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Abstract. During asymmetric stem cell division so-called cell-fate determi-

nants are localised and become inherited into only one of the two daughter

cells. In Drosophila SOP precursor cells, this biological mechanism is centred
around the phosphorylation of a key protein call Lgl (Lethal giant larvae).

In this paper, we present a surface-volume reaction diffusion system, which

models the localisation of Lgl within the cell cytoplasm and on the cell cor-
tex. We prove well-posedness of global solutions as well as regularity of the

solutions. Moreover, we rigorously perform a fast reaction limit to a reduced

quasi-steady-state approximation system, when phosphorylated Lgl is instan-
taneously expelled from the cortex.

1. Introduction

In stem cells undergoing asymmetric cell division, particular proteins (so-called
cell-fate determinants) are localised at the cortex of only one of the two daughter
cells during mitosis. These cell-fate determinants trigger in the following the dif-
ferentiation of one daughter cell into specific tissue while the other daughter cell
remains a stem cell.

In Drosophila, SOP stem cells provide a well-studied biological example model
of asymmetric stem cell division, see e.g. [25, 23, 24] and the references therein.
The mechanism of asymmetric cell division in SOP stem cells operates around a
key protein called Lgl (Lethal giant larvae), which exists in two conformational
states: a non-phosphorylated form which regulates the localisation of the cell-fate-
determinants in the membrane of one daughter cell, and a phosphorylated form
which is inactive.

In this paper, we shall present and study a mathematical model system de-
scribing the evolution of Lgl in its non-phosphorylated and phosphorylated con-
formations both in the cytoplasm (i.e. in the cell volume) and at the cortex (i.e.
the surface/membrane of the cell). More precisely, we shall denote by L(t, x) and
P (t, x) the cytoplasmic concentrations of non-phosphorylated and phosphorylated
Lgl within the bounded cell domain Ω ⊂ Rn, while l(t, x) and p(t, x) denote the
cortical concentrations of the non-phosphorylated and phosphorylated Lgl at the
boundary Γ := ∂Ω, which is assumed sufficiently smooth (e.g. C2+α with α > 0).
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The reaction kinetics between the species L, P , l and p are depicted in Figure
1 and summarise the following processes: i) a reversible reaction between L and P
with rates α and β on the domain Ω, ii) a reversible exchange between L and l at
the boundary Γ with rates λ and γ, iii) an irreversible phosphorylation of l-Lgl into
p-Lgl at the boundary Γ with rate σ and iv) an irreversible release of p-Lgl from
the boundary Γ into the domain Ω with rate ξ. We emphasise that these processes
jointly conserve the total mass of Lgl (see the conservation law (1.4) below).

L P

` p

α
β

γλ

σ

ξ

Figure 1. The reaction dynamics of L,P, l and p

We propose in the following a continuum model of partial differential equations,
which describe the reactions and the diffusion processes of these species both on
the domain Ω and on its surface Γ. The choice of a continuum model is based on
the biological observation that protein concentrations in SOP cells are rather large
and that stochastic effects in the concentrations can thus be neglected, see [25].

Moreover in SOP cells, the phosphorylation of Lgl occurs at the boundary Γ
by means of an atypical protein kinase aPKC, which is pre-located at a sub-part
Γ2 ⊂ Γ. We shall thus assume that Γ is the union of two disjoint subsets Γ = Γ1∪Γ2,
in which Γ2 is connected has a smooth boundary ∂Γ2. In case that Γ1 = ∅, then
Γ2 ≡ Γ is a surface in Rn without boundary.

Altogether we consider the following equations for the volume concentrations L
and P : 

Lt − dL∆L = αP − βL, x ∈ Ω, t > 0,

Pt − dP∆P = −αP + βL, x ∈ Ω, t > 0,

L(0, x) = L0(x), P (0, x) = P0(x), x ∈ Ω,

(1.1)

where ∆ denotes the Laplacian on the domain Ω, dL, dP are positive volume-
diffusion coefficients, α, β are positive and constant reaction rates, and L0(x) and
P0(x) are given initial concentrations.

The volume concentrations L and P are connected to the surface concentrations
l and p in terms of Robin- and Neumann boundary conditions{

dL
∂L
∂ν = −λL+ γl, x ∈ Γ, t > 0,

dP
∂P
∂ν = χΓ2ξp, x ∈ Γ, t > 0,

(1.2)

where ν(x) denotes the unit normal outward vector at x ∈ Γ, γ, λ, and ξ are positive
and constant reaction rates and χΓ2 denotes the characteristic function localising
the aPKC-active part of the boundary Γ2, i.e. χΓ2

(x) = 1 if x ∈ Γ2 and χΓ2
(x) = 0

otherwise.



A REACTION-DIFFUSION MODEL OF ASYMMETRIC STEM-CELL DIVISION 3

Thirdly, the surface concentrations l and p satisfy

lt − dl∆Γl = λL− (γ + σχΓ2)l, x ∈ Γ, t > 0,

pt − dp∆Γ2
p = σl − ξp, x ∈ Γ2, t > 0,

dp
∂p
∂νΓ2

= 0, x ∈ ∂Γ2,

l(0, x) = l0(x), x ∈ Γ,

p(0, x) = p0(x), x ∈ Γ2,

(1.3)

where ∆Γ and ∆Γ2
are Laplace-Beltrami operators (see e.g. [20]) acting on the

surfaces Γ and Γ2, respectively, dl, dp are non-negative surface-diffusion coefficients
and σ > 0 is the positive and constant phosphorylation rate.

The considered evolution process conserves the total mass of Lgl, which is ex-
pressed in the following conservation law:∫

Ω

(L(t, x) +P (t, x)) dx+

∫
Γ

l(t, x) dS+

∫
Γ2

p(t, x) dS = M0 > 0, ∀t > 0 (1.4)

where M0 is the initial mass, which is assumed to be positive,

M0 :=

∫
Ω

(L0(x) + P0(x)) dx+

∫
Γ

l0(x) dS +

∫
Γ2

p0(x) dS > 0.

The aims of this paper are the following: In Section 2, we first study the well-
posedness of system (1.1)–(1.3) and the regularity of solutions. The well-posedness
will be shown by splitting the system and applying two nested fixed point argu-
ments, which also entail the non-negativity of the solutions subject to non-negative
initial data.

We remark, that although the system is linear, the existence and uniqueness
of a solution is not trivial due to i) the system character, ii) the mixed boundary
conditions and iii) the presence of surface diffusion. Previous related results can
be found, for instance, in [26], where the authors used the fixed point method to
prove the well-posedness for a linear elliptic volume-surface reaction-diffusion sys-
tem arising in the analysis of finite element methods. In [27], the authors obtained
well-posedness for a simpler parabolic system in a disk using radial symmetric so-
lutions. The well-posedness for a volume-surface reaction-diffusion system of two
equations with arbitrary nonlinear boundary reaction terms was proven in [1] by
constructing solutions via converging sequences of upper and lower solutions.

Next, in Section 3, we present a suitable finite element method (FEM) discreti-
sation of the model system (1.1)–(1.3) and discuss some numerical test cases, which
illustrate the system behavior. In this part, we also discuss the relation between
diffusion and reaction terms both in cytoplasm and cell cortex.

The final major part of this paper is done in Section 4. We consider the quasi-
steady-state approximation (QSSA) of the system (1.1)–(1.3), which occurs when
considering the limit ξ → +∞ for the expulsion rate of cortical phosphorylated Lgl.
The QSSA thus leads to a reduced system, where the expulsion of Lgl from the cor-
tex is modeled instantaneously and the cortical concentration p of phosphorylated
Lgl no longer needs to be considered. QSSAs of reactive systems occur commonly
in chemical engineering and although applying a QSSA has been routinely done by
chemical engineers since a long time, the mathematical theory is usually missing.
Recent however, a lot of mathematical attention has been paid to rigorously prove
QSSA approximations (see e.g. [3, 4, 5, 6, 8, 9] and references therein).
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In this paper, the biological model suggests that the expulsion rate ξ from cortical
p-Lgl to cytoplasmic P -Lgl is much faster than the others reaction rates. We
shall thus prove rigorously the QSSA for the system (1.1)–(1.3) towards a reduced
QSSA system (see Section 4). The proof is based on a duality argument, which
was already successfully applied to a nonlinear system in [5], yet without surface-
volume coupling. We thus require appropriate a priori estimates in order to deal
with the volume-surface reactions. We remark that we are currently only able to
prove the QSSA if no surface diffusion terms are present. The QSSA for the system
(1.1)–(1.3) with surface diffusion terms poses technique difficulties, which remain
an open problem so far.

2. Well-posedness of the system (1.1)–(1.3)

In this section, we will first prove existence and uniqueness of weak solutions
to the system (1.1)–(1.3) via an alternative fixed point argument (or a localised
method).

Roughly speaking, the idea is as follows: In the system (1.1)–(1.3), we first fix
l ≡ l1 and p ≡ p1 and (1.1)–(1.2) becomes a linear reaction diffusion system on the
domain Ω with mixed Robin and Neumann boundary conditions. By solving this
system, we get a unique solution (L1, P1), which is non-negative for non-negative
initial data. Next, by inserting the solution (L1, P1) into (1.3), we obtain a new pair
of boundary concentrations (l2, p2), which we reinsert into (1.1)–(1.2) to get an up-
dated solution (L2, P2). By iterating this process, we construct a sequence of pairs
of functions {(l1, p1), (l2, p2), . . .}. By a priori estimates derived in Theorem 2.4,
we prove that the sequence converges (ln, pn) → (l∗, p∗). Finally, inserting (l∗, p∗)
into (1.1)–(1.2) yields (L∗, P ∗) and it is then easy to verify that (L∗, P ∗, l∗, p∗) is
a solution to the system (1.1)–(1.3), which is in fact unique.

We will then show that the weak solution is actually a strong solution for any
positive time. This is done thanks to the linearity of the system and the smoothing
effects of parabolic equations.

Notations: Throughout the paper, we will denote by (·, ·)Ω and ‖ · ‖Ω the inner
product and its induced norm in L2(Ω). Analogously, we will denote the inner
products and norms in L2(Γ), L2(Γ1) and L2(Γ2) (e.g. the norm in L2(Γ) is denoted
by ‖ · ‖Γ). The tangent gradients on Γ and Γ2 corresponding to the metric induced
from Rn are denoted by ∇Γ and ∇Γ2

, respectively.
Moreover, for a function u ∈ C([0, T ];Lp(Ω)), we shall use the notation u ≥ 0 to

denote that u(t, x) ≥ 0 for all t ∈ [0, T ] and for a.e. x ∈ Ω.

Definition 2.1 (Weak Solutions).
A weak solution (L,P, l, p) of system (1.1)–(1.3) on (0, T ) satisfies

L,P ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)),

l ∈ C([0, T ];L2(Γ)) ∩ L2(0, T ;H1(Γ)),

p ∈ C([0, T ];L2(Γ2)) ∩ L2(0, T ;H1(Γ2)).
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Moreover, for all test functions ϕ ∈ C1([0, T ];H1(Ω)), ψ ∈ C1([0, T ];H1(Γ)) and
ψ2 ∈ C1([0, T ];H1(Γ2)) with ϕ(T ) = ψ(T ) = ψ2(T ) = 0, we have

−
∫ T

0

(L, ∂tϕ)Ω dt+ dL

∫ T

0

(∇L,∇ϕ)Ω dt−
∫ T

0

(γl − λL, ϕ)Γ dt

= (L0, ϕ(0))Ω +

∫ T

0

(αP − βL, ϕ)Ω dt, (2.1)

−
∫ T

0

(P, ∂tϕ)Ω dt+ dP

∫ T

0

(∇P,∇ϕ)Ω dt−
∫ T

0

(ξp, ϕ)Γ2
dt

= (P0, ϕ(0))Ω +

∫ T

0

(−αP + βL, ϕ)Ω dt, (2.2)

−
∫ T

0

(l, ∂tψ)Γ dt+ dl

∫ T

0

(∇Γl,∇Γψ)Γ dt

= (l0, ψ(0))Γ +

∫ T

0

(λL− (γ + σχΓ2
)l, ψ)Γ dt, (2.3)

−
∫ T

0

(p, ∂tψ2)Γ2 dt+ dp

∫ T

0

(∇Γ2p,∇Γ2ψ2)Γ2 dt

= (p0, ψ2(0))Γ2 +

∫ T

0

(σl − ξp, ψ2)Γ2 dt. (2.4)

Next, we recall a result on the existence of solutions to parabolic equations with
inhomogeneous Robin boundary condition:

Theorem 2.1 (Inhomogeneous Parabolic Robin Problem, [10, 11, 19]).
Let c ∈ R, d > 0 and β ≥ 0. Consider the following equation

ut(t, x)− d∆u(t, x) + cu(t, x) = f(t, x), x ∈ Ω, t > 0

d∂u(t,x)
∂ν + βu(t, x) = g(t, x), x ∈ Γ, t > 0

u(0, x) = u0(x), x ∈ Ω,

(2.5)

subject to initial data u0 ∈ L2(Ω) and inhomogeneities f ∈ L2(0, T ;L2(Ω)) and
g ∈ L2(0, T ;L2(Γ)).

Then, for T > 0 is arbitrary, the problem (2.5) has a unique weak solution
u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)). Moreover, if u0 ≥ 0 and f(t) ≥ 0, g(t) ≥ 0
for all t ∈ [0, T ], then u(t) ≥ 0 for all t ∈ [0, T ].

The following non-negativity Lemma is stated for the convenience of the reader:

Lemma 2.2 (Non-negativity of Fixed Point).
Let A : C([0, T ];Lp(Ω)) → C([0, T ];Lp(Ω)) with p ≥ 1 be a contraction mapping
satisfying Au ≥ 0 whenever u ≥ 0.

Then, the unique fixed point u∗ of A is nonnegative.

Proof. Choose a function u1 ∈ C([0, T ];Lp(Ω)) such that u1 ≥ 0. Define the
sequence {un}n≥1 as un+1 := Aun for all n ≥ 1. By the assumption on A, we
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have that un ≥ 0 for all n ≥ 1. Since A is a contraction mapping, by standard
arguments, we have un → u∗ in C([0, T ];Lp(Ω)) and thus,

un(t, x)→ u∗(t, x) for all t ∈ [0, T ] and for a.e. x ∈ Ω.

Therefore, u∗ ≥ 0. �

The following intermediate result proves the existence of a unique weak solution
to the system (1.1)–(1.2) for given (l, p):

Proposition 2.3 (Existence of the volume sub-system for given surface terms).
Let gL ∈ L2(0, T ;L2(Γ)) and gP ∈ L2(0, T ;L2(Γ2)) be given.

Then, for any (L0, P0) ∈ L2(Ω)× L2(Ω), the following system

Lt − dL∆L = αP − βL, x ∈ Ω, t > 0,

Pt − dP∆P = −αP + βL, x ∈ Ω, t > 0,

dL
∂L
∂ν + λL = gL, x ∈ Γ, t > 0,

dP
∂P
∂ν = χΓ2gP , x ∈ Γ, t > 0,

L(0, x) = L0(x), P (0, x) = P0(x), x ∈ Ω.

(2.6)

has a unique weak solution (L∗, P ∗) ∈ (C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)))2 for all
T > 0. Moreover, if gL, gP , L0, P0 ≥ 0, then L(t) ≥ 0 and P (t) ≥ 0 for all t ∈ [0, T ].

Proof. Let X = C([0, T ];L2(Ω)) be equipped with the supremum norm ‖u‖X =
sup{‖u(t)‖Ω : t ∈ [0, T ]}. We introduce S ⊂ X as

S = {u ∈ X : u(0) = P0 ∈ L2(Ω)},

and observe that S a closed subset of X. For any given P1 ∈ S, we first consider
the problem 

Lt − dL∆L = αP1 − βL, x ∈ Ω, t > 0,

dL
∂L
∂ν + λL = gL, x ∈ Γ, t > 0,

L(0, x) = L0(x), x ∈ Ω.

(2.7)

Thanks to Theorem 2.1, there exists a unique weak solution L1 ∈ X to (2.7). By
applying Theorem 2.1 again, the following equation

Pt − dP∆P = −αP + βL1, x ∈ Ω, t > 0,

dP
∂P
∂ν = χΓ2gP , x ∈ Γ, t > 0,

P (0, x) = P0(x), x ∈ Ω

(2.8)

has a unique weak solution P2 ∈ S ⊂ X, since obviously P2(0) = P0.
Next, we define the mapping A : S → S by AP1 := P2. We will show that A is a

contraction mapping for sufficiently small T > 0. We consider two different images
P2 = AP1 and P̃2 = AP̃1 and denote by L1 and L̃1 the solutions of (2.7) with

respect to P1 and P̃1, respectively. By denoting W := P2 − P̃2 and V := L1 − L̃1,
we have 

Vt − dL∆V = α(P1 − P̃1)− βV, x ∈ Ω, t > 0,

dL
∂V
∂ν + λV = 0, x ∈ Γ, t > 0,

V (0, x) = 0, x ∈ Ω,

(2.9)
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and 
Wt − dP∆W = −αW + βV, x ∈ Ω, t > 0,

dP
∂W
∂ν = 0, x ∈ Γ, t > 0,

W (0, x) = 0, x ∈ Ω.

(2.10)

By multiplying (2.9) with V and integrating over Ω, we obtain

1

2

d

dt
‖V ‖2Ω + dL‖∇V ‖2Ω + λ‖V ‖2Γ = α

∫
Ω

(P1 − P̃1)V dx− β‖V ‖2Ω

≤ −β
2
‖V ‖2Ω +

α2

2β
‖P1 − P̃1‖2Ω,

(2.11)

and thus

d

dt
‖V ‖2Ω + 2dL‖∇V ‖2Ω + 2λ‖V ‖2Γ + β‖V ‖2Ω ≤

α2

β
‖P1 − P̃1‖2Ω. (2.12)

Then, by integration (2.12) over (0, t) with V (0) = 0 yields for all t ∈ [0, T ],

β

∫ t

0

‖V (s)‖2Ω ds ≤
α2

β

∫ t

0

‖P1(s)− P̃1(s)‖2Ω ds ≤
α2

β
T‖P1 − P̃1‖2X . (2.13)

Similar, we multiply (2.10) with W and integrate over L2(Ω) to get

1

2

d

dt
‖W‖2Ω + dP ‖∇W‖2Ω = −α‖W‖2Ω + β

∫
Ω

WV dx

≤ −α
2
‖W‖2Ω +

β2

2α
‖V ‖2Ω.

(2.14)

Therefore,

d

dt
‖W‖2Ω + 2dP ‖∇W‖2Ω + α‖W‖2Ω ≤

β2

α
‖V ‖2Ω. (2.15)

We integrate (2.15) over (0, t) with W (0) = 0 and use then (2.13) to find for all
t ∈ (0, T ) that

‖W (t)‖2Ω ≤
β2

α

∫ t

0

‖V (s)‖2Ωds ≤ αT‖P1 − P̃1‖2X . (2.16)

Thus,

‖AP1 −AP̃1‖2X = sup
t∈[0,T ]

‖W (t)‖2Ω ≤ αT‖P1 − P̃1‖2X . (2.17)

Hence, by choosing 0 < T < 1/α, the mapping A : S → S is a contraction. By
Banach’s Fixed Point Theorem, there exists a unique fixed point P ∗ ∈ S of A. We
then denote by L∗ the unique solution of (2.7) for given P1 = P ∗. The pair (L∗, P ∗)
is then a weak solution to the system (2.6). To prove the uniqueness, we assume
that (L̄, P̄ ) shall be another solution of the system (2.6). Then, P̄ must be a fixed
point of A. Hence P̄ = P ∗ and thus L̄ = L∗.

It remains to show the non-negativity of L∗ and P ∗. We shall first show that
P ∗ ≥ 0. Thanks to Lemma 2.2, it is sufficient to show that if P1 ≥ 0 then P2 =
AP1 ≥ 0. Indeed, with P1 ≥ 0 and gL ≥ 0, we can apply Theorem 2.1 to equation
(2.7) to have L1 ≥ 0 where L1 is the solution of (2.7) with respect to P1. Since
now L1 ≥ 0, we conclude from (2.8) that P2 ≥ 0. The non-negativity of L∗ follows
then immediately from (2.7) and Theorem 2.1. �
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The following existence result follows the idea outlined in the beginning of this
Section and proves the local existence of a unique weak solution to the system
(1.1)–(1.3).

Theorem 2.4 (Local Existence and Uniqueness of Weak Solutions).
Consider (L0, P0, l0, p0) ∈ L2(Ω)× L2(Ω)× L2(Γ)× L2(Γ2) and α, β, λ, γ, σ, ξ > 0.

Then, there exists a T > 0 such that the system (1.1)–(1.3) has a unique weak
solution (L,P, l, p) on [0, T ]. Moreover, if L0, P0, l0 and p0 is non-negative, then
L(t), P (t), l(t), p(t) are non-negative for all t ∈ [0, T ].

Proof. Let T > 0 be chosen later. We denote by X1 = C([0, T ];L2(Γ)), X2 =
C([0, T ];L2(Γ2)) and X = X1 ×X2 and define

S = {(u, v) ∈ X : u(0) = l0 and v(0) = p0}.

It is obvious that S is a closed subset of X. For any (l1, p1) ∈ S, we consider the
system (1.1)–(1.2) with (l1, p1) in place of (gL, gP ), that is

Lt − dL∆L = αP − βL, x ∈ Ω, t > 0,

Pt − dP∆P = −αP + βL, x ∈ Ω, t > 0,

dL
∂L
∂ν = −λL+ γl1, x ∈ Γ, t > 0,

dP
∂P
∂ν = χΓ2

ξp1, x ∈ Γ, t > 0,

L(0, x) = L0(x), P (0, x) = P0(x), x ∈ Ω.

(2.18)

By Proposition 2.3, there exists a unique solution (L1, P1) to (2.18) with L1, P1 ∈
C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)). We remark that L|Γ ∈ L2(0, T ;L2(Γ)) and
P |Γ2

∈ L2(0, T ;L2(Γ2)) due to the Trace Theorem (see e.g. [18, Theorem 1, page
258]). Inserting L1|Γ into the first two equations in (1.3), we have{

lt − dl∆Γl = λL1 − (γ + χΓ2
σ)l, x ∈ Γ, t > 0,

l(0, x) = l0(x), x ∈ Γ.
(2.19)

Since Γ = ∂Ω is a smooth manifold without boundary, we can apply the theory of
linear parabolic equation on smooth manifold (see e.g. [22, Section 6.1]) to get the
unique weak solution l2 ∈ C([0, T ];L2(Γ)) ∩ L2(0, T ;H1(Γ)).

Similarly, the same theory in [22, Section 6.1]) applies to the homogeneous
Neumann-problem

pt − dp∆Γ2
p = σl2 − ξp, x ∈ Γ2, t > 0,

dp
∂p
∂νΓ2

= 0, x ∈ ∂Γ2, t > 0,

p(0, x) = p0(x), x ∈ Γ2.

(2.20)

Hence, (2.20) has a unique weak solution p2 ∈ C([0, T ];L2(Γ2))∩L2(0, T ;H1(Γ2)).
Note that clearly (l2, p2) ∈ S since l2(0, x) = l0(x) for x ∈ Γ and p2(0, x) = p0(x)
for x ∈ Γ2.

We can therefore define a mapping A : S → S as A(l1, p1) = (l2, p2). In the
following we shall prove that A is a contraction mapping. We consider two images

A(l1, p1) = (l2, p2), and A(l̃1, p̃1) = (l̃2, p̃2).

Moreover, we shall denote

l̂ := l̃2 − l2, p̂ := p̃2 − p2, L̂ := L̃1 − L1, P̂ := P̃1 − P1,
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where (L1, P1) and (L̃1, P̃1) are the solutions of (2.18) subject to (l1, p1) and (l̃1, p̃1),

respectively. Then, we obtain the following system for (L̂, P̂ )
L̂t − dL∆L̂ = αP̂ − βL̂, x ∈ Ω, t > 0,

P̂t − dP∆P̂ = −αP̂ + βL̂, x ∈ Ω, t > 0,

L̂(0, x) = 0, P̂ (0, x) = 0 x ∈ Ω,

(2.21)

with boundary conditions{
dL

∂L̂
∂ν + λL̂ = γ(l̃1 − l1), x ∈ Γ, t > 0,

dP
∂P̂
∂ν = χΓ2

ξ(p̃1 − p1), x ∈ Γ, t > 0,
(2.22)

and a system for (l̂, p̂)

l̂t − dl∆Γ l̂ + (γ + σχΓ2
)l̂ = λL̂, x ∈ Γ, t > 0,

p̂t − dp∆Γ2
p̂+ ξp̂ = σl̂, x ∈ Γ2, t > 0,

dp
∂p
∂νΓ2

= 0, x ∈ ∂Γ2, t > 0,

l̂(0, x) = 0, x ∈ Γ,

p̂(0, x) = 0, x ∈ Γ2.

(2.23)

Multiplication of the first equation in (2.23) with l̂ yields

1

2

d

dt
‖l̂‖2Γ + dl‖∇Γ l̂‖2Γ + γ‖l̂‖2Γ + σ‖l̂‖2Γ2

= λ

∫
Γ

L̂l̂ dS ≤ γ‖l̂‖2Γ +
λ2

4γ
‖L̂‖2Γ. (2.24)

Thus, for all t ∈ [0, T ],

‖l̂(t)‖2Γ ≤
λ2

2γ2

∫ t

0

‖L̂(s)‖2Γ ds, (2.25)

thanks to l̂(0, x) = 0. By multiplying the second equation in (2.23) with p̂ and
integrating over L2(Γ2), we get

1

2

d

dt
‖p̂‖2Γ2

+ dp‖∇Γ2
p̂‖2Γ2

+ ξ‖p̂‖2Γ2
= σ

∫
Γ2

l̂p̂ dS ≤ ξ‖p̂‖2Γ2
+
σ2

4ξ
‖l̂‖2Γ2

≤ ξ‖p̂‖2Γ2
+
σ2

4ξ
‖l̂‖2Γ.

(2.26)

Integration of (2.26) over (0, t) yields with (2.25)

‖p̂(t)‖2Γ2
≤ σ2

2ξ2

∫ t

0

‖l̂(s)‖2Γ ds ≤
λ2σ2

4γ2ξ2

∫ t

0

∫ s

0

‖L̂(r)‖2Γ drds

≤ λ2σ2

4γ2ξ2
T

∫ t

0

‖L̂(s)‖2Γ ds.
(2.27)

Given the bounds (2.25) and (2.27), we are left to estimate the term
∫ t

0
‖L̂(s)‖2Γds.

In order to proceed, we recall the Trace Theorem∫
Γ

|f |2dS ≤ CP ‖f‖2H1(Ω) = CP (‖f‖2Ω + ‖∇f‖2Ω) for all f ∈ H1(Ω),

for a constant CP > 0.



10 T.Q. BAO, K. FELLNER, S. ROSENBERGER

Then, by testing the two equations in (2.21) with βL̂ and αP̂ , respectively, and
by integrating and adding the result, we estimate with Young’s inequality

d

dt

(
β

2
‖L̂‖2Ω +

α

2
‖P̂‖2Ω

)
+ dLβ‖∇L̂‖2Ω + dPα‖∇P̂‖2Ω

= β

∫
Γ

L̂
(
dL
∂L̂

∂ν

)
dS + α

∫
Γ

P̂
(
dP

∂P̂

∂ν

)
dS −

∫
Ω

(αP̂ − βL̂)2 dx

≤ β
∫

Γ

L̂
(
γ(l̃1 − l1)− λL̂

)
dS + α

∫
Γ2

P̂
(
ξ(p̃1 − p1)

)
dS

≤ −βλ
2
‖L̂‖2Γ +

βγ2

2λ
‖l̃1 − l1‖2Γ +

αdP
CP
‖P̂‖2Γ +

αCP ξ
2

4dP
‖p̃1 − p1‖2Γ2

≤ −βλ
2
‖L̂‖2Γ + dPα

(
‖P̂‖2Ω + ‖∇P̂‖2Ω

)
+ k
(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
, (2.28)

where k := max{βγ
2

2λ ,
CPαξ

2

4dP
} and we have used the Trace Theorem. Thus,

d

dt

(
β‖L̂‖2Ω + α‖P̂‖2Ω

)
+ βλ‖L̂‖2Γ

≤ 2dPα‖P̂‖2Ω + 2k
(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
. (2.29)

By integrating (2.29) over (0, t), we observe in particular that

α‖P̂ (t)‖2Ω ≤ 2kT
(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
+ 2dPα

∫ t

0

‖P̂ (s)‖2Ω ds. (2.30)

Thus, Gronwall’s Lemma implies for all t ∈ [0, T ]

‖P̂ (t)‖2Ω ≤
2kT

α

(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
e2dPT (2.31)

Reinsert (2.31) into (2.29) yields

d

dt

(
β‖L̂‖2Ω + α‖P̂‖2Ω

)
+ βλ‖L̂‖2Γ

≤ 2k(2dPTe
2dPT + 1)

(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
. (2.32)

Next, we integrate (2.32) over (0, t) and recall L̂(0) = 0 = P̂ (0) to find

βλ

∫ t

0

‖L̂(s)‖2Γds ≤ 2kT (2dPTe
2dPT + 1)

(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
. (2.33)

Altogether from (2.25), (2.27) and (2.33), we get now for all t ∈ [0, T ]

‖l̂(t)‖2Γ + ‖p̂(t)‖2Γ2
≤
(
λ2

2γ
+
λ2σ2

4γξ
T

)∫ t

0

‖L̂(s)‖2Γds

≤
(
λ2

2γ
+
λ2σ2

4γξ
T

)
2kT

βλ

(
2dPTe

2dPT + 1
)(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
. (2.34)

Thus,

‖l̃2 − l2‖2X1
+ ‖p̃2 − p2‖2X2

= ‖l̂‖2X1
+ ‖p̂‖2X2

= sup
t∈[0,t]

‖l̂(t)‖2Γ + sup
t∈[0,T ]

‖p̂(t)‖2Γ2

≤
(
λ2

2γ
+
λ2σ2

4γξ
T

)
2kT

βλ

(
2dPTe

2dPT + 1
)(
‖l̃1 − l1‖2X1

+ ‖p̃1 − p1‖2X2

)
. (2.35)
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Hence, by choosing T is small enough, we have(
λ2

2γ
+
λ2σ2

4γξ
T

)
2k

βλ
T (2dPTe

2dPT + 1) < 1,

and the mapping A : S → S is a contraction. Hence, there exists a unique fixed
point (l∗, p∗) of A. By solving system (2.18) subject to (l∗, p∗), we obtain a unique
solution (L∗, P ∗). It is easy to verify that (L∗, P ∗, l∗, p∗) is a solution to the system
(1.1)–(1.3) on [0, T ]. Concerning uniqueness, consider another solution (L̄, P̄ , l̄, p̄)
of the system. Then, (l̄, p̄) must be a fixed point of A. Hence, (l̄, p̄) = (l∗, p∗) and
thus (L̄, P̄ ) = (L∗, P ∗).

It remains to prove the non-negativity of the solution (L∗, P ∗, l∗, p∗). It is ob-
vious to see that Lemma 2.2 is still true if we replace C([0, T ];Lp(Ω)) by X =
C([0, T ];L2(Γ))×C([0, T ];L2(Γ2)). Thus, it is enough to show that if l1 ≥ 0, p1 ≥ 0
then l2 ≥ 0, p2 ≥ 0, where (l2, p2) = A(l1, p1). Now, for l1 ≥ 0, p1 ≥ 0, by using
Proposition 2.3, we obtain from (2.18) that L1 ≥ 0 and P1 ≥ 0. Then, from (1.3) we
find that l2 ≥ 0 and p2 ≥ 0. Thus, Lemma 2.2 proves that l∗ ≥ 0 and p∗ ≥ 0. Since
(L∗, P ∗) is the solution of system (1.1)–(1.2) subject to (l∗, p∗), we have L∗ ≥ 0
and P ∗ ≥ 0. This completes the proof. �

From the weak formulation, it follows by a standard argument that the unique
weak solution of system (1.1)–(1.3) conserves the total mass as long as the solution
exists, that is, for all t ∈ [0, Tmax) where Tmax ≤ +∞ is the maximal time of
existence:

∀t ∈ [0, Tmax) : M0 =

∫
Ω

(
L(t, x) + P (t, x)

)
dx+

∫
Γ

l(t, x) dS +

∫
Γ2

p(t, x) dS

=

∫
Ω

(
L0(x) + P0(x)

)
dx+

∫
Γ

l0(x) dS +

∫
Γ2

p0(x) dS. (2.36)

For non-negative solutions, the conservation law (2.36) implies further that the
L1-norm of the solution is uniformly bounded in time:

∀t ∈ [0, Tmax) : ‖L(t)‖L1(Ω) + ‖P (t)‖L1(Ω) + ‖l(t)‖L1(Γ) + ‖p(t)‖L1(Γ2) = M0.
(2.37)

Nevertheless, global existence in L2 for the system (1.1)–(1.3) is not trivial even
though it is linear and global existence is certainly expected. The (technical) diffi-
culties arise from the coupled Robin boundary conditions as well as from the surface
diffusion terms. In the sequel, we will show that the unique local weak solution in
L2 can be globally extended and is even uniformly-in-time bounded in L2. In the
proof, we shall need the following Gagliardo-Nirenberg and Trace inequalities:

Lemma 2.5 (Interpolation Inequalities).
Under the assumption on the domain Ω, there exists a constant C > 0 such that

‖u‖Ω ≤ C‖u‖2/(n+2)
L1(Ω) ‖u‖

n/(n+2)
H1(Ω) (2.38)

for all functions u ∈ H1(Ω).
Moreover, basing on (2.38), there exists for any ε > 0 a constant Cε > 0 such

that

‖u‖2Ω ≤ ε‖∇u‖2Ω + Cε‖u‖2L1(Ω), and ‖u‖2Γ ≤ ε‖∇u‖2Ω + Cε‖u‖2L1(Ω), (2.39)

for all u ∈ H1(Ω).
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Proof. The Gagliardo-Nirenberg inequality (2.38) is well known and can be found
e.g. in [2, Theorem 1.3, Page 18] or [20].

Using 2.38, and noting that ‖u‖2H1(Ω) = ‖u‖2Ω + ‖∇u‖2Ω, we have

‖u‖2Ω ≤ C‖u‖
4/(n+2)
L1(Ω)

(
‖u‖2Ω + ‖∇u‖2Ω

)n/(n+2)

≤ Cε‖u‖2L1(Ω) +
ε

ε+ 1

(
‖u‖2Ω + ‖∇u‖2Ω

)
,

by Young’s inequality and thus

‖u‖2Ω ≤ Cε‖u‖2L1(Ω) + ε‖∇u‖2Ω.

For the second inequality, we use then the modified Trace inequality ([21, Theorem
1.5.1.10]) to estimate

‖u‖2Γ ≤
ε

2
‖∇u‖2Ω + Cε‖u‖2Ω ≤ ε‖∇u‖2Ω + Cε‖u‖2L1(Ω).

�

Theorem 2.6 (Global Existence and Uniqueness of Weak Solutions).
Consider initial data (L0, P0, l0, p0) ∈ L2(Ω)×L2(Ω)×L2(Γ)×L2(Γ2) and assume
α, β, λ, γ, σ, ξ > 0. Then, the unique solution to system (1.1)–(1.3) exists globally
in time.

Assume additionally that the initial data (L0, P0, l0, p0) ≥ 0 are non-negative.
Then, there exists a constant C, which depends only on the domain, the initial
data, the reaction rates and the diffusion rates such that

∀t ≥ 0 : ‖L(t)‖2Ω + ‖P (t)‖2Ω + ‖l(t)‖2Γ + ‖p(t)‖2Γ2
≤ C,

i.e. the global solutions to system (1.1)–(1.3) are bounded uniformly-in-time.

Proof. We shall consider the case of non-negative initial data (and thus solutions)
and prove uniform boundedness in time. The proof the existence of global solutions
to general L2 initial data follows by a similar argument when replacing the below
L1-interpolation and L1-bound (2.37) by analog estimates in L2 and a Gronwall
argument, which yields global existence yet without uniform-in-time boundedness.

We consider the functional

H(t) =
1

2

(
‖L(t)‖2Ω + ‖P (t)‖2Ω + σ‖l(t)‖2Γ + ξ‖p(t)‖2Ω

)
.

By calculating the time derivative of H along solutions of system (1.1)–(1.3), we
get

dH
dt

=− dL‖∇L‖2Ω − dP ‖∇P‖2Ω − β‖L‖2Ω − α‖P‖2Ω − λ‖L‖2Γ
+ (α+ β)(L,P )Ω + (λσ + γ)(L, l)Γ + ξ(P, p)Γ2

− γσ‖l‖2Γ − σ2‖l‖2Γ2
− ξ2‖p‖2Γ2

+ σξ(p, l)Γ2
.

(2.40)

By Cauchy’s inequality and (2.39), we have the following estimates

(α+ β)(L,P )Ω ≤
α+ β

2
(‖L‖2Ω + ‖P‖2Ω)

≤ dL
4
‖∇L‖2Ω +

dP
2
‖∇P‖2Ω + C‖L‖2L1(Ω) + C‖P‖2L1(Ω),

(2.41)
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and

(λσ + γ)(L, l)Γ ≤
γσ

2
‖l‖2Γ +

(λσ + γ)2

2γσ
‖L‖2Γ

≤ γσ

2
‖l‖2Γ +

dL
4
‖∇L‖2Ω + C‖L‖2L1(Ω),

(2.42)

and

ξ(P, p)Γ2
≤ ξ2

4
‖p‖2Γ2

+ ‖P‖2Γ

≤ ξ2

4
‖p‖2Γ2

+
dP
4
‖∇P‖2Ω + C‖P‖2L1(Ω),

(2.43)

and

σξ(p, l)Γ2
≤ σ2‖l‖2Γ2

+
ξ2

4
‖p‖2Γ2

. (2.44)

Inserting (2.41)–(2.44) into (2.40) yields

dH
dt
≤− dL

2
‖∇L‖2Ω −

dP
2
‖∇P‖2Ω − β‖L‖2Ω − α‖P‖2Ω

− γσ

2
‖l‖2Γ −

ξ2

2
‖p‖2Γ2

+ C(‖L‖2L1(Ω) + ‖P‖2L1(Ω)).

By defining η := min{β, α, γ2 ,
ξ
4} and by using ‖L‖L1(Ω) ≤ M and ‖P‖L1(Ω) ≤ M

(thanks to the L1-bound (2.37)), we have

dH
dt

+ ηH+
ξ2

4
‖p‖2Γ2

≤ C. (2.45)

By Gronwall’s inequality, we obtain in particular

H(t) ≤ e−ηtH(0) + C,

or equivalently,

‖L(t)‖2Ω + ‖P (t)‖2Ω + σ‖l(t)‖2Γ + ξ‖p(t)‖2Γ2

≤ e−ηt
(
‖L0‖2Ω + ‖P0‖2Ω + σ‖l0‖2Γ + ξ‖p0‖2Γ2

)
+ C,

which completes the proof. �

To study the regularity of solutions to (1.1)–(1.3), we need the following Lemma:

Lemma 2.7 (Regularity of Parabolic Equations on Manifolds, [22, Chapter 6]).
Let M be a smooth Riemann manifold, f ∈ L2(0, T ;L2(M)), g ∈ L2(0, T ;L2(∂M))
and u0 ∈ L2(M). Then, any weak solution u to

ut − du∆Mu = f, x ∈M, t > 0,

B(u) = g, x ∈ ∂M, t > 0,

u(0) = u0,

where B denotes either a Dirichlet, Neumann or Robin boundary operator, satisfies

u ∈ L2(I;H2(M)) ∩W 1,1(I;L2(M)),

where I = [t0, T ] with all 0 < t0 < T < +∞.
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Theorem 2.8 (Strong Solutions). For any I = [t0, T ] with 0 < t0 < T < +∞, the
weak solution (L,P, l, p) to (1.1)–(1.3) satisfies

L,P ∈ L2(I;H2(Ω)) ∩W 1,1(I;L2(Ω)),

l ∈ L2(I;H2(Γ)) ∩W 1,1(I;L2(Γ))

and

p ∈ L2(I;H2(Γ2)) ∩W 1,1(I;L2(Γ2)).

Thus, (L,P, l, p) is in fact a strong solution, which satisfies the system (1.1)–(1.3)
in L2 for almost every t ∈ I.

Proof. We consider, for example, the equation of L:
Lt − dL∆L = −βL+ αP, x ∈ Ω, t > 0,

dL∂L/∂ν = −λL+ γl, x ∈ Γ, t > 0,

L(0, x) = L0.

Then, by applying Lemma 2.7 with f = −βL + αP ∈ L2(0, T ;L2(Ω)) and g =
−λL+ γl ∈ L2(0, T ;L2(Γ)), we conclude

L ∈ L2(I;H2(Ω)) ∩W 1,1(I;L2(Ω)).

The regularity for P, l and p follows in a similar way. �

3. Numerical discretisation and qualitative discussions

In this section, we first present a basic numerical finite element scheme for system
(1.1)–(1.3). As a prototypical example, we consider the particular case when Ω ⊂ R2

is the unit ball and the active boundary part is located at Γ2 = {(1, θ) : π ≤ θ ≤
3π/2}.

The test cases discussed in the Section 3.3 serve to illustrate in particular i) the
role of surface diffusion in the model system (1.1)–(1.3) and ii) to investigate the
behaviour of the system subject to changes in the release rate ξ of cortical Lgl into

the cytoplasm, i.e. p
ξ−→ P .

3.1. Time-discretisation. We apply a first order implicit Euler scheme as time
discretisation, which is well known to be stable for such linear problems (see e.g.
[16]). More precisely, for a given time step h, we shall denote by Ln(x) := L(nh, x)
and Ln+1(x) := L((n + 1)h, x), respectively and analog for P, l and p. Thus, we
have for n ≥ 0 the following iteration of semi-discretised systems :

−hdL∆Ln+1 + (1 + hβ)Ln+1 − hαPn+1 = Ln, x ∈ Ω,

−hdP∆Pn+1 + (1 + hα)Pn+1 − hβLn+1 = Pn, x ∈ Ω,

−hdl∆Γln+1 + (1 + h(γ + σχΓ2))ln+1 − hλLn+1 = ln, x ∈ Γ,

−hdp∆Γ2pn+1 + (1 + hξ)pn+1 − hσln+1 = pn, x ∈ Γ2,

(3.1)

with boundary condition
dL∂Ln+1/∂ν = −λLn+1 + γln+1, x ∈ Γ,

dP∂Pn+1/∂ν = ξχΓ2
pn+1, x ∈ Γ,

dp∂pn+1/∂νΓ2
= 0, x ∈ ∂Γ2.

(3.2)
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3.2. Space-discretisation. We use a standard finite element method for space
discretisation of the cell volume. More precisely, the domain Ω is approximated
by a triangulation mesh Tη where η is the maximum diameter of the triangles.
We will use as basis functions the space of continuous, piecewise linear functions
on triangles. Although finite element methods are well known for linear reaction-
diffusion problems on bounded domains, we ought to remark the following three
points specific to this work by addressing surface diffusion as well as the active and
nonactive parts of the boundary:

• The boundary Γ is approximated by a polygon ∂Tη. This choice makes the
discretisation procedure easy to implement since we only have to discretise
the domain once. Moreover, such a discretisation was already successfully
applied for a linear elliptic system featuring mixed volume-surface diffusion
in [26], where also an error analysis was carried out.
• The triangulation is made such that the boundary ∂Γ2, which are just

two points (−1, 0) and (0,−1) in the considered case Ω ⊂ R2, coincides
with the vertices of one or more triangles. Moreover, since the coefficients
of the equations for P and l are discontinuous at the boundary points
∂Γ2, we shall significantly refine the mesh in the proximity of these two
points as can be seen in Figure 2. The refinement was done by an adaptive
strategy implemented in the function ”adaptmesh” in Matlab using two
point sources at (−1, 0) and (0,−1). We remark that, for the sake of clarity,
the mesh given in Figure 2, which is obtained after one mesh refinement,
has approximately 4000 elements. Later in this paper, to produce high
resolution pictures, we will use a mesh created by five mesh refinements,
which contains about 65000 elements.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. Triangulation mesh and refinement in the proximity of
∂Γ2, i.e. the points (−1, 0) and (0,−1), which are discontinuity
points of the system.

• The Laplace-Beltrami operator ∆Γ and ∆Γ2
on the boundary, which repre-

sent the surface diffusion, Γ can be approximated by the Laplace-Beltrami
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operator on ∂Tη. By choosing a polygon as approximation of the bound-
ary Γ, the operator ∆Γ can itself be approximated by an operator ∆∂Tη ,
see e.g. [26]. Because ∂Tη is a union of disjoint segments, the operator
∆∂Tη can be split to act on each segment separately. Moreover, since we
use a weak/variational problem formulation, we only have to compute the
tangential gradient of affine basis functions on the approximating segments
and remark that in this case the tangential gradient coincides with the di-
rectional derivative. As illustrating example, consider a segment AB and
the basis function ϕ : AB → [0, 1] such that ϕ(A) = 1 and ϕ(B) = 0 then

∇−−→
AB
ϕ = − 1

|
−−→
AB|

where ∇−−→
AB
ϕ denotes the tangential derivative of ϕ along the direction

−−→
AB.

Note that in the case of a circle or a sphere, we could alternatively use
spherical coordinates to discretise the Laplace-Beltrami operator (see e.g.
[27]). However, the above discretisation has the advantage to work for any
sufficiently smooth domain Ω, which can be well approximated by linear
segments.

3.3. Discussion of the numerical results. The following numerical examples
shall highlight certain qualitative features of the model system (1.1)–(1.3). Due to
the lack of in-vivo or in-vitro parameters, which are in general unknown for SOP
precursor cells, we shall use what we believe to be generic system parameters i.e.
typical reaction- and diffusion rates, for which the model exhibits the expected
behaviour. Thus, the aim of the following can only be a discussion of interesting
qualitative features and not a quantitative simulation of Lgl localisation in SOP
precursor cell.

As a generic parameters, we use the following reaction rates:

α = 1, β = 2, γ = 2, λ = 4, σ = 3, (3.3)

the following volume diffusion rates:

dL = 0.01, dP = 0.02, (3.4)

and the following constant initial concentrations:

L0(x, y) ≡ 0.8, P0(x, y) ≡ 0.6, l0(x, y) ≡ 0.3, p0(x, y) ≡ 0.4. (3.5)

The value of ξ will be chosen differently during the discussion of the numerical
examples. The same is true for the surface diffusion rates dl and dp, which shall be
specified later.

3.3.1. The effects of surface diffusion. The first two numerical test examples shall
illustrate the role of surface diffusion by comparing the numerical stationary state
solutions of the system for two cases: i) with surface diffusion rates dl = 0.02,
dp = 0.04 and ii) without surface diffusion, i.e. dl = dp = 0.

Figure 3 plots the resulting numerically stationary state concentrations of non-
phosphorylated cortical Lgl l and phosphorylated cortical Lgl p (for the generic
parameters (3.3), (3.4) and the initial data (3.5)).

In the case with surface diffusion, Figure 3a shows a smoothly decaying profile
of l around the boundary points ∂Γ2, i.e. around the points (−1, 0) and (0,−1),
where the lower concentration of l on Γ2 is the result of l being converted into p.
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(a) l-Lgl with surface diffusion (b) l-Lgl without surface diffusion

(c) p-Lgl with surface diffusion (d) p-Lgl without surface diffusion

Figure 3. Comparison of the numerical stationary states of l and
p with surface diffusion rates dl = 0.02, dp = 0.04 (Figs. (A) and
(C)) and without surface diffusion dl = dp = 0 (Figs. (B) and (D))
for the parameters (3.3), (3.4) and initial data (3.5).

The corresponding numerical steady state concentration of p on Γ2 is plotted in
Figure 3c. The increase of p towards the points (−1, 0) and (0,−1) corresponds to
the increasing values of l over and beyond these boundary points.

As comparision, the Figures 3b and 3d show the numerical stationary state con-
centrations of l and p without surface diffusion. Due to the absence of surface
diffusion, Figure 3b depicts a significantly sharper profile of l around the boundary
points ∂Γ2. However, the profile in l is still smooth and so is the corresponding
profile of the stationary state concentration of p on Γ2, which is shown in 3d us-
ing a very highly refined mesh to eliminate potential numerical artefacts. In our
understanding, these sharp yet smooth profiles of l and p are the combined effect
of the volume diffusion of L and P and the reversible reactions between L and l,
which transfer a diffusive effect from the volume Ω onto the boundary Γ.

Figure 4 plots the volume concentrations L and P corresponding to Figure 3. In
the case with surface diffusion, Figure 4a shows very interestingly and somewhat
surprisingly a ”hump” in the numerical stationary state concentration of L near
the active boundary part Γ2. This ”hump” is not visible in Figure 4b in the case
without surface diffusion. The corresponding volume concentrations of P in the
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Figures 4c (with diffusion) and 4d (without diffusion) allow to explain this ”hump”
as the effect of surface diffusion leading to a significant additional transport of l-Lgl
(compared to the case without surface diffusion) along Γ to the active boundary part
Γ2, where l-Lgl becomes phosphorylated into p-Lgl, which is subsequently released
from the cortex and thus results into a much higher concentration of P along Γ2 as
depicted in 4c. The ”hump” in L is then the consequence of the reversible reaction
between L and P and the volume diffusion of L.

(a) L-Lgl with surface diffusion (b) L-Lgl without surface diffusion

(c) P -Lgl with surface diffusion (d) P -Lgl without surface diffusion

Figure 4. Concentrations of the numerical stationary state of L
and P with surface diffusion rates dl = 0.02, dp = 0.4 (Figure (A)
and (C)) and without surface diffusion dl = dp = 0 (Figure (B)
and (D)) for the parameters (3.3), (3.4) and initial data (3.5).

Remark 3.1. We remark that while Figures 3 and 4 cannot be viewed as simulation
of Lgl localisation in a real SOP cell, the qualitative behaviour may nevertheless
suggest that surface diffusion might play a non-negligible role in real SOP cells and
may help, to explain, in particular, an experimentally observed gap between aPKC
localisation and the localisation of cell-fate determining proteins, which are derived
from the localisation of Lgl, see [23].

In the following Figure 5, we investigate further the case without surface diffu-
sion by increasing the volume diffusion rate dL ten-folds compare to (3.4). More
precisely, we set dl = dp = 0, dL = 0.1 and dP = 0.02.

Figure 5a shows the effects of the increased volume diffusion dL = 0.1. It leads to
a certain widening and flatening of the profile of l-Lgl over the boundary points of
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Γ2. This profile of l is less steeper than the profile of l in Figure 3b without surface
diffusion but still steeper than the profile of l in Figure 3a with surface diffusion.
Thus, the observed effect is consistent and confirms the above explanation that the
profile of l and p in cases without surface diffusion are a combined effect of volume
diffusion dL and the reversible reaction of L
 l: An increased volume diffusion dL
leads thus to an increased diffusive effect at the surface Γ.

The corresponding stationary state profile of p-Lgl plotted in Figure 5b shows
that also the profiles of p-Lgl near the boundary points of Γ2 are widened, yet still
steeper that the profiles of p in Figure 3c with surface diffusion.

The increase of volume diffusion rate dL does not only affect to profile of p and
l around Γ2 as discussed above but also changes the absolute value of stationary
states of p and l on Γ2. More precisely, by comparing Figure 5a and Figure 3b (or
Figure 5b and Figure 3d) we see that the absolute value of p and l on Γ2 in the
case dL = 0.1 are higher than that in the case dL = 0.01.

(a) l-Lgl without surface diffusion with
big volume diffusion rate dL = 0.1

(b) p-Lgl without surface diffusion with
big volume diffusion rate dL = 0.1

Figure 5. Concentrations of the numerical stationary state of
l-Lgl and p-Lgl without surface diffusion with ten-fold volume-
diffusion rate dL = 0.1, dP = 0.02 and dl = dp = 0 and initial
data (3.5).

3.3.2. Asymptotic decay of p for large ξ. In SOP cells, the reaction p
ξ−→ P of

cortical Lgl p to cytoplasmic Lgl P is suggested to be significantly faster than the
other reactions. That means that the expulsion rates ξ is expected to be much
larger than the generic reaction rates in (3.3). We are thus interested to study
the qualitative behaviour for increasing reaction rates ξ while keeping the reaction
rates (3.3) fixed.

Intuitively, one expects that when ξ becomes larger and larger, the concentration
of p-Lgl will decay to zero since the p-Lgl is released more and more rapidly to P -
Lgl.

In Figure 6, we compare p(t, x) on Γ2 at an early time t = 0.04 for four different
values of ξ being 10, 20, 50 and 100. The numerical results show how a larger
reaction rate ξ leads to a decay of p ↘ 0 on Γ2. This happens already at the
very small time t = 0.04 and even more so for larger times (data not shown).
Observing this fact suggests that the system (1.1)–(1.3) for large ξ may be well
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(a) ξ = 10 (b) ξ = 20

(c) ξ = 50 (d) ξ = 100

Figure 6. Comparison of p for ξ = 10, 20, 50, 100 at time t = 0.04
and for the generic parameters (3.3), (3.4) and initial data (3.5).

approximated by a reduced quasi-steady-state approximation (QSSA) without p,
which is formally obtained by letting ξ → +∞. This QSSA will be rigorously
performed in the following Section 4.

3.3.3. Initial-boundary layers in P for large ξ. The following Figures 7 and 8 con-
tinue to numerically investigate the system behaviour for small and large ξ, i.e. for
slow and fast release of cortical p. Note that, in this part, we consider the case of
no surface diffusion dl = dp = 0.

Figure 7 compares the cytoplasmic concentration of phosphorylated P -Lgl for
two values ξ = 1000 and ξ = 1 at the smallish time t = 0.3 and for the specified,
constant initial data (3.5). In particular, Figure 7a illustrates that the fast reaction

p
ξ−→ P for ξ = 1000 leads to much larger values of P near the boundary Γ2 as

compare to ξ = 1. We thus observe the formation of an initial-boundary layer near
Γ2 in Figure 7a compared to Figure 7b, which plots P being formed by the slow
reaction with ξ = 1.

Finally, Figure 8 plots the numerical steady state concentrations of P for ξ =
1000 and ξ = 1 at the time t = 100. We observe that the stationary states appear to
be identical and that the boundary layer in Figure 7 is indeed an initial-boundary
layer for large ξ and no longer present in the stationary states, which features much
lower values of P near the boundary Γ2. In fact, we will demonstrate in Remark
4.1 in Section 4, that the stationary states of system (1.1)–(1.3) without boundary
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(a) ξ = 1000 (b) ξ = 1

Figure 7. Initial-boundary layer in P for ξ = 1000 and ξ = 1 at
time t = 0.3 and for the generic parameters (3.3), (3.4), dl = dp = 0
and initial data (3.5).

(a) ξ = 1000 (b) ξ = 1

Figure 8. Common numerical stationary state concentrations of
P for ξ = 1000 and ξ = 1 at the time t = 100 and for the generic
parameters (3.3), (3.4), dl = dp = 0 and initial data (3.5).

diffusion terms do not depend on the rate ξ and are unique for fixed total initial
mass in the mass conservation law (2.36). Thus, Figure 8 plots indeed that same
stationary state.

4. Quasi-Steady-State Approximation

In this section, we study the Quasi-Steady-State Approximation (QSSA) for
the system (1.1)–(1.3) as ξ → +∞. The limit ξ → +∞ can be interpreted as
the instantaneous release of phosphorylated Lgl from the cell cortex into the cell
cytoplasm. For technical reasons (see Lemma 4.1 and Remark 4.2), we shall restrict
our analysis to the case without boundary diffusion, i.e. dl = 0 = dp. The QSSA
for system (1.1)–(1.3) with surface diffusion constitutes currently an open problem.
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Quasi-Steady-State Approximations for (bio)chemical reaction systems have long
been studied in terms of asymptotic expansions, but it was not until recently that
rigorous results were obtained for the corresponding fast-reaction limits (see e.g.
[3, 4, 5, 6, 8, 9] and references therein).

L P

` p

L P

`

α
β

γλ

σ

ξ

α
β

γλ
σ

ξ → +∞

Figure 9. The original system (left) and the reduced QSSA sys-
tem (right)

The QSSA we shall study in this Section can be illustrated as the passage of the
left reaction diagram towards the right reaction diagram in Figure 9. Without the
surface diffusion terms, the system (1.1)–(1.3) rewrites as

Lt − dL∆L = −βL+ αP, x ∈ Ω, t > 0,

dL
∂L
∂ν + λL = γl, x ∈ Γ, t > 0,

L(0, x) = L0(x), x ∈ Ω,

(4.1)


Pt − dP∆P = βL− αP, x ∈ Ω, t > 0,

dP
∂P
∂ν = χΓ2

ξp, x ∈ Γ, t > 0,

P (0, x) = P0(x), x ∈ Ω,

(4.2)


lt = λL− (γ + χΓ2

σ)l, x ∈ Γ, t > 0,

pt = σl − ξp, x ∈ Γ2, t > 0,

l(0, x) = l0(x), x ∈ Γ,

p(0, x) = p0(x), x ∈ Γ2.

(4.3)

Intuitively and according to the numerical example Fig. 6, we expect from the
second equation in (4.3) that in the limit ξ → +∞ the concentration p(t, x) of
phosphorylated Lgl on the boundary Γ2 tends to zero for any positive time since
all the p-Lgl on the active part of the cell cortex part is instantaneously released
into the cytoplasm and becomes P -Lgl.

However, if the initial p-Lgl concentration is non-zero, i.e. p0(x) 6= 0, an initial
layer at t = 0 will be forming in the limit ξ → +∞, which expresses the transfer of
initial mass of p0 into P0 (see also Figure 7 for a numerical example).

Thus, the expected limiting system has the following form:
Lt − dL∆L = −βL+ αP, x ∈ Ω, t > 0,

dL
∂L
∂ν = −λL+ γl, x ∈ Γ, t > 0,

L(0, x) = L0(x), x ∈ Ω,

(4.4)


Pt − dP∆P = βL− αP, x ∈ Ω, t > 0,

dP
∂P
∂ν = χΓ2

σl, x ∈ Γ, t > 0,

P (0, x) = P0(x) + P ∗(x), x ∈ Ω,

(4.5)
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and {
lt = λL− (γ + σχΓ2)l, x ∈ Γ, t > 0,

l(0, x) = l0(x), x ∈ Γ,
(4.6)

where we emphasise that P ∗ is the unique function in L2(Ω), which satisfies∫
Ω

P ∗ϕdx =

∫
Γ2

p0ϕdS, ∀ϕ ∈ H1(Ω). (4.7)

Note that the system (4.4)–(4.6) corresponds to the reaction dynamics represented
by the right diagram in Figure 9.

Remark 4.1 (Common Stationary States of Full System and QSSA).
We point out that the system (4.1)–(4.3) and the QSSA system (4.4)–(4.6) with con-
dition (4.7) share the same stationary state (L∞, P∞, l∞). This is a consequence of
the fact that the systems (4.1)–(4.3) and (4.4)–(4.6) satisfying the same stationary
state system (see (4.8) below) and that condition (4.7) ensure identical initial total
mass.

Indeed, it follows from (4.3) that ξp∞ = σl∞ and λL∞ = (γ+σχΓ2
)l∞. Inserting

these two relations into (4.1)–(4.2) yields the stationary state system

−dL∆L∞ = −βL∞ + αP∞, x ∈ Ω,

−dP∆P∞ = βL∞ − αP∞, x ∈ Ω,

dL
∂L∞
∂ν = − σλ

γ+σL∞, x ∈ Γ2,

dL
∂L∞
∂ν = 0, x ∈ Γ \ Γ2,

dP
∂P∞
∂ν = σλ

γ+σL∞, x ∈ Γ2,

dP
∂P∞
∂ν = 0, x ∈ Γ \ Γ2,

(4.8)

which is also the stationary state system of the QSSA system (4.4)–(4.6). In fact,
by solving (4.8) the stationary concentration l∞ and p∞ are afterwards calculated
from L∞ and P∞ for both systems (4.1)–(4.3) and (4.4)–(4.6).

Moreover, the stationary state system (4.8) can be solved by observing that{
−∆(dLL∞ + dPP∞) = 0, x ∈ Ω,
∂
∂ν

(
dLL∞ + dPP∞

)
= 0, x ∈ Γ.

(4.9)

Thus, the sum dLL∞ + dPP∞ = C equals a constant C for all x ∈ Ω and the
stationary state concentrations L∞ or P∞, respectively are obtained by solving an
inhomogeneous linear elliptic boundary value problem with mixed Neumann/Robin
boundary data. For instance, the equilibrium concentration L∞ satisfies

−dL∆L∞ +
(
β + α dLdP

)
L∞ = α C

dP
, x ∈ Ω,

dL
∂L∞
∂ν = − σλ

γ+σL∞, x ∈ Γ2,

dL
∂L∞
∂ν = 0, x ∈ Γ \ Γ2,

(4.10)

The stationary state L∞ is unique for fixed constants C, since the difference L̂∞
of two such steady state solutions satisfies a homogeneous version of (4.10) with
C = 0, which has only the trivial solution. Indeed, when testing (4.10) for C = 0

with L̂∞, we see that any solution L̂∞ has to satisfy

dL

∫
Ω

∣∣∇L̂∞∣∣2 dx+
σλ

γ + σ

∫
Γ2

L̂2
∞ dS +

(
β + α

dL
dP

)∫
Ω

L̂2
∞ dx = 0,
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which implies L̂∞ = 0.
Moreover, the constant C is itself determined by the conserved initial total mass.

As a consequence, since the system (4.1)–(4.3) and its QSSA system(4.4)–(4.6)
with the condition (4.7) share by construction the same initial total mass, the cor-
responding stationary states are identical.

In the following, we will show that solutions to (4.1)–(4.3) converge towards
solutions of the QSSA system (4.4)–(4.6) as ξ → +∞.

We will denote by C a generic constant, which only depends on the initial data,
all diffusion and reaction rates, yet with the explicit exception of the reaction rate ξ.
Moreover, CT is such a constant, which additionally depends on the time interval
size T > 0. For any given T > 0 and q ≥ 1, we shall denote

ΩT := [0, T ]× Ω, ΓT := [0, T ]× Γ, Γ2T := [0, T ]× Γ2.

The spaces Lq(ΩT ), Lq(ΓT ) or Lq(Γ2T ) will be extensively used with usual norms,
for example,

‖f‖L2(ΩT ) =

(∫ T

0

‖f(t)‖2L2(Ω)dt

)1/2

.

The following Lemma provides some crucial a priori estimates, which will allow
to pass to the limit ξ → +∞.

Lemma 4.1 (Uniform in ξ Boundedness of Solutions to the Original System).
For any T > 0, the solution (L,P, l, p) to system (4.1)–(4.3) satisfies the following
estimates:

‖L‖L2(ΩT ) + ‖P‖L2(ΩT ) + ‖l‖L2(ΓT ) ≤ CT , (4.11)

and

‖L‖L2(0,T ;H1(Ω)) ≤ CT . (4.12)

Proof. By setting Z = L+P and W = dLL+dPP , we get from the non-negativity
of L and P that

0 < min{dL, dP } ≤
W

Z
≤ max{dL, dP } < +∞.

It follows from (4.1)–(4.2) that{
Zt −∆W = 0, x ∈ Ω, t > 0,
∂W
∂ν = −λL+ γl + χΓ2

ξp, x ∈ Γ, t > 0.
(4.13)

We integrate the first equation in (4.13) over (0, t) and take then the inner product
with W (t) in L2(Ω) to get∫

Ω

W (t)[Z(t)− Z(0)] dx+

∫
Ω

∇W (t) · ∇
∫ t

0

W (s) dsdx

=

∫
Γ

W (t)

∫ t

0

(−λL+ γl + χΓ2
ξp) dsdS. (4.14)

In order to estimate the right hand side of (4.14), we observe from (4.3) that

− λL+ γl + χΓ2
ξp = −(l + χΓ2

p)t. (4.15)
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Thus, from (4.14) and (4.15), we have∫
Ω

W (t)[Z(t)− Z(0)] dx+

∫
Ω

∇W (t) · ∇
∫ t

0

W (s) dsdx

= −
∫

Γ

W (t)[l(t)− l(0)] dS −
∫

Γ2

W (t)[p(t)− p(0)] dS. (4.16)

In the following, we shall denote by φ(t, x) :=
∫ t

0
W (s, x)ds, which implies

∂tφ(t) = W (t). Therefore, we calculate∫
Ω

∇W (t) · ∇
∫ t

0

W (s) dsdx =

∫
Ω

∇∂tφ(t) · ∇φ(t) dx =
1

2

∫
Ω

∂

∂t
|∇φ(t)|2 dx.

As a consequence, integration of (4.16) in t over (0, T ) yields∫
ΩT

WZ dsdx+

∫
ΓT

Wl dsdS +

∫
Γ2T

WpdsdS +
1

2

∫
Ω

∣∣∇φ(T )
∣∣2 dx

=

∫
ΩT

WZ(0) dsdx+

∫
ΓT

Wl(0) dsdS +

∫
Γ2T

Wp(0) dsdS, (4.17)

where we have uses that
∫ T

0

∫
Ω

∂
∂t |∇φ(t)|2 dxdt =

∫
Ω

∣∣∇φ(T )
∣∣2dx since φ(0) = 0.

Next, by Young’s inequality, we have

‖φ(T )‖2Ω =

∫
Ω

∣∣∣∣∫ T

0

W (s, x)ds

∣∣∣∣2dx ≤ T ∫
Ω

∫ T

0

|W (s, x)|2 dsdx = T‖W‖2L2(ΩT ).

Considering the right hand side of (4.17), we estimate in the following by Cauchy’s,
Young’s and a Trace inequality that∫

ΩT

WZ(0) dsdx ≤
√
T‖W‖L2(ΩT )‖Z(0)‖Ω, (4.18)

and ∫
ΓT

Wl(0) dsdS = (φ(T ), l(0))Γ ≤ ‖l(0)‖Γ‖φ(T )‖Γ

≤ ‖l(0)‖Γ(C‖∇φ(T )‖Ω + ‖φ(T )‖Ω)

≤ 1

8
‖∇φ(T )‖2Ω + C‖l(0)‖2Γ +

√
T‖l(0)‖Γ‖W‖L2(ΩT ),

(4.19)

and similarly,∫
Γ2T

Wp(0) dsdS ≤ 1

8
‖∇φ(T )‖2Ω + C‖p(0)‖2Γ2

+
√
T‖p(0)‖Γ2

‖W‖L2(ΩT ). (4.20)

Hence, by the non-negativity of L,P, l, p, we obtain from (4.17)–(4.20)∫
ΩT

WZ dsdx+
1

4

∫
Ω

∣∣∇φ(T )
∣∣2 dx

≤
√
T (‖Z(0)‖Ω + ‖l(0)‖Γ + ‖p(0)‖Γ2)‖W‖L2(ΩT ) + C(‖l(0)‖2Γ + ‖p(0)‖2Γ2

) (4.21)

It follows then from W ≤ max{dL, dP }Z that

‖W‖2L2(ΩT ) ≤ max{dL, dP }
∫

ΩT

WZ dsdx ≤ CT ‖W‖L2(ΩT ) + C, (4.22)
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and the linearity of the right hand side implies by Young’s inequality that

‖W‖L2(ΩT ) ≤ CT . (4.23)

Therefore, by the non-negativity of L and P and by keeping in mind that W =
dLL+ dPP , we conclude that

‖L‖L2(ΩT ) + ‖P‖L2(ΩT ) ≤ CT . (4.24)

Next, by testing (4.1) with L, we estimate

1

2

d

dt
‖L‖2Ω + dL‖∇L‖2Ω = −β‖L‖2Ω + α

∫
Ω

LP dx− λ‖L‖2Γ + γ

∫
Γ

Ll dS

≤ C‖P‖2Ω + C‖l‖2Γ −
λ

2
‖L‖2Γ.

(4.25)

On the other hand, we get from (4.3)

1

2

d

dt
‖l‖2Γ = −γ‖l‖2Γ − σ‖l‖2Γ2

+ λ

∫
Γ

Ll dS ≤ C‖l‖2Γ +
λ

2
‖L‖2Γ. (4.26)

Summing (4.25) and (4.26) yields

d

dt
(‖L‖2Ω + ‖l‖2Γ) + 2dL‖∇L‖2Ω ≤ C‖P‖2Ω + C‖l‖2Γ. (4.27)

Therefore, by ‖L‖L2(ΩT ) + ‖P‖L2(ΩT ) ≤ CT , we conclude that

‖∇L‖L2(ΩT ) ≤ CT
and

‖l‖L2(ΓT ) ≤ CT eCT ≤ CT . (4.28)

This finishes the proof. �

Remark 4.2. The proof applied in Lemma 4.1 fails when trying to include one
of the surface diffusion terms ∆Γl or ∆Γ2p because in these cases, the formulation

(4.17) would have additional terms
∫

Γ
∇ΓW (t) · ∇

∫ t
0
l(s) dsdS or

∫
Γ2
∇Γ2W (t) ·

∇Γ2

∫ t
0
p(s) dsdS, for which we do not know a sign or suitable a priori estimates.

The problem of the QSSA for system (1.1)–(1.3) with surface diffusion remains
open for future work.

From now on, we always denote the solution to (4.1)–(4.3) by (Lξ, P ξ, lξ, pξ) in
order to emphasise the dependency on the reaction rate ξ.

In the next Lemma, we will show that the concentration pξ of the phosphorylated
Lgl on the active boundary Γ2 tends to zero as ξ → +∞ in L2(Γ2T ). Since pξ(0) =
p0 ∈ L2(Γ2), we cannot expect that pξ → 0 in C([0, T ];L2(Γ2)). Nevertheless, we
will be able to show that pξ → 0 in C((0, T ];L2(Γ2)).

Lemma 4.2. For any T > 0, we have

pξ
ξ→+∞−−−−−→ 0 in L2(Γ2T ) ∩ C((0, T ];L2(Γ2)).

Proof. By multiplying the equation (4.3) of pξ, i.e. ∂tp
ξ + ξpξ = σlξ with ξpξ and

integrating over Γ2, we estimate

ξ

2

d

dt
‖p‖2Γ2

+ ξ2‖pξ‖2Γ2
= (σlξ, ξpξ)Γ2

≤ σ2

2
‖lξ‖2Γ2

+
ξ2

2
‖pξ‖2Γ2

.
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Therefore,

ξ
d

dt
‖pξ‖2Γ2

+ ξ2‖pξ‖2Γ2
≤ σ2‖lξ‖2Γ2

≤ σ2‖lξ‖2Γ,

and integration over (0, T ) yields

1

ξ
‖pξ(T )‖2Γ2

+

∫ T

0

‖pξ(s)‖2Γ2
ds ≤ 1

ξ
‖p0‖2Γ2

+
σ2

ξ2

∫ T

0

‖lξ(s)‖2Γ ds. (4.29)

This implies that ‖pξ‖2Γ2T
= O(ξ−1) and pξ → 0 in L2(Γ2T ) as ξ → +∞ since

{lξ}ξ>0 is uniformly bounded in L2(ΓT ) according to Lemma 4.1.
From (4.3), we also have similar

d

dt
‖pξ‖2Γ2

+ 2ξ‖pξ‖2Γ2
= 2σ(lξ, pξ)Γ2 .

Hence, for any fixed 0 < t0 ≤ t ≤ T , we have

‖pξ(t)‖2Γ2
≤ e−2ξt‖p0‖2Γ2

+ 2σe−2ξt

∫ t

0

e2ξs(lξ, pξ)Γ2
ds

≤ e−2ξt0‖p0‖2Γ2
+ 2σ

∫ T

0

(lξ, pξ)Γ2
ds

≤ e−2ξt0‖p0‖2Γ2
+ 2σ‖lξ‖L2(ΓT )‖pξ‖L2(Γ2T ).

In the limit ξ → +∞ and by using ‖pξ‖Γ2T
→ 0 and {lξ}ξ>0 is bounded in L2(ΓT ),

we have thus pξ → 0 in C([t0, T ];L2(Γ2)) for all t0 > 0. �

Lemma 4.3. There exists L ∈ L2(ΩT ) and l ∈ L2(ΓT ) such that, when ξ → +∞

Lξ
ξ→+∞−−−−−→ L in L2(ΩT ) (4.30)

and

lξ
ξ→+∞−−−−−→ l in L2(ΓT ). (4.31)

Proof. By Lemma 4.1, we have that {Lξ}ξ>0 is bounded in L2(0, T ;H1(Ω)). Thus,
by using (4.1), we have {∂tLξ}ξ>0 is bounded in L2(0, T ;H−1(Ω)) and the Aubin-
Lions compactness lemma implies that {Lξ}ξ>0 is precompact in L2(ΩT ). Thus,

Lξ
ξ→+∞−−−−−→ L in L2(ΩT )

for some L ∈ L2(ΩT ) and up to a subsequence. By using that {Lξ}ξ>0 is bounded
in L2(0, T ;H1(Ω)) and by a standard Trace Theorem (see e.g. [20]), we have
{Lξ|Γ}ξ>0 is also bounded in L2(0, T ;H1/2(Γ)). Therefore, it follows from

lξt = λLξ − (γ + σχΓ2
)lξ

that {lξ}ξ>0 is bounded in L2(0, T ;H1/2(Γ)) and {lξt }ξ>0 is bounded in L2(ΓT ).
Using again the Aubin-Lions compactness lemma, we have

lξ
ξ→+∞−−−−−→ l in L2(ΓT )

for some l ∈ L2(ΓT ) and up to a subsequence. �

By Lemma 4.3, we have so far established the strong convergence of Lξ, lξ and
pξ in L2(ΩT ), L2(ΓT ) and L2(Γ2T ), respectively.

The convergence of P ξ constitutes a more difficult problem due to the singularity
of the boundary flux dP∂P

ξ/∂ν = χΓ2
ξpξ. As an example to illustrate the, we may
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attempt a similar approach like in Lemma 4.1, which succeeded in proving the
bound (4.12): By testing with P ξ{

P ξt − dP∆P ξ = βLξ − αP ξ,
dP

∂P ξ

∂ν = χΓ2
ξpξ,

we get after direct computations that

‖P ξ(T )‖2Ω + dP

∫ T

0

‖∇P ξ‖2Ω ds = ‖P0‖2Ω +

∫ T

0

(βLξ − αP ξ, P ξ)Ω ds

+ ξ

∫ T

0

(P ξ, pξ)Γ2
ds. (4.32)

Due to the boundedness of Lξ, P ξ in L2(ΩT ), we would need the uniform bounded-

ness of ξ
∫ T

0
(P ξ, pξ)Γ2ds in order to prove a uniform control of the left hand side of

(4.32). A uniform bound on right hand side of (2.5) seems thus to requires a uni-
form bound of ξ‖pξ‖L2(Γ2T ) or equivalently ‖pξ‖L2(Γ2T ) → 0 when ξ → +∞ with the

rate 1/ξ. However, Lemma 4.2 implies only the decay rate of ‖pξ‖Γ2T
= O(1/

√
ξ).

However, we notice that (4.3) implies

ξ‖pξ‖L1(Γ2T ) =

∫ T

0

∫
Γ2

ξpξ(t) dSdt =

∫ T

0

∫
Γ2

(σlξ − ∂tpξ) dSdt

= ‖p0‖L1(Γ2) − ‖pξ(T )‖L1(Γ2) + σ

∫ T

0

‖lξ‖L1(Γ2)dt

≤ ‖p0‖L1(Γ2) + Cσ‖lξ‖L2(ΓT ) ≤ CT .

(4.33)

and the uniform L1-bound (4.33) will be used in Lemma 4.5 below to obtain the
compactness of {P ξ}ξ>0 in L1(ΩT ) and even in L1(0, T ;W 1,1(Ω)). The proof of
Lemma 4.5 is based on Lemma 4.4, which is similar to results given in [7] and [5],
yet for homogeneous boundary conditions. The proof of Lemma 4.4 is based on a
duality argument and will given in the Appendix of the sake of completeness.

Remark 4.3. We conjecture that it should actually be possible for solutions of

system (4.4)–(4.6) to prove the boundedness of P ξξ>0 in L2(0, T ;H1(Ω)) uniformly

in ξ and hence the convergence of P ξ in L2(ΩT ) (thus improving Lemma 4.5 and
Theorem 4.6 below). Unfortunately, the singularity of boundary flux χΓ2

ξpξ as
ξ → +∞ prevents currently to establish such an L2-control in the same manner as
for Lξ.

More precisely, eq. (4.32) suggest that it is necessary (or at least sufficient)
to show ‖pξ‖Γ2T

= O(1/ξ) as ξ → +∞. While estimate (4.29) implies at first
only ‖pξ‖Γ2T

= O(1/
√
ξ), it also allows to improve this rate for positive times via

an iterative procedure: By considering the time interval (0, 1/3), for instance, eq.
(4.29) implies that exists a time θ1 ∈ (0, 1/3), such that

‖pξ(s)‖2Γ2
(θ1) ≤ O(ξα1), for α1 > −1.

Otherwise, eq. (4.29) would yield the following contradiction as ξ → +∞

O(ξα1) ≤ ξ−1‖p0‖2Γ2
+ ξ−2CT , (4.34)

where CT is given in (4.28).
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Next, by regarding (4.29) on the time-interval (θ1, 2/3), we obtain similar that
there exists a time θ2 < 2/3 such that

‖pξ(s)‖2Γ2
(θ2) ≤ O(ξα2), for α2 > α1 − 1 > −2,

and an final iteration on the time-interval (θ2, 1) yields a time θ3 < 1 such that

‖pξ(s)‖2Γ2
(θ3) ≤ O(ξα3), for α3 > max{α2 − 1,−2} > −2.

We are thus only able to prove that ‖pξ‖L2([1,T ]×Γ) = O(ξβ) for any β > −1, but we
do not recover the critical rate β = −1, which would be needed for the boundedness

of P ξξ>0 in L2(0, T ;H1(Ω)) uniformly in ξ.

In fact, we would be able to recover the critical rate β = −1 (at least for large
enough times) if we could improve the exponentially growing bound of ‖l(t)‖L2(ΓT )

as shown in (4.28) to a uniform-in-time bound ‖l(t) − l∞‖L2(ΓT ) ≤ C. Such a

uniform L2-bound would allow to set α3 = −2 and still get a contradiction like in
(4.34) at least after for large enough times T > 0:

T O(ξ−2) ≤ O(ξα2−1) + ξ−2C.

Thus, we emphasise that proving the boundedness of P ξξ>0 in L2(0, T ;H1(Ω))

uniformly in ξ seems to be linked to proving that solutions of (4.4)–(4.6) converge
to a bounded stationary state in a sufficiently good norm such as e.g. ‖l(t) −
l∞‖L2(ΓT ) ≤ C. However, proving such a convergence to equilibrium (which was
successfully done via entropy methods, for instance, in [12, 13, 14, 15] for reaction-
diffusion systems or in [1] for a nonlinear surface-volume reaction-diffusion system
of two equations) is a difficult problem for systems like (4.4)–(4.6) and currently
under investigation as work in progress.

Lemma 4.4. The mapping T : (w0,Θ, g)→ (w,∇w), where w is the solution of
wt − dP∆w = Θ, x ∈ Ω, t > 0,

dP∂w/∂ν = g, x ∈ Γ, t > 0,

w(0, ·) = w0, x ∈ Ω,

(4.35)

is compact from L1(Ω)× L1(ΩT )× L1(ΓT ) into L1(ΩT )× (L1(ΩT ))N .

Applying Lemma 4.4 to w = P ξ, Θ = βLξ − αP ξ and g = χΓ2ξp
ξ leads to

Lemma 4.5. The sequence {P ξ}ξ>0 is pre-compact in L1(0, T ;W 1,1(Ω)). In other
words, there exists P ∈ L1(0, T ;W 1,1(Ω)) such that up to a subsequence

P ξ
ξ→+∞−−−−−→ P strongly in L1(0, T ;W 1,1(Ω)) and weakly in L2(ΩT ),

due to Lemma 4.1.

Remark 4.4. The proof of Lemma 4.4 as stated in the Appendix shows actually
that the mapping T is indeed compact from L1(Ω)×L1(ΩT )×L1(ΓT ) into Lr(ΩT )×
(Ls(ΩT ))N for any r < N+2

N and s < N+2
N+1 . Thus, depending on the space dimension

N , the convergence in Lemma 4.5 could be somewhat improved.

The following Theorem is the main result of this section.

Theorem 4.6 (Convergence of the QSSA).
For any (L0, P0, l0, p0) ∈ L2(Ω)×L2(Ω)×L2(Γ)×L2(Γ2) and any T > 0, we have

Lξ
ξ→+∞−−−−−→ L strongly in L2(ΩT ) and weakly in L2(0, T ;H1(Ω)),
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P ξ
ξ→+∞−−−−−→ P strongly in L1(0, T ;W 1,1(Ω)) and weakly in L2(ΩT ),

lξ
ξ→+∞−−−−−→ l strongly in L2(ΓT ),

and

pξ
ξ→+∞−−−−−→ 0 strongly in L2(Γ2T ) ∩ C((0, T ];L2(Γ2)),

up to a subsequence, where (L,P, l) is the unique weak solution to (4.4)–(4.6).

Remark 4.5. The well-posedness of system (4.4)–(4.6) can be shown in the same
way as for system (1.1)–(1.3) in Section 2.

Proof. All the limits are already proven in the Lemmata 4.2, 4.3 and 4.5. It remains
to show that the limit (L,P, l) in Lemma 4.3 is the unique solution of system (4.4)–
(4.6). Indeed, by testing

Lξt − dL∆Lξ = −βLξ + αP ξ, x ∈ Ω, t > 0,

dL
∂Lξ

∂ν = −λLξ + γlξ, x ∈ Γ, t > 0,

Lξ(0, x) = L0(x), x ∈ Ω,

with ϕ ∈ C1([0, T ];H1(Ω)), ϕ(T ) = 0 and by integration over ΩT , we have

−
∫ T

0

(Lξ, ϕt)Ω ds+ dL

∫ T

0

(∇Lξ,∇ϕ)Ω ds

= (L0, ϕ(0))Ω +

∫ T

0

(−λLξ + γlξ, ϕ)Γ ds+

∫ T

0

(−βLξ + αP ξ, ϕ)Ω ds. (4.36)

Since Lξ → L and P ξ ⇀ P in L2(ΩT ) as ξ → +∞, we have

−
∫ T

0

(Lξ, ϕt)Ω ds
ξ→+∞−−−−−→ −

∫ T

0

(L,ϕt)Ω ds (4.37)

and ∫ T

0

(−βLξ + αP ξ, ϕ)Ω ds
ξ→+∞−−−−−→

∫ T

0

(−βL+ αP,ϕ)Ω ds. (4.38)

By Lemma 4.1, {Lξ}ξ>0 is bounded in L2(0, T ;H1(Ω)) and together with (4.30),
we get

Lξ ⇀ L in L2(0, T ;H1(Ω)) (4.39)

up to a subsequence. Thus,

dL

∫ T

0

(∇Lξ,∇ϕξ)Ωds
ξ→+∞−−−−−→ dL

∫ T

0

(∇L,∇ϕ)Ωds. (4.40)

By using the Trace Theorem and (4.39), we have

Lξ ⇀ L in L2(ΓT ).

In combination with (4.31), this yields∫ T

0

(−λLξ + γlξ, ϕ)Γds
ξ→+∞−−−−−→

∫ T

0

(−λL+ γl, ϕ)Γds. (4.41)
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From (4.37)–(4.41), we can pass to the limit in (4.36) as ξ → +∞ and obtain

−
∫ T

0

(L,ϕt)Ω ds+ dL

∫ T

0

(∇L,∇ϕ)Ω ds

= (L0, ϕ(0))Ω +

∫ T

0

(−λL+ γl, ϕ)Γ ds+

∫ T

0

(−βL+ αP,ϕ)Ω ds (4.42)

or equivalently that L is a weak solution of
Lt − dL∆L = −βL+ αP, x ∈ Ω, t > 0,

dL
∂L
∂ν = −λL+ γl, x ∈ Γ, t > 0,

L(0, x) = L0(x), x ∈ Ω.

(4.43)

Next, by taking the inner product of

pξt = σlξ − ξpξ

with test-functions ψ ∈ C1(0, T ;L2(Γ2)) satisfying ψ(T ) = 0, we get

−
∫ T

0

(pξ, ψt)Γ2 ds = (p0, ψ(0))Γ2 +

∫ T

0

(σlξ, ψ)Γ2 ds−
∫ T

0

(ξpξ, ψ)Γ2 ds. (4.44)

In order to pass to the limit ξ → +∞ in (4.44), we apply Lemma 4.2 and Lemma
4.3 and obtain

lim
ξ→+∞

∫ T

0

(ξpξ, ψ)Γ2ds = (p0, ψ(0))Γ2 +

∫ T

0

(σl, ψ)Γ2ds. (4.45)

In the following, we consider equation for P ξ in the weak form, i.e.

−
∫ T

0

(P ξ, ϕt)Ω ds+ dL

∫ T

0

(∇P ξ,∇ϕ)Ω ds

= (P0, ϕ(0))Ω +

∫ T

0

(ξpξ, ϕ)Γ2
ds+

∫ T

0

(βLξ − αP ξ, ϕ)Ω ds (4.46)

for test-functions ϕ ∈ C1(0, T ;C1(Ω)) with ϕ(T ) = 0. The following limits

−
∫ T

0

(P ξ, ϕt)Ω ds
ξ→+∞−−−−−→ −

∫ T

0

(P,ϕt)Ω ds, (4.47)

dL

∫ T

0

(∇P ξ,∇ϕ)Ω ds
ξ→+∞−−−−−→ dL

∫ T

0

(∇P,∇ϕ)Ω ds (4.48)

and ∫ T

0

(βLξ − αP ξ, ϕ)Ω ds
ξ→+∞−−−−−→

∫ T

0

(βL− αP,ϕ)Ω ds (4.49)

are due to Lξ → L and P ξ → P in L1(0, T ;W 1,1(Ω)). Pass to the limit ξ → +∞
in (4.46), we obtain with (4.45), (4.47), (4.48) and (4.49)

−
∫ T

0

(P,ϕt)Ω ds+ dL

∫ T

0

(∇P,∇ϕ)Ω ds

= (P0, ϕ(0))Ω + (p0, ϕ(0))Γ2 +

∫ T

0

(σl, ϕ)Γ2 ds+

∫ T

0

(βL− αP,ϕ)Ω ds

= (P0 + P ∗, ϕ(0))Ω +

∫ T

0

(σl, ϕ)Γ2 ds+

∫ T

0

(βL− αP,ϕ)Ω ds, (4.50)
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where we have use (4.7). This means that P is a weak solution of
Pt − dL∆P = βL− αP, x ∈ Ω, t > 0,

dL
∂P
∂ν = χΓ2

σl, x ∈ Γ, t > 0,

P (0, x) = P0(x) + P ∗(x), x ∈ Ω.

(4.51)

Finally, by taking test-function ψ ∈ C1([0, T ];L2(Γ)) with ψ(T ) = 0 for

lξt = λLξ − (γ + χΓ2σ)lξ,

we get

−
∫ T

0

(lξ, ψt)Γ ds = (l0, ψ(0))Γ +

∫ T

0

(λLξ, ψ)Γ ds+

∫ T

0

[(γlξ, ψ)Γ + (σlξ, ψ)Γ2
] ds.

(4.52)
We use Lξ ⇀ L and lξ ⇀ l in L2(ΓT ) to pass the limit ξ → +∞ in (4.52) and
obtain

−
∫ T

0

(l, ψt)Γ ds = (l0, ψ(0))Γ +

∫ T

0

(λL, ψ)Γ ds+

∫ T

0

[(γl, ψ)Γ +(σl, ψ)Γ2
] ds (4.53)

or equivalently l is a weak solution of{
lt = λL− (γ + χΓ2

σ)l, x ∈ Γ, t > 0,

l(0, x) = l0(x), x ∈ Γ.
(4.54)

In conclusion, from (4.43), (4.51) and (4.54), (L,P, l) is the unique weak solution
to the system (4.4)–(4.6), where the well-posedness of weak solutions to (4.4)–(4.6)
follows in the same way as for the full system (1.1)–(1.3) as shown in Section 2. �

5. Appendix

The proof of Lemma 4.4, cf. [5, 7].

Proof. The prove of the Lemma is based on a duality argument. We shall denote
by

T∗ : (Φi)0≤i≤N ∈ C∞0 (Ω)× (C∞0 (ΩT ))N → (z(0), z, z|∂Ω)

the adjoint operator T∗ of T, where z is the solution of
−zt − dP∆z = Φ0 −

∑
1≤i≤N ∂xiΦi,

dP∂z/∂ν = 0,

z(T ) = 0.

(5.1)

The adjointness can be checked by integration by parts: For Φ = (Φi)1≤i≤N

〈T∗(Φ0,Φ), (w0,Θ, g)〉 = 〈(z(0), z, z|Γ), (w0,Θ, g)〉

=

∫
Ω

z(0)w0 +

∫
ΩT

zΘ +

∫
ΓT

zg

=

∫
Ω

z(0)w0 +

∫
ΩT

z(wt − dP∆w) +

∫
ΓT

zg

= −
∫

ΩT

wzt + dP

∫
ΩT

∇w∇z
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by using (4.35) and after integration by parts. Further, with ∂z/∂ν = 0, we continue

〈T∗(Φ0,Φ), (w0,Θ, g)〉 =

∫
ΩT

−w(zt + dP∆z)

=

∫
ΩT

−w(−Φ0 +∇ · Φ)

=

∫
ΩT

(Φ0w + Φ∇w) = 〈(Φ0,Φ), (w0,∇w)〉

= 〈(Φ0,Φ),T(w0,Θ, g)〉.

It is well-known (see e.g. [17]) that for p > N/2 + 1, q > N + 2 and X = Lp(ΩT )×
(Lq(ΩT ))N , the solution z to (5.1) satisfies for a small enough α > 0

‖z‖Cα(ΩT ) ≤ κ‖(Φ0,Φ)‖X ,
where κ does not depend on Φ0,Φ. Thus, due to the dense embedding C∞0 ×
(C∞0 (ΩT ))N ↪→ Lp(Ω) × (Lq(ΩT ))N , we can uniquely extend T∗ to a continuous
operator from X into Cα(Ω) × Cα(ΩT ) and consequently to a compact operator
from X into L∞(Ω) × L∞(ΩT ) × L∞(ΓT ). It implies that T can be defined as a
compact operator from L1(Ω)× L1(ΩT )× L1(ΓT ) into X ′ = Lr(ΩT )× (Ls(ΩT ))N

for all r < (N + 2)/N and s < (N + 2)/(N + 1). By taking r = s = 1, we can
complete the proof. �
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