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Abstract

We present an algorithm to build a ready to use isogeometric model from scan
data gained by a µ-CT scan. Based on a three-dimensional multi-patch reference
geometry, which includes the major topological features, we apply three steps:
fitting the outline, the cross-section and finally the three-dimensional geometry.
The key step is to fit the outline, where a non-linear least squares problem is
solved with a Gauss-Newton approach presented by Borges and Pastva (2002),
which we extend by a regularisation and a precise interpolation of selected data
points. The resulting NURBS geometry is ready to apply isogeometric analysis
tools for efficient numerical simulation.

As a particular example we examine the scan data of a violin bridge and
present the complete workflow from the µ-CT scan up to the numerical simula-
tion based on isogeometric mortar methods. We illustrate the relevance of the
constructed geometry with an vibro-acoustical application.

1. Introduction

In mechanical simulation problems concerning complex-shaped real world
objects, conventional geometric measurement methods are often not giving sat-
isfactory results. A remedy in such cases may be a µ-CT scan of the considered
object which generates a set of three-dimensional data points organised in a
surface triangulation. The question addressed in this paper is how to construct
an accurate spline representation of the object described by such a data set,
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which is ready for a numerical simulation. A solution based on isogeometric
analysis requires an accurate fit of the volumetric geometry to the data as well
as a suitable numerical method to perform the simulation on the complex geom-
etry. The complete workflow based on a non-linear least-squares problem [1] and
isogeometric mortar methods [2] is presented in detail throughout this paper.

Fitting spline geometries is an old problem as splines were soon recognised
to have good approximation properties, which are favourable for geometric de-
sign [3]. While splines were originally designed for one-dimensional interpola-
tion, their use in geometry approximation is usually based on the solution of a
(possibly non-linear) minimization problem.

A crucial part of the fitting process is the parametrisation of the geometry.
When the parameter value for each surface point which is fitted to a given data
point is fixed, the optimisation of the spline geometry reduces to a quadratic
optimisation problem, e.g. [4, 5]. For more precise and flexible results there ex-
ist various non-linear optimisation approaches which include the position of the
knots [6], the parameter values [7] or different kinds of error projection methods
between the data and the fitted surface [8]. While the approaches mentioned
above either do not incorporate the parameterization of the data points or de-
termine the parameterization within a subsequent updating process, we follow
the approach of [1], where both, the parameter values and the control points,
occur as optimisation variables in the cost functional and are optimised simul-
taneously by employing a Gauss-Newton algorithm. As we observed overfitting
of the spline, we regularise the non-linear least squares problem. In order to
retain characteristic points of the scanned object, we present a way to precisely
interpolate selected data points.

In the last years the use of progressive iterative approximation (PIA) became
increasingly popular [9, 10, 11]. These methods concentrate on the recursive
construction of optimal control points and are advantageous where only a small
set of measured data is available and where computational speed is a crucial
issue. In our approach we concentrate on the quality of the model geometry
and the accurate representation of certain important geometrical features. We
therefore chose a more traditional regularised least-squares data-fit approach
which involves several tunable parameters, which helps to enhance the desirable
features in the model. As already mentioned above, we also incorporate the
parametric values for the given data points into the optimisation process. This
allows us to fit a large set of data points while keeping the amount of necessary
control points limited and also improves the speed of convergence.

We also mention other approaches to surface fitting which make use of ge-
netic algorithms [12] or adaptive group testing [13]. These methods consist
of multiple stages, whereas our algorithm comprises the complete optimisation
procedure into one step.

Processing CT scan data is of high relevance in medical sciences. Apart
from their obvious diagnostic values, these data are often the basis for mod-
elling medical and biological processes [14]. Here our process might point out
an alternative to recent techniques which, due to data noise, often depend on
pre-smoothing of the data set and thus suffer from a significant loss of informa-
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tion. Another related applications is as-built modeling in engineering [15, 16].
Furthermore we would like to emphasise, that the way of constructing multi-
patch surfaces of real world CAD models which we present in this paper can be
a computationaly cost-saving alternative to techniques like they are presented
in [17] leading to G1-smoothness of the composite surface or techniques using
trimmed NURBS [18, 19] since we avoid effortful adaptation of the spline basis
describing the geometry and it also spares us the modification of the numerical
method.

Figure 1: Photo of the scanned violin bridge.

We illustrate our approach by the particular example of a violin bridge, as
shown in Figure 1. Such a bridge is made out of wood, i.e. an orthotropic mate-
rial, and about 42 mm wide, 33 mm high and 3 mm thick. As small changes of its
shape are already causing clearly noticeable changes in the acoustic properties
of the bridge [20, 21], a highly accurate computational geometry is essential for
precise vibro-acoustical simulations.

In this article, we present the complete process leading to the numerical
simulation of the vibro-acoustics of the violin bridge. The first steps are the ac-
quisition of measurement data from a µ-CT scan [22, 23] and the pre-processing
of the generated data. Then a spline volume is fitted to the data using a to-
tal least-squares approach [1]. Finally, we solve a vibro-acoustical eigenvalue
problem with isogeometric methods [24, 25]. Because of its complexity, we de-
compose the geometry of the violin bridge into 16 NURBS patches which are
coupled weakly by means of isogeometric mortar methods [2].

This article is structured as follows. In Chapter 2 we explain the required
background about the details and output of the µ-CT scan and the fundamental
properties of spline geometries. In the following chapters, we explain our ap-
proach via a non-linear least squares problem for the data fit to obtain optimal
control points and parameter values of the fitted NURBS functions: Chapter 3
contains the fit of the one-dimensional outline. This is extended to the final
three-dimensional geometry in Chapter 4 within two sub-steps, the construction
of a two-dimensional multi-patch surface (see Chapter 4.1) and a constrained
quadratic optimisation in the third dimension (see Chapter 4.2). In Chapter 5
we point out the capabilities of the algorithm with some detailed examples and
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in Chapter 6 we show a concrete application where we use the constructed violin
bridge spline geometry to solve the eigenvalue problem of linear elasticity on it.
The main findings of the article are summarized in Chapter 7.

2. Background on µ-CT scan data generation and spline geometries

In this section, the fundamental background of the geometry fit is explained:
the µ-CT scan of the geometry and the basics about spline geometries that are
fitted to these measured data.

2.1. Acquiring µ-CT scan data

The tomographic scans of the violin bridge were conducted at a recently
developed µ-CT device, a ‘v|tome|x s’ (GE Sensing & Inspection Technologies
GmbH, Ahrensburg, Germany), at the Technical University of Munich and its
specific technical setup and mode of operation is explained in more details in
the following. For an in-depth background on the physics and mathematics of
computed tomography (CT) we refer to [22, 23].

Whereas in clinical CTs, X-ray tube and detector rotate around the patient,
in µ-CTs the sample rotates whereas tube and detector stay in fixed positions.
The X-ray tube was a ‘xs 240 D’ direct tube (GE, Germany) operated at 60 kVp
voltage and 130 µA current. The resulting polychromatic spectrum was filtered
by a 200 µm aluminum filter to reduce beam hardening artefacts [22, 23]. The
minimum spot size of this tube is 7 µm [26] but goes up to about 10 µm at the
tube settings used for the experiment [27]. A 1000x1000 pixel detector ‘DXR-
250RT’ (GE, Germany) was used without further binning of the pixels of 200 µm
x 200 µm size. The ‘DXR-250RT’ is an amorphous Si flat panel detector with
a CsI scintillator converting the X-rays into visible light. 1601 projections over
360◦ were taken by rotating the sample. For every rotation angle 5 projections
of 2 sec accumulation time were collected. The first image was always discarded
to reduce artefacts due to the afterglow of the CsI scintillator. The 4 remain-
ing projections were averaged to increase the signal to noise ratio. The violin
bridge was held by Polystyrene foam to minimize additional absorption but at
the same time ensure a stable mounting of the sample. The reconstruction of
the projection data was done with a standard filtered back projection software
with cone-beam geometry (GE, Phoenix datos|x). With a fixed focus detector
distance of 811.72 mm and a focus object distance of 231.34 mm, the geometric
magnification of the sample onto the detector was 3.5. Hence the effective voxel
size of the reconstructed volume is 57 µm. The focus to object distance was
optimised for the highest resolution by given sample and detector sizes. For a
given X-ray spot size of less than 10 µm and the geometric magnification of 3.5,
the real voxel size is still about 57.5 µm [27].

The volumetric data was converted into a surface mesh in the STL file for-
mat by the Calibrate Object tool of the software VGStudio MAX Release 2.0
(Volume Graphics GmbH, Heidelberg, Germany). For the automatic calibra-
tion of the surface gray value for thresholding, example areas of background and
sample were defined.
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2.2. Spline geometries

The geometry of the violin bridge, measured by the µ-CT scan, shall be rep-
resented by a three-dimensional multi-patch geometry of 16 spline patches Ωn,
n = 1, ..., 16, i.e., Ω =

⋃16
n=1 Ωn. The amount of 16 patches was adopted by a ref-

erence geometry which incorporated the main topological features.
Each spline patch parametrisation is based on the control points
Cn
jkl = (Cx,njkl , C

y,n
jkl , C

z,n
jkl )

> ∈ R3 and defined as the diffeomorphic image of

a spline function Fn : Ω̂ → R3, Ωn = Fn(Ω̂) with Ω̂ = (0, 1)3. For notational
simplicity, we neglect the patch-index n whenever there is no confusion to be
expected.

With the basis (Np
jkl)j,k,l of non-uniform rational B-splines (NURBS) of

degree p, the parametrised mapping for each patch is given as

F(ξ, η, θ) =

J,K,L∑
j,k,l=1

CjklN
p
jkl(ξ, η, θ).

In general, NURBS are rational splines, whose definition involve fixed weights
wjkl > 0 and a corresponding weight function W =

∑
j,k,l wjklB

p
jkl(ξ, η, θ) for

a B-spline basis Bpjkl. We then set Np
jkl = Bpjkl/W . The multivariate B-spline

basis is defined in a tensor-product structure based on univariate splines:

Bpjkl(ξ, η, θ) = Bpj (ξ)Bpk(η)Bpl (θ),

with one-dimensional spline bases of order p, Bpj , B
p
k , B

p
l : (0, 1)→ R. We briefly

explain some properties of a B-spline basis with open non-uniform knot vector
ζ = (ζ1 = 0, ..., ζp+J+1 = 1) of length p+1+J , where J is the number of control
points which coincides with the dimension of the vector space generated by the
basis functions. Open here means that the first and the last values in the knot
vector have multiplicity p + 1, i.e. ζ = (0, ..., 0, ζp+2, ..., ζJ , 1, ..., 1). While the
spline functions are in general smooth up to order Cp−1, repeating a knot ζi,
i = 1, ..., p + J + 1, in ζ several times while keeping the overall length of ζ at
p + 1 + J reduces the smoothness of the basis in one corresponding point [24].
In particular, if a knot ζ appears p times in the knot vector, the spline basis is
interpolatory at the parameter value ζ, the associated basis function has a kink,
and the generated geometry may have a corner.

One- and two-dimensional geometries are defined analogously as the images
of

F(ξ) =

J∑
j=1

CjB
p
j (ξ)/W (ξ), for curves and

F(ξ, η) =

J,K∑
j,k=1

CjkB
p
j (ξ)Bpk(η)/W (ξ, η), for surfaces.

Due to the tensorial construction, the boundary sides of a spline geometry are
again spline geometries of a lower dimension. In this work, the choice of the
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basis functions is given by an initial sketch of the geometry, but it can in general
be chosen flexibly and, if necessary, adaptively. For a detailed presentation of
the introduced concepts see [3, 24].

3. Total least squares problem for the data fit

In this chapter we discuss the process to derive a spline geometry based on
the unstructured set of data points which were generated by a µ-CT scan.
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Figure 2: Patch decomposition of the reference geometry.

In our case, we start from a rough initial bridge geometry, which we use to
select the patch-decomposition, see Figure 2. This initial geometry only roughly
represents the correct outline and has a trivial shape in the third direction,
which makes it too imprecise for the desired vibro-acoustical applications. A
NURBS based representation of this draft geometry is given [28] and is used as
a guideline for our more realistic geometric model.

The precise geometry is only given by the output of the µ-CT scan. This is
a set of data points

Σ = {(ui, vi, wi)>}Ndat
i=1 ⊂ R3

which describes the surface of the geometry of the scanned violin bridge with a
high accuracy. To construct a spline geometry for one of the patches from these
points, we first have to decide how many control points are required in each of
the three parametric directions ξ, η and θ. We denote the number of control
points in the three directions by J,K,L ∈ N respectively. This yields a total of
M = J ·K ·L control points. For the bridge of the violin, we choose the number
of control points of the initial draft geometry.

The control points for each patch, Cjkl = (Cxjkl, C
y
jkl, C

z
jkl)
> ∈ R3, are fitted

iteratively in a three step procedure. As a first step we construct the boundary
splines of each patch which is explained in detail in the remainder of this chapter.
In a second step, we combine the boundary splines to a two-dimensional spline
surface, with the help of a Coon’s patch [29] (see Chapter 4.1). And finally,
in the third step, we extend the spline surface to the actual three-dimensional
geometry via a constrained quadratic optimisation to fit the z-components of
the control points, see Chapter 4.2.
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3.1. Preprocessing of the scan data

In a preprocessing step we perform mostly automated cleaning of the data.
Particularly, we have to remove some outliers which arose from measurement
errors. Then we can continue to find the vertices that describe the contour
of the scanned object. As we are provided with an STL file which contains
a surface triangulation of the measured object, we can use the pre-calculated
normal vectors to align the coordinate system, such that the flat back of the
violin bridge is oriented in the x-y-plane. Manually determining the minimal
and maximal z-component wmin, wmax of the exact geometry allows us to remove
obvious outliers lying outside of this range. Therefore any data points with a
z-coordinate outside [wmin, wmax] are removed.

Afterwards we use an orthogonal projection to map all points into a plane
and triangulate them using a Delaunay triangulation. This step is possible due
to the geometric structure of the bridge, which can be characterised by the
two-dimensional flat back and non-linear values of the thickness measured in
relation to the flat back. Mapping all points into the plane results in more data
points than can be used to fit outline of the the two-dimensional back. Using
the planar triangulation, we can determine the edges which are adjacent to only
one triangle. These edges form the boundary of the flat back and the vertices
belonging to these edges are collected as the desired set of boundary vertices.
An easy and elegant way to find boundary edges and vertices is the Matlab
function freeBoundary, which uses the connectivity list of the triangulation.
This results in a set of two-dimensional data points {(ui, vi)}Ii=1, which describe
the outline of the back of the violin. These data points are then manually
distributed among the boundary curves of the 16 patches. For each boundary
curve, the data points are sorted automatically, either according to their x-
coordinate, their y-coordinate or the angular variable around the center of mass
of the data points. The assignment of these data points to the 16 patches of the
future spline geometry is displayed in Figure 3.

3.2. Fitting the boundary splines

In this chapter, we describe one of the key procedures: the fitting of the
(one-dimensional) boundary splines. In [1], an algorithm was proposed that
uses a Gauss-Newton approach to minimise the total least squares error between
ordered data and a B-spline curve. In this approach both, the control points
and the parameter values at which the spline function values are compared
with the data points, appear as optimisation variables. Adapting this idea
and incorporating additional constraints, we obtain a method that performs a
precise fit of complicated curved shapes which may contain sharp edges. While
we solve a single minimisation problem with respect to a pair of optimisation
variables, other recent approaches driven by similar ideas require two separate
optimisation steps [12]. Some illustrative examples for the applicability of the
approach are later presented in Section 5.

Given a set of ordered data points {(ui, vi)>}Ii=1 and an univariate NURBS
basis {Np

j }Jj=1 of degree p (in our case p = 3), we want to find I parametric
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Figure 3: Distribution of the data points to the 16 different patches of the
computational geometry. The assignment of the data points to a patch can be
distinguished by the different colours of data points of neighboring patches.

points {ξi}Ii=1 with 0 = ξ1 < ξ2 < · · · < ξI = 1 and J control points (Cxj , C
y
j )>

that minimise the quadratic distance between the curve evaluated at the para-
metric points and the data:

I∑
i=1

∥∥∥(ui
vi

)
−

J∑
j=1

Np
j (ξi) ·

(
Cxj
Cyj

)∥∥∥2

2
−→ min

(ξ)j ,

(
Cxj
C
y
j

)
j

. (1)

We remark that by ordered we mean that the data points are ordered in the
sense of the parametric direction of the spline to be constructed. In the follow-
ing, we neglect the fixed degree p and write Nj for elements of the spline basis.

To keep the article selfcontained, we shortly recapitulate the applied method
and then extend it by incorporating several constraints. For further details, we
refer to the original article [1].

Introducing the B-spline basis matrix which contains all J basis functions
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Nj evaluated at a vector ξ = (ξ1, . . . , ξI)
> of parametric points

N (ξ) =

N1(ξ1) · · · NJ(ξ1)
...

. . .
...

N1(ξI) · · · NJ(ξI)


we can reformulate (1) in a matrix version:

‖u−N (ξ) Cx‖22 + ‖v −N (ξ) Cy‖22 −→ min
ξ,

(
Cxj
C
y
j

)
j

.

Here u, v, Cx, Cy are vectors which contain the elements ui, vi and Cxj , Cyj
respectively. In the following we omit the ξ dependency in the notation when
it is not in the foreground and simply write N instead of N (ξ). We consider
the over-determined case, where more data points than degrees of freedom are
present, i.e., I > J , and assume that N has full rank.

For a fixed parameter vector ξ, the optimisation for the control points re-
duces to a quadratic least-squares problem with a linear optimality system,
which we can solve easily. The optimality conditions in this case are

〈u−NCx,Nτ 〉2 = 0 and (2)

〈v −NCy,Nτ 〉2 = 0 for all τ ∈ RI . (3)

The solution to the optimality system then can be writen as

Cx = N+ (ξ) u and Cy = N+ (ξ) v

whereN+ denotes the Moore Penrose inverseN+ = (N>N )−1N> of the matrix
N , see [30].

After the elimination of the control points we can consider the reduced prob-
lem

‖r(ξ)‖22 =
∥∥u−N (ξ)N+ (ξ) u

∥∥2

2
+
∥∥v −N (ξ)N+ (ξ) v

∥∥2

2
−→ min

ξ
. (4)

Here we have set r(ξ) =
(
rx(ξ)>, ry(ξ)>)> with rx(ξ) =

(
I −N (ξ)N+ (ξ)

)
u

and ry(ξ) =
(
I − N (ξ)N+ (ξ)

)
v. For simplicity, subsequently we use the

notation r (ξ) = ‖r(ξ)‖22. This formulation is independent of the control points
(Cxj , C

y
j )> and only needs to be solved for the optimal parameter values {ξi}Ii=1.

Similar methods like [31] minimising (4) for the optimal control points and the
optimal parameter values use an BFGS approach. In the following we present
a minimisation scheme based on a Gauss-Newton approach.
To iteratively minimise r(ξ) as stated in (4), we linearize r and consider the
quadratic least squares problem

‖r(ξk) + Jr(ξk)
(
ξk+1 − ξk

)
‖22 −→ min

ξk+1

,
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leading to the iterative Gauss-Newton scheme:

ξk+1 = ξk − J+
r (ξk) r (ξk) .

Here, as above, J+
r (ξk) denotes the Moore Penrose inverse of the Jacobi

matrix Jr (ξk) for the parameter vector ξk at iteration step k. To evaluate J+
r

we need to compute Jr (ξ) with the entries Jr (ξ)i,j = ∂ri/∂ξj , which requires
closer examination of the residual vector r (ξ).

Using the definition of the Moore Penrose inverse, it is straightforward to
show that the Matrix Prg(N ) = NN+ is symmetric and has the property that
P 2

rg(N ) = Prg(N ). Moreover, the ranges of N and Prg(N ) coincide, i.e. we

have rg(N ) = rg(Prg(N )). Therefore, Prg(N ) is the orthogonal projection from
RI → rg(N ) ⊂ RI . Note that Prg(N )⊥ = I−Prg(N ) is the orthogonal projection

onto the orthogonal complement rg(N )⊥ of rg(N ).
With this on hand, we can rewrite r(ξ) = ‖Prg(N )⊥u‖22 + ‖Prg(N )⊥v‖22. So,

to compute the Jacobian Jr, we need to be able to evaluate ∂Prg(N )⊥/∂ξi. We
use the following Lemma which was shown in [1, 32]:

Lemma 1. Let A = A(ξ) ∈ RI×J be a differentiable matrix valued function
and let A− ∈ RJ×I be such that AA−A = A and (AA−)> = AA− holds.(I.e.
A− is a generalised inverse for A. For example, the Moore Penrose inverse A+

of A has the desired properties). Then we can compute the derivatives of the
orthogonal projection P(rgA)⊥ = I −AA− as

∂P(rgA)⊥

∂ξj
= −P(rgA)⊥

∂A

∂ξj
A− −

(
P(rgA)⊥

∂A

∂ξj
A−
)>

.

The Lemma states that we can calculate the derivatives of Prg(N )⊥ when
we can calculate the projection Prg(N )⊥ itself and the Moore Penrose inverse or
some other generalized inverse of N . Using the QR-decomposition[33] of N , we
have

N =
[
Q1 Q2

] [R
0

]
Π> , (5)

where Π is a permutation matrix,
[
Q1 Q2

]
∈ RI×I is orthogonal with Q1 ∈

RI×J and Q2 ∈ RI×(I−J) and R ∈ RJ×J is upper triangular where J = rank(N )
as assumed above. From this we easily get

N+ = ΠR−1Q>1 . (6)

It directly follows from (5), (6) that

Prg(N ) = Q1Q
>
1 , Prg(N )⊥ = Q2Q

>
2 . (7)

Applying Lemma 1 to our case and taking into account equations (6) and (7),
we get

∂Prg(N )⊥

∂ξj
= −Q2Q

>
2

∂N
∂ξj

ΠR−1Q>1 −
(
Q2Q

>
2

∂N
∂ξj

ΠR−1Q>1

)>
.
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With this, the Jacobian

Jr =

(∂P
rg(N)⊥

∂ξ1
(u), . . . ,

∂P
rg(N)⊥

∂ξI
(u)

∂P
rg(N)⊥

∂ξ1
(v), . . . ,

∂P
rg(N)⊥

∂ξI
(v)

)
(8)

can be calculated and the Gauss-Newton scheme can be performed.

3.3. Regularising the solution

The procedure described in the previous section shows good results when
fitting curves with no major changes in concavity, but once corners or sharp
bends are present, twisting of control points occurs. In the following sections,
we present some techniques, we found necessary to improve the geometric quality
of the data fit. These methods comprise several regularisation terms which can
be added to the data fit criterion (1). The effect of these regularisation terms
are controlled by parameters which have to be tuned to suppress undesirable
features on the one hand, without disturbing the quality of the data fit on the
other hand. To construct these regularisers, we make use of a-priori information
mainly obtained from the known reference model [28]. We shall, however, also
present ideas how to set up the regularisation terms if this information was not
available.

3.3.1. Interpolating characteristic points

Within the given data points, we can identify characteristic points which
should be interpolated precisely. In particular, this includes the start and end
points of the boundary spline and corners that are present in the geometry.
When the start and end points are interpolated, the set of boundary splines
automatically forms a closed curve. The interpolation of characteristic features
of the geometry is important to guarantee that these features are present in the
spline model. Therefore we extend the optimization problem (1) and introduce
the interpolation condition as a constraint. We first present a simple way to
interpolate the end points as well as corners, based on the elimination of degrees
of freedom from the equation system. Then we present a more general approach
which allows for the interpolation of arbitrary points.

Eliminating corner and end points from the optimization system. We consider
first the case that a set of corner points {(ui, vi)}i∈Iλ ( {ui, vi}Ii=1 shall be
interpolated exactly. These points are identified by a subset of indices Iλ (
{1, . . . , I}. A useful property of B-splines is that when a knot ζl in the knot
vector is occurs p times, the spline geometry interpolated the corresponding
control point(Cxj , C

y
j )>, see Section 2.2. In this case Nj(ζl) = δj,l and setting

(Cxj , C
y
j )> = (ui, vi)

> for some i ∈ Iλ, the spline curve passes exactly through
this data point at the parameter points ξi = ζl. The same approach works for
the start and end points as we consider open knot vectors. With this approach,
both the control points and the interpolating parameter values ξi for i ∈ Iλ are
fixed and no longer act as optimisation variables in the analogous problem to
(4). They can be eliminated as follows.
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We define Ic
λ = {1, . . . , I} \ Iλ as the complement of the index set Iλ cor-

responding to the data points. Furthermore we define Jλ as the subset of all
indices {1, . . . , J} which correspond to the interpolatory B-splines, due to a re-
peated knot within the knot vector. Using these B-splines, we shall interpolate
the data point (ui, vi)

> for i ∈ Iλ. Moreover, we set J c
λ = {1, . . . , J}\Jλ. Note

that the described correspondence between interpolated data points (ui, vi)
>,

i ∈ Iλ, and interpolated control points Cj with j ∈ Jλ is obviously one-to-one.
We denote this correspondence for ̂ ∈ Jλ and associated ı̂ ∈ Iλ by ı̂ = ı̂(̂) and
̂ = ̂(̂ı) respectively such that B̂(ξı̂) = δı̂̂.

Fixing the parameters ξı̂ for ı̂ ∈ Iλ is trivial as the parameter vector is only
updated in the outer iteration. To adapt the scheme, we thus have a closer look
at the inner iteration, where the parameter vector ξ is fixed. The least-squares
problem only needs to be solved for the variables Cxj and Cyj for all j ∈ J c

λ and
we can eliminate the remaining control points:∑

i∈Icλ

∣∣∣ui − ∑
j∈J c

λ

Cxj Nj(ξi)−
∑
̂∈Jλ

uı̂(̂)N̂(ξi)
∣∣∣2

+
∑
i∈Icλ

∣∣∣vi − ∑
j∈J c

λ

Cyj Nj(ξi)−
∑
̂∈Jλ

vı̂(̂)N̂(ξi)
∣∣∣2 −→ min

Cxj ,C
y
j for j∈J c

λ

.

We introduce the reduced B-spline basis matrix Ñ c
λ ∈ R|Icλ|×|J c

λ| as(
Ñ c
λ

)
ij

= Nj(ξi), for i ∈ Ic
λ , j ∈ J c

λ ,

and the adapted data vector

ũ =

ui −∑
̂∈Jλ

uı̂(̂)N̂(ξi)


i∈Icλ

,

where ṽ ∈ R|λc| is defined analogously to ũ. By using this and additionally
also the notation Cx

λ = (Cxj )j∈J c
λ

and Cy
λ = (Cyj )j∈J c

λ
for the control points the

resulting optimality system reads

〈ũ− Ñ c
λCx

λ, Ñ c
λτ 〉2 = 0 and

〈ṽ − Ñ c
λCy

λ, Ñ
c
λτ 〉2 = 0 for all τ ∈ R|J

c
λ|.

Therefore, the structure of the optimality system and also the subsequent op-
timisation with respect to the parameter values (ξi)i∈Icλ is the same as in the
previous subsection and the algorithmic treatment can be adopted.

Constrained optimization for general characteristic points. A key requirement
of the presented method is that the underlying spline space as repeated knots
at the points of interpolation. The resulting reduced regularity is reasonable
for corner points, but might be undesired for arbitrary characteristic points.
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For this case we present a second, more general method to incorporate the
interpolation of data points. If the data point to be interpolated is not a corner
of the geometry, the spline basis will not have the interpolatory property that
only one basis function is different from zero at the considered parameter value.
The elimination of certain control points from the optimisation in this case is not
that obvious. Instead of reducing the number of optimisation variables, we treat
the interpolation conditions as an equality constraints during the optimisation.
The interpolation of a data point (ui, vi)

> at an arbitrary parameter value ξ = ξi
for i ∈ Iλ is written as

J∑
j=1

Cxj Nj(ξi) = ui and

J∑
j=1

CyjNj(ξi) = vi

for all i ∈ Iλ. As in the previous section, we treat the parameter values ξi
at which we want to interpolate exactly as fixed parameters and exclude them
from the list of optimization variables. The optimization is only carried out
with respect to the parameter values ξi with i ∈ Icλ. We introduce the adapted
B-spline basis matrices

(N c
λ)ij = Nj(ξi) , i ∈ Ic

λ , j ∈ {1, . . . , J} ,
(Nλ)ij = Nj(ξi) , i ∈ Iλ , j ∈ {1, . . . , J} .

and the selected data vectors uc
λ = (ui)i∈Icλ , uλ = (ui)i∈Iλ and analogously

for v. We assume to have only a few characteristic points, such that |Iλ| < J
and Nλ has full rank. Note that N c

λ also has full rank, as its columns are linearly
independent.

Then we can write the constrained optimisation problem for fixed parameter
vector ξ as

‖uc
λ −N c

λCx‖22 + ‖vc
λ −N c

λCy‖22 −→ min
Cx,Cy

(9a)

s.t.
(
(NλCx)>, (NλCy)>

)>
= (u>λ ,v

>
λ )> . (9b)

Problem (9) is a quadratic optimisation problem with linear constraints. The
corresponding optimality system is given by

(
(N c

λ)>N c
λ (Nλ)>

Nλ 0

)(
Cx

λx

)
=

(
(N c

λ)>uc
λ

uλ

)
and (10a)(

(N c
λ)>N c

λ (Nλ)>

Nλ 0

)(
Cy

λy

)
=

(
(N c

λ)>vc
λ

vλ

)
. (10b)

We consider one of the two uncoupled equations and define the saddle point
matrix

A =

(
(N c

λ)>N c
λ (Nλ)>

Nλ 0

)
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and denote the upper left block of it by A = (N c
λ)>N c

λ. Note that under the
previous assumption that N (ξ) has maximal rank also N c

λ(ξ) is be of maximal
rank and hence A is be regular. With Nλ being surjective, also the saddle point
matrix A is regular, see [34, Theorem 3.2.1]. We use the Schur complement of
the saddle point matrix A given by

S = −NλA−1(Nλ)>

to express the solutions Cx and Cy of (10) as

Cx =
(
IJ +A−1(Nλ)>S−1Nλ

)
A−1(N c

λ)>uc
λ −A−1(Nλ)>S−1uλ, (11a)

and

Cy =
(
IJ +A−1(Nλ)>S−1Nλ

)
A−1(N c

λ)>vc
λ −A−1(Nλ)>S−1vλ , (11b)

where IJ ∈ RJ×J denotes the identity matrix. We here only give the solu-
tion formula for the optimal control point vectors and not for the associated
multipliers λx and λy. For details about the Langrange multipliers see [35].

With (11), we can eliminate the control points as optimisation variables and
can define the reduced functional which depends only on the parameter vector
ξ = (ξi)i∈Icλ analogous to (4). Inserting (11) into (9a) we face the problem of
minimising

rλ(ξ) = ‖rλ(ξ)‖ = ‖rxλ(ξ)‖22 + ‖ryλ(ξ)‖22
with respect to ξ where

rxλ(ξ) =
(
I|Icλ| −N

c
λ

(
IJ +A−1(Nλ)>S−1Nλ

)
A−1(N c

λ)>
)
uc
λ

−N c
λA
−1(Nλ)>S−1uλ. (12)

The corresponding expression for ryλ(ξ) is defined analogously. The matrices N c
λ

and Nλ and consequently also A and S depend on the parameter vector ξ and
therefore contribute to the Jacobian Jrλ . To set up the Gauss-Newton scheme,
we further explore the structure of (11) and show that Lemma 1 can be applied
to calculate the Jacobian of certain terms occurring in the residual term (12).
We present the calculation for (11a), as (11b) follows analogously. Note that
we can rewrite the operator from (12) to which we would like to apply Lemma
1 in the following form

N c
λ

(
IJ +A−1(Nλ)>S−1Nλ

)
A−1(N c

λ)> = (13)

N c
λ(N c

λ)+ −N c
λA
−1(Nλ)>

(
N c
λA
−1(Nλ)>

)+
.

Here the superscript + denotes the Moore Penrose inverse. As a preliminary
step we show that (13) is actually a projection:

Lemma 2. The linear map

PV = N c
λ(N c

λ)+ −N c
λA
−1(Nλ)>

(
N c
λA
−1(Nλ)>

)+
14



is the orthogonal projection in R|Icλ| onto the subspace

V = {v = N c
λu ∈ rg(N c

λ) : Nλu = 0}

= rg
(
N c
λ|ker(Nλ)

)
.

Proof. A direct calculation shows that PV as defined above is idempotent, i.e.
P 2
V = PV , and symmetric. It therefore is the orthogonal projection in R|Icλ| onto

its range rg(PV ). Obviously rg(PV ) ⊂ rg(N c
λ) holds. Moreover, with

u = (N c
λ)+w −A−1(Nλ)>

(
N c
λA
−1(Nλ)>

)+
w ,w ∈ R|I

c
λ| ,

we have v = N c
λu ∈ rg(PV ) and

Nλu = Nλ(N c
λ)+w −NλA−1(Nλ)>

(
N c
λA
−1(Nλ)>

)+
w

= NλA−1(N c
λ)>w −NλA−1N>λ

(
NλA−1AA−1N>λ

)−1NλA−1(N c
λ)>w

= NλA−1(N c
λ)>w −NλA−1(N c

λ)>w = 0.

Thus, we get rg(PV ) ⊂ V .
On the other hand let v ∈ V . We show that then PV v = v holds. With

v = N c
λu and Nλu = 0, we get N c

λ(N c
λ)+v = N c

λ(N c
λ)+N c

λu = N c
λu = v by the

properties of the Moore Penrose inverse (N c
λ)+. On the other hand, we have

N c
λA
−1N>λ (NλA−1Nλ)−1NλA−1(N c

λ)>N c
λu = 0

because A−1(N c
λ)>N c

λ = I and Nλu = 0. This concludes that PV v = v and
consequently V ⊂ rg(PV ).

We consider the subspace ker(Nλ) ⊂ RJ since we assume that Nλ has max-
imal rank |Iλ| and that |Iλ| < J . The orthogonal projection Pker(Nλ) onto
ker(Nλ) in RJ is then given by

Pker(Nλ) = I − (Nλ)+Nλ ,

see [30]. Note that Nλ has linearly independent rows by assumption, so the
Moore Penrose inverse is given as (Nλ)+ = N>λ (NλN>λ )−1. We want to treat
the projection PV onto V within the framework described in Lemma (1) for this
we define the matrix B

B = N c
λ

(
I −N+

λ Nλ
)
∈ R|I

c
λ|×J . (14)

and we obtain

V = rg(N c
λ|ker(Nλ)) = rg(N c

λ · Pker(Nλ)) = rg
(
N c
λ

(
I − (Nλ)+Nλ

))
= rg(B) .

We now investigate this matrix further to subseqently apply Lemma 1, in
order to evaluate the derivative of the operator in (12). We set

B− = (N c
λ)+ −A−1N>λ S−1Nλ(N c

λ)+. (15)
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We show that B− is a generalised inverse for B satisfying the two conditions
BB−B = B and BB− = (BB−)>, which are necessary for the application of
Lemma 1. Using the relations (N c

λ)+N c
λ = I and NλN+

λ Nλ = Nλ we see

B−B = (I −N+
λ Nλ)−A−1N>λ S−1Nλ(I −N+

λ Nλ) = (I −N+
λ Nλ),

and
BB−B = N c

λ(I −N+
λ Nλ)2 = N c

λ(I −N+
λ Nλ) = B,

as I−N+
λ Nλ is a projection. Moreover, a direct computation shows that BB− =

PV and therefore symmetric.
With the definition (14) and the corresponding generalised inverseB− in (15),

the conditions of Lemma 1 are satisfied. Applying the lemma to Prg(B)⊥ =
(I −BB−) then yields

∂P(rgB)⊥

∂ξi
= −P(rgB)⊥

∂B

∂ξi
B− −

(
P(rgB)⊥

∂B

∂ξi
B−
)>

. (16)

Note that I − BB− is exactly the matrix in the first expression on the right
hand side of(12). To calculate the Jacobian for the Gauss-Newton scheme, the
first term in the residuum vector rλ(ξ) can be treated exactly as described in
section 3.2. Note also that the parameter values ξi for i ∈ Iλ do not appear as
optimisation variable and therefore their derivatives are not considered in the
computation of the Jacobian. For i ∈ Ic

λ, the derivative ∂
∂ξi
Nλ = 0 because Nλ

does only depend on the interpolating parameter values in Iλ. Therefore, we
get

∂B

∂ξi
=
∂N c

λ

∂ξi
(I −N+

λ Nλ) (17)

for all i ∈ Ic
λ.

The term remaining in equation (12) after subtracting (13) isN c
λA
−1N>λ S−1.

Its partial derivatives can be computed using

∂

∂ξ
(L−1) = −L−1 ∂L

∂ξ
L−1

for the derivative of the inverse of a regular matrix L with respect to a param-
eter ξ.

Example of a constrained fit. The significance of precisely interpolating corners
as well as the end points is easily seen with an example. In Figure 4 a patch
boundary with two kinks is fitted with and without the additional constraint.
We clearly see an improved fit of the corners once the constraint is used, resulting
in a better overall fit.

3.3.2. Control point distances penalty

A major problem occurring in curve fitting is that sometimes control points
tend to oscillate or accumulate. This can be avoided by penalizing the distance
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Figure 4: Left: spline fit without constraints, right: spline fit with end and
corner point constraints. The red bullets indicate the control points of the
fitted spline ( which is visualised by a yellow line). The data points to be
approximated are indicated by red crosses.

between adjacent control points relative to the curve length. So, setting

L =

I∑
i=1

∥∥∥∥(uivi
)
−
(
ui−1

vi−1

)∥∥∥∥2

2

,

and the control point distances ∆j = Cj−Cj−1, j = 2, ..., J and fixing desirable
distances ∆j , we define the regularisation term

p1 (Cx,Cy, α) =
α

L

J∑
j=2

‖∆j −∆j‖2 . (18)

Here, once again, one possibly can make use of a similar, pre-calculated NURBS
geometry with control points {Cref

j }Jj=1 by setting ∆j = Cref
j −Cref

j−1. Otherwise
one needs to think here about an eligible spacing, the simplest one — though
not always effective and applicable — would be a uniform distribution. A usual
value for α is from the range [0, 10].

Figure 5 illustrates the relevance of this regulariser. For this strongly curved
outline we get oscillating control points. While the distance between the data
points and the curve is minimal, the curve is clearly overfitting and the distance
between the exact outline and the curve is too large. The regularization term
p1 can prevent this undesirable behaviour in this example and yields a curve
that matches the exact outline.
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Figure 5: Left: spline fit without penalizing the distance of the control points,
right: spline fit with penalizing the distance of the control points via the term
p1(Cx,Cy, α) in (18) with α = 4.

3.3.3. Control point miss-match penalty

The regularisation term p1(Cx,Cy, α) reduced overfitting, but in some cases
the quality of the approximation is insufficient under the influence of p1 alone.
For these cases, we introduce a second regularisation term as we noted that
the joint use of two regularisation terms with smaller parameters results in an
improved fit. An example is shown in Figure 6a and 6b , where the original
data fit without any additional penalties yields a self-intersecting curve. Apply-
ing the regularisation p1(Cx,Cy, α) results in a smooth curve, which however
significantly lost the accuracy of the approximation.

The second regularisation term forces the control points towards a suitable
set of reference control points. This also prevents the self-intersection of the
curve and allows us to use a smaller regularisation constant, yielding a better
approximation. The reference control points for this can either be chosen, or,
as in this case, the control points of the available reference geometry can be
used: Cref

j = (Cref,x
j , Cref,y

j )>, j ∈ {1, ..., J}. The new regulariser then is of the
following form:

p2 (Cx,Cy, β) = β

J∑
j=1

∥∥Cref
j −Cj

∥∥2

2
. (19)

In our case the regularisation factor β > 0 was usually in the range [0, 0.1] but
it should be remarked that β needs to be chosen with special care since the
similar geometry may have slight, but notable differences in curvature and di-
mension/size. The improved precision of the geometry with both regularisation
terms can be seen in Figure 6c.

Figure 6 shows an example where the error of the data fit gets significantly
reduced by applying this regulariser such that the control points are forced into
the direction of the data points.

In summary we suggest to minimise the modified least squares problem which
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(a) Spline-fit with no
regularization

(b) Spline fit, regularised using only p1
with α = 10.

(c) Spline fit, regularised using both terms,
p1 and p2, with α = 7.5, β = 0.1.

Figure 6: Comparison of the fitted
spline curves with different regular-
ization terms applied.

we get by adding the terms p1, p2 to equation (9a). In the same manner as
before, inserting the solution for the control points which we get for fixed ξ
then leads again to a (now modified) residual term r̃λ. The optimality system
stays nearly the same, just some obvious modifications in (10), a unit matrix
for the term p1 (Cx,Cy, α), and a unit block diagonal matrix for the term
p2 (Cx,Cy, β) need to be inserted and the corresponding necessary changes in
the Jacobian matrix Jr̃λ (ξ) (insertion of additional zero lines) have to be done.

We compared the behaviour of the optimisation algorithm for different start
configurations of the parameter vector. More precisely we compared starting
with a uniform parameter vector against starting with a parameter vector pa-
rameterised according to the affine angle parameterization [36]. Both versions
needed a comparable number of iterations to converge to a steady state, leading
between 10 to 15 iterations per spline fit, depending on the complexity of the
geometry of the underlying data. With this approach we did not experience any
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case of non-convergence. Figure 7 illustrates the benefit of the optimisation of
the parameter vector ξ. It is clearly visible that the fitted spline curve tends to
oscillate if we only optimise the control points and not the parameter vector (see
Figure 7 (a) and (b)). Even though a partial optimisation of ξ only in the first
iteration step of the optimisation can significantly improve the data fit, there
are still some obstructive kinks present in the control net.

(a) (b)

Figure 7: Illustration of the advantage of optimising the parameter vector. Fig-
ure (a) shows the spline fit without optimising the parameter vector and (b) with
optimising the parameter vector only at the first iteration which significantly
smoothens the spline curve.

We conclude with Figure 8, where one can see the positive influence of the
regularisation terms on the rate of convergence for one of the boundary splines.
The rate of convergence is plotted logarithmically.

4. Construction of the fitted NURBS volume

With the fit of univariate splines to the outline of the back of the violin
as described in Chapter 3, the main step to a precise geometry description is
completed. However, this does not yet capture all of the important geometry
features, as the front of the bridge shows a complex curvature. In this chapter,
we first use the spline curves of the outline to construct a multi-patch spline
surface of the back side. The spline surface can then trivially be extended to the
third dimension, to yield a complete volume representation of the bridge. The
control points of the front side are subsequently fitted to match the z-direction
of the µ-CT scan. Compared to the outline, less data points are available, so
we need to consider a more robust fit.

4.1. Creating the multi-patch spline surface using Coon’s patch

Each of the constructed spline curves is a boundary of one of the 16 patches.
To create the two-dimensional patch, we apply Coon’s patch [29], using the
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Figure 8: estimated error for the spline fit of the example illustrated in Figure 9,
Section 5. The blue line shows the evolution of the estimated error of the
optimiser without any regularization terms, the orange line shows the improved
evolution of the estimated error when we interpolate corner points.

Matlab implementation of the NURBS toolbox [37]. When using Coon’s patch
for complex geometries, it can happen that a part of the resulting surface lies
outside the boundary curves. Due to the suitable decomposition into 16 sub-
domains, we did not encounter such problems. However, in some cases Coon’s
patch yielded an irregular parametrisation of the interior control points, which
required a manual correction.

Due to the presence of 16 interfaces, at which neighboring patches touch,
not all of the patch boundaries are fitted spline curves. Besides two exceptions
which were inherited from the reference geometry, the internal interfaces are
planar. As such, they can simply be constructed based on the end points of the
spline curves. Thanks to the strict interpolation of the end points as described
in Section 3.3.1, there are no gaps between two neighboring patches. With this
consecutive procedure of inheriting interface splines from one patch to the other
we get a continuous multi-patch domain and avoid modification of the fitted
spline basis like it would be necessary when trimming NURBS surfaces [18, 19].

As a result, we obtain the B-spline-surfaces

S(ξ, η) =

J∑
j=1

K∑
k=1

Nj(ξ) ·Nk(η) ·
(
Cxj,k
Cyj,k

)
(20)
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for each of the 16 patches.

4.2. Fitting of NURBS volumes

The final step to obtain a precise spline geometry of the violin bridge is to
extrude the spline surface to a three-dimensional solid. We build the spline
surface for the front and the back side of the violin bridge, which can then be
linearly connected to form a three-dimensional geometry. The back side of the
violin bridge is flat and lies within the x-y-plane, therefore requires no data
fitting. The front size has the same outline in the x-y-plane, but a complicated
curvature in the z-direction that needs to be fitted. Compared to the fit of the
boundary curves, this is less involved as we do not need to change the x and y
components and thus do not need to optimise the parameter values. Instead,
only the z-component CzjkL of the control points CjkL = (CxjkL, C

y
jkL, C

z
jkL)>

of the front surface needs to be optimised, such that the curved spline surface
matches the z-components {wi}Ii=1 of the data points, i.e. we solve

min
CzjkL

I∑
i=1

 J∑
j=1

K∑
k=1

Nj(ξi)Nk(ηi) · CzjkL − wi

2

(21)

The parameter values (ξi, ηi) belonging to a data point (ui, vi, wi) are such that
the x and y coordinates of the surface match the ones of the data point. They
can be computed by inverting equation (20) at {ui, vi} using a Gauss-Newton
approach. Once the curved spline geometry of the front side has been fitted,
it can be linearly connected to the back side to form the three-dimensional
geometry.

We note that directly solving the least-squared problem (21) did not show
satisfying results, due to overfitting and insufficient data quality. Some data
points that are actually in the interior of the solid geometry were identified
by the CT-scan to be on the surface. Instead of manually identifying these
outliers, we fit a smooth surface which is lying above all data points. Rather
than minimising the least-squares error, we use the condition that the surfaces
lies above the data points as a constraint and simply minimise a norm which
enforces a smooth surface. With this inequality condition, the outliers in the
interior of the geometry are no longer relevant.

More precisely, we solve

min
Czjkl

‖S(·, ·;Cz)‖2L2 + α ‖∇(x,y)S(·, ·;Cz)‖2L2 ,

s.t. S(ξi, ηi;C
z) ≥ wi, i = 1, . . . I,

where S(ξ, η;Cz) =
∑J
j=1

∑K
k=1Nj(ξ)Nk(η)CzjkL is the z-component of the

parametric surface representation and α ∈ {0, 1} is a patch-dependent regular-
ization parameter. In our case α = 1 was required for patches 6, 7, 8, 14, 15, 16,
where the surface data point were particularly sparse. The quadratic program-
ming problem can be solved with an out-of-the-box solver, e.g., using quadprog

in Matlab.
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5. Examples

In this section we discuss a computational example from the geometry fit for
the µ-CT scan data of the violin bridge. As explained in Chapter 1, we divided
its spline geometry into 16 patches, see also Figure 2 for the numbering of the
patches. For all plots in this chapter the lengths are measured in millimeters.

In Figure 9 to Figure 10 one can see the different steps of the surface fit
examplified for patch 1. First, Figure 9 shows the data as well as the spline
fit for the v1-curve of this patch after the fitting process like it is describe in
Chapter 3.2. One can see that end- as well as edge points are met precisely
thanks to the constraints on this characteristic control points (see Chapter 3.3.1
for implementational details). Also we remark that we get a reasonable spac-
ing of the control points along the spline curve due to the regularisation term
penalizing the distance of the control points (see Chapter 3.3.2).

Figure 9: The blue line show the spline fit for v1-curve of patch 1 incorporating
the characteristic properties of the data points (orange diamonds) like corner
points.

Figure 10 then shows the complete patch surface constructed from the four
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fitted boundary splines (for the u1, u2, v1, v2-directions respectively). The little
red crosses are showing the data points of the measured µ-CT data superposing
with the patch boundary. As one can see we benefit here from the preparations
we took during the construction of the boundary splines. Despite of the com-
plicated curvature of the patch we do not get any intersecting splines inside the
surface.

Figure 10: Spline surface fitted to the data of patch 1. The red bullets visualize
the control net of the patch.

In Figures 11, one can see how the final multi-patch surface geometry of the
complete violin bridge looks like after the fitting procedure has been performed
for all 16 patches and the interfaces between the patches have been constructed
as described in Chapter 4.1. Finally, Figure 12 shows the 3D-geometry after
the fitting of the third dimension has been performed (see Chapter 4.2). The
distribution of the scan data to the patches which was used for the fit of the
curved surface is indicated by the different colors of the data points and one can
see that the vast majority of the data points got approximated very well.
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Figure 11: The complete fitted 2D surface-geometry. The data points are indi-
cated by orange crosses.

Figure 12: The 3D geometry fitted to the data points. The data points are
colored patch-wise.
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6. An Application: Vibro-acoustical simulations for a violin bridge

Being the first filter in the pathway of energy transmission from the vibrating
string to the violin corpus, the violin bridge has a significant influence on the
tonal behaviour and the sound of an instrument [21, 38]. On the other hand,
the influences of certain geometric modifications onto the filter properties of
the bridge are not very well understood. An accurate finite element model can
therefore be quite valuable to establish guidelines which may lead to designs
with certain desirable tonal properties.
With the precise geometry at hand, we are ready to run accurate vibro-acoustical
simulation for the bridge and solve the eigenvalue problem of linear elasticity:

−divσ(u) = λρu,

where ρ > 0 is the constant mass-density, σ(u) = Cε(u) the stress tensor for
the orthotropic material and ε(u) = (∇u +∇u>)/2 infinitesimal strain tensor.
The orthotropic stiffness tensor is given by

C =


A11 A12 A13 0 0 0
A21 A22 A23 0 0 0
A31 A32 A33 0 0 0
0 0 0 Gyz 0 0
0 0 0 0 Gzx 0
0 0 0 0 0 Gxy

 ,

with the shear moduli Gxy, Gyz, Gzx and the entries Aij depending on the elastic
moduli Ex, Ey, Ez and the Poisson’s ratios νxy, νyz, νzx. The exact formula for
Aij can be found in [39, Chapter 2.4].

The idea of isogeometric analysis [24, 40] is to use the same discretization for
the FE analysis as it was used for the discretization, i.e., NURBS. To flexibly
handle the multi-patch geometry of the violin bridge, we used an isogeometric
mortar domain decomposition [2, 28] to discretize the fitted geometry. The tri-
variate spline space Vn = span{Np

j,k,l} is considered for each patch Ωn and the

broken space Vh =
∏16
n=1 V

3
n is weakly coupled on each of the 16 interfaces. We

note that the mesh size for the analysis needs to be significantly smaller than
for the geometry description, so one additional step of uniform h-refinement
(where additional knots are added to enrich spline spaces) is performed. Also
the polynomial degree in all directions is raised to the same level, namely three.
For each interface γi the two adjacent domains are labelled as one slave and one
master domain (i.e. γi = ∂Ωs ∩ ∂Ωm) and the coupling space Mn is set as the

trace space of the spline spaces on the slave domain and Mh =
∏16
n=1M

3
n. On

several selected cross points an appropriate local degree reduction is performed
to guarantee stability [2].
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We use the standard bilinear forms for mortar methods in linear elasticity

a(u,v) =

16∑
n=1

∫
Ωn

σ(u) : ε(v), m(u,v) =

16∑
n=1

∫
Ωn

ρu>v,

b(v, τ ) =

16∑
ñ=1

∫
γñ

[v]>ñ τ ,

where [v]ñ = vs|γñ − vm|γñ denotes the jump across the interface γñ. Then the
discretization of the vibro-acoustical eigenvalue problem is given by (uh,µh) ∈
Vh ×Mh, λh ∈ R, such that

a(uh,vh) + b(vh,µh) = λhm(uh,vh), vh ∈ Vh,

b(uh, τh) = 0, τh ∈Mh.

The primal solution uh approximates the eigenmode, the Lagrange multiplier µh
is an approximation for the surface tension σ(u) ·n along the interfaces and the
eigenvalue λh is an approximation to the square of the angular frequency, i.e.,
λh = ω2

h. Figure 13 shows three eigenmodes for the reference geometry (top row)
compared to the same three eigenmodes of the fitted CT-geometry with a linear
thickness (middle row) and the fully fitted three-dimensional geometry which
was reconstructed from the µ-CT scan (bottom row). The reference geometry
was scaled linearly to have the same overall size as the precise geometry. We
can see that the geometry has a significant effect on the eigenvalues and on the
displacement of the eigenfunctions. The first ten eigenvalues for the different
geometries are compared in Table 1.

linear fit linear fit 3D CT-geometry
eigenvalue reference geometry 2D-CT-geometry

1st 3 291 Hz 3 687 Hz 3 708 Hz
2nd 5 889 Hz 6 118 Hz 6 957 Hz
3rd 11 606 Hz 11 208 Hz 12 494 Hz
4th 14 552 Hz 14 165 Hz 15 730 Hz
5th 14 748 Hz 15 262 Hz 15 974 Hz
6th 21 536 Hz 21 737 Hz 23 401 Hz
7th 26 903 Hz 26 287 Hz 29 136 Hz
8th 27 710 Hz 30 621 Hz 31 730 Hz
9th 32 882 Hz 34 877 Hz 35 950 Hz
10th 34 128 Hz 36 947 Hz 37 140 Hz

Table 1: Comparison of the eigenvalues for the reference and the fitted geometry.

7. Conclusion

We have presented the workflow to perform numerical simulations for a violin
bridge with a precise geometry description, based on a µ-CT scan. Creating a
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first eigenvalue:
3 708 Hz

fifth eigenvalue:
15 974 Hz

ninth eigenvalue:
35 950 Hz

first eigenvalue:
3 687 Hz

fifth eigenvalue:
15 262 Hz

ninth eigenvalue:
34 877 Hz

first eigenvalue:
3 291 Hz

fifth eigenvalue:
14 749 Hz

ninth eigenvalue:
32 881 Hz

Figure 13: Visualization of the three eigenmodes with the associated eigenvalue.
Top row: three-dimensional spline fit; Middle row: fitted outline with a linear
thickness; Bottom row: reference geometry. All geometries share the same size.

28



suitable multi-patch geometry required three main steps - the spline fit of the
outline, the extension to a two-dimensional geometry and a spline fit in the third
dimension. During the spline fit, special care was taken to avoid overfitting and
to meet characteristics, e.g. corners. The final numerical results show the high
sensitivity of the vibro-acoustical problem with respect to the geometry.
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