MT + aHﬁHMT < aHuHMT Vu € Mr.

An element uy € Mr is an optimal solution of (Py) if and only if —D((F}, o Sy)(uy)) € ad|tg||rmy-
To calculate D((F}, 0 Sy)(u)) for u € Mp, we apply the Lagrange technique and define the Lagrange
functional by

L(u, Ygs Yins Pos Do) = Fr (o, yo(T), y11) — Bo (Y. po) — (pyin po(T))m

+ (u,po) m,cr + (py', P9 (0) 1 + (p(y9(0) = 4°). 00w 1
with (pg, pij,) € Vo x Vi (where we base on identities (5.1)-(5.2)). We obviously have
(Fj, 0 Sy)(u) = L(u, Sou, pg, piy,)  V(pe, vn) € Vg X V.
Thus there holds
D((Fy, 0 Sy)(u))du = Dy L(t, Y, Y, Do, Pon) 0 = Dy, Su)ep My Vou € Mr
provided that (py,p{;,) € Vi x Vj, is the solution of the discrete problem

- DyaL(Uayﬂ,yzlrhvpﬁ,P(l)h)U = Bo (v, py) — (p(ys — Zl)av)LQ(IXQ)
— (plys(T) = 22),0(T)) g — (pv(0), po ) = 0 Vv € Vy
and
=Dy L(w, Yo, y1n: Po> Pon)e = (p, 00 (T)) 1 — (AL (pyrn — 23),0) jp = 0 Vo € V.
Therefore the discrete optimality system consists of the discrete state equation
Bo (59, ) + (pU1n, v(T)) it = (g, v) s, cr + (py',0(0) Vo €V,

-~ % (7.3)
(py9(0), ) = (py" )1 Vo € Vp,
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the discrete adjoint state equation

By (v, pg) = (pv(0), pon)ir = (p(G — 21),0) 21 2) + (p(59(T) = 22),0(T)) e Vo € Vy,

(0, D9(T)) 1 = (pAL (PTTn — 23),9) g Vo eV 7
and the discrete variational inequality
(=po,u — wy)er, My + ol Mmr < llullmy Vo€ My, (7.5)
8. STABILITY AND ERROR ESTIMATES FOR THE DISCRETE ADJOINT STATE EQUATION
We define the general discrete adjoint state equation
By (v,p9) = (po(0), pon) e = (p(y — 21), ) 2(1x02) + (pY(T) = 22),0(T))y Vv eVy,  (8.1)
(pp: po(T) 1 = (pAL (POey(T) — 23), ) Vo eV  (82)

Here y is the solution to the state equation (2.1). Clearly identity (8.2) means simply that py(7") =
A tqr = T A7 gy with gr = pdyy(T) — z3. B

Now we get a stability bound and error estimates in C(I, H) x H, Land Cr for the discrete adjoint
state equation.

Proposition 8.1. Let p = S*(y — 21, —(y(T) — 22), A" (pOwy(T) — z3)) and (pg, p,,) be the solution
of the corresponding general discrete adjoint state equation (8.1)-(8.2).

(1) If y € C(I, H)NCY(I,V*) and z € Y, then the following stability bound holds
Ipollevy + leponll < e (ly = 21l z2xa) + 19(T) = 22lla + 100y (T) — z3llv+).  (8.3)
(2) Ifue LA2(I,V*),z €Y andy € H x V*, then the following error estimate holds
lp = pollet,my + 100w(0) = D) -1 < e(r + W) (lull c2r,v+) + llzlly + 1y | mxv-).- (8.4)

(3) Ifu e L2(I,H=Y2), 2 e Y12 .= L2(I, HY/?)) x H1/?) x HEY2) andy € HV/?) x HEY2),

then the following error estimate holds

23]

lp = polleinny < e+ R (lull 2, m-12y + 12lly7e + 1Yl zar2 g-12)- (8.5)

(4) Ifu € H\(I,HCY2), z € Y32 .= L2(I, HC/?) x HG/2) x HI/?) and y € HB/?) x H1/2),
then the following higher order error estimate holds

Pl g1 1 gz 1) + N2l ysre + 19l o) - (8.6)

1P — pollL2(r.co()) < e(m+h)
Proof. 1. According to [46, Theorem 2.1 (2)] the following energy bound hold
1Pollervy + 110poll oo (1) < € (ly — 21llL2ax ) + [Po(D)llv + [[Y(T) — 22/l 1)
for any py(T) € Vi,. Using (6.2), 4,1 =7 A~" and (5.16) we get
lpo(T)llv < ell A grllv < eillgr v+ (8.7)

By applying also the counterpart of inequalities (6.9) we derive bound (8.3).
2. The counterpart of the error estimate (6.12) for the adjoint state equation case and bound (8.7)
give

Ip=pollecrm + | [ (mho = po) ]| < elr+m>*(ly = 2allagrm + 145 arlv + Iw(T) = z2].)

< e (r+ PP (lyllez, iy + 10wller 7+ + l12]1)-

Owing to inequality (6.11) and Proposition 3.7 we obtain estimate (8.4).
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3. Below we need the multiplicative inequalities

1/2 1/2 T
lwlleqrxa < ellwll g lwlyz,, Ywe CEV), (88)
HwHL2(I,CO(Q)) < CHw”m(I,H)HwHL2([7v) Vw € LQ(L V). (8.9)

Let py be the auxiliary solution to (8.1) for py(T) = ) A~1gr. Owing to inequality (8.8) and the
stability bounds [46, Theorem 2.1] we get

. . 1/2 9 1/2

1o — Bollexay < €llbo — 50)(Dpe (o — ) (D).

Consequently, for gr € H®2) by (6.2), (5.17) and (5.18) the following chain of inequalities hold

) y 1/9 . 1/2 >
Ips = Bolleqrey < el o = 5@ 1o = BT + 72 (00 = 5o)(T) )
1/2 1/2||7"hA_1QT||V) <ea(T+ h)a_l/QHQTHH(a—Q)

for 1 < a < 2. Thus it is enough to prove error estimates (8.5) and (8.6) for py instead of py.
According to [46, Theorem 5.3 and estimate (5.18)] we have the error estimate

< er(lrnA e} A g 1Y/

lirp = Dolle(ixay = lp = Polle, (7,c(0)) = oLnax, (0 = Do) (tm)lc ()

< e(r + ) 2B(ly = 21l g2, ga-vy + 19(T) = 2allge-n + larllga-=), a=1,2. (8.10)

We emphasize that due to [46, Theorem 4.3 (2) (e)] and (6.1) this estimate holds for py(T") = 1) A~ gr.
Inequality (8.8), Proposition 3.5 (applied to the adjoint state problem) and property (5.16) imply
the following error estimate for the time interpolation

, 1/2
Ip = irplleqrxay < e(rlOmlleq.m) 1) bl
<at?(ly = 21l 21 ge-vy + 19(T) = 22l g + llgrllga-=»), (8.11)
for « = 1,2. Owing to estimates (8.10) and (8.11) as well as Propositions 3.7 and 3.5 we get

Ip _1519”0(1’xfz) <c(r+h) Ho=1/2) /3(Hy||c I,H(e-») T Hat?/Hc I, He-2) T 2]l yea-1)
< er(r + h)P VDB (|l o a2y + 1Yl - x e + 2]l ye-n), a=1,2, (8.12)
where (@) .= L2(I, H®) x H® x g1,
By applying the K /5 . .-method, we get (8.5) for py in the role of py.

4. First notice that the multiplicative inequality (8.9), Proposition 3.5 (2) (applied for the adjoint
state problem) and property (5.16) imply another error estimate for the time interpolation

. 1/2 1/2
1P = irpllr2(1, co(2)) < (T2110upll 21, m1)) / (7110pllecrim) /

<ar(ly = 2l + 19(T) = 2lv + llar| ).
Then Proposition 3.5 (1) leads to

Ip — irplz2r,cogen < e (lulls gy + zlly + Iyllvs): (8.13)
Next we derive the error estimate
lizp = Bolleinay < e + DY ([l g pri-1/2n + I2llysrz + 19 g warm)- (8.14)

According to [46, Theorem 5.3 and estimate (5.18)] and Propositions 3.7 and 3.5 the following three
estimates hold

lizp = Bolle(ix) < (T + 1) 2]l a2 for u=0, y =0, (8.15)

lizp = Pollerxay < e+ Wyl < el + D) (lull gy + 1Y lv<w) for z=0,
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lizp = Polleixay < ol + h)B/g(HattyHL?(I,H) + lyllvxm)
<e(r+ h)5/3(”UHH1(1,H) + lyllvexy) for z=0

for py(T) = 7Y A~1qr (for the same reason as above). Then applying the K /9, so-method to the two
last estimates we get

[irp — 2519||c(fxfz) <c(r+ h)4/3(Hu||H1(I,H(—1/2)) + IYlge2xmarm) for z=0.

By combining this estimate and (8.15) we obtain (8.14).
Estimates (8.13) and (8.14) imply

lp — Bollz2r, coy) < e + W) 3(ull g1z 12y + 1Zllysre + 1Y ger2 marm)
that completes the proof of (8.6) for py in the role of py. O

Remark 8.2. A priori stability bound (6.5) (taken for y = 0) implies the unique solvability of the
general discrete adjoint state equation (8.1)-(8.2).

9. ERROR ESTIMATES FOR THE STATE VARIABLE

We introduce the discrete adjoint control-to-state operator Sj: L2(Ix 2)xV x H — Vi, (¢, p*,p°) —
py defined by

By (v,pg9) = (p$,v) p2(1x2) — (0", 0(T))rr Yo € Vg, v(0) =0
with py(T) = 79p°. Similarly to bound (8.3) and Remark 8.2 it is well defined and satisfies
155(¢, pos )y < € (100l 2wy + [12°Mlv + 10" )
Let for brevity W, Wy : Y — V* be the duality mappings defined by
W (y1,92,93) = (Y1, ~y2, A yz), Waly1,y2,93) = (y1, —v2, A5, 'y3) Y(y1,92,93) € V.

With this notation, the function py = S}(y — 21, —(y(T) — 22), A}, (pOy(T) — 23)) = SEWi(Su — 2)
solves the general discrete adjoint state equation (8.1)-(8.2).

Proposition 9.1. Letz € Y andy € V x V*. Then the following estimate holds
18 — Spiislly, < 1S — Syiilly, + C|.5*W (S — 2) — SyWa(Si — )¢ (9.1)

Proof. We recall that p = S*W (Su—z) and py = S;W},(Syty —z) and test the continuous subgradient
condition (4.5) with the discrete optimal control 4y and the discrete subgradient condition (7.5) with
the continuous optimal control . Then we subtract the first inequality from the second one and get

(U =y, p — Po) Mp,cr < 0.
We define py := S;W},(Su — z), insert it between p and py and obtain
0 < (uy — U, p — P9) My, cp + (U — U, Py — D) My, Cp- (9.2)

For convenience we introduce the variables (g9, 9y(T), pg}h) = Syu and remark that the state equations
for (49, y~+,) and (g, 93;,) have the same initial data. With the help of them we rewrite the second
term on the right in (9.2) taking first the difference of the discrete state equations (7.3) and (5.1)
(taken for (§y, 9+y,)) for v = Py — Py, next the difference of the discrete adjoint state equations (7.4)
and (8.1)-(8.2) (taken for py) for v = 3y — gy and ¢ = g, — 9+, and finally using (5.15)

(il — U, Py — P9) My, cr = Bo (9 — G0, D0 — Do) + (p(Urn — 91n)s By — Do) (T)) 1

= (p(o—09), T — o) r2(1x2) + (PG = 99) (1), G —59)(T)) 11 + (p(Wrn, — D) A (pO(T) = i)
= (5197119 — Syu, Su — Sﬁﬂg)yh.
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Further we easily get
(g — U, Py — Do) My, cr = (SU — Sylig, Sytig — Syti)y, = (St — Syig, Su — Syti)y, — [t — Sgug|3,
< 3l8u = Soully, — 31— Syusll3,,.
Thus (9.2) implies
1% — Syugll3), < 2(@p — @, 5 — Do) mp,cr + 15T — Spill3,
< 2(||as | py + @l me) 15 — oller + 15T — Soall3, -
Finally by applying bounds (4.2) and (7.1) we derive (9.1). O

This proposition is important since it allows one to derive estimates for iy — 4y with the help of the
above error estimates for the discrete state and adjoint state equations.

Theorem 9.2. (1) Let My = L2(I, M(2)), z € Y2 and y € V x H. Then the following error
estimate holds

15 = Goll2crx ) + 1@ = 59) (Dl + Ip(0i(T) = Gipn) g+ < Clr + ). (9.3)

(2) Let My = M(2,L*(I)), z € Y*? and y € HB/? x H1/2) | Then the following higher order
error estimate holds

17 = Goll 21y + 15 = 5) (D)1 + 1p(OeH(T) = Gin) g+ < C(r + 0>, (9-4)
Proof. 1. Let us base on Proposition 9.1. First, Proposition 6.2 (4) implies
I1S@ — Spitlly, < c(m+ )2l L2z 120y + Iy llvc)-
Second, Proposition 8.1 (3) leads to
1S*W (St — 2) — S5Wi(Su — 2)lle, < e+ 1) (@l 2z, 22y + l2llyrrz + 151l rase x re-1r2)-

Now owing to Proposition 9.1, embedding (3.27) and bound (4.2) for @ error estimate (9.3) is proved.
2. First, Proposition 6.2 (3) implies

|S@ = Syilly, < e(r+ B3 (@l g g1y + 15 e xmarm )
Second, Proposition 8.1 (4) leads to
1S*W (Su — 2) = S;Wi(Su — 2)lley < e(7 +h)Y2 (@l g1 (1 g2y + N2l ysse + 191l o)

Now owing to Proposition 9.1, embedding (3.28) and Theorem 4.4 for u error estimate (9.4) is proved
too. ]

Remark 9.3. Note that our error bounds could be better provided that one would improve the last
term on the right in (9.1) by increasing the power 1/2. But this seems a complicated problem.
10. ERROR ESTIMATE FOR THE COST FUNCTIONAL
In this section we derive error estimate for the cost functional. We first observe the inequalities
j(@) < j(ug), jo(ty) < jo(u)
which can be equivalently rewritten in the form
3(@) — Jo(u) < j(a) — jo(ug) < j(ty) — jo(ip). (10.1)

Therefore, to bound |j(u) — jy(uyg)| below we apply the following result.
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Proposition 10.1. Lety € V x H. Then for any u € My
() = Go(w)] < (]| Su = Syul}, +
+ (lull st + Iy llv ) (12 = poller + 12(0) = po(0) | + Al Bp(0)]11r + p(up(0) - p(l)h)HH;l)
+ A7 (pOry (D) I} + lrn A 23 ) (10.2)

with (y,y(T), pdey(T)) = Su and the same p and (pg,p,) as in Proposition 8.1.
Proof. Let u € Mp. According to the definitions of the continuous and discrete cost functionals and
property (5.13) for w = w and Wy, = wy, we get
j(u) = jo(u) = 3[Su — 2|3 — [[Sou — 23,
= L(Su— Syu, Su+ Sgu—22)y, + LA (p0y(T) — 25)|13, — 1147 (p0(T) — z3)1I,
= —1(|Su — Spull3, + (Su— Spu, Su—2)y, + $IrnA™ (pOy(T) — z3)|I3,.. (10.3)
We set prp, = Agl(pﬁty(T) — 23). Owing to the adjoint problem (3.12) with (¢,p',p%) = W(y —
21, Y(T') — 22, pOry(T) — 23) We get
(Su, Su—2)y, — (A, (PO (1)) pri)v, = (py:y — 21) r2(1x2) + (Py(T), y(T) — 22)mr
= (u,p)sp,cr + (py"0(0)) 1 — (pOy(T),p°) 2 — (py”, Bep(0)) 1.
Similarly owing to the general discrete adjoint state equation (8.1)-(8.2) for v = yy and the discrete
state equation (5.1)-(5.2) for v = py and ¢ = p}, we get
(Sou, Su—2)y, — (A, (oyrn) Pri)ve = (Py9, ¥ — 21) 12(1x2) + (pyo(T), y(T) — 22)
= By (yg,p9) — (pys(0), pon) 1
= (U, p9) Mr,cr + (PY",09(0)) 1 — (pyin, o(T)) i — (py°, by -
In addition owing to the definitions (8.2) of py(T') and (5.15) of A, ', we can write
(oY1 Po(T)) 1t = (pyins pra) i = (A (pyin), Pra v

Consequently we obtain
(Su — Syu, Su — z)y, = (Su, Su —z)y, — (Syu, Su—z)y,
= (u.p = po)mr.cr = (p4° 0p(0) — piou )1 + (py", p(0) — Ps(0))
+ (45, (09y (1)), pri)v,. — (pOey(T),p%) - (10.4)
In addition using property (5.13) we derive
(A5, (p0ey(T)), ra)v, — (pOey(T). 1°) 2 = (A (pOey(T)), pra)v, — (A7 (pBey(T)), p")v,
= —(rn A" Ay (T)), rn A~ Oy (T) = 23))v,. (10.5)
Next, for the term (py°, 9;p(0) — pi,)mr in (10.4) we have
|(py°, 3up(0) = pon) 1| = [(p(y” = 7hy°), p(0) = poy) i + (pmipy”, Bep(0) — pgn )
<I(p(y" = my"), 0ep(0)) | + ellmhy” v 0(0ep(0) = pop)ll 1
< e1 [y llv (B19w(O) 1 + llp(2:p(0) = pty) 1) (10.6)

due to the bounds ||y =7}y g, < |y —7y°||m,, (5.18) and (6.2). Clearly also |(py*, p(0)—py(0)) x| <

vt ]lp(0) — po(0)|| . Finally from (10.3)-(10.6) we derive (10.2). O
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Now we prove for the cost functional squared error estimate (9.3) for the state variable.

Theorem 10.2. Let My = L*(I, M(£2)), z € YY/? andy € V x H. Then the following error estimate
for the cost functional holds

15(@) — jo(ag)| < C(r + h)*3.

Proof. Let us base on Proposition 10.1 and take any u € L*(I, M(£2)). Owing to Proposition 6.2 (2)
we have

1Su = Sgully, < e(r+ )" (lull 2z 22y + 1V v prc-a2) -
Proposition 8.1 (3) leads to
lp = polleixay < e(r + R ([ull 21 g1y + Izl 172 + 1Yl a2 cpe-12)-
Owing to Propositions 3.5(1) (applied to the adjoint state problem) and 3.7 we have
10ep(O)ler < 10eplleziry < elllullzacry) + Iy laxv- + llzlly)
(I,H)
(like in estimates (8.11)-(8.12) for a = 1). By using estimate (5.17) for A = —1/2 we obtain
I A (p0ey(T)) v + lrn A~ z3llv < b ([0 (T) | 172 + 128l pr-1/22)-

By collecting all these estimates together with embedding (3.27), Proposition 8.1 (2) to bound
1p(8:p(0) — pgy)ll -1 and applying Proposition 10.1, we derive
h

. . 2
() = ()] < e(m+ 1) (lull 21 paey) + 2llyrse + I¥llvs) ™
Owing to inequalities (10.1) together with bounds (4.2) for w and (7.1) for wy the proof is complete. I

Remark 10.3. In the case My = M(£2, L*(I)) the lack of the bound ||ay|l g1 (s (o) < C, cf.

Theorem 4.4 for 4, does not allow one to prove the error estimate |j() — jy(tig)| < C (7 + h)¥/3.

11. TIME-STEPPING FORMULATION

In this section we discuss the time-stepping formulation of the discrete state equation (5.1)-(5.2)
and the discrete adjoint state equation (7.4). We introduce the piecewise-linear “hat” functions such
that €], (ty) = O for any k,m = 0,..., M, where d,,, is the Kroneker delta. We recall that e],

are “half” hat functions for m = 0, M. There holds V; = span{ej,...,€},}. Similarly, we introduce
the spatial hat functions such that e?(mk) = 0j) forany j =1,...,N—1and k = 0,...,N; then
Vi, = span{el, ... ek 1.
Then the approximate state variable yy € Vy can be represented in the following forms
M N-1 M N-1
yo(t,2) = D Y ymgef@en, () = Y yn(@)en,(t) = D yi(t)ej(z), (tw)elx2  (1L1)
m=0 j=1 m=0 j=1

with ym; € R, yh, € Vy and y7 € V.

We also define the forward and backward difference and the average in time operators
Um+1 — 'Um7 gt'Um _ Um — Um—l?

T T

5tvm =

BTvg = 2v0 + 2v1, BTUp = §Um-1+ 3Um + gUms1, 1<m <M —1, BToy = tvy-1 + 3vum.

We define the self-adjoint positive-definite operators By, and Ly, acting in V}, (in other words, the mass
and stiffness matrices) such that

(Bren, Yr)vi, = (pn: ¥n) i, (Lnens Yr)vi, = (K00n, Outhp)u Vo, ¥ € V.
For w € V* and u € L%(I,V*) we define the vectors w" = {(w, e?>g}§\;—11 and
N-1 2 N-1

1 —
9 h 9 h
u’ = ;{(<u7€j>976:n)L2(1)}j:1 ,1<m<M-1, u, = ;{(<u,ej)g,e;1)L2(1)}j:1 ., m=0,M.
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We recall the form of the discrete state (11.1).
The forward time-stepping is implemented as follows. The integral identities (5.1)-(5.2) are equivalent
to the operator equations

(Bp + JTZLh)(;tStng + Lyyom = uﬁl, m=2,...,M —1, (11.2)
(Bp + om2Lp)0tys 1 + SLnyso = (py" )" + %Uga (11.3)
Buyoo = (py°)" (11.4)
followed by the counterpart of (11.3) at time T for yk,:
Bryyy, = (Bn + 072 Ln)dyo.nr — 5 Lnyor + Fuly. (11.5)

Next the adjoint (backward) time-stepping is implemented in a similar manner. Namely, the integral
identities (7.4) are equivalent to the operator equations

(Bp + O'TQLh)(Stgtpﬁ’m + Lyppym = BrB y9,m — (pzl)fn, m=M-—1,...,1, (11.6)
—(Bp + o72Lp)0tpo.v + 5 Lupot = Bryom — (p22)" + Z(BrB yom — (p21)%), (11.7)
Lupynr = Buypy — 24, (11.8)

followed by the counterpart of (11.5) for pl,:
Bypl, = (B + 072Ly)0ipoo + 5 Lupoo — 5(BrBTys0 — (p21)§)- (11.9)

Remark 11.1. For o = 1/4 the three-level time stepping scheme (11.2)-(11.5) is closely related to
the well-known two-level Crank-Nicolson method applied to the first order in time system

Oy = v, pow — Oy (kKdpy) =u  in I x 2
y=0 onlxdf
y=y", v=y" in{0} x0,

see [46, Section 8] for details, as well as to the Petrov-Galerkin method described in [29]. After the mass
lumping, for ¢ = 0 our method becomes explicit and is related to the Leap-Frog method; moreover, for
any o it becomes close to three-level finite-difference schemes with such weight in time, eg. see [43].

12. CONTROL DISCRETIZATION. SOLUTION PROCESS AND L%(I x §2)-REGULARIZATION
Now we discuss in more detail solving of the semi-discrete optimization problem (Py) in the case

Mrp = M(2, L2(D)).

An important point is that we can seek its solution in the form
Uy € My :=Vy @ My, My :=span{dy,,...,0zy_,} T M(£2).
To show that, let % be the projector in L?(I) on V;. Note that, for n € L?(I), it satisfies
(B0 = L0, epaqry for 1<m<M—1, (B'a)m = 201, ¢ 2y for m =0, M.
Then we define II,: M(£2) — My, by ITyw = E;\Sl(w,e?)gémj and Iy = 721I,. The following
identity holds
<H19U,U>MT7CT = (u, ngh’u>MT7cT Yu € Mr,v € Cr
with the interpolation operator in: Co(§2) — Vj, such that ipw(x;) = w(z;) for all j =0,...,N. In
particular, if v € Vy, then
(ITpu, V) My, cr = (Us V) My, Crs
and consequently (like in [30, Lemma 3.11]) we have Sy = Sy o IIy as well as || Ilyullrp, < ||u|| -
Thus for each solution @y of problem (Py), the discrete control Ilyty satisfies

Jo () = jo(Iytiy).
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Therefore ITyty is also a solution of (Py). This is a justification for solving the fully discrete problem

jo(ug) = 5 ||Syuy — Z\@h + allugl| meo,z2(1)) — ugléb\f/llﬁ (12.1)
in order to get a solution of (Py).

The direct solution of (12.1) by means of a generalized Newton type method is a challenging problem
since a proper globalization strategy is needed, see [36]. Thus we propose a solution strategy based on
an additional L?(I x £2)-regularization of (12.1) with a parameter v > 0 and a continuation method.
For high values of v the corresponding Newton type method converges independently of the initial guess
in numerical practice. Thus the continuation strategy can be seen as simple globalization strategy.

On the continuous level we consider the following regularized problem

. 2 .
Jy(w) = 3118 — 23, + allull meo.2()) + Flull T2 = Miluerzrxa) - (12.2)

It is possible to formulate a semi-smooth Newton method for this problem on the continuous level
which is based on the following necessary and sufficient optimality condition

1 a
Un(t,z) = ——max [ 0,1 — ——— | p(t,x), (t,x) € I x {2, 12.3
(o)== ( ||p<‘,x)um>( b ) (123)

with p = S*W},(Su, —z). Moreover, this semi-smooth Newton method is superlinear convergent.
Let @, and @ be the unique solutions of (12.2) and (P). Then we have @, —* @ in M(£2, L*(I)),
see [23,30,40]. This justifies the use of a continuation strategy in 7. The control discretization
described above can not be used for (12.2). Instead we propose to use discrete controls from Vy, i.e.,

M N-1 N-1 M
up(t,x) = Y0 Y umgen,(t)ey(@) = Y wi(t)e] (x) = Y um(@)er, (t),
m=0 j=1 j=1 m=0

cf. (11.1). In particular, we solve the following fully discrete regularized problem

G (w9) = 5 1S9 (lows) — 2113, + llwslmee,2myn + 3lwsllFa 1y n — minugev, (12.4)
with
-1 M
Huﬁ”./\/l(.Q,LQ(I)),h = Z dj||“j||L2(1), HuﬁH%?(IxQ),h = Z (BT“m)tD(BTUm)
7j=1 m=0
where D = diag(dy,...,dy—_1) is the lumped mass matrix. Moreover, the operator Iy defined by
M
(Lywg, vo) r2(xypn = Y (B um)' D(B o) Vuyg, vy € Vy.
m=0

The use of D allows us to derive the following optimality conditions for (12.4)
al = ! max (0,1 — — | By (12.5)
m,j ~ ||]519-,jHL2(I) J

for all m and j, with py = S5W;(Syuy — z), cf. (12.3). Based on (12.5) we can set up a semi-smooth
Newton method. Since problem (12.4) is a discretization of (12.2), we can expect that this method

behaves mesh independently. Let @) = ;\/:711 u;j (t)e? be the solution of (12.4) and we define
N-1
. u;(t)
ug = Z i:l Oz
=1 Y

As v — 0 the control @), tends to a solution of (12.1) justifying the use of this control discretization
and the continuation strategy. For more details see [40].
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13. NUMERICAL RESULTS

In this section, we present results of numerical experiments. We consider an example involving the
wave equation Oyy — Ozzy = 0in I x £2 = (0,1) x (0,1), zero initial data y° = y* = 0, the control
space My = M(£2, L*(I)) and the tracking functional

1 2
F(y) = 5lly = 2llz2(1x )

with the particular desired state

z(x) = \/zlﬂ—pe
where p = 0.1 and A = 7/20. The time independent function z is a gaussian centered in an irrational
point A. For sufficiently large o (aw = 0.1), we expect that the optimal control « consists of one point
source with a position close to A. If the gaussian would move through the domain, a point source
shaped 4 is not able to follow the center of the gaussian since M (§2, L?(I)) contains no moving point
sources. The optimal control would rather consist of some additional fixed point sources. This would
not lower the regularity of the state whereas a moving point source can cause it.

The domain {2 and the time interval I are discretized by uniform grids with M = 27 and N =
2™ where r;,rp, = 2,3,.... The stability parameter is fixed to its lowest value o = 1/4 ensuring
unconditional stability of the time-stepping method. The discrete control problem is solved for
rp,=2,3,...,7™* and a fixed r; and vice versa. The solution process has been described above in
Section 12. Numerically the desired state z is replaced by ipz2 for simplicity, moreover the corresponding
error O(h?) is negligible. Since the optimal pair (i,¥) is not known in our example, we replace it by a
reference solution (@, §) which is chosen as the approximate solution on the finest grid level. We depict
(i, 9) in Figure 1. As expected, the optimal control 4 consists only of one point source positioned in

0O 02 04 06 08 1 1.2 0 0.1 0.2
1
0.8
0.6
8
0.4
0.2
0
t t
(A) @ (on a coarser grid) (B) §

FIGURE 1. Reference solution

the vicinity of A. Thus, the state § has a kink at this position. Due to reflections at the boundary, 4
has also kinks at other positions.

Next, we discuss the convergence results. In Figure 2, we see the convergence rate of |4y — 9| 12(1x )
and of the functional for a sequence of h refinements. The state error behaves in a linear way and
the rate for the functional is close to two; as usual the latter is approximately the doubled rate of
the former. Both are better than above theoretical rates. In Figure 3, we see the similar results for a
sequence of 7 refinements. The error of the functional stagnates at the last 7 refinement that is caused
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FIGURE 2. Errors as h refines and M = 210

by a too coarse space grid. Nevertheless, we observe reduced rates for §j much less than two caused by
its reduced regularity (kinks).
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FIGURE 3. Errors as 7 refines and N = 210
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