
FINITE ELEMENT ERROR ANALYSIS FOR MEASURE-VALUED OPTIMAL
CONTROL PROBLEMS GOVERNED BY THE 1D GENERALIZED WAVE

EQUATION

PHILIP TRAUTMANN1, BORIS VEXLER2, AND ALEXANDER ZLOTNIK3
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1. Introduction

This work is concerned with the discretization and numerical analysis of optimal control problems
involving the 1D linear generalized wave equation (with variable coe�cients) and controls taking
values in certain measure spaces. The discretization of the state equation is based on a space-time
finite element method (FEM) introduced in [46]. Related methods are also discussed and analyzed
in [1,20]. See also [2]. The measure-valued control is not directly discretized, cf. the variational control
discretization from [24]. However, there exists optimal controls consisting of Dirac measures in the
spatial grid points which can be computed, see also [11, 30]. The numerical analysis of the control
problem is based on FEM error estimates for the second order hyperbolic equations from [46] and
techniques developed in [11, 30]. It requires to overcome significant technical di�culties caused by
non-smoothness of controls and states. To the best of our knowledge, this is the first paper providing
such numerical analysis for the studied control problems.

Motivated by industrial applications as well as applications in the natural sciences, in which one
is interested to place actuators in form of point sources in an optimal way, see, e.g., [4, 8] or in the
reconstruction of point sources from given measurements, see, e.g., [31, 41], measure valued optimal
control problems involving PDEs gained attention in the last years. These problems can be translated
into optimization problems in terms of the coordinates and coe�cients of the point sources. However,
these optimization problem are non-convex since the solution of the state equation (PDE) depends in
a non-linear way on the coordinates of the point sources. Thus one has to deal with multiple local
minima. Several authors suggested to cast the control problem resp. inverse problem in form of an
optimization problem over a suitable measure space MT involving a convex regularization functional
R which favors point sources as solutions. In our case we introduce the following problem formulation
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involving the 1D wave equation
J(u) = F (y) + R(u) æ min

uœM
T

subject to flˆtty ≠ ˆx(Ÿˆxy) = u for (t, x) œ I ◊ œ = (0, T ) ◊ (0, L)
(1.1)

with additional initial and boundary conditions. The functional F is given by a quadratic tracking
functional involving y|I◊œ, y(T, ·)|œ and ˆty(T, ·)|œ. The regularization functional R and the control
space MT are chosen in a way such that MT contains point sources of the desired form and R promotes
controls of such a form, i.e. linear combinations of point sources with time-dependent intensities or
more general controls with a small spatial support. Since problem (1.1) is convex, one need not to deal
with several local minima. However, it is not longer guaranteed that the solution consists of a sum of
point sources. We enforce such controls via the regularization functional R. Problems of the form (1.1)
(also involving other PDEs) have been analysed from theoretical, numerical and algorithmic points
of view, see [6, 10–17, 30, 31, 41, 42]. Optimal control problems governed by the linear wave equation
were discussed in several di�erent aspects, see [21, 22, 26–29, 32, 33, 37, 38, 47]. In our particular case
we consider the control spaces MT of measure-valued functions L2(I, M(œ)) and vector measures
M(œ, L2(I)) with R(u) = –ÎuÎM

T

. These two di�erent choices imply di�erent structural properties
of the optimal controls. A typical non-regular element from the space M(œ, L2(I)) is given by

u =
nÿ

i=1
ui(t)”x

i

, ui œ L2(I), xi œ œ, (1.2)

where ”x
i

are the Dirac delta functions. Point sources of such type with fixed positions and time-
dependent intensities are of interest in acoustics or geology, see [31,41]. If one is interested in controls
involving moving point sources of the form

u =
nÿ

i=1
ui(t)”x

i

(t), ui œ L2(I), xi : I æ œ is measurable, (1.3)

then the control space L2(I, M(œ)) rather than M(œ, L2(I)) is more appropriate. The space
M(œ, L2(I)) and the functional Î · ÎM(œ,L2(I)) are also related to the term directional sparsity resp.
joint sparsity, see [19,23].

The problem like (1.1) for a parabolic/heat state equation is analyzed with MT = M(œ, L2(I))
in [30] and MT = L2(I, M(œ)) in [11]. In particular, the authors prove existence of optimal controls
and derive optimality conditions and FEM error estimates. Our analysis is partly based on these
results of [30]. In [31] a similar problem involving the linear wave equation with constant coe�cients
as state equation is analyzed. In particular, existing regularity results for a Dirac right-hand side are
extended to sources from M(œ, L2(I)). Based on these regularity results existence of optimal controls
is proved as well as optimal conditions are derived in the 3D case.

Now we briefly sum up the contents of this work. First of all we collect and partially prove
required existence and regularity results for the linear wave equation in the 1D setting. In particular,
we check that the notions of a weaker solution defined in [46] and more commonly used very weak
solution, e.g. [35], are equivalent. Most importantly we prove that the solution of the linear wave
equation with variable coe�cients from H1(œ) for any source term u œ M(œ, L2(I)) is an element of
C(Ī , H1

0 (œ)) fl C1(Ī , L2(œ)) provided that the initial data have relevant regularity. The proof is based
on a non-standard energy type bound in space, not only in time, cf. [18, 34]. In [31] the same result
is proved based on duality techniques which do not extend to the case of variable coe�cients. Then,
existence of optimal controls and the derivation of optimality conditions are discussed on the basis of
results from [30,31]. In the case MT = M(œ, L2(I)) we prove that the optimal control ū belongs to
C1(Ī , M(œ)).

Further, the FEM discretization of the state equation is introduced. The state variable yh,· belongs
to the space of bilinear finite elements and is defined by the regularized Galerkin method. The
resulting numerical scheme is a three-level method in time. Moreover, we pose and prove the FEM
error estimates in C(Ī , L2(œ)) for the discrete state equation which we need for the numerical analysis
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of the control problem. We base this study mainly on the results from [46] concerning error analysis
of FEMs for the second order hyperbolic equations in the classes of the data having integer Sobolev or
fractional Nikolskii order of smoothness. Note that their sharpness in a strong sense was stated in [45].

Then we consider a semi-discrete optimal control problem in which the continuous state equation
is replaced by its discretized version whereas the controls are not discretized. We prove convergence
of the discrete optimal controls to the continuous one and derive optimality conditions based on
the Lagrange techniques. Most importantly we derive the discrete adjoint state equation. We can
conclude that the first-discretize-then-optimize and first-optimize-then-discretize approaches commute.
Therefore an analysis of the discrete adjoint state equation including the error estimates in C(Ī ◊ œ̄)
and L2(I, C0(œ)) can also be based on techniques from [46]. Then we use results from [30] to represent
the numerical error of state variable and of the cost functional in terms of FEM errors of the state
equation and the adjoint state equation. Let ū and ȳ be the optimal control and the corresponding
optimal state, and the variables ū·,h and ȳ·,h be their discrete counterparts. As the main result of this
paper we prove the error estimates

Îȳ ≠ ȳ·,hÎL2(I◊œ) = O!
(· + h)–"

, |J(ū) ≠ J(ū·,h)| = O!
(· + h)2/3"

where · is the step in time, h is the maximal step in space and – = 1/3 for MT = L2(I, M(œ)) or
– = 2/3 for MT = M(œ, L2(I)). The latter higher order is due to the above mentioned improved
regularity results for the state and optimal control. Such estimates are proved for the measure-valued
controls in the hyperbolic case for the first time. Similar estimates are impossible in multidimensional
settings due to much less fractional Sobolev regularity of optimal states and controls.

Finally we discuss the numerical computation of the discrete control ūh,· . Based on a control
discretization uh,· that given by the sum like (1.2) with xi at the spatial grid points and ui in the space
of linear finite elements, a solution of the semi-discrete control problem can be calculated similarly
to [30]. For the actual numerical computation of the optimal control we add the term (“/2)ÎuÎ2

L2(I◊œ),
“ > 0, to (1.1). This regularized problem is solved by a semi-smooth Newton method, see [40]. In
a continuation strategy the regularization parameter “ is made su�ciently small. We complete this
work with a numerical example for MT = M(œ, L2(I)).

The paper is organized in the following way. In Section 2 we introduce the problem setting and the
control spaces resp. the regularization functionals. Section 3 is concerned with regularity properties of
the linear wave equation with variable coe�cients in the 1D setting. In Section 4 the control problem
is analyzed from a theoretical point of view. Section 5 deals with discretization of the state equation.
Then we obtain stability bounds and error estimates for the discrete state equation in Section 6.
Section 7 is concerned with the analysis of the semi-discrete optimal control problem. The next section
discusses stability bounds and error estimates for the discrete adjoint sate equation. In Sections 9 resp.
10 error estimates for the optimal state and cost functional are derived being the main theoretical
results of the study. Section 11 deals with the time stepping formulation of the discrete state equation.
In Section 12 we discuss the control discretization with Dirac measures at the grid points. Then we
introduce the L2(I ◊ œ) regularized problem and describe its solutions by a semi-smooth Newton
method. Finally Section 13 provides a numerical example.

2. Problem setting

We consider optimal control problems of the following form

J(y, u) = F (y) + –ÎuÎM
T

æ min
u,y

(P)

with the parameter – > 0 and the tracking functional

F (y) := 1
2
! Îy ≠ z1Î2

L2(I,H
fl

) + Îy(T ) ≠ z2Î2
H

fl

+ Îflˆty(T ) ≠ z3Î2
Vú

Ÿ

"
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using z := (z1, z2, z3) œ Y := L2(I ◊ œ) ◊ L2(œ) ◊ H≠1(œ), subject to the state equation which is an
initial-boundary value problem for the 1D generalized wave equation

Y
__]

__[

flˆtty ≠ ˆx(Ÿˆxy) = u in I ◊ œ := (0, T ) ◊ (0, L)
y = 0 on I ◊ ˆœ

y = y0, ˆty = y1 in {0} ◊ œ.

(2.1)

Here, in particular, the initial data y := (y0, y1) œ H1
0 (œ) ◊ L2(œ), and L > 0 and T > 0. The

coe�cients fl, Ÿ œ H1(œ) satisfy fl(x) Ø ‹ > 0 and Ÿ(x) Ø ‹ on œ.
For brevity we denote H = L2(œ), V = H1

0 (œ), V 2 = H2(œ) fl V and V 3 = {v œ V |ˆx(Ÿˆxv) œ V }
equipped with the norms

Î · ÎV = Îˆx · ÎH , Î · ÎV 2 = Îˆxx · ÎH , Î · ÎV 3 = Îˆx(Ÿˆx·)ÎV .

Moreover, we utilize the equivalent coe�cient-dependent Hilbert norms on H, V , V ú and Y
ÎwÎH

fl

= ÎÔ
flwÎH , ÎwÎV

Ÿ

= ÎÔ
ŸˆxwÎH , ÎwÎVú

Ÿ

= sup
ÎvÎV

Ÿ

Æ1
Èw, vÍœ,

ÎzÎY =
!Îz1Î2

L2(I,H
fl

) + Îz2Î2
H

fl

+ Îz3Î2
Vú

Ÿ

"1/2
,

where È·, ·Íœ is the duality relation on V ú ◊ V .
For the control space MT we consider two choices, either the space of vector measures M(œ, L2(I))

or the space of weak measurable, M(œ)-valued functions L2(I, M(œ)) := L2
w(I, M(œ)). Let corre-

spondingly CT be chosen as C0(œ, L2(I)) or L2(I, C0(œ)) where C0(œ) = {v œ C(œ̄)| v|x=0,L = 0}. The
following identifications of dual spaces hold

C0(œ, L2(I))ú ≥= M(œ, L2(I)), L2(I, C0(œ))ú ≥= L2(I, M(œ)),
i.e. MT = Cú

T , see [11] resp. [30], where more details on the properties of these spaces and the norm
Î · ÎM

T

can be found. In particular, the following embeddings hold
M(œ, L2(I)) Òæ L2(I, M(œ)) Òæ L2(I, V ú). (2.2)

3. Existence and regularity of the state

3.1. Weak formulations and preliminary existence, uniqueness and regularity results. In
this section we introduce our solution concepts for the state equation (2.1). We begin with defining a
weak formulation of (2.1).

Definition 3.1. Let (u, y0, y1) œ X ◊ V ◊ H with X = L2(I, H) or H1(I, V ú) or M(œ, L2(I)). Then
y œ C(Ī , V ) fl C1(Ī , H) is called a weak solution of (2.1) if it satisfies the integral identity

B(y, v) +
!
flˆty(T ), v(T )

"
H

=
⁄

I
Èu, vÍœ dt +

!
fly1, v(0)

"
H

’v œ L2(I, V ) fl H1(I, H) (3.1)

with the indefinite symmetric bilinear form
B(y, v) := ≠(flˆty, ˆtv)L2(I◊œ) + (Ÿˆxy, ˆxv)L2(I◊œ), (3.2)

and the initial condition y(0) = y0.

The right-hand side in (3.1) is well defined for X = M(œ, L2(I)) too due to embeddings (2.2).

Remark 3.2. It is possible (and more common) to suppose that v(T ) = 0 in (3.1) when the last
term on the left disappears (for example, see [46]). This leads to an equavalent formulation. To check
this, it is enough to replace there v by v—”, where —”(t) = min

!
1, (T ≠ t)/”

"
, 0 < ” < T . Then

ˆt(v—”) = (ˆtv)—” ≠ (1/”)v‰(T ≠”,T ), where ‰(T ≠”,T ) is the characteristic function of (T ≠ ”, T ). Passing
to the limit as ” æ 0 with the help of the dominated convergence theorem and the properties of y and
v leads to the result.

Another definition of the weak solution is possible.
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Definition 3.3. Let (u, y0, y1) œ X ◊ V ◊ H with X = L2(I ◊ œ) or H1(I, V ú) or M(œ, L2(I)). A
function y œ C(Ī , V ) fl H2(I, V ú) Òæ H1(I, H) is called a weak solution of (2.1) if it satisfies

⁄

I
Èflˆtty, vÍœ + (Ÿˆxy, ˆxv)H dt =

⁄

I
Èu, vÍœ dt ’v œ L2(I, V ) (3.3)

and y(0) = y0 as well as ˆty(0) = y1.

Proposition 3.4. Definitions 3.1 and 3.3 are equivalent.

Proof. The equivalence of (3.3) and (3.1) can be proved using integration by parts in time and the
density of CŒ(Ī , V ) in L2(I, V ) fl H1(I, H), cf. [35, Chapter 1, Theorem 2.1]. ⇤
Proposition 3.5. (1) Let (u, y0, y1) œ X ◊ V ◊ H with X = L2(I ◊ œ) or H1(I, V ú). Then (2.1)

has a unique weak solution satisfying y œ C(Ī , V ) fl C1(Ī , H) fl H2(I, V ú) and
ÎyÎC(Ī,V ) + ÎˆtyÎC(Ī,H) + ÎˆttyÎL2(I,V ú) Æ c

!ÎuÎX + ÎyÎV ◊H

"
. (3.4)

Hereafter c > 0, c1 > 0, etc., are independent of y and the data.
In the case X = H1(I, V ú) there even holds y œ C2(Ī , V ú) as well as

ÎˆttyÎC(Ī,V ú) Æ c
!ÎuÎH1(I,V ú) + ÎyÎV ◊H

"
.

(2) Let (u, y0, y1) œ X ◊V 2 ◊V with X = L2(I, V ) or H1(I, H). Then the weak solution y satisfies
y œ C(Ī , V 2) fl C1(Ī , V ) fl H2(I, H) and

ÎyÎC(Ī,V 2) + ÎˆtyÎC(Ī,V ) + ÎˆttyÎL2(I,H) Æ c
!ÎuÎX + ÎyÎV 2◊V

"
. (3.5)

In the case X = H1(I, H) there even holds y œ C2(Ī , H) as well as
ÎˆttyÎC(Ī,H) Æ c

!ÎuÎH1(I,H) + ÎyÎV 2◊V

"
.

Moreover, y satisfies the equation flˆtty ≠ ˆx(Ÿˆxy) = u in L2(I ◊ œ), i.e. it is the strong
solution.

Proof. For example, see [46, Propositions 1.1 and 1.3]. ⇤

Item 2 ensures the regularity of weak solution for more regular data.
For less regular data (u, y0, y1) œ L2(I, V ú) ◊ H ◊ V ú one can use other weak formulations. To

state the first of them, we define the integration operator (Itv)(t) :=
s t

0 v(s) ds and its adjoint
(Iú

t v)(t) :=
s T

t v(s) ds on Ī.

Definition 3.6. Let (u, y0, y1) œ L2(I, V ú) ◊ H ◊ V ú. A function y œ C(Ī , H) with Ity œ C(Ī , V ) is
called a weaker solution of (2.1) if it satisfies

⁄

I
≠(fly, ˆtv)H + (ŸˆxIty, ˆxv)H dt +

!
fly(T ), v(T )

"
H

=
⁄

I

+
u, Iú

t v
,

œ
dt +

!
fly0, v(0)

"
H

+ Èfly1, (Iú
t v)(0)Íœ ’v œ L2(I, V ) fl H1(I, H). (3.6)

As in the case of Definition 3.1, it is su�cient to take v(T ) = 0 in (3.6), cf. Remark 3.2.

Proposition 3.7. Let (u, y0, y1) œ L2(I, V ú) ◊ H ◊ V ú. Then there exists a unique weaker solution
y œ C(Ī , H) fl C1(Ī , V ú) and it satisfies the bound

ÎyÎC(Ī,H) + ÎItyÎC(Ī,V ) + ÎˆtyÎC(Ī,V ú) Æ c
!ÎuÎL2(I,V ú) + ÎyÎH◊V ú

"
.

Proof. See [46, Proposition 1.2]. ⇤

We infer that there are other weak formulations of (2.1) for solutions y œ C(Ī , H) fl C1(Ī , V ú). One
can use the concept of very weak solutions.
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Definition 3.8. Let (u, y0, y1) œ L2(I, V ú) ◊ H ◊ V ú. A function y œ C(Ī , H) fl C1(Ī , V ú) satisfying
⁄

I

!
y, flˆttv ≠ ˆx(Ÿˆxv)

"
H

dt ≠ !
fly(T ), ˆtv(T )

"
H

+ Èflˆty(T ), v(T )Íœ

=
⁄

I
Èu, vÍœ dt ≠ !

fly0, ˆtv(0)
"

H
+ Èfly1, v(0)Íœ (3.7)

for any v œ L2(I, V 2) fl H2(I, H) Òæ H1(I, V ) is called a very weak solution of (2.1).

Actually, these two last solution concepts are equivalent for the considered data spaces.

Theorem 3.9. Definitions 3.6 and 3.8 are equivalent.

Proof. First of all, we consider the auxiliary integrated in t problem (2.1):
Y
__]

__[

flˆttỹ ≠ ˆx(Ÿˆxỹ) = Itu + fly1 in I ◊ œ

ỹ = 0 on I ◊ ˆœ

ỹ = 0, ˆtỹ = y0 in {0} ◊ œ

(3.8)

for (u, y0, y1) œ L2(I, V ú) ◊ H ◊ V ú. Thus, we have Itu œ H1(I, V ú). According to Proposition 3.5
problem (3.8) has a unique weak solution ỹ œ C(Ī , V ) fl C1(Ī , H). Moreover, we set y = ˆtỹ. Thus
the weak formulation of (3.8) involving ỹ coincides with the weaker formulation of (2.1) involving y.
Furthermore there holds y = ˆtỹ œ C(Ī , H) and

ˆty = ˆttỹ = (1/fl)
!Itu + ˆx(Ÿˆxỹ) + fly1" œ C(Ī , V ú). (3.9)

Now we take any v œ CŒ(Ī , V 2) and test (3.6) with ≠ˆtv in the role of v:
⁄

I
(fly, ˆttv)H ≠ !

ŸˆxIty, ˆxˆtv
"

H
dt ≠ !

fly(T ), ˆtv(T )
"

H

=
⁄

I

+
u, ≠Iú

t (ˆtv)
,

œ
dt ≠ !

fly0, ˆtv(0)
"

H
+ Èfly1, ≠(Iú

t ˆtv)(0)Íœ.

Next we rearrange a term on the left integrating by parts in x and t:

≠
⁄

I

!
ŸˆxIty, ˆxˆtv

"
H

dt =
⁄

I

!Ity, Lˆtv
"

H
dt = ≠

⁄

I

!
y, Lv

"
H

dt +
!
(Ity)(T ), Lv(T )

"
H

(3.10)

with Lv := ˆx(Ÿˆxv). Since Ity œ C(Ī , V ), we get
⁄

I

!
y, flˆttv ≠ ˆx(Ÿˆxv)

"
H

dt ≠ !
fly(T ), ˆtv(T )

"
H

+ Èˆx(ŸˆxIty)(T ), v(T )Íœ

=
⁄

I

+
u, v

,
œ

dt ≠ È(Itu)(T ), v(T )Íœ ≠ !
fly0, ˆtv(0)

"
H

+ Èfly1, v(0)Íœ ≠ Èfly1, v(T )Íœ.

Then (3.9) and the density of CŒ(Ī , V 2) in L2(I, V 2) fl H2(I, H) imply that y is a very weak solution
of (2.1).

Now let y œ C(Ī , H) fl C1(Ī , V ú) be a very weak solution of (2.1). Then we take any v œ CŒ(Ī , V 2)
and test (3.7) with Iú

t v. Thus, we get
⁄

I

!
y, ≠flˆtv)H ≠ (y, ˆx(ŸˆxIú

t v)
"

H
dt +

!
fly(T ), v(T )

"
H

=
⁄

I

+
u, Iú

t v
,

œ
dt +

!
fly0, v(0)

"
H

+ Èfly1, (Iú
t v)(0)Íœ (3.11)

and then
⁄

I
(y, ≠flˆtv)H + (Ity, ≠ˆx(Ÿˆxv))H dt +

!
fly(T ), v(T )

"
H

=
⁄

I

+Itu + fly1, v
,

œ
dt +

!
fly0, v(0)

"
H

.
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The last equation yields that LIty = ≠flˆty + Itu + fly1 œ C(Ī , V ú). Thus Ity œ C(Ī , V ) and we can
transform a term on the left in (3.11) by replacing v by Iú

t v in (3.10):
⁄

I

!
y, ≠ˆx(ŸˆxIú

t v)
"

H
dt =

⁄

I

!
ŸˆxIty, ˆxv

"
H

dt.

Then the density of CŒ(Ī , V 2) in L2(I, V ) fl H1(I, H) shows that y is a weaker solution of (2.1). ⇤
Moreover, there is the concept of solutions by transposition.

Definition 3.10. Let (u, y0, y1) œ L2(I, V ú) ◊ H ◊ V ú. A solution by transposition y œ C(Ī , H) fl
C1(Ī , V ú) of (2.1) is defined by

⁄

I
(fly, „)H dt ≠ !

fly(T ), p1"
H

+ Èflˆty(T ), p0Íœ =
⁄

I
Èu, pÍœ dt + Èfly1, p(0)Íœ ≠ !

fly0, ˆtp(0)
"

H
(3.12)

for all („, p0, p1) œ L2(I ◊ œ) ◊ V ◊ H where p œ C(Ī , V ) fl C1(Ī , H) is the weak solution of the adjoint
problem Y

__]

__[

flˆttp ≠ ˆx(Ÿˆxp) = fl„ in I ◊ œ

p = 0 on I ◊ ˆœ

p = p0, ˆtp = p1 in {T} ◊ œ

(3.13)

Proposition 3.11. Definitions 3.8 and 3.10 are equivalent too.

Proof. For „ œ H1(I, H) or L2(I, V ), p0 œ V 2 and p1 œ V there holds p œ C(Ī , V 2)flC1(Ī , V )flH2(I, H),
see Proposition 3.5. Due to the density of H1(I, H) resp. L2(I, V ) in L2(I ◊ œ) as well as V 2 in
V and V in H a very weak solution is a solution by transposition. Now let p œ CŒ(Ī , V 2) and set
„ = ˆttp≠ (1/fl)ˆx(Ÿˆxp) œ CŒ(Ī , H), p0 = p(T ) œ V 2 and p1 = ˆtp(T ) œ V 2. Thus p is the solution of
(3.13). Then the density of CŒ(Ī , V 2) in L2(I, V 2) fl H2(I, H) implies that a solution by transposition
is a very weak solution. ⇤
Remark 3.12. For (u, y0, y1) œ L2(I, H) ◊ V ◊ H, the weaker solution coincides with the weak one.

3.2. Existence and regularity of the state. In this section we study the existence, uniqueness
and regularity of solution of the state equation for measure valued source terms. We will carry out
the analysis for both control spaces. We use the distinct properties of each space in order to show
improved regularity of the state.

3.2.1. The control space M(œ, L2(I)). The space M(œ, L2(I)) is not so broad as L2(I, M(œ)) and
contains no moving point sources but contains the standing ”-sources (1.2). Therefore, we expect that
the state has better regularity properties in this case and prove that y œ C(Ī , V ) fl C1(Ī , H). The proof
will be based on a priori bound and a density argument. First we state the following density result.

Lemma 3.13. Let u œ M(œ, L2(I)). Then there exists a sequence {un} µ CŒ
c (œ, L2(I)) such that

un Ôú u in M(œ, L2(I)) as n æ Œ, ÎunÎM(œ,L2(I)) Æ ÎuÎM(œ,L2(I)) ’n Ø 1. (3.14)

Proof. We denote by X the locally convex space M(œ, L2(I)) endowed with its weak-star topology
and define the absolutely convex set

E = {u œ CŒ
c (œ, L2(I))|ÎuÎL1(œ,L2(I)) Æ 1} µ X.

Assume that (3.14) is wrong. Then there exists u0 œ M(œ, L2(I)), Îu0ÎM(œ,L2(I)) = 1 such that
u0 ”œ Ē where Ē is the closure of E in X. Owing to the corollary of a theorem on the separation of
convex sets [25, Ch. III, Theorem 6] there exists v œ C0(œ, L2(I)) such that

|Èu, vÍM(œ,L2(I)),C0(œ,L2(I))| Æ 1 ’u œ E, 1 < Èu0, vÍM(œ,L2(I)),C0(œ,L2(I)) Æ ÎvÎC0(œ,L2(I)). (3.15)
On the other hand, CŒ

c (œ, L2(I)) is dense in L1(œ, L2(I)) thus
sup
uœE

|Èu, vÍM(œ,L2(I)),C0(œ,L2(I))| = ÎvÎC0(œ,L2(I))
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that contradicts (3.15). ⇤
Note that clearly CŒ

c (œ, L2(I)) µ L2(I, V ).
Preliminarily we prove the following crucial a priori bound.

Lemma 3.14. Let (u, y0, y1) œ L1(œ, L2(I)) ◊ V ◊ H and y be the corresponding strong solution of
problem (2.1). Then y satisfies the following a priori bound

ÎyÎC(Ī,V ) + ÎˆtyÎC(Ī,H) + ÎŸˆxyÎC(œ̄,L2(I)) + ÎˆtyÎC0(œ,L2(I)) Æ c
!ÎuÎL1(œ,L2(I)) + ÎyÎV ◊H

"
. (3.16)

Proof. We first remind the energy equality for problem (2.1)
ÎÔ

flˆty(t)Î2
H + ÎÔ

Ÿˆxy(t)Î2
H = ÎÔ

fly1Î2
H + ÎÔ

Ÿˆxy0Î2
H + 2It(u(t), ˆty(t))H on I.

After setting
E(t) := Îˆty(t)Î2

H + Îˆxy(t)Î2
H , E0 := Îy1Î2

H + Îˆxy0Î2
H , c0 := max

!ÎflÎLŒ(œ), ÎŸÎLŒ(œ)
"
,

the energy equality implies

‹ÎEÎC(Ī) Æ c0E0 + 2 max
◊œĪ

---
⁄

œ

⁄ ◊

0
uˆty dtdx

--- Æ c0E0 + 2‹≠1ÎuÎL1(œ, L2(I))Î
Ô

flŸˆtyÎC0(œ, L2(I)). (3.17)

We also multiply the equation in (2.1) by ≠2Ÿˆxy and integrate over I. Integration by parts in t
yields the equality

flŸˆx

1
ÎˆtyÎ2

L2(I)

2
+ˆx

1
ÎŸˆxyÎ2

L2(I)

2
= 2flŸ

1
ˆty(T )ˆxy(T )≠y1ˆxy0

2
≠2(u, Ÿˆxy)L2(I) on œ. (3.18)

We define a function P := flŸÎˆtyÎ2
L2(I) + ÎŸˆxyÎ2

L2(I) on œ. Since the left-hand side of (3.18) equals
ˆxP ≠ !

ˆx(flŸ)
"ÎˆtyÎ2

L2(I), taking the modulus and integrating over any (a, b) µ œ we derive

ÎˆxPÎL1(a,b) Æ c2
0(E(T ) + E0) + 2ÎuÎL1(œ, L2(I))ÎŸˆxyÎC(œ̄, L2(I)) + Î!

ˆx(flŸ)
"ÎˆtyÎ2

L2(I)ÎL1(a,b)

Æ c2
0(ÎEÎC(Ī) + E0) + 2ÎuÎL1(œ, L2(I))ÎPÎ1/2

C(œ̄) + ‹≠2Îˆx(flŸ)ÎL1(a,b)ÎPÎC(œ̄). (3.19)

Let x0 œ œ̄ be such that ÎPÎC(œ̄) = P (x0) hold and let now [a, b] – x0. Then the mean value theorem
for integrals implies

ÎPÎC(œ̄) Æ (b ≠ a)≠1ÎPÎL1(a,b) + ÎˆxPÎL1(a,b). (3.20)
By the above definitions we clearly have

ÎPÎL1(œ) Æ c2
0ÎEÎL1(I) Æ c2

0TÎEÎC(Ī). (3.21)

Inserting (3.19) into (3.20) and using (3.21), we obtain

ÎPÎC(œ̄) Æ c2
0
!
1 + T (b ≠ a)≠1"!ÎEÎC(Ī) + E0"

+ 2ÎuÎL1(œ, L2(I))ÎPÎ1/2
C(œ̄)

+ ‹≠2(b ≠ a)1/2ÎflŸÎH1(œ)ÎPÎC(œ̄). (3.22)

Owing to (3.17) we can write

‹ÎEÎC(Ī) Æ c2
0E0 + 2‹≠1ÎuÎL1(œ, L2(I))ÎPÎ1/2

C(œ̄). (3.23)

Using this in (3.22) and choosing a small enough (a, b) such that ‹≠2(b ≠ a)1/2ÎflŸÎH1(œ) Æ 1/2, we
derive

ÎPÎC(œ̄) Æ c1
!
E0 + ÎuÎ2

L1(œ, L2(I))
"
. (3.24)

Inserting the last bound in (3.23), we also get
ÎEÎC(Ī) Æ c2

!
E0 + ÎuÎ2

L1(œ, L2(I))
"
.

Finally, this yields bound (3.16). ⇤
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Remark 3.15. Lemma 3.14 remains valid for fl, Ÿ œ W 1,1(œ). Owing to the absolute continuity of the
Lebesgue integral we have Îˆx(flŸ)ÎL1(a,b) Æ µ(b ≠ a), where lim◊æ+0 µ(◊) = 0, thus one can replace
(b ≠ a)1/2ÎflŸÎH1(œ) by µ(b ≠ a) in (3.22) and below in the proof.

Theorem 3.16. Let (u, y0, y1) œ M(œ, L2(I)) ◊ V ◊ H. Then there exists a unique weak solution y
and it satisfies the bound

ÎyÎC(Ī,V ) + ÎˆtyÎC(Ī,H) Æ c
!ÎuÎM(œ,L2(I)) + ÎyÎV ◊H

"
. (3.25)

Proof. 1. Let first u = 0. According to Proposition 3.5 were exists a unique weak solution y of (2.1)
for any y œ V ◊ H and it satisfies

ÎyÎC(Ī,V ) + ÎˆtyÎC(Ī,H) Æ cÎyÎV ◊H .

2. Now it su�ces to consider the case y0 = y1 = 0. Let first u œ M(œ, H1(I)) Òæ H1(I, V ú)
since ˆtu œ M(œ, L2(I)) Òæ L2(I, V ú). Then according to Proposition 3.5 there exists a unique weak
solution y œ C(Ī , V ) fl C1(Ī , H) of (2.1) and it satisfies bound (3.4). Moreover, it is also a weaker
solution.

So it remains to prove the bound
ÎyÎC(Ī,V ) + ÎˆtyÎC(Ī,H) Æ c ÎuÎM(œ, L2(I)) for u œ M(œ, H1(I)). (3.26)

To this end, according to Lemma 3.13 we approximate u by functions {un} µ L2(I, V ) satisfying
(3.14). The strong solution yn of (2.1) corresponding to u = un satisfies the bound like (3.16) and in
particular

ÎynÎC(Ī,V ) + ÎˆtynÎC(Ī,H) Æ c ÎunÎM(œ, L2(I)) Æ cÎuÎM(œ,L2(I)).

Therefore there exists a subsequence of {yn} (not relabelled) and ỹ œ LŒ(I, V ) fl W 1,Œ(I, H) such
that yn converges to ỹ in the weak-star sense of LŒ(I, V ) fl W 1,Œ(I, H). This is su�cient to pass to
the limit in the last bound and in (3.6) for y = yn, u = un and v(T ) = 0, see Remark 3.2. Thus ỹ
both satisfies the bound

ÎỹÎLŒ(Ī,V ) + ÎˆtỹÎW 1,Œ(Ī,H) Æ c ÎuÎM(œ, L2(I))

and is a weaker solution of (2.1). Due to its uniqueness there holds ỹ = y, and bound (3.26) is proved.
2. Let now u œ M(œ, L2(I)) and y be the corresponding weaker solution of (2.1), see Proposition

3.7. Since M(œ, H1(I)) is dense in M(œ, L2(I)), cf. [31, Proposition 2.1], there exists a sequence
{un} µ M(œ, H1(I)) such that un æ u in M(œ, L2(I)) as n æ Œ. Let yn œ C(Ī , V ) fl C1(Ī , H)
be the above weak solution of (2.1) corresponding to u = un. Since {un} is a Cauchy sequence in
M(œ, L2(I)), {yn} is a Cauchy sequence in C(Ī , V ) fl C1(Ī , H) too due to bound (3.26) for u = un.
Thus yn æ ŷ in C(Ī , V ) fl C1(Ī , H) and

ÎŷÎC(Ī,V ) + ÎˆtŷÎC(Ī,H) Æ c ÎuÎM(œ, L2(I)).

Then we pass to the limit in (3.1) for y = yn, u = un and v(T ) = 0 and see that ŷ is a weak solution
of (2.1). Due to uniqueness of the weaker solution we get ŷ = y, and the proof is complete. ⇤
3.2.2. The control space MT = L2(I, M(œ)). Recall that the space MT = L2(I, M(œ)) contains the
moving point sources (1.3). We set

H(≠1) = V ú, H(0) = H, H(1) = V, H(2) = V 2, H(3) = V 3

and introduce the interpolation spaces
H(⁄) :=

!
H(¸), H(¸+1)"

⁄≠¸,Œ, ¸ := Â⁄Ê,

for non-integer ⁄ œ (≠1, 3) using the real K⁄,q-interpolation method of Banach spaces for q = Œ, see [3].
Recall that the value q = Œ leads to the broadest intermediate spaces. Their explicit description in
terms of the subspaces in the Nikolskii spaces is known, see [39,44,46]. In particular,

H(⁄) = H⁄,2(œ) for 0 < ⁄ < 1
2 , H(⁄) = H̃1/2,2(œ) for ⁄ = 1

2 , H(⁄) = H⁄,2
0 (œ) for 1

2 < ⁄ < 1,
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where H̃1/2,2(œ) := {w œ H1/2,2(œ)| ow œ H1/2,2(≠L, 2L)} and ow is the odd extension of w with
respect to x = 0, L oustide œ. It is well known that the last space contains discontinuous but piecewise
continuously di�erentiable functions.

Lemma 3.17. The following embeddings hold
L2(I, M(œ)) Òæ L2(I, H(≠1/2)), (3.27)
C1(Ī , M(œ)) Òæ H1(I, H(≠1/2)). (3.28)

Proof. Both the embeddings follow from M(œ) Òæ H(≠1/2). Due to [3] the last embedding means that
sup

0<h<X
h≠1/2 inf

vœH

!Îw ≠ vÎV ú + hÎvÎH

" Æ cÎwÎM(œ) ’w œ M(œ).

Equivalently, for any 0 < h < L, there exists wh œ H such that
Îw ≠ whÎV ú Æ c1h1/2ÎwÎM(œ), ÎwhÎH Æ c1h≠1/2ÎwÎM(œ) ’w œ M(œ). (3.29)

Any w œ M(œ) can be represented as w = DxW with ÎwÎM(œ) = varœ̄ W , where Dx is the
distributional derivative of a function W œ NBV (œ) [9, Ch. 2]. Here NBV (œ) is the space of
normalized functions of bounded variation on œ̄ that are continuous from the right at x = 0 and
continuous from the left at any x œ (0, L]. Notice that the following inequalities hold

ÎW ≠ W (0)ÎLŒ(œ) Æ varœ̄ W, sup
0<h<L

Î”≠hWÎL1(h,L) Æ varœ̄ W ’W œ NBV (œ), (3.30)

where ”≠hW (x) := h≠1!
W (x) ≠ W (x ≠ h)

"
is the backward di�erence quotient (the latter inequality

follows from the definition of the Riemann integral).
We can choose W (0) = 0 and extend W (x) = 0 for x < 0. Then for 0 < h < L we define the

backward average Wh(x) := h≠1 s 0
≠h W (x + ›) d› and set wh := ˆxWh = ”≠hW . Owing to the

inequalities
ÎÏÎH Æ ÎÏÎ1/2

LŒ(œ)ÎÏÎ1/2
L1(œ) ’Ï œ LŒ(œ)

and (3.30) we can prove estimates (3.29):

Îw ≠ whÎV ú Æ ÎW ≠ WhÎH Æ !
2ÎWÎLŒ(œ)

"1/2!
h sup

0<h<L
Î”≠hWÎL1(œ)

"1/2 Æ ch1/2 varœ̄ W,

ÎwhÎH = Î”≠hWÎH Æ !
2h≠1ÎWÎLŒ(œ)

"1/2Î”≠hWÎ1/2
L1(œ) Æ ch≠1/2 varœ̄ W.

⇤

4. Analysis of the control problem

According to Theorem 3.16 and Proposition 3.7 the state equation (2.1) is uniquely solvable for
any u in either M(œ, L2(I)) or L2(I, M(œ)) and the solution y depends continuously on the data.
Therefore, we can introduce the linear and bounded operator Ŝ : (u, y0, y1) ‘æ (y, y(T ), flˆty(T )). The
control-to-state mapping

S : MT æ Y, u ‘æ (y, y(T ), flˆty(T ))
is given by Su = Ŝ(u, 0, 0) + Ŝ(0, y0, y1) for fixed y0 and y1 and it is an a�ne and bounded operator.
So we can rewrite the original control problem (P) in its reduced form

j(u) = 1
2 ÎSu ≠ zÎ2

Y + –ÎuÎM
T

æ min
uœM

T

.

Proposition 4.1. Problem (P) has a unique solution ū œ MT .

Proof. The control-to-state operator S is weak-star-to-strong sequential continuous, i.e., if {un} µ MT

and un Ôú u in MT , then Sun æ Su in Y. The proof of this continuity property is similar to [31,
Lemma 6.1] in the case of solutions by transposition resp. very weak solutions. The strong continuity
follows from the compact embeddings and well known Aubin-Lions-Lemma. Then the direct method
of calculus of variations combined with the sequential Banach-Alaoglu theorem (CT is separable) can
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be applied to show existence of an optimal control. Additionally the control is unique since the
control-to-state operator S is injective and the data tracking functional is strictly convex. ⇤

Owing to Proposition 3.7 the optimal control ū œ MT satisfies the inequalities

–ÎūÎM
T

Æ j(ū) Æ j(0) = 1
2ÎS(0) ≠ zÎ2

Y Æ c
!Îy0ÎH + Îy1ÎV ú + ÎzÎY

"2 (4.1)
and thus

ÎūÎM
T

Æ c
!ÎyÎH◊V ú + ÎzÎY

"2 Æ C. (4.2)
Hereafter C > 0 depends on the norms of data.

Next we discuss first order optimality conditions. We introduce the adjoint control-to-solution
operator Sı : Y æ C(Ī , V ) Òæ CT , („, p1, p0) ‘æ p where p is a weak solution of (3.13). This operator
is well defined and bounded according to Proposition 3.5.

We also need the operator A≠1 : V ú æ V , f ‘æ w where w œ V is the unique solution of
(Ÿˆxw, ˆxv)H = Èf, vÍœ ’v œ V. (4.3)

The next result provides the necessary and su�cient optimality condition for the optimal pair (p̄, ū).

Proposition 4.2. An element ū œ MT is an optimal control of (P) if and only if
≠p̄ œ –ˆÎūÎM

T

, (4.4)
or equivalently

È≠p̄, u ≠ ūÍC
T

, M
T

+ –ÎūÎM
T

Æ –ÎuÎM
T

’u œ MT (4.5)
where p̄ = Sú!

ȳ ≠ z1, ≠(ȳ(T ) ≠ z2), A≠1(flˆtȳ ≠ z3)
"

with (ȳ, ȳ(T ), flˆtȳ(T )) = Ŝ(ū, y0, y1).

Proof. For MT = M(œ, L2(I)) a proof in [31] remains valid; for MT = L2(I, M(œ)) it is similar. ⇤

To discuss further the properties of the optimal control ū, we introduce the Jordan decomposition of
a signed measure µ œ M(œ), see [5]. There exists unique elements µ± œ M(œ)+ such that µ = µ+≠µ≠.
Moreover, we recall the polar decomposition of a vector measure µ œ M(œ, L2(I)): dµ = µÕd|µ|, where
µÕ is the Radon-Nikodym-derivative of µ with respect to |µ|.

The subgradient condition in Proposition 4.2 implies the following conditions.

Proposition 4.3. Let ū œ MT be the optimal control of (P) and p̄ œ CT be the corresponding adjoint
state. Then there holds Îp̄ÎC

T

Æ –.
In the cases MT = L2(I, M(œ)) and MT = M(œ, L2(I)) there respectively hold

supp ū±(t) µ {x œ œ | p̄(t, x) = ûÎp̄(t, ·)ÎC0(œ)} for a.a. t œ I

and
supp |ū| µ {x œ œ | Îp̄(·, x)ÎL2(I) = –}, ūÕ = ≠–≠1p̄ in L1(œ, |ū|, L2(I)). (4.6)

Proof. A detailed discussion of the proof of these results can be found in [11,30]. ⇤

The regularity of the adjoint state p̄ is now applied to show improved regularity of the optimal
control ū.

Theorem 4.4. Let MT = M(œ, L2(I)), z œ Y1 := L2(I, V )◊V ◊H, y œ V ◊H and ū be the optimal
control of (P). Then ū œ C1(Ī , M(œ)) and the following bound holds

ÎūÎC1(Ī,M(œ)) Æ C =C
!ÎyÎV ◊H , ÎzÎY1

"
.

Proof. There holds ȳ œ C(Ī , V ) fl C1(Ī , H) according to Theorem 3.16. Thus, the optimal adjoint
state has the following regularity p̄ œ C(Ī , V 2) fl C1(Ī , V ) by Proposition 3.5. We have ū = ≠–≠1p̄ |ū|
according to (4.6). Moreover, we define the function

w = ≠–≠1(ˆtp̄)|ū|
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and show that it serves the time derivative of ū. For any t0, t œ Ī and t0 ”= t, we define the di�erence
quotient ū(t0; t) =

!
ū(t) ≠ ū(t0)

"
/(t ≠ t0). Then we consider

Îū(t0, t) ≠ w(t0)ÎM(œ) = –≠1 sup
Î„ÎC0(œ)Æ1

⁄

œ

!
p̄(t0, t) ≠ ˆtp(t0)

"
„ d|ū|

Æ –≠1Îp̄(t0, t) ≠ ˆtp(t0)ÎC0(œ)ÎūÎM(œ,L2(I))

Æ c–≠1Îp̄(t0, t) ≠ ˆtp(t0)ÎV ÎūÎM(œ,L2(I)) æ 0

as t æ t0 since p̄ œ C1(Ī , V ). Next, quite similarly we get
Îw(t) ≠ w(t0)ÎM(œ) Æ c–≠1Îˆtp̄(t) ≠ ˆtp̄(t0)ÎV ÎūÎM(œ,L2(I)) æ 0

as t æ t0. Consequently ˆtū = w œ C(Ī , M(œ)). Finally, we bound ˆtū as follows
ÎˆtūÎC(Ī,M(œ)) Æ c–≠1Îˆtp̄ÎC(Ī,V )ÎūÎM(œ,L2(I))

Æ c1–≠1!Îȳ ≠ z1ÎL2(I,V ) + Îȳ(T ) ≠ z2ÎV + Îflˆtȳ(T ) ≠ z3ÎH

"ÎūÎM(œ,L2(I))

Æ c2–≠1!ÎūÎM(œ,L2(I)) + ÎyÎV ◊H + ÎzÎY1
"ÎūÎM(œ,L2(I))

owing to Proposition 3.5 and Theorem 3.16. Utilizing bound (4.2) for ū, we complete the proof. ⇤

5. Discretization of the state equation

We introduce the uniform grid tm = m· in time with the step · = T/M and a non-uniform grid
0 = x0 < x1 < . . . < xN = L in space with the steps hj = xj ≠ xj≠1, where M Ø 2 and N Ø 2.
Let also h = maxj=1,...,N hj , hmin = minj=1,...,N hj and Ë = (·, h). We assume that the space grid is
quasi-uniform, i.e., h Æ c1hmin. Hereafter c, c1, C, etc., are grid-independent.

Let V· µ H1(I) and Vh µ V be the spaces of piecewise linear finite elements with respect to the
introduced grids on Ī and œ̄.

We approximate the state variable y by yË œ VË := V· ¢ Vh µ H1(I, V ) and additionally ˆty(T ) by
y1

T h œ Vh. For (u, y0, y1) œ MT ◊ H ◊ V ú the discrete state equation has the following form
B‡(yË, v) + (fly1

T h, v(T ))H = Èu, vÍM
T

, C
T

+ Èfly1, v(0)Íœ ’v œ VË, (5.1)
(flyË(0), Ï)H = (fly0, Ï)H ’Ï œ Vh, (5.2)

involving the indefinite symmetric bilinear form
B‡(y, v) := ≠(flˆty, ˆtv)L2(I◊œ) ≠ !

‡ ≠ 1
6
"
·2(Ÿˆxˆty, ˆxˆtv)L2(I◊œ) + (Ÿˆxy, ˆxv)L2(I◊œ), (5.3)

with the grid independent parameter ‡, cf. (3.1). This definition follows [46] but notice carefully that
normally yË is uniquely defined by (5.1) with v(T ) = 0 and (5.2). To treat general v, we need y1

T h.

Remark 5.1. The second term in (5.3) regularizes the Galerkin (i.e. projection) method with respect
to bilinear form (3.2). It is included to ensure unconditional stability for suitable values of ‡. Moreover,
the term ≠(1/6) ·2(Ÿˆxˆty, ˆxˆtv)L2(I◊œ) is the error term of the compound trapezoidal rule applied
for the calculation of the temporal integral in (Ÿˆxy, ˆxv)L2(I◊œ). So that, in particular, for ‡ = 0 in
(5.3) this temporal integral is calculated using this rule whereas for ‡ = 1/6 it is not approximated.

Next we recall the inverse inequality
ÎÏÎV

Ÿ

Æ –hÎÏÎH
fl

’Ï œ Vh (5.4)
where the least constant satisfies c1h≠1 Æ –h Æ c2h≠1 for the quasi-uniform grid. For ‡ Æ 1/4 we need
to state conditions linking the temporal and spatial grids to ensure stability of the numerical method.

Assumption 5.2. In what follows, let
if ‡ < 1

4 , then ·2–2
h

!1
4 ≠ ‡

" Æ 1 ≠ Á2
0 for some 0 < Á0 < 1, (5.5)

if ‡ Æ 1
4 , then ·2–2

h

!1+Á2
1

4 ≠ ‡
" Æ 1 for some 0 < Á1 Æ 1. (5.6)
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Remark 5.3. The parameters Á0 and Á1 can be chosen arbitrarily small but then constants in the
stability and error estimates for our FEM can tend to infinity.

Remark 5.4. As we see below in Section 11, the method is related to well known time-stepping
methods, in particular, to the explicit Leap-Frog-method for ‡ = 0. Then conditions (5.5) and (5.6)
reduce to a CFL-type one ·–h Æ 2

Ò
1 ≠ Á2

0. For ‡ = 1/4 the method is related to the Crank-Nicolson
scheme and is unconditionally stable but in a weaker norm than we need to derive our error estimates
so that we impose a very weak CFL-type condition ·–h Æ 2/Á1.

Below in proofs we utilize the auxiliary squared norms

ÎÏÎ2
H0

·

:= ÎÏÎ2
H

fl

+
!
‡ ≠ 1

4
"
·2ÎÏÎ2

V
Ÿ

, ÎyÎ2
C

·

(H
E

) = max1ÆmÆM

1
1
· Îym ≠ ym≠1Î2

H0
·

+ 1
2Îym + ym≠1Î2

V
Ÿ

2

for Ï œ Vh and y œ V· ¢ Vh. We need to bound them by standard norms.

Lemma 5.5. Under conditions (5.5) and (5.6) the following inequalities hold

Á0ÎÏÎH
fl

Æ ÎÏÎH0
·

’Ï œ Vh, (5.7)

ÎyÎC
·

(V
Ÿ

) := max0ÆmÆM Îy(tm)ÎV
Ÿ

Æ
Ô

2
Á1

ÎyÎC
·

(H
E

) ’y œ VË

with Á0 := 1 for ‡ Ø 1/4 and Á1 :=
Ô

4‡ ≠ 1 for ‡ > 1/4.

Proof. For ‡ Ø 1/4, the first inequality is obvious; for ‡ < 1/4 it can be checked by a direct calculation
using (5.4). The proof of the second inequality is covered in [46, Corollary 2.1]. ⇤

Now we discuss some properties of y1
T h and ˆty(T ) that are essential below.

Proposition 5.6. Let (yË, y1
T h) œ VË ◊ Vh be the solution of (5.1)-(5.2). Then there holds

(fly1
T h, Ï)H = ≠

1
Ÿˆx

⁄

I
yË dt, ˆxÏ

2

H
+

⁄

I
Èu, ÏÍœ dt + (fly1, Ï)H ’Ï œ Vh. (5.8)

Proof. This is proved by testing (5.1) with time constant functions v = Ï œ Vh. ⇤

The non-local in time identity (5.8) is convenient for our error analysis but not for the implementation;
for the latter issue see Section 11. Identities similar to (5.8) also hold on the continuous level.

Proposition 5.7. (1) Let y œ C(Ī , V )flC1(Ī , H) be the weak solution of (2.1) for MT = M(œ, L2(I)).
Then there holds

(flˆty(T ), Ï)H = ≠
1
Ÿˆx

⁄

I
y dt, ˆxÏ

2

H
+

e ⁄

I
u dt, Ï

f

œ
+ (fly1, Ï)H ’Ï œ V. (5.9)

(2) Let y œ C(Ī , H)flC1(Ī , V ú) be the weaker (very weak) solution of (2.1) for MT = L2(I, M(œ)).
Then there holds

Èflˆty(T ), ÏÍœ = ≠
1
Ÿˆx

⁄

I
y dt, ˆxÏ

2

H
+

⁄

I
Èu, ÏÍœ dt + Èfly1, ÏÍœ ’Ï œ V. (5.10)

Proof. For MT = M(œ, L2(I)) identity (5.9) is proved by testing (3.1) with time constant function
v = Ï œ V . For MT = L2(I, M(œ)) we test (3.7) with any Ï œ V 2 and get

Èflˆty(T ), ÏÍœ = ((Ity)(T ), ˆx(ŸˆxÏ))H + Èu, ÏÍM
T

, C
T

According to Proposition 3.7 we have Ity œ C(Ī , V ). Thus there holds

Èflˆty(T ), ÏÍœ = ≠!
Ÿˆx(Ity)(T ), ˆxÏ

"
H

+ Èu, ÏÍM
T

, C
T

+ Èfly1, ÏÍœ.

The density of V 2 in V implies (5.10). ⇤
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For our analysis, we need some projection and interpolation operators. We introduce the standard
projectors fi0

h: Hfl æ Vh and fi1
h: VŸ æ Vh defined by

(flfi0
hw, Ï)H = (flw, Ï)H ’Ï œ Vh, (5.11)

(Ÿˆxfi1
hw, ˆxÏ)H = (Ÿˆxw, ˆxÏ)H ’Ï œ Vh. (5.12)

Clearly Îfi0
hwÎH

fl

Æ ÎwÎH
fl

and Îfi1
hwÎV

Ÿ

Æ ÎwÎV
Ÿ

. Identity (5.2) means that yË(0) = fi0
hy0.

Moreover the following property holds
(w, w̃)V

Ÿ

≠ (fi1
hw, fi1

hw̃)V
Ÿ

= (w ≠ fi1
hw, w̃ ≠ fi1

hw̃)V
Ÿ

’w, w̃ œ V. (5.13)
Following [46], we also introduce the regularized Hfl projector fi0

h,‡0 : V æ Vh defined by

(flfih,‡0w, Ï)H + ‡0·2(Ÿˆxfih,‡0w, ˆxÏ)H = (flw, Ï)H ’Ï œ Vh. (5.14)
with the grid independent parameter ‡0 Ø ‡ ≠ 1/4. Clearly fih,‡0 = fi0

h for ‡0 = 0.
Let i· : C(Ī) æ V· be the interpolation operator such that i· w(tm) = w(tm) for all m = 0, . . . , M .
Next we define the operator A≠1

h : V ú æ Vh, f ‘æ wh where wh œ Vh is the unique solution of
(Ÿˆxwh, ˆxÏ)H = Èf, ÏÍœ ’Ï œ Vh. (5.15)

Clearly A≠1
h = fi1

hA≠1, see (4.3) with w = A≠1f , and the norm in Vú
Ÿ and its discrete counterpart can

be written as
ÎfÎVú

Ÿ

= ÎA≠1fÎV
Ÿ

= ÎwÎV
Ÿ

, ÎfÎH≠1
h

:= ÎA≠1
h fÎV

Ÿ

= ÎwhÎV
Ÿ

Æ ÎwÎV
Ÿ

.

Moreover, we set rhA≠1 := A≠1 ≠ A≠1
h = A≠1 ≠ fi1

hA≠1. First we note that

A≠1 : H(⁄) æ H(⁄+2), ≠1 Æ ⁄ Æ 1. (5.16)
Then by the standard FEM error analysis [7] and operator interpolation theory we have

ÎrhA≠1fÎV = Îw ≠ fi1
hwÎV Æ ch1+⁄ÎfÎH(⁄) ’f œ H(⁄), ≠1 Æ ⁄ Æ 0, (5.17)

ÎrhA≠1fÎH = Îw ≠ fi1
hwÎH Æ ch2+⁄ÎfÎH(⁄) ’f œ H(⁄), ≠1 Æ ⁄ Æ 0. (5.18)

6. Stability and error estimates for the discrete state equation

In this section we present error estimates for the state equation. We begin with an auxiliary result.

Lemma 6.1. For ‡0 Ø ‡ ≠ 1/4 Ø 0, the following estimate holds
Îfih,‡0w ≠ fi0

hwÎH0
·

Æ c(· + h)⁄ÎwÎH(⁄) ’w œ H(⁄), for 1 Æ ⁄ Æ 2. (6.1)

Proof. We recall the well known estimates
Îfi0

hwÎV Æ cÎwÎV ’w œ V , (6.2)

Îw ≠ fi0
hwÎV Æ chÎwÎV 2 ’w œ V 2, (6.3)

which are valid using the inverse inequality (5.4). We also remind inequality (5.7) and notice also that
for ‡0 Ø 0 the following additional inequality holds

Ô
‡0·ÎÏÎV

Ÿ

Æ ÎÏÎH0
·

’Ï œ Vh. (6.4)
Let w œ V and Ï œ Vh. We apply identities (5.11) and (5.14) and get
!
fl(fi0

h,‡0w ≠ fi0
hw), Ï

"
H

+ ‡0·2!
Ÿˆx(fi0

h,‡0w ≠ fi0
hw), ˆxÏ

"
H

= ≠‡0·2!
Ÿˆxfi0

hw, ˆxÏ
"

H

= ‡0·2!
Ÿˆx(w ≠ fi0

hw), ˆxÏ
"

H
+ ‡0·2Èˆx(Ÿˆxw), ÏÍœ.

Now we set Ï = fi0
h,‡0w ≠ fi0

hw and from the former and latter equalities together with estimates (6.2)
and (6.3) we obtain the estimate

Îfi0
h,‡0w ≠ fi0

hwÎH0
·

Æ c·(· + h)⁄≠1ÎwÎH(⁄)

for ⁄ = 1, 2 respectively.
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By using the K⁄,Œ-method, we complete the proof. ⇤

Now we get a stability bound and error estimates in C(Ī , H) ◊ H≠1
h for the discrete state equation.

Proposition 6.2. Let y and (yË, y1
T h) be the solutions to the state equation (2.1) and the discrete

state equation (5.1)-(5.2).
(1) For (u, y0, y1) œ L2(I, V ú) ◊ V ◊ V ú, the following stability bound holds:

ÎyËÎC(Ī,H) + Îfly1
T hÎH≠1

h

Æ c
!ÎuÎL2(I,V ú) + ÎyÎV ◊V ú

"
. (6.5)

(2) For (u, y0, y1) œ L2(I, H(≠1/2)) ◊ V ◊ H(≠1/2), the following error estimate holds:

Îy ≠ yËÎC(Ī,H) + Îfl(ˆty(T ) ≠ y1
T h)ÎH≠1

h

Æ c (· + h)1/3!ÎuÎL2(I,H(≠1/2)) + ÎyÎV ◊H(≠1/2)
"
. (6.6)

(3) For (u, y0, y1) œ H1(I, H(≠1/2)) ◊ V ◊ H, the higher order error estimate holds:

Îy ≠ yËÎC(Ī,H) + Îfl(ˆty(T ) ≠ y1
T h)ÎH≠1

h

Æ c (· + h)2/3!ÎuÎH1(I,H(≠1/2)) + ÎyÎV ◊H

"
. (6.7)

Proof. 1. According to [46, Theorem 2.1 (1)], the bound

ÎyËÎC(Ī, H) +
...
⁄

I
yË dt

...
V

Æ c
!ÎuÎL2(I,V ú) + ÎyË(0)ÎH0

·

+ Îy1ÎV ú
"

(6.8)

is valid for any yË(0) œ Vh. We have yË(0) = fi0
hy0. In the case ‡ Æ 1/4, there clearly holds

Îfi0
hy0ÎH0

·

Æ Îfi0
hy0ÎH

fl

Æ Îy0ÎH
fl

.

For ‡ > 1/4, we alternatively get using (6.1) for ⁄ = 1

Îfi0
hy0ÎH0

·

Æ Îfi0
hy0 ≠ fih

h,‡0y0ÎH0
·

+ Îfi0
h,‡0y0ÎH0

·

Æ c(· + h)Îy0ÎV + Îy0ÎH
fl

for any ‡0 Ø ‡ ≠ 1/4.
We proceed with the bound for yT

h . Identity (5.8) and bound (6.8) together with the generalized
Minkowski inequality imply

ÎflyT
h ÎH≠1

h

Æ c

3...
⁄

I
yË dt

...
V

+
...

⁄

I
u dt

...
V ú

+ Îfly1ÎV ú

4
Æ c1

!ÎuÎL2(I,V ú) + ÎyÎV ◊H

"
. (6.9)

Finally we derive bound (6.5).
2. Let ỹË be the solution of equation (5.1) for ỹË(0) = fi0

h,‡0y0. From [46, Theorem 4.1] we get the
error estimate

Îy ≠ ỹËÎC(Ī,H) +
...

⁄

I
(fi1

hy ≠ ỹË) dt
...

V
Æ c(· + h)1/3!ÎuÎL2(I, H(≠1/2)) + ÎyÎH(1/2)◊H(≠1/2)

"
.

In the case ‡ Æ 1/4 we can choose ‡0 = 0, then yË(0) = fih,‡0y0 = fi0
hy0 and ỹË = yË. In the case

‡ Ø 1/4 we can use the stability bound (6.8) and estimate (6.1) to get

ÎỹË ≠ yËÎC(Ī,H) +
...
⁄

I
(ỹË ≠ yË) dt

...
V

Æ c Îfi0
h,‡0y0 ≠ fi0

hy0ÎH0
·

Æ c1(· + h)Îy0ÎV . (6.10)

Then by subtracting (5.8) from (5.10) and applying identity (5.12) we find

Èfl!
ˆty(T ) ≠ y1

T h

"
, ÏÍœ = ≠

3
Ÿˆx

⁄

I
(y ≠ yË) dt, ˆxÏ

4

H
= ≠

3
Ÿˆx

⁄

I
(fi1

hy ≠ yË) dt, ˆxÏ

4

H
’Ï œ Vh,

consequently
Îfl

!
ˆty(T ) ≠ y1

T h

"ÎH≠1
h

Æ c
...

⁄

I
(fi1

hy ≠ yË) dt
...

V
. (6.11)

Thus we obtain (6.6).
3. Once again we apply [46, Theorem 4.1] and first get the estimate

Îy ≠ ỹËÎC(Ī,H) +
...

⁄

I
(fi1

hy ≠ ỹË) dt
...

V
Æ c (· + h)2/3!ÎuÎL2(I,H) + ÎyÎV ◊H

"
.
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Combining it together with (6.10), we derive

Îy ≠ yËÎC(Ī,H) +
...

⁄

I
(fi1

hy ≠ yË) dt
...

V
Æ c (· + h)2/3!ÎuÎL2(I,H) + ÎyÎV ◊H

"
. (6.12)

In this proof, we apply this estimate in the case u = 0 only (but in general case below).
In the remaining case y = 0, from [46, Theorem 4.1] we also get the higher order error estimate

Îy ≠ yËÎC(Ī,H) +
...

⁄

I
(fi1

hy ≠ yË) dt
...

V
Æ c (· + h)4/3ÎuÎH1(I,H) for ’u œ H1(I, H). (6.13)

Moreover owing to Proposition 3.7 and bound (6.5) (both for y = 0) we have

Îy ≠ yËÎC(Ī,H) +
...

⁄

I
(fi1

hy ≠ yË) dt
...

V
Æ ÎyÎC(Ī,H) + cÎItyÎC(Ī,V ) + ÎyËÎC(Ī,H) +

...
⁄

I
yË dt

...
V

Æ c1ÎuÎL2(I,V ú) for ’u œ L2(I, V ú).
The last bound and estimate (6.13) imply by the K1/2,Œ-method:

Îy ≠ yËÎC(Ī,H) +
...

⁄

I
(fi1

hy ≠ yË) dt
...

V
Æ c (· + h)2/3ÎuÎB1/2 ’u œ B1/2 := (L2(I, V ú), H1(I, H))1/2,Œ.

Due to the simple embedding
H1(I, H(≠1/2)) = (H1(I; V ú), H1(I; H))1/2,Œ Òæ (L2(I, V ú), H1(I, H))1/2,Œ

and inequality (6.11) we complete the proof. ⇤
Remark 6.3. A priori stability bound (6.5) implies the unique solvability of the discrete state equation
(5.1)-(5.2).

Remark 6.4. According to the given proof, for ỹË in place of yË the norms of y in (6.5) and (6.6)
can be weakened down to respectively ÎyÎH◊V ú and ÎyÎH(1/2)◊H(≠1/2) . For ‡ Æ 1/4, we have ỹË = yË.
The same can be shown for yË also for ‡ > 1/4 provided that ·–h Æ c0 with any c0 > 0.

7. Discrete control problem

First we introduce the discrete mapping ŜË : (u, y0, y1) ‘æ (yË, yË(T ), fly1
T h) and the discrete a�ne

linear control-to-state mapping
SË : MT æ YË = VË ◊ Vh ◊ (fl ◊ Vh), u ‘æ (yË, yË(T ), fly1

T h)
defined by SËu = ŜË(u, 0, 0) + ŜË(0, y0, y1). The mapping SË is a composition of

u ‘æ ų = {Èu, eË
m,nÍM

T

, C
T

}M,N≠1
m,n=1 , MT æ RM(N≠1),

where {eË
m,n} is a basis in VË, and ų ‘æ (yË, yË(T ), fly1

T h). The former mapping is bounded due to
eË

m,n œ CT and the latter one is finite dimensional. Thus SË is a bounded operator. Then we consider
the following semi-discrete optimal control problem

jË(u) = 1
2 ÎSËu ≠ zÎ2

Y
h

+ –ÎuÎM
T

æ min
uœM

T

(PË)

with the squared semi-norm corresponding to the inner product
(z, z̃)Y

h

= (flz1, z̃1)L2(I◊œ) + (flz2, z̃2)H +
!
A≠1

h z3, A≠1
h z̃3

"
V

Ÿ

’z, z̃ œ Y.

Using the similar argument as in the continuous case it can be shown that (PË) has a solution ūË

which is not unique in general, and due to the optimality, the stability bound (6.5) and property (5.16)
(for ⁄ = ≠1) one gets

–ÎūËÎM
T

Æ jË(ūË) Æ jË(0) = 1
2ÎSË(0) ≠ zÎ2

Y
h

Æ c
!ÎyÎV ◊V ú + ÎzÎY

"2
,

cf. (4.1), and consequently
ÎūËÎM

T

Æ c
!ÎyÎV ◊V ú + ÎzÎY

"2 Æ C. (7.1)



FEM FOR HYPERBOLIC CONTROL PROBLEMS 17

Theorem 7.1. Let z œ Y, y œ V ◊ H(≠1/2) and ū, ūË œ MT be the optimal controls of respectively
problems (P) and (PË). Then there holds

ūË Ôú ū in MT , ÎūËÎM
T

æ ÎūÎM
T

as Ë æ 0.

Proof. Owing to (7.1) there exists a sequence {Ën}, Ën æ 0, and u œ MT such that ūË
n

Ôú u in MT

as n æ Œ. Next we prove that this implies that
ÎSË

n

ūË
n

≠ zÎY
Ë

n

æ ÎSu ≠ zÎY . (7.2)
To this end, we write the chain of inequalities

--ÎSË
n

ūË
n

≠ zÎY
Ë

n

≠ ÎSu ≠ zÎY
-- Æ --ÎSË

n

ūË
n

≠ zÎY
Ë

n

≠ ÎSu ≠ zÎY
Ë

n

-- +
--ÎSu ≠ zÎY

Ë

n

≠ ÎSu ≠ zÎY
--

Æ ÎSË
n

ūË
n

≠ SuÎY
Ë

n

+
--ÎSu ≠ zÎY

Ë

n

≠ ÎSu ≠ zÎY
--

Æ ÎSË
n

ūË
n

≠ SūË
n

ÎY
Ë

n

+ ÎSūË
n

≠ SuÎY
Ë

n

+
--ÎSu ≠ zÎY

Ë

n

≠ ÎSu ≠ zÎY
--.

The first term on the right in the last inequality converges to zero according to the error estimate (6.6).
The convergence of the second term follows from the weak-star-to-strong continuity of S : MT æ Y
and the stability of fi1

h in V . Finally, property (5.13) for w̃ = w implies the convergence of the last
term. Then (7.2) and the weak-star lower semicontinuity of Î · ÎM

T

in MT implies
j(u) Æ lim inf

næŒ
jË

n

(ūË
n

) Æ lim sup
næŒ

jË
n

(ūË
n

) Æ lim sup
næŒ

jË
n

(ū) = j(ū).

Thus, the uniqueness of ū means that u = ū and in addition implies the convergence of the whole
sequence ūË Ôú ū in MT as Ë æ 0. Moreover, we have jË(ūË) æ j(ū). This and (7.2) lead to
ÎūËÎM

T

æ ÎūÎM
T

. ⇤
For convenience we set Fh(z) = (1/2)ÎzÎ2

Y
h

. In the following the directional derivative of a functional
g : MT æ R at u œ MT in direction ”u œ MT is denoted by Dg(u)”u. In the case Dg(u) œ Mú

T , g is
the Gateaux di�erentiable in u. Moreover, we make use of the convex subdi�erential of Î · ÎM

T

. Let
û œ MT and p œ CT . Then there holds p œ ˆÎûÎM

T

if and only if
Èp, u ≠ ûÍC

T

,M
T

+ –ÎûÎM
T

Æ –ÎuÎM
T

’u œ MT .

An element ūË œ MT is an optimal solution of (PË) if and only if ≠D((Fh ¶ SË)(ūË)) œ –ˆÎūËÎM
T

.
To calculate D((Fh ¶ SË)(u)) for u œ MT , we apply the Lagrange technique and define the Lagrange
functional by

L(u, yË, y1
T h, pË, p1

0h) = Fh(yË, yË(T ), y1
T h) ≠ B‡(yË, pË) ≠ (fly1

T h, pË(T ))H

+ Èu, pËÍM
T

, C
T

+ (fly1, pË(0))H + (fl(yË(0) ≠ y0), p1
0h)H

with (pË, p1
0h) œ VË ◊ Vh (where we base on identities (5.1)-(5.2)). We obviously have

(Fh ¶ SË)(u) = L(u, SËu, pË, p1
0h) ’(pË, p1

0h) œ VË ◊ Vh.

Thus there holds
D((Fh ¶ SË)(u))”u = DuL(u, yË, y1

T h, pË, p1
0h)”u = ÈpË, ”uÍC

T

, M
T

’”u œ MT

provided that (pË, p1
0h) œ VË ◊ Vh is the solution of the discrete problem

≠ Dy
Ë

L(u, yË, y1
T h, pË, p1

0h)v = B‡(v, pË) ≠ (fl(yË ≠ z1), v)L2(I◊œ)

≠ (fl(yË(T ) ≠ z2), v(T ))H ≠ (flv(0), p1
0h)H = 0 ’v œ VË

and
≠Dy1

T h

L(u, yË, y1
T h, pË, p1

0h)Ï = (flÏ, pË(T ))H ≠ !
flA≠1

h (fly1
T h ≠ z3), Ï

"
H

= 0 ’Ï œ Vh.

Therefore the discrete optimality system consists of the discrete state equation
B‡(ȳË, v) + (flȳ1

T h, v(T ))H = ÈūË, vÍM
T

, C
T

+ (fly1, v(0))H ’v œ VË,

(flȳË(0), Ï)H = (fly0, Ï)H ’Ï œ Vh,
(7.3)
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the discrete adjoint state equation

B‡(v, p̄Ë) ≠ (flv(0), p̄1
0h)H = (fl(ȳË ≠ z1), v)L2(I◊œ) + (fl(ȳË(T ) ≠ z2), v(T ))H ’v œ VË,

(flÏ, p̄Ë(T ))H =
!
flA≠1

h (flȳ1
T h ≠ z3), Ï

"
H

’Ï œ Vh

(7.4)

and the discrete variational inequality

È≠p̄Ë, u ≠ ūËÍC
T

, M
T

+ ÎūËÎM
T

Æ ÎuÎM
T

’u œ MT . (7.5)

8. Stability and error estimates for the discrete adjoint state equation

We define the general discrete adjoint state equation

B‡(v, pË) ≠ (flv(0), p1
0h)H = (fl(y ≠ z1), v)L2(I◊œ) + (fl(y(T ) ≠ z2), v(T ))H ’v œ VË, (8.1)

(flÏ, pË(T ))H =
!
flA≠1

h (flˆty(T ) ≠ z3), Ï
"

H
’Ï œ Vh. (8.2)

Here y is the solution to the state equation (2.1). Clearly identity (8.2) means simply that pË(T ) =
A≠1

h qT = fih
1 A≠1qT with qT := flˆty(T ) ≠ z3.

Now we get a stability bound and error estimates in C(Ī , H) ◊ H≠1
h and CT for the discrete adjoint

state equation.

Proposition 8.1. Let p = Sú!
y ≠ z1, ≠(y(T ) ≠ z2), A≠1(flˆty(T ) ≠ z3)

"
and (pË, p1

0h) be the solution
of the corresponding general discrete adjoint state equation (8.1)-(8.2).

(1) If y œ C(Ī , H) fl C1(Ī , V ú) and z œ Y, then the following stability bound holds

ÎpËÎC(Ī,V ) + Îflp1
0hÎH≠1

h

Æ c
!Îy ≠ z1ÎL2(I◊œ) + Îy(T ) ≠ z2ÎH + Îflˆty(T ) ≠ z3ÎV ú

"
. (8.3)

(2) If u œ L2(I, V ú), z œ Y and y œ H ◊ V ú, then the following error estimate holds

Îp ≠ pËÎC(Ī,H) + Îfl(ˆtp(0) ≠ p0
h)ÎH≠1

h

Æ c(· + h)2/3!ÎuÎL2(I,V ú) + ÎzÎY + ÎyÎH◊V ú
"
. (8.4)

(3) If u œ L2(I, H(≠1/2)), z œ Y1/2 := L2(I, H(1/2)) ◊ H(1/2) ◊ H(≠1/2) and y œ H(1/2) ◊ H(≠1/2),
then the following error estimate holds

Îp ≠ pËÎC(Ī◊œ̄) Æ c(· + h)2/3!ÎuÎL2(I,H(≠1/2)) + ÎzÎY1/2 + ÎyÎH(1/2)◊H(≠1/2)
"
. (8.5)

(4) If u œ H1(I, H(≠1/2)), z œ Y3/2 := L2(I, H(3/2)) ◊ H(3/2) ◊ H(1/2) and y œ H(3/2) ◊ H(1/2),
then the following higher order error estimate holds

Îp ≠ pËÎL2(I,C0(œ)) Æ c(· + h)4/3!ÎuÎH1(I,H(≠1/2)) + ÎzÎY3/2 + ÎyÎH(3/2)◊H(1/2)
"
. (8.6)

Proof. 1. According to [46, Theorem 2.1 (2)] the following energy bound hold

ÎpËÎC(Ī,V ) + ÎˆtpËÎLŒ(Ī,H) Æ c
!Îy ≠ z1ÎL2(I◊œ) + ÎpË(T )ÎV + Îy(T ) ≠ z2ÎH)

for any pË(T ) œ Vh. Using (6.2), A≠1
h = fi1

hA≠1 and (5.16) we get

ÎpË(T )ÎV Æ cÎA≠1qT ÎV Æ c1ÎqT ÎV ú . (8.7)

By applying also the counterpart of inequalities (6.9) we derive bound (8.3).
2. The counterpart of the error estimate (6.12) for the adjoint state equation case and bound (8.7)

give

Îp ≠ pËÎC(Ī,H) +
...

⁄

I
(fi1

hp ≠ pË) dt
...

V
Æ c (· + h)2/3!Îy ≠ z1ÎL2(I,H) + ÎA≠1

h qT ÎV + Îy(T ) ≠ z2ÎH

"

Æ c1 (· + h)2/3!ÎyÎC(Ī,H) + ÎˆtyÎC1(Ī,V ú) + ÎzÎY
"
.

Owing to inequality (6.11) and Proposition 3.7 we obtain estimate (8.4).



FEM FOR HYPERBOLIC CONTROL PROBLEMS 19

3. Below we need the multiplicative inequalities

ÎwÎC(Ī◊œ̄) Æ cÎwÎ1/2
C(Ī,H)ÎwÎ1/2

C(Ī,V ) ’w œ C(Ī , V ), (8.8)

ÎwÎL2(I, C0(œ)) Æ cÎwÎ1/2
L2(I,H)ÎwÎ1/2

L2(I,V ) ’w œ L2(I, V ). (8.9)

Let p̌Ë be the auxiliary solution to (8.1) for p̌Ë(T ) = fi0
hA≠1qT . Owing to inequality (8.8) and the

stability bounds [46, Theorem 2.1] we get

ÎpË ≠ p̌ËÎC(Ī◊œ̄) Æ cÎ(pË ≠ p̌Ë)(T )Î1/2
H0

·

Î(pË ≠ p̌Ë)(T )Î1/2
V .

Consequently, for qT œ H(–≠2), by (6.2), (5.17) and (5.18) the following chain of inequalities hold

ÎpË ≠ p̌ËÎC(Ī◊œ̄) Æ c
!Î(pË ≠ p̌Ë)(T )Î1/2

H Î(pË ≠ p̌Ë)(T )Î1/2
V + ·1/2Î(pË ≠ p̌Ë)(T )ÎV

"

Æ c1
!ÎrhA≠1qT Î1/2

H ÎrhA≠1qT Î1/2
V + ·1/2ÎrhA≠1qT ÎV

" Æ c2(· + h)–≠1/2ÎqT ÎH(–≠2)

for 1 Æ – Æ 2. Thus it is enough to prove error estimates (8.5) and (8.6) for p̌Ë instead of pË.
According to [46, Theorem 5.3 and estimate (5.18)] we have the error estimate

Îi· p ≠ p̌ËÎC(Ī◊œ̄) = Îp ≠ p̌ËÎC
·

(Ī, C(œ̄)) := max
0ÆmÆM

Î(p ≠ p̌Ë)(tm)ÎC(œ̄)

Æ c(· + h)2(–≠1/2)/3!Îy ≠ z1ÎL2(I, H(–≠1)) + Îy(T ) ≠ z2ÎH(–≠1) + ÎqT ÎH(–≠2)
"
, – = 1, 2. (8.10)

We emphasize that due to [46, Theorem 4.3 (2) (e)] and (6.1) this estimate holds for p̌Ë(T ) = fi0
hA≠1qT .

Inequality (8.8), Proposition 3.5 (applied to the adjoint state problem) and property (5.16) imply
the following error estimate for the time interpolation

Îp ≠ i· pÎC(Ī◊œ̄) Æ c
!
·ÎˆtpÎC(Ī,H)

"1/2Î(·ˆt)–≠1pÎ1/2
C(Ī,V )

Æ c1·–/2!Îy ≠ z1ÎL2(I, H(–≠1)) + Îy(T ) ≠ z2ÎH(–≠1) + ÎqT ÎH(–≠2)
"
, (8.11)

for – = 1, 2. Owing to estimates (8.10) and (8.11) as well as Propositions 3.7 and 3.5 we get

Îp ≠ p̌ËÎC(Ī◊œ̄) Æ c(· + h)2(–≠1/2)/3!ÎyÎC(Ī, H(–≠1)) + ÎˆtyÎC(Ī, H(–≠2)) + ÎzÎY(–≠1)
"

Æ c1(· + h)2(–≠1/2)/3!ÎuÎL2(I,H(–≠2)) + ÎyÎH(–≠1)◊H(–≠2) + ÎzÎY(–≠1)
"
, – = 1, 2, (8.12)

where Y(–) := L2(I, H(–)) ◊ H(–) ◊ H(–≠1).
By applying the K1/2,Œ-method, we get (8.5) for p̌Ë in the role of pË.
4. First notice that the multiplicative inequality (8.9), Proposition 3.5 (2) (applied for the adjoint

state problem) and property (5.16) imply another error estimate for the time interpolation

Îp ≠ i· pÎL2(I, C0(œ)) Æ c
!
·2ÎˆttpÎL2(I,H)

"1/2!
·ÎˆtpÎC(Ī,V )

"1/2

Æ c1·3/2!Îy ≠ z1ÎL2(I,V ) + Îy(T ) ≠ z2ÎV + ÎqT ÎH

"
.

Then Proposition 3.5 (1) leads to
Îp ≠ i· pÎL2(I, C0(œ)) Æ c·3/2!ÎuÎH1(I,V ú) + ÎzÎY + ÎyÎV ◊H

"
. (8.13)

Next we derive the error estimate
Îi· p ≠ p̌ËÎC(Ī◊œ̄) Æ c(· + h)4/3!ÎuÎH1(I,H(≠1/2)) + ÎzÎY3/2 + ÎyÎH(3/2)◊H(1/2)

"
. (8.14)

According to [46, Theorem 5.3 and estimate (5.18)] and Propositions 3.7 and 3.5 the following three
estimates hold

Îi· p ≠ p̌ËÎC(Ī◊œ̄) Æ c(· + h)4/3ÎzÎY3/2 for u = 0, y = 0, (8.15)

Îi· p ≠ p̌ËÎC(Ī◊œ̄) Æ c(· + h)ÎyÎH1(I,H) Æ c1(· + h)
!ÎuÎH1(I,V ú) + ÎyÎV ◊H

"
for z = 0,
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Îi· p ≠ p̌ËÎC(Ī◊œ̄) Æ c(· + h)5/3!ÎˆttyÎL2(I,H) + ÎyÎV ◊H

"

Æ c1(· + h)5/3!ÎuÎH1(I,H) + ÎyÎV 2◊V

"
for z = 0

for p̌Ë(T ) = fi0
hA≠1qT (for the same reason as above). Then applying the K1/2,Œ-method to the two

last estimates we get

Îi· p ≠ p̌ËÎC(Ī◊œ̄) Æ c(· + h)4/3!ÎuÎH1(I,H(≠1/2)) + ÎyÎH(3/2)◊H(1/2)
"

for z = 0.

By combining this estimate and (8.15) we obtain (8.14).
Estimates (8.13) and (8.14) imply

Îp ≠ p̌ËÎL2(I, C0(œ)) Æ c(· + h)4/3!ÎuÎH1(I,H(≠1/2)) + ÎzÎY3/2 + ÎyÎH(3/2)◊H(1/2)
"

that completes the proof of (8.6) for p̌Ë in the role of pË. ⇤
Remark 8.2. A priori stability bound (6.5) (taken for y = 0) implies the unique solvability of the
general discrete adjoint state equation (8.1)-(8.2).

9. Error estimates for the state variable

We introduce the discrete adjoint control-to-state operator Sı
Ë : L2(I◊œ)◊V ◊H æ VË, („, p1, p0) ‘æ

pË defined by
B‡(v, pË) = (fl„, v)L2(I◊œ) ≠ (flp1, v(T ))H ’v œ VË, v(0) = 0

with pË(T ) = fi0
hp0. Similarly to bound (8.3) and Remark 8.2 it is well defined and satisfies

ÎSı
Ë(„, p0, p1)ÎC(Ī,V ) Æ c

!Î„ÎL2(I◊œ) + Îp0ÎV + Îp1ÎH

"
.

Let for brevity W, Wh : Y æ Yú be the duality mappings defined by

W (y1, y2, y3) = (y1, ≠y2, A≠1y3), Wh(y1, y2, y3) = (y1, ≠y2, A≠1
h y3) ’(y1, y2, y3) œ Y.

With this notation, the function pË = Sú
Ë

!
y ≠ z1, ≠(y(T ) ≠ z2), A≠1

h (flˆty(T ) ≠ z3)
"

= Sú
ËWh(Su ≠ z)

solves the general discrete adjoint state equation (8.1)-(8.2).

Proposition 9.1. Let z œ Y and y œ V ◊ V ú. Then the following estimate holds

ÎSū ≠ SËūËÎY
h

Æ ÎSū ≠ SËūÎY
h

+ CÎSıW (Sū ≠ z) ≠ Sı
ËWh(Sū ≠ z)Î1/2

C
T

. (9.1)

Proof. We recall that p̄ = SıW (Sū≠z) and p̄Ë = Sı
ËWh(SËūË ≠z) and test the continuous subgradient

condition (4.5) with the discrete optimal control ūË and the discrete subgradient condition (7.5) with
the continuous optimal control ū. Then we subtract the first inequality from the second one and get

Èū ≠ ūË, p̄ ≠ p̄ËÍM
T

, C
T

Æ 0.

We define p̂Ë := Sı
ËWh(Sū ≠ z), insert it between p̄ and p̄Ë and obtain

0 Æ ÈūË ≠ ū, p̄ ≠ p̂ËÍM
T

, C
T

+ ÈūË ≠ ū, p̂Ë ≠ p̄ËÍM
T

, C
T

. (9.2)

For convenience we introduce the variables (ŷË, ŷË(T ), flŷ1
T h) = SËū and remark that the state equations

for (ȳË, ȳ1
T h) and (ŷË, ŷ1

T h) have the same initial data. With the help of them we rewrite the second
term on the right in (9.2) taking first the di�erence of the discrete state equations (7.3) and (5.1)
(taken for (ŷË, ŷ1

T h)) for v = p̂Ë ≠ p̄Ë, next the di�erence of the discrete adjoint state equations (7.4)
and (8.1)-(8.2) (taken for p̂Ë) for v = ȳË ≠ ŷË and Ï = ȳ1

T h ≠ ŷ1
T h and finally using (5.15)

ÈūË ≠ ū, p̂Ë ≠ p̄ËÍM
T

, C
T

= B‡(ȳË ≠ ŷË, p̂Ë ≠ p̄Ë) + (fl(ȳ1
T h ≠ ŷ1

T h), (p̂Ë ≠ p̄Ë)(T ))H

= (fl(ȳË ≠ ŷË), ȳ≠ ȳË)L2(I◊œ) +(fl(ȳË ≠ ŷË)(T ), (ȳ≠ ȳË)(T ))H +
!
fl(ȳ1

T h ≠ ŷ1
T h), A≠1

h

!
fl(ˆtȳ(T ) ≠ ȳ1

T h)
""

H

= (SËūË ≠ SËū, Sū ≠ SËūË)Y
h

.
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Further we easily get

ÈūË ≠ ū, p̂Ë ≠ p̄ËÍM
T

, C
T

= (Sū ≠ SËūË, SËūË ≠ SËū)Y
h

= (Sū ≠ SËūË, Sū ≠ SËū)Y
h

≠ ÎSū ≠ SËūËÎ2
Y

h

Æ 1
2ÎSū ≠ SËūÎ2

Y
h

≠ 1
2ÎSū ≠ SËūËÎ2

Y
h

.

Thus (9.2) implies

ÎSū ≠ SËūËÎ2
Y

h

Æ 2ÈūË ≠ ū, p̄ ≠ p̂ËÍM
T

, C
T

+ ÎSū ≠ SËūÎ2
Y

h

Æ 2(ÎūËÎM
T

+ ÎūÎM
T

)Îp̄ ≠ p̂ËÎC
T

+ ÎSū ≠ SËūÎ2
Y

h

.

Finally by applying bounds (4.2) and (7.1) we derive (9.1). ⇤

This proposition is important since it allows one to derive estimates for ȳ ≠ ȳË with the help of the
above error estimates for the discrete state and adjoint state equations.

Theorem 9.2. (1) Let MT = L2(I, M(œ)), z œ Y1/2 and y œ V ◊ H. Then the following error
estimate holds

Îȳ ≠ ȳËÎL2(I◊œ) + Î(ȳ ≠ ȳË)(T )ÎH + Îfl
!
ˆtȳ(T ) ≠ ȳ1

T h

"ÎH≠1
h

Æ C(· + h)1/3. (9.3)

(2) Let MT = M(œ, L2(I)), z œ Y3/2 and y œ H(3/2) ◊ H(1/2). Then the following higher order
error estimate holds

Îȳ ≠ ȳËÎL2(I◊œ) + Î(ȳ ≠ ȳË)(T )ÎH + Îfl
!
ˆtȳ(T ) ≠ ȳ1

T h

"ÎH≠1
h

Æ C(· + h)2/3. (9.4)

Proof. 1. Let us base on Proposition 9.1. First, Proposition 6.2 (4) implies

ÎSū ≠ SËūÎY
h

Æ c(· + h)1/3!ÎūÎL2(I,H(≠1/2)) + ÎyÎV ◊H

"
.

Second, Proposition 8.1 (3) leads to

ÎSıW (Sū ≠ z) ≠ Sı
ËWh(Sū ≠ z)ÎC

T

Æ c(· + h)2/3!ÎūÎL2(I,H(≠1/2)) + ÎzÎY1/2 + ÎyÎH(1/2)◊H(≠1/2)
"
.

Now owing to Proposition 9.1, embedding (3.27) and bound (4.2) for ū error estimate (9.3) is proved.
2. First, Proposition 6.2 (3) implies

ÎSū ≠ SËūÎY
h

Æ c(· + h)2/3
1
ÎūÎH1(I,H(≠1/2)) + ÎyÎH(3/2)◊H(1/2)

2
.

Second, Proposition 8.1 (4) leads to

ÎSıW (Sū ≠ z) ≠ Sı
ËWh(Sū ≠ z)ÎC

T

Æ c(· + h)4/3!ÎūÎH1(I,H(≠1/2)) + ÎzÎY3/2 + ÎyÎH(3/2)◊H(1/2)
"
.

Now owing to Proposition 9.1, embedding (3.28) and Theorem 4.4 for ū error estimate (9.4) is proved
too. ⇤
Remark 9.3. Note that our error bounds could be better provided that one would improve the last
term on the right in (9.1) by increasing the power 1/2. But this seems a complicated problem.

10. Error estimate for the cost functional

In this section we derive error estimate for the cost functional. We first observe the inequalities

j(ū) Æ j(ūË), jË(ūË) Æ jË(ū)

which can be equivalently rewritten in the form

j(ū) ≠ jË(ū) Æ j(ū) ≠ jË(ūË) Æ j(ūË) ≠ jË(ūË). (10.1)

Therefore, to bound |j(ū) ≠ jË(ūË)| below we apply the following result.
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Proposition 10.1. Let y œ V ◊ H. Then for any u œ MT

|j(u) ≠ jË(u)| Æ c
1
ÎSu ≠ SËuÎ2

Y
h

+

+
!ÎuÎM

T

+ ÎyÎV ◊H

"1
Îp ≠ pËÎC

T

+ Îp(0) ≠ pË(0)ÎH + hÎˆtp(0)ÎH + Îfl(ˆtp(0) ≠ p1
0h)ÎH≠1

h

2

+ ÎrhA≠1!
flˆty(T )

"Î2
V + ÎrhA≠1z3Î2

V

2
(10.2)

with (y, y(T ), flˆty(T )) = Su and the same p and (pË, p1
0h) as in Proposition 8.1.

Proof. Let u œ MT . According to the definitions of the continuous and discrete cost functionals and
property (5.13) for w̃ = w and w̃h = wh we get

j(u) ≠ jË(u) = 1
2ÎSu ≠ zÎ2

Y ≠ 1
2ÎSËu ≠ zÎ2

Y
h

= 1
2(Su ≠ SËu, Su + SËu ≠ 2z)Y

h

+ 1
2ÎA≠1(flˆty(T ) ≠ z3)Î2

V
Ÿ

≠ 1
2ÎA≠1

h (flˆty(T ) ≠ z3)Î2
V

Ÿ

= ≠1
2ÎSu ≠ SËuÎ2

Y
h

+ (Su ≠ SËu, Su ≠ z)Y
h

+ 1
2ÎrhA≠1!

flˆty(T ) ≠ z3
"Î2

V
Ÿ

. (10.3)

We set pT h := A≠1
h (flˆty(T ) ≠ z3). Owing to the adjoint problem (3.12) with („, p1, p0) = W (y ≠

z1, y(T ) ≠ z2, flˆty(T ) ≠ z3) we get

(Su, Su ≠ z)Y
h

≠ (A≠1
h (flˆty(T )), pT h)V

Ÿ

= (fly, y ≠ z1)L2(I◊œ) + (fly(T ), y(T ) ≠ z2)H

= Èu, pÍM
T

, C
T

+ (fly1, p(0))H ≠ Èflˆty(T ), p0Íœ ≠ (fly0, ˆtp(0))H .

Similarly owing to the general discrete adjoint state equation (8.1)-(8.2) for v = yË and the discrete
state equation (5.1)-(5.2) for v = pË and Ï = p1

0h we get

(SËu, Su ≠ z)Y
h

≠ (A≠1
h (fly1

T h), pT h)V
Ÿ

= (flyË, y ≠ z1)L2(I◊œ) + (flyË(T ), y(T ) ≠ z2)H

= B‡(yË, pË) ≠ (flyË(0), p1
0h)H

= Èu, pËÍM
T

, C
T

+ (fly1, pË(0))H ≠ (fly1
T h, pË(T ))H ≠ (fly0, p1

0h)H .

In addition owing to the definitions (8.2) of pË(T ) and (5.15) of A≠1
h , we can write

(fly1
T h, pË(T ))H = (fly1

T h, pT h)H = (A≠1
h (fly1

T h), pT h)V
Ÿ

.

Consequently we obtain

(Su ≠ SËu, Su ≠ z)Y
h

= (Su, Su ≠ z)Y
h

≠ (SËu, Su ≠ z)Y
h

= Èu, p ≠ pËÍM
T

, C
T

≠ (fly0, ˆtp(0) ≠ p1
0h)H + (fly1, p(0) ≠ pË(0))H

+ (A≠1
h (flˆty(T )), pT h)V

Ÿ

≠ Èflˆty(T ), p0Íœ. (10.4)
In addition using property (5.13) we derive

(A≠1
h (flˆty(T )), pT h)V

Ÿ

≠ Èflˆty(T ), p0Íœ = (A≠1
h (flˆty(T )), pT h)V

Ÿ

≠ (A≠1(flˆty(T )), p0)V
Ÿ

= ≠(rhA≠1(flˆty(T )), rhA≠1(flˆty(T ) ≠ z3))V
Ÿ

. (10.5)

Next, for the term (fly0, ˆtp(0) ≠ p1
0h)H in (10.4) we have

|(fly0, ˆtp(0) ≠ p1
0h)H | = |(fl(y0 ≠ fi0

hy0), ˆtp(0) ≠ p1
0h)H + (flfi0

hy0, ˆtp(0) ≠ p1
0h)H |

Æ|(fl(y0 ≠ fi0
hy0), ˆtp(0))H | + cÎfi0

hy0ÎV Îfl(ˆtp(0) ≠ p1
0h)ÎH≠1

h

Æ c1 Îy0ÎV

1
hÎˆtp(0)ÎH + Îfl(ˆtp(0) ≠ p1

0h)ÎH≠1
h

2
(10.6)

due to the bounds Îy0≠fi0
hy0ÎH

fl

Æ Îy0≠fi1
hy0ÎH

fl

, (5.18) and (6.2). Clearly also |(fly1, p(0)≠pË(0))H | Æ
Îy1ÎHÎp(0) ≠ pË(0)ÎH . Finally from (10.3)-(10.6) we derive (10.2). ⇤
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Now we prove for the cost functional squared error estimate (9.3) for the state variable.

Theorem 10.2. Let MT = L2(I, M(œ)), z œ Y1/2 and y œ V ◊H. Then the following error estimate
for the cost functional holds

|j(ū) ≠ jË(ūË)| Æ C(· + h)2/3.

Proof. Let us base on Proposition 10.1 and take any u œ L2(I, M(œ)). Owing to Proposition 6.2 (2)
we have

ÎSu ≠ SËuÎY
h

Æ c(· + h)1/3!ÎuÎL2(I,H(≠1/2)) + ÎyÎV ◊H(≠1/2)
"
.

Proposition 8.1 (3) leads to

Îp ≠ pËÎC(Ī◊œ̄) Æ c(· + h)2/3!ÎuÎL2(I,H(≠1/2)) + ÎzÎY1/2 + ÎyÎH(1/2)◊H(≠1/2)
"
.

Owing to Propositions 3.5(1) (applied to the adjoint state problem) and 3.7 we have
Îˆtp(0)ÎH Æ ÎˆtpÎC(Ī,H) Æ c

!ÎuÎL2(I,V ú) + ÎyÎH◊V ú + ÎzÎY
"

(like in estimates (8.11)-(8.12) for – = 1). By using estimate (5.17) for ⁄ = ≠1/2 we obtain

ÎrhA≠1!
flˆty(T )

"ÎV + ÎrhA≠1z3ÎV Æ ch1/2!Îˆty(T )ÎH(≠1/2) + Îz3ÎH(≠1/2)
"
.

By collecting all these estimates together with embedding (3.27), Proposition 8.1 (2) to bound
Îfl(ˆtp(0) ≠ p1

0h)ÎH≠1
h

and applying Proposition 10.1, we derive

|j(u) ≠ jË(u)| Æ c(· + h)2/3!ÎuÎL2(I,M(œ)) + ÎzÎY1/2 + ÎyÎV ◊H

"2
.

Owing to inequalities (10.1) together with bounds (4.2) for ū and (7.1) for ūË the proof is complete. ⇤
Remark 10.3. In the case MT = M(œ, L2(I)) the lack of the bound ÎūËÎH1(I,M(œ)) Æ C, cf.
Theorem 4.4 for ū, does not allow one to prove the error estimate |j(ū) ≠ jË(ūË)| Æ C(· + h)4/3.

11. Time-stepping formulation

In this section we discuss the time-stepping formulation of the discrete state equation (5.1)-(5.2)
and the discrete adjoint state equation (7.4). We introduce the piecewise-linear “hat” functions such
that e·

m(tk) = ”m,k for any k, m = 0, . . . , M , where ”m,k is the Kroneker delta. We recall that e·
m

are “half” hat functions for m = 0, M . There holds V· = span{e·
0 , . . . , e·

M }. Similarly, we introduce
the spatial hat functions such that eh

j (xk) = ”j,k for any j = 1, . . . , N ≠ 1 and k = 0, . . . , N ; then
Vh = span{eh

1 , . . . , eh
N≠1}.

Then the approximate state variable yË œ VË can be represented in the following forms

yË(t, x) =
Mÿ

m=0

N≠1ÿ

j=1
ym,jeh

j (x)e·
m(t) =

Mÿ

m=0
yh

m(x)e·
m(t) =

N≠1ÿ

j=1
y·

j (t)eh
j (x), (t, x) œ Ī ◊ œ̄ (11.1)

with ym,j œ R, yh
m œ Vh and y·

j œ V· .
We also define the forward and backward di�erence and the average in time operators

”tvm = vm+1 ≠ vm

·
, ”̄tvm = vm ≠ vm≠1

·
,

B· v0 = 1
3v0 + 1

6v1, B· vm = 1
6vm≠1 + 2

3vm + 1
6vm+1, 1 Æ m Æ M ≠ 1, B· vM = 1

6vM≠1 + 1
3vM .

We define the self-adjoint positive-definite operators Bh and Lh acting in Vh (in other words, the mass
and sti�ness matrices) such that

(BhÏh, Âh)V
h

= (flÏh, Âh)H , (LhÏh, Âh)V
h

= (ŸˆxÏh, ˆxÂh)H ’Ï, Â œ Vh.

For w œ V ú and u œ L2(I, V ú) we define the vectors wh = {Èw, eh
j Íœ}N≠1

j=1 and

uË
m = 1

·

Ó!Èu, eh
j Íœ, e·

m

"
L2(I)

ÔN≠1

j=1
, 1 Æ m Æ M ≠ 1, uË

m = 2
·

Ó!Èu, eh
j Íœ, e·

m

"
L2(I)

ÔN≠1

j=1
, m = 0, M.
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We recall the form of the discrete state (11.1).
The forward time-stepping is implemented as follows. The integral identities (5.1)-(5.2) are equivalent

to the operator equations
(Bh + ‡·2Lh)”t”̄tyË,m + LhyË,m = uË

m, m = 2, . . . , M ≠ 1, (11.2)

(Bh + ‡·2Lh)”tyË,1 + ·
2 LhyË,0 = (fly1)h + ·

2 uË
0 , (11.3)

BhyË,0 = (fly0)h (11.4)

followed by the counterpart of (11.3) at time T for y1
T h:

Bhy1
T h = (Bh + ‡·2Lh)”̄tyË,M ≠ ·

2 LhyË,M + ·
2 uË

M . (11.5)
Next the adjoint (backward) time-stepping is implemented in a similar manner. Namely, the integral

identities (7.4) are equivalent to the operator equations

(Bh + ‡·2Lh)”t”̄tpË,m + LhpË,m = BhB· yË,m ≠ (flz1)Ë
m, m = M ≠ 1, . . . , 1, (11.6)

≠(Bh + ‡·2Lh)”̄tpË,M + ·
2 LhpË,M = BhyË,M ≠ (flz2)h + ·

2
!
BhB· yË,M ≠ (flz1)Ë

M

"
, (11.7)

LhpË,M = Bhy1
T h ≠ zh

3 , (11.8)

followed by the counterpart of (11.5) for p1
0h:

Bhp1
0h = (Bh + ‡·2Lh)”tpË,0 + ·

2 LhpË,0 ≠ ·
2

!
BhB· yË,0 ≠ (flz1)Ë

0
"
. (11.9)

Remark 11.1. For ‡ = 1/4 the three-level time stepping scheme (11.2)-(11.5) is closely related to
the well-known two-level Crank-Nicolson method applied to the first order in time system

Y
__]

__[

ˆty = v, flˆtv ≠ ˆx(Ÿˆxy) = u in I ◊ œ

y = 0 on I ◊ ˆœ

y = y0, v = y1 in {0} ◊ œ,

see [46, Section 8] for details, as well as to the Petrov-Galerkin method described in [29]. After the mass
lumping, for ‡ = 0 our method becomes explicit and is related to the Leap-Frog method; moreover, for
any ‡ it becomes close to three-level finite-di�erence schemes with such weight in time, eg. see [43].

12. Control discretization. Solution process and L2(I ◊ œ)-regularization

Now we discuss in more detail solving of the semi-discrete optimization problem (PË) in the case
MT = M(œ, L2(I)).

An important point is that we can seek its solution in the form
ūË œ MË := V· ¢ Mh, Mh := span{”x1 , . . . , ”x

N≠1} µ M(œ).

To show that, let fi0
· be the projector in L2(I) on V· . Note that, for ÷ œ L2(I), it satisfies

(B· fi0
· ÷)m = 1

· (÷, e·
m)L2(I) for 1 Æ m Æ M ≠ 1, (B· fi0

· ÷)m = 2
· (÷, e·

m)L2(I) for m = 0, M.

Then we define  h: M(œ) æ Mh by  hw :=
qN≠1

j=1 Èw, eh
j Íœ”x

j

and  Ë = fi0
·  h. The following

identity holds
È Ëu, vÍM

T

, C
T

= Èu, fi0
· ihvÍM

T

, C
T

’u œ MT , v œ CT

with the interpolation operator ih: C0(œ) æ Vh such that ihw(xj) = w(xj) for all j = 0, . . . , N . In
particular, if v œ VË, then

È Ëu, vÍM
T

, C
T

= Èu, vÍM
T

, C
T

,

and consequently (like in [30, Lemma 3.11]) we have SË = SË ¶  Ë as well as Î ËuÎM
T

Æ ÎuÎM
T

.
Thus for each solution ũË of problem (PË), the discrete control  ËũË satisfies

jË(ũË) = jË( ËũË).
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Therefore  ËũË is also a solution of (PË). This is a justification for solving the fully discrete problem

jË(uË) = 1
2 ÎSËuË ≠ zÎ2

Y
h

+ –ÎuËÎM(œ,L2(I)) æ min
u

Ë

œM
Ë

(12.1)

in order to get a solution of (PË).
The direct solution of (12.1) by means of a generalized Newton type method is a challenging problem

since a proper globalization strategy is needed, see [36]. Thus we propose a solution strategy based on
an additional L2(I ◊ œ)-regularization of (12.1) with a parameter “ > 0 and a continuation method.
For high values of “ the corresponding Newton type method converges independently of the initial guess
in numerical practice. Thus the continuation strategy can be seen as simple globalization strategy.

On the continuous level we consider the following regularized problem

j“(u) = 1
2 ÎSu ≠ zÎ2

Y + –ÎuÎM(œ,L2(I)) + “
2 ÎuÎ2

L2(I◊œ) æ minuœL2(I◊œ) . (12.2)

It is possible to formulate a semi-smooth Newton method for this problem on the continuous level
which is based on the following necessary and su�cient optimality condition

ū“(t, x) = ≠ 1
“

max
A

0, 1 ≠ –

Îp̄(·, x)ÎL2(I)

B

p̄(t, x), (t, x) œ I ◊ œ, (12.3)

with p̄ = SıWh(Sū“ ≠ z). Moreover, this semi-smooth Newton method is superlinear convergent.
Let ū“ and ū be the unique solutions of (12.2) and (P). Then we have ū“ Ôú ū in M(œ, L2(I)),
see [23, 30, 40]. This justifies the use of a continuation strategy in “. The control discretization
described above can not be used for (12.2). Instead we propose to use discrete controls from VË, i.e.,

uË(t, x) =
Mÿ

m=0

N≠1ÿ

j=1
um,je·

m(t)eh
j (x) =

N≠1ÿ

j=1
uj(t)eh

j (x) =
Mÿ

m=0
um(x)e·

m(t),

cf. (11.1). In particular, we solve the following fully discrete regularized problem

j“
Ë(uË) = 1

2 ÎSË(lËuË) ≠ zÎ2
Y

h

+ –ÎuËÎM(œ,L2(I)),h + “
2 ÎuËÎ2

L2(I◊œ),h æ minu
Ë

œV
Ë

(12.4)

with

ÎuËÎM(œ,L2(I)),h =
N≠1ÿ

j=1
djÎujÎL2(I), ÎuËÎ2

L2(I◊œ),h =
Mÿ

m=0
(B· um)tD(B· um)

where D = diag(d1, . . . , dN≠1) is the lumped mass matrix. Moreover, the operator lË defined by

(lËuË, vË)L2(I◊œ),h =
Mÿ

m=0
(B· um)tD(B· vm) ’uË, vË œ VË.

The use of D allows us to derive the following optimality conditions for (12.4)

ū“
m,j = ≠ 1

“
max

A

0, 1 ≠ –

Îp̄Ë ·,jÎL2(I)

B

p̄Ë m,j , (12.5)

for all m and j, with p̄Ë = Sı
ËWh(SËūË ≠ z), cf. (12.3). Based on (12.5) we can set up a semi-smooth

Newton method. Since problem (12.4) is a discretization of (12.2), we can expect that this method
behaves mesh independently. Let ū“

Ë =
qN≠1

j=1 uj(t)eh
j be the solution of (12.4) and we define

ũ“
Ë =

N≠1ÿ

j=1

uj(t)
dj

”x
j

.

As “ æ 0 the control ũ“
Ë tends to a solution of (12.1) justifying the use of this control discretization

and the continuation strategy. For more details see [40].
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13. Numerical results

In this section, we present results of numerical experiments. We consider an example involving the
wave equation ˆtty ≠ ˆxxy = 0 in I ◊ œ = (0, 1) ◊ (0, 1), zero initial data y0 = y1 = 0, the control
space MT = M(œ, L2(I)) and the tracking functional

F (y) = 1
2Îy ≠ zÎ2

L2(I◊œ)

with the particular desired state

z(x) = 1Ô
2fifl

e
≠ (x≠⁄)2

2fl

2

where fl = 0.1 and ⁄ = fi/20. The time independent function z is a gaussian centered in an irrational
point ⁄. For su�ciently large – (– = 0.1), we expect that the optimal control ū consists of one point
source with a position close to ⁄. If the gaussian would move through the domain, a point source
shaped ū is not able to follow the center of the gaussian since M(œ, L2(I)) contains no moving point
sources. The optimal control would rather consist of some additional fixed point sources. This would
not lower the regularity of the state whereas a moving point source can cause it.

The domain œ and the time interval I are discretized by uniform grids with M = 2r
· and N =

2r
h where r· , rh = 2, 3, . . .. The stability parameter is fixed to its lowest value ‡ = 1/4 ensuring

unconditional stability of the time-stepping method. The discrete control problem is solved for
rh = 2, 3, . . . , rmax and a fixed r· and vice versa. The solution process has been described above in
Section 12. Numerically the desired state z is replaced by ihz for simplicity, moreover the corresponding
error O(h2) is negligible. Since the optimal pair (ū, ȳ) is not known in our example, we replace it by a
reference solution (û, ŷ) which is chosen as the approximate solution on the finest grid level. We depict
(û, ŷ) in Figure 1. As expected, the optimal control û consists only of one point source positioned in
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(a) û (on a coarser grid)
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(b) ŷ

Figure 1. Reference solution

the vicinity of ⁄. Thus, the state ŷ has a kink at this position. Due to reflections at the boundary, ŷ
has also kinks at other positions.

Next, we discuss the convergence results. In Figure 2, we see the convergence rate of Îȳ‡ ≠ ŷÎL2(I◊œ)
and of the functional for a sequence of h refinements. The state error behaves in a linear way and
the rate for the functional is close to two; as usual the latter is approximately the doubled rate of
the former. Both are better than above theoretical rates. In Figure 3, we see the similar results for a
sequence of · refinements. The error of the functional stagnates at the last · refinement that is caused
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Figure 2. Errors as h refines and M = 210

by a too coarse space grid. Nevertheless, we observe reduced rates for ŷ much less than two caused by
its reduced regularity (kinks).
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Figure 3. Errors as · refines and N = 210
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