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Abstract. The existence of a unique random attractors in H1(Rn) for a
stochastic reaction-diffusion equation with time-dependent external forces is

proved. Because of the presence of both random and non-autonomous deter-
ministic terms, we use a new theory of random attractors which is introduced
in [B. Wang, Journal of Differential Equations, 253 (2012), 1544-1583] instead
of the usual one. The asymptotic compactness of solutions in H1(Rn) is es-

tablished by combining ”tail estimate” technique and some new estimates on
solutions. This work improves some recent results about the regularity of
random attractors for stochastic reaction diffusion equations.

1. Introduction

Stochastic differential equations arise from many physical systems when ran-
dom spatio-temporal forcing is taken into account. To study long time behavior
of solutions of stochastic differential equations, one use the concept of so-called
random attractor, which is an extension of the theory of attractors for determin-
istic equations. The concept of random attractor for random dynamical systems
was introduced in [7, 8, 9] and has been studied extensively in [5, 6, 10, 17] and
references therein.

In this paper, we study the following stochastic reaction diffusion equation on
Rn, {

du+ [−∆u+ f(x, u) + λu]dt = g(t, x)dt+ hdω,

u|t=τ = uτ ,
(1.1)

where λ > 0, g ∈ L2
loc(R;L2(Rn)) and ω is a two-sided real-valued Wiener process

on a probability space which will be specified later.
The long time behavior of stochastic reaction diffusion equations with additive

noise is studied by many mathematicians in both cases of bounded and unbounded
domains. For example, in the case of bounded domains, the authors in [3, 11]
proved the existence of random attractors in L2(Ω) and Lp(Ω)(p > 2) respectively.
In the case of unbounded domains, the authors in [6] obtained a random attractor
for stochastic reaction diffusion equation in L2(Rn); Lp(Rn)-random attractor was
shown in [24]. Similar results for reaction diffusion equations with multiplicative
noise can be found in [12, 20].
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We emphasize that, although in the deterministic case, the higher regularity of
attractors for reaction diffusion equations (or its generalized form) is well under-
stood (see e.g. [2, 14, 16, 25]), in the stochastic case, since random pertubations
are taken into account, the regularity of random attractors is less known. Up to the
best of our knowledge, there are only three results in this direction [1, 22, 23], and
all of them dealt with bounded domains and autonomous external forces. The main
contribution of this paper is showing the higher regularity of random attractors for
(1.1) in unbounded domains without restriction on the growth of nonlinearity. An-
other interesting feature of the present paper is that we consider stochastic reaction
diffusion equation not only with random perturbation but also non-autonomous de-
terministic terms.

To study equation (1.1), we assume the following hypothesis

(F) For all x ∈ Rn and s ∈ R, the nonlinearity f : Rn × R → R satisfies

f(x, s)s ≥ α1|s|p + ψ1(x), (1.2)

|f(x, s)| ≤ α2|s|p−1 + ψ2(x), (1.3)

∂f

∂s
(x, s) ≥ −ℓ, (1.4)∣∣∣∣∂f∂x (x, s)

∣∣∣∣ ≤ ψ3(x), (1.5)

where α1, α2, ℓ are positive constants, p > 2, ψ1 ∈ L2(Rn) ∩ Lp/2(Rn) ∩
L∞(Rn), ψ2 ∈ L2(Rn) ∩ L

p
p−1 (Rn) and ψ3 ∈ L2(Rn);

(G) The external force g ∈ L2
loc(R;L2(Rn)) satisfies∫ τ

−∞
eλs∥g(s)∥2L2(Rn)ds < +∞ for all τ ∈ R. (1.6)

This implies that, for all τ ∈ R,

lim
k→+∞

∫ τ

−∞
eλs
∫
|x|≥k

|g(s, x)|2dxds = 0; (1.7)

(H) h ∈ L2p−2(Rn) ∩ L∞(Rn) ∩H2(Rn) ∩W 2,p(Rn).

There are some difficulties in studying problem (1.1). First, the equation has not
only random but also non-autonomous deterministic terms, thus we have to adapt a
new concept of random attractors, which is introduced recently in [19]. Second, the
continuity of the random dynamical system with respect to (1.1) in H1(Rn), which
plays an essential role in obtaining random attractors, is now known. This difficulty
can be solved by weakening the concept of usual continuity to norm-to-weak conti-
nuity [25] or quasi-continuity [11]. In this work, we use the idea in [24] to overcome
the lack of continuity. Roughly speaking, once the attractor in L2(Rn) is shown,
one can prove the existence of attractors in H1(Rn) by checking only the absorption
and the asymptotic compactness of the corresponding random dynamical system.
The third difficulty, also the main difficulty in this work, is the unboundedness of
Rn. This property makes Sobolev embeddings are only continuous but not com-
pact. To get through of it, we use a technique so-called ”tail estimates”, which is
initiated and developed by Wang in both deterministic [15, 16] and stochastic cases
[17, 18, 19]. It’s worth noticing that, compared to the work [19], the tail-estimates
technique we use here is somehow different. Firstly, the tail of solutions which we
want to estimate is now in H1(Rn) (not in L2(Rn) as in [19]), thus computations
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are more complicated and we have to adapt some new estimates of solutions. The
idea originally comes from [4] wherein the authors showed the existence of uniform
attractors for reaction diffusion equations on unbounded domains. Secondly, in
[19], the authors get the asymptotic compactness of solutions in L2(Ω) directly by
using H1(Ω) ↩→ L2(Ω) compactly (Ω is bounded); but, in our case, since we want
to establish the asymptotic compactness of solutions in H1(Ω), we cannot use such
an embedding because the solutions belong only to H1 and has no higher regular-
ity. This is solved in this paper by using the idea in [4, 17, 18], which uses the
eigenfunctions of negative Laplacian to divide solutions into two parts, where one
part is bounded in an m−dimensional space while the other one tends to zero as
m → ∞. Combining the tail estimates and asymptotic compactness in bounded
domains, we imply that the random dynamical system is asymptotically compact
in H1(Rn) and thus obtain the existence of a random attractor in H1(Rn).

The rest of the paper is organized as follows: In the next section we give basic
concepts related to random attractors for random dynamical systems, and then
recall some known results for the random dynamical system which generated by
(1.1). The last section is devoted the proof of the main result, the regularity of
random attractor for (1.1).

2. Preliminaries

2.1. Random attractors. In this section, we recall some basic notions on ran-
dom attractors for random dynamical systems which are applicable to differential
equations with both non-autonomous deterministic and random terms. For further
details, readers are referred to [19].

Let Ω1 be a non-empty set, (Ω2,F2, P ) be a probability space, and (X, ∥ · ∥) be
a Banach space with Borel σ−algebra B(X).

Suppose that there are two groups {θ1(t)}t∈R and {θ2(t)}t∈R acting on Ω1 and
Ω2, respectively. More precisely, θ1 : R × Ω1 → Ω1 is a mapping such that θ1(0, ·)
is the identity on Ω1, θ1(s + t, ·) = θ1(t, ·) ◦ θ1(s, ·) for all t, s ∈ R. Similarly,
θ2 : R×Ω2 → Ω2 is a (B(R)×F2,F2)-measurable mapping such that θ2(0, ·) is the
identity on Ω2, θ2(s + t, ·) = θ2(t, ·) ◦ θ2(s, ·) for all t, s ∈ R and θ2(t, ·)P = P for
all t ∈ R. We will write θ1(t, ·) and θ2(t, ·) as θ1,t and θ2,t for short. In the sequel,
we will call both (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R) parametric dynamical
systems.

Definition 2.1. Let (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R) be parametric dy-
namical systems. A mapping Φ : R+ × Ω1 × Ω2 × X → X is called a contin-
uous random dynamical system (RDS for short) on X over (Ω1, {θ1,t}t∈R) and
(Ω2,F2, P, {θ2,t}t∈R) if for all ω1 ∈ Ω1, ω2 ∈ Ω2 and t, τ ∈ R+, the following condi-
tions are satisfied:

(i) Φ(·, ω1, ·, ·) : R+×Ω2×X → X is (B(R+)×F2×B(X),B(X))-measurable;
(ii) Φ(0, ω1, ω2, ·) is the identity on X;
(iii) Φ(t+ τ, ω1, ω2, ·) = Φ(t, θ1,τω1, θ2,τω2, ·) ◦ Φ(τ, ω1, ω2, ·);
(iv) Φ(t, ω1, ω2, ·) : X → X is continuous.

Hereafter, we always denote by D a collection of some families of non-empty
subsets of X which are parameterized by Ω1 × Ω2, that is,

D = {D(ω1, ω2) ⊂ X is bounded, ω1 ∈ Ω1, ω2 ∈ Ω2}.
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Definition 2.2. Let K = {K(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D. Then K is called
a D-pullback absorbing set for Φ if for all ω1 ∈ Ω1, ω2 ∈ Ω2 and for every B ∈ D,
there exists T = T (B,ω1, ω2) > 0 such that

Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)) ⊂ K(ω1, ω2) for all t ≥ T.

Definition 2.3. An RDS Φ is said to be D-pullback asymptotically compact in X
if for all ω1 ∈ Ω1 and ω2 ∈ Ω2, the sequence

{Φ(tn, θ1,−tnω1, θ2,−tnω2, xn)}∞n=1 has a convergent subsequence in X

provided tn → +∞, and xn ∈ B(θ1,−tnω1, θ2,−tnω2) with {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈
Ω2} ∈ D.

Definition 2.4. Let A = {A(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D. Then A is called a
D-pullback attractor for Φ if the following conditions hold:

(i) A is measurable with respect to the P -completion of F2 in Ω2 and A(ω1, ω2)
is compact for all ω1 ∈ Ω1 and ω2 ∈ Ω2.

(ii) A is invariant, that is, for every ω1 ∈ Ω1 and ω2 ∈ Ω2,

Φ(t, ω1, ω2,A(ω1, ω2)) = A(θ1,tω1, θ2,tω2), ∀t ≥ 0.

(iii) A attracts every member of D, that is, for every B = {B(ω1, ω2) : ω1 ∈
Ω1, ω2 ∈ Ω2} ∈ D and for every ω1 ∈ Ω1, ω2 ∈ Ω2,

lim
t→+∞

d(Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)),A(ω1, ω2)) = 0,

where d is the Hausdorff semi-distance in X,

d(A,B) = sup
x∈A

inf
y∈B

∥x− y∥X , ∀A,B ⊂ X.

Theorem 2.1. [19] Let Φ be a continuous RDS on X over (Ω1, {θ1,t}t∈R) and
(Ω2,F2, P, {θ2,t}t∈R). Then Φ has a D-pullback attractor A in D if Φ is D-pullback
asymptotically compact in X and Φ has D-pullback absorbing set K in D. The
D-pullback attractor A is unique and is given by, for each ω1 ∈ Ω2, ω2 ∈ Ω2,

A(ω1, ω2) =
∩
τ≥0

∪
t≥τ

Φ(t, θ1,−tω1, θ2,−tω2,K(θ1,−tω1, θ2,−tω2)).

The continuity of Φ in Theorem 2.1 is a crucial condition to prove the invariance
of the attractor. In some cases (as in the case of the present paper), this kind
of continuity is unknown. This difficulty can be solved by some weaker kinds of
continuity like norm-to-weak continuity (see [25]) or quasi-continuity (see [11]).
However, if we know about the existence of a random attractor in another space,
which satisfies an ”easy” condition, then all we have to check are the existence of an
absorbing set and the pullback asymptotic compactness of the RDS. The following
is an alternative version of [24, Theorem 2.8].

Theorem 2.2. Let X,Y be two Banach spaces satisfying that: if xn → x0 in X
and xn → y0 in Y , then x0 = y0. Let Φ be an RDS in X and an RDS in Y . Then
Φ has a unique pullback attractor AY in Y iff

(i) Φ has a pullback attractor AX in X;
(ii) Φ has a random absorbing set KY = {KY (ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} in

X ∩ Y ; and
(iii) Φ is pullback asymptotically compact in Y .
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Moreover, AY is defined as

AY (ω1, ω2) =
∩
τ≥0

∪
t≥τ

Φ(t, θ1,−tω1, θ2,−tω2,KY (θ1,−tω1, θ2,−tω2))
Y

.

Throughout this paper, we denote by ∥ · ∥ and | · |p the norms in L2(Rn) and
Lp(Rn) respectively. For a Banach space X, we will denote by ∥ · ∥X its norm. We
also denote by C an arbitrary constant, which can be different from line to line
(even in the same line).

2.2. Stochastic reaction-diffusion with additive noise on Rn. In this subsec-
tion, we show that problem (1.1) generates a RDS Φ and give some known results
for Φ. More details can be seen from [19].

Given τ ∈ R and t > τ , consider the following non-autonomous reaction-diffusion
equation defined on Rn,

du+ (−∆u+ λu+ f(x, u))dt = g(x, t)dt+ hdω, (2.1)

subject to initial data

u(x, τ) = uτ (x), x ∈ Rn.

Let

Ω = {ω ∈ C(R,R) : ω(0) = 0}.
Let F be the Borel σ-algebra induced by the compact-open topology of Ω, and

P be the corresponding Wiener measure on (Ω,F). Define a group {θt}t∈R acting
on (Ω,F , P ) by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.
The (Ω,F , P, {θt}t∈R) is a parametric dynamical system.
First, we transfer the stochastic equation into a corresponding non-autonomous

deterministic one. Given ω ∈ Ω, denote by

z(ω) = −λ
∫ 0

−∞
eλτω(τ)dτ. (2.2)

Then it is easy to check that the random variable z given by (2.2) is a stationary
solution of the one-dimensional Ornstein-Uhlenbeck equation:

dz(θtω) + λz(θtω) = dω. (2.3)

Note that the random variable |z(ω)| is tempered, that is lim
t→+∞

e−λt|z(θ−tω)| =
0, and z(ω) is P − a.e. continuous. Therefore, it follows from [3, Proposition 4.3.3]
that there exists a tempered function r(ω) > 0 such that

|z(ω)|2 + |z(ω)|p + |z(ω)|2p−2 ≤ r(ω), ∀ω ∈ Ω, (2.4)

where r(ω) satisfies, for P − a.e. ω ∈ Ω,

r(θtω) ≤ e
λ
2 |t|r(ω), t ∈ R. (2.5)

This implies that

p(θtω) = |z(θtω)|2 + |z(θtω)|p + |z(θtω)|2p−2 ≤ e
λ
2 |t|r(ω). (2.6)

We seek a solution to the following equation

vt −∆v + λv + f(x, v + hz(θtω)) = g(t, x) + z(θtω)∆h, (2.7)
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with inital data v(τ) = vτ = uτ − hz(ω), for t > τ, x ∈ Rn. Since (2.7) is a
deterministic equation, following the arguments of [13], one can show that under
assumptions (1.2)-(1.5), for each ω ∈ Ω, τ ∈ R and vτ ∈ L2(Rn), equation (2.7)
has a unique solution v(·, τ, ω, vτ ) ∈ C([τ,∞), L2(Rn))∩L2(τ, τ + T ;H1(Rn)) with
v(τ, τ, ω, vτ ) = vτ for every T > 0. Furthermore, for each t ≥ τ , v(t, τ, ω, vτ )
is (F ,B(L2(Rn)))-measurable in ω ∈ Ω and continuous in vτ with respect to the
norm of L2(Rn). Let u(t, τ, ω, uτ ) = v(t, τ, ω, vτ )+hz(θtω) with uτ = vτ+hz(ω). It
follows from (2.3) and (2.7) that u is a solution of problem (1.1) which is continuous
in both t ≥ τ and uτ ∈ L2(Rn) and is (F ,B(L2(Rn)))-measurable in ω ∈ Ω. We
now define an RDS Φ : R+ × R× Ω× L2(Rn) → L2(Rn) as follows

Φ(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ) = v(t+ τ, τ, θ−τω, vτ ) + hz(θtω), (2.8)

where vτ = uτ − hz(ω). This implies that

Φ(t, τ − t, θ−tω, uτ−t) = u(τ, τ − t, θ−τω, uτ−t)

= v(τ, τ − t, θ−τω, vτ−t) + hz(ω)
(2.9)

where vτ−t = uτ−t − hz(θ−tω).
Suppose D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} is a family of bounded non-empty subsets

of L2(Rn) such that, for all τ ∈ R and ω ∈ Ω,

lim
s→−∞

eλs∥D(τ + s, θsω)∥2 = 0, (2.10)

where λ is the constant in equation (1.1) and ∥B∥ = sup{∥x∥ : x ∈ B} for a bounded
subset B of L2(Rn). Denote by Dλ the collection of all families of bounded empty
non-empty subsets of L2(R2) which satisfies (2.10), that is,

Dλ = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satisfies (2.10)}.

The following result is obtained in [19].

Theorem 2.3. Under hypothesis (F)− (G)− (H), the RDS Φ generated by (1.1)
possesses a unique random attractor A2 = {A2(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ Dλ which is
compact in L2(Rn) and attracts all members of Dλ in the topology of L2(Rn).

3. Regularity of random attractors

In this section, we prove that the random attractor A2 in Theorem 2.3 is actually
compact in H1(Rn) and attracts every member of Dλ in the topology of H1(Rn).
The strategy is verify three conditions in Theorem 2.2. Condition (i) follows from
Theorem 2.3, while the condition (ii) is obtained from Lemma 3.1. We will prove
(iii) by adapting the method so-called ”tail estimates”. Roughly speaking, the idea
is to divide

Rn = {BK = {x ∈ Rn : |x| ≤ K}} ∪ {Rn\BK}

and then prove that:

• Φ is asymptotically compact in H1(BK); and
• Φ can be as small as possible in H1(Rn\BK).

These two points directly imply the asymptotic compactness of Φ in H1(Rn).
The following estimates are borrowed from [19]
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Lemma 3.1. Suppose (1.2)-(1.7) hold. Then for every τ ∈ R, ω ∈ Ω and D =
{D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ Dλ, there exists T = T (τ, ω,D) > 0 such that for all
t ≥ T , the solution v of (2.7) satisfies

∥v(τ, τ − t, θ−τω, vτ−t)∥2H1(Rn) ≤ R(τ, ω), (3.1)

and∫ τ

τ−t

e−λ(τ−s)
(
∥v(s, τ − t, θ−τω, vτ−t)∥2H1(Rn) + |u(s, τ − t, θ−τω, uτ−t)|pp

)
ds ≤ R(τ, ω),

(3.2)
where uτ−t ∈ D(τ − t, θ−tω), vτ−t = uτ−t − hz(θ−tω) and

R(τ, ω) = C

(
1 + r(ω) + e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds

)
,

with constant C is independent of t, τ, ω and D.

Proof. By [19, Lemma 4.1], we have

∥v(τ, τ−t, θ−τω, vτ−t)∥2H1(Rn) ≤ C

(
1 + e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds+

∫ 0

−∞
eλs|z(θsω)|pds

)
(3.3)

Using (2.6), we get∫ 0

−∞
eλs|z(θsω)|pds ≤

∫ 0

−∞
eλse−

λ
2 sr(ω)ds = r(ω)

∫ 0

−∞
e

λ
2 sds ≤ 2

λ
r(ω). (3.4)

Combining (3.3) and (3.4) we obtain (3.1). The proof of (3.2) is very similar, so
we omit it. �

Lemma 3.2. For any τ ∈ R, any D = {D(τ, ω)} ∈ Dλ, we can choose T > 0 such
that ∫ τ

τ−1

|v(s, τ − t, θ−τω, vτ−t)|ppds ≤ CR(τ, ω)

for all t ≥ T and all vτ−t + hz(θ−tω) = uτ−t ∈ D(τ − t, θ−tω), where R(τ, ω) is in
Lemma 3.1.

Proof. Using Lemma 3.1, we have

e−λ

∫ τ

τ−1

|u(s, τ − t, θ−τω, uτ−t)|ppds

≤
∫ τ

τ−1

e−λ(τ−s)|u(s, τ − t, θ−τω, uτ−t)|ppds

≤
∫ τ

τ−t

e−λ(τ−s)|u(s, τ − t, θ−τω, uτ−t)|ppds

≤ R(τ, ω),

(3.5)

thus ∫ τ

τ−1

|u(s, τ − t, θ−τω, uτ−t)|ppds ≤ eλR(τ, ω). (3.6)
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Since u(s, τ − t, θ−τω, vτ−t) = v(s, τ − t, θ−τω, vτ−t)+hz(θs−τω), it follows from
(3.6) that ∫ τ

τ−1

|v(s, τ − t, θ−τω, vτ−t)|pp

≤
∫ τ

τ−1

2p(|u(s, τ − t, θ−τω, uτ−t)|pp + |z(θs−τω)|p|h|pp)ds

≤ 2peλR(τ, ω) + 2p|h|pp
∫ 0

−1

|z(θsω)|pds

≤ 2peλR(τ, ω) + 2p|h|ppeλ
∫ 0

−∞
eλs|z(θsω)|pds

≤ CR(τ, ω).

(3.7)

�

Lemma 3.3. For any τ ∈ R, any D = {D(τ, ω)} ∈ Dλ, there exists T ≥ 1 such
that

|v(τ, τ − t, θ−τω, vτ−t)|pp ≤ CR(τ, ω), (3.8)

for all t ≥ T , ω ∈ Ω and all vτ−t + hz(θ−tω) = uτ−t ∈ D(τ − t, θ−tω).

Proof. We multiply (2.7) by v|v|p−2 then integrate over Rn to obtain

1

p

d

dt
|v|pp −

∫
Rn

∆v|v|p−2vdx+ λ|v|pp +
∫
Rn

f(x, v + hz(θtω))|v|p−2vdx

=

∫
Rn

(g(t) + z(θtω)∆h)|v|p−2vdx.

(3.9)

Integrating by parts the second term on the left hand side of (2.3) yields

−
∫
Rn

∆v|v|p−2vdx = (p− 1)

∫
Rn

|v|p−2|∇v|2dx ≥ 0. (3.10)

Using (1.3) and Young’s inequality, we have

f(x, v + hz(θtω))v ≥ α1

2
|u|p − |ψ1| −

1

2
|ψ2|2 − C(|hz(θtω)|2 + |hz(θtω)|p). (3.11)

Hence, by Holder’s and Young’s inequalities∫
Rn

f(x, u)v|v|p−2dx

≥
∫
Rn

(
α1

2p
|v|p − |ψ1| −

1

2
|ψ2|2 − C(|hz(θtω)|2 + |hz(θtω)|p)

)
|v|p−2dx

≥ α1

2p
|v|2p−2

2p−2 −
λ

4p
|v|pp − C|ψ1|p/2p/2 −

λ

4p
|v|pp − C|ψ2|pp

− λ

2p
|v|pp − C|z(θtω)|p|h|pp −

α2

2p+1
|v|2p−2

2p−2 − C|z(θtω)|2p−2|h|2p−2
2p−2

≥ α1

2p+1
|v|2p−2

2p−2 −
λ

p
|v|pp − C(1 + |z(θtω)|p + |z(θtω)|2p−2).

(3.12)

On the other hand, the right hand side of (3.9) is bounded by

∥g(t)∥|v|p−1
2p−2+ |z(θtω)|∥∆h∥|v|p−1

2p−2 ≤ α1

2p+2
|v|2p−2

2p−2+C(∥g(t)∥2+ |z(θtω)|2). (3.13)
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Combining (3.9)-(3.13) gives us

d

dt
|v|pp + λ|v|pp +

pα1

2p+2
|v|2p−2

2p−2

≤ C(1 + ∥g(t)∥2 + |z(θtω)|2 + |z(θtω)|p + |z(θtω)|2p−2)

≤ C(1 + ∥g(t)∥2 + |z(θtω)|2p−2).

(3.14)

We integrate (3.14) from s to τ , where s ∈ (τ − 1, τ), then replace ω by θ−τω to
get, in particular

|v(τ, τ − t, θ−τω, vτ−t)|pp

≤ |v(s, τ − t, θ−τω, vτ−t)|pp + C(τ − s+

∫ τ

s

∥g(r)∥2dr +
∫ τ

s

|z(θr−τω)|2p−2dr)

≤ |v(s, τ − t, θ−τω, vτ−t)|pp + C(1 +

∫ τ

τ−1

∥g(r)∥2dr +
∫ τ

τ−1

|z(θr−τω)
2p−2dr)

(3.15)
Integrating (3.15) on (τ − 1, τ) with respect to s and using Lemma 3.2, we get

|v(τ, τ − t, θ−τω, vτ−t)|pp

≤
∫ τ

τ−1

|v(s, τ − t, θ−τω, vτ−t)|ppds+ C(1 +

∫ τ

τ−1

∥g(r)∥2dr +
∫ 0

−1

|z(θrω)|2p−2dr)

≤ CR(τ, ω) + C(1 + eλe−λτ

∫ τ

−∞
eλs∥g(s)∥2ds+ eλ

∫ 0

−∞
eλs|z(θsω)|2p−2ds)

≤ CR(τ, ω) + C

∫ 0

−∞
eλse−

λ
2 sr(ω)ds

≤ CR(τ, ω) +
2C

λ
r(ω)

≤ CR(τ, ω).

(3.16)
This completes the proof. �

Proposition 3.4. Assume that hypothesis (F)− (G)− (H) hold. Then the random
dynamical system Φ has a random absorbing set {B0(τ, ω)} in Lp(Rn) ∩H1(Rn).

Proof. By Lemmas 3.1 and 3.3, with the help of (2.4) and (2.9), we obtain

∥Φ(t, τ − t, θ−tω, uτ−t)∥2H1(Rn)

= ∥v(τ, τ − t, θ−τω, vτ−t) + hz(ω)∥2H1(Rn)

≤ 2
(
∥v(τ, τ − t, θ−τω, vτ−t)∥2H1(Rn) + |z(ω)|2∥h∥2H1(Rn)

)
≤ C

(
1 + r(ω) + e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds

)
.

(3.17)

Similarly,

|Φ(t, τ − t, θ−tω, uτ−t)|pp
≤ 2p

(
|v(τ, τ − t, θ−τω, vτ−t)|pp + |z(ω)|p|h|pp

)
≤ C

(
1 + r(ω) + e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds

)
.

(3.18)
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Denote by, for τ ∈ R, ω ∈ Ω,

B0(τ, ω) =
{
u ∈ Lp(Rn) ∩H1(Rn) : |u|pp + ∥u∥2H1(Rn) ≤ CR(τ, ω)

}
. (3.19)

From (3.17) and (3.18) we have, for any D = {D(τ, ω)} ∈ Dλ, there exists T > 0
such that

Φ(t, τ − t, θ−tω, uτ−t) ∈ B0(τ, ω),∀t ≥ T, (3.20)

for all uτ−t ∈ D(τ − t, θ−tω). The proof is complete. �

Lemma 3.5. Let τ ∈ R, ω ∈ Ω and D = {D(τ, ω)} ∈ Dλ. Then, for any ϵ > 0,
there exist T = T (τ, ω,D, ϵ) > 0 and K = K(τ, ω,D, ϵ) > 0 such that∫

|x|≥K

|v(τ, τ − t, θ−τω, vτ−t)|2dx ≤ ϵ, (3.21)

and∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥K

(|∇v(s, τ−t, θ−τω, vτ−t)|2+ |u(s, τ−t, θ−τω, uτ−t)|p)dxds ≤ ϵ,

(3.22)
for all t ≥ T , all uτ−t ∈ D(τ − t, θ−tω) and vτ−t = uτ−t − hz(θ−tω).

Proof. The proof is very similar to that of [19, Lemma 4.4]. Here, we prove an
addition estimate (3.22). We define a smooth function ρ : R+ → [0, 1] such that
ρ|[0,1] = 0 and ρ|[2,+∞) = 1. Notice that ρ′ is bounded in R+ and ρ′(s) = 0 for all
s ∈ [0, 1]∪ [2,+∞). In the sequel, for the sake of brevity, we will write ρ(·) instead
of ρ

(
|x|2
k2

)
. Multiplying (2.7) by ρ(·)v then integrating on Rn, we get

1

2

d

dt

∫
Rn

ρ(·)|v|2dx−
∫
Rn

ρ(·)v∆vdx

+ λ

∫
Rn

ρ(·)|v|2dx+

∫
Rn

ρ(·)vf(x, v + z(θtω))dx

=

∫
Rn

ρ(·)v(g(t, x) + z(θtω)∆h)vdx.

(3.23)

Integrating by parts, we have

−
∫
Rn

ρ(·)v∆vdx =

∫
Rn

∇u · ∇(ρ(·)v)dx

=

∫
Rn

ρ(·)|∇v|2dx+

∫
Rn

vρ′
(
|x|2

k2

)
2x

k2
· ∇vdx.

(3.24)

Since ρ′(s) = 0 for s ∈ [0, 1] ∪ [2,+∞),∣∣∣∣∫
Rn

vρ′
(
|x|2

k2

)
2x

k2
· ∇vdx

∣∣∣∣ ≤ ∫
k≤|x|≤

√
2k

∣∣∣∣vρ′( |x|2

k2

)∣∣∣∣ 2|x|k2
|∇v|dx

≤ C

k

∫
k≤|x|≤

√
2k

|v| |∇v|dx

≤ C

k

∫
Rn

|v| |∇v|dx

≤ C

k
∥v∥2H1(Rn).

(3.25)
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For the nonlinear term, by (1.2)-(1.5), we have∫
Rn

ρ(·)vf(x, u)dx

=

∫
Rn

ρ(·)f(x, u)udx−
∫
Rn

ρ(·)f(x, u)z(θtω)hdx

≥ α1

∫
Rn

ρ(·)|u|pdx−
∫
Rn

ρ(·)ψ1(x)dx

−α2

∫
Rn

ρ(·)|u|p−1|z(θtω)h|dx−
∫
Rn

ρ(·)|ψ2||z(θtω)h|dx

≥ α1

2

∫
Rn

ρ(·)|u|pdx−
∫
Rn

ρ(·)ψ1(x)dx

−
∫
Rn

ρ(·)|ψ2|2dx− c2

∫
Rn

ρ(·)(|z(θtω)h|p + |z(θtω)h|2)dx,

(3.26)

where we have used Young’s inequality at the last step. Using Cauchy’s inequality,∫
Rn

ρ(·)v(g(t, x) + z(θtω)h)dx

≤ 1

λ

∫
Rn

ρ(·)|g(t, x)|2dx+
1

λ
|z(θtω)|2

∫
Rn

ρ(·)|∆h|2dx+
λ

2

∫
Rn

ρ(·)|v|2dx.
(3.27)

From (3.23)-(3.27), we obtain

d

dt

∫
Rn

ρ(·)|v|2dx+ λ

∫
Rn

ρ(·)|v|2 + α1

∫
Rn

ρ(·)|u|pdx+ 2

∫
Rn

ρ(·)|∇v|2dx

≤ 2c1
k

∥v∥2H1(Rn) + 2

∫
Rn

ρ(·)(|ψ1|+ |ψ2|2)dx+
2

λ

∫
Rn

ρ(·)|g(t, x)|2dx

+ c3

∫
Rn

ρ(·)(|hz(θtω)|2 + |hz(θtω)|p + |z(θtω)∆h|2)dx.

(3.28)

Since ψ1 ∈ L1(Rn), ψ2 ∈ L2(Rn), h ∈ H2(Rn) ∩ Lp(Rn), we can choose k large
enough such that

2

∫
Rn

ρ(·)(|ψ1|+ |ψ2|2)dx ≤ 2

∫
|x|≥k

(|ψ1|+ |ψ2|2)dx ≤ ϵ0,

and

c3

∫
Rn

ρ(·)(|hz(θtω)|2 + |hz(θtω)|p + |z(θtω)∆h|2)dx

≤ c3

(
|z(θtω)|2

∫
Rn

ρ(·)(|h|2 + |∆h|2)dx+ |z(θtω)|p
∫
Rn

ρ(·)|h|pdx
)

≤ c3

(
|z(θtω)|2

∫
|x|≥k

(|h|2 + |∆h|2)dx+ |z(θtω)|p
∫
|x|≥k

|h|pdx

)
≤ c3ϵ0(|z(θtω)|2 + |z(θtω)|p)
≤ c4ϵ0(1 + |z(θtω)|p).
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Using these estimates in (3.28) and noticing that
c1
k

≤ ϵ0 for large enough k, we

get

d

dt

∫
Rn

ρ(·)|v|2dx+ λ

∫
Rn

ρ(·)|v|2dx+ c5

∫
Rn

ρ(·)(|u|p + |∇v|2)dx

≤ ϵ0∥v∥2H1(Rn) +
2

λ

∫
Rn

ρ(·)|g(t, x)|2dx+ c6ϵ0(1 + |z(θtω)|p).
(3.29)

Multiplying (3.29) by eλt then integrating from τ − t to τ , we obtain∫
Rn

ρ(·)|v(τ, τ − t, ω, vτ−t)|2dx

+ c5

∫ τ

τ−t

e−λ(τ−s)

∫
Rn

ρ(·)(|u(s, τ − t, ω, uτ−t)|p + |∇v(s, τ − t, ω, vτ−t)|2)dxds

≤ e−λt∥vτ−t∥2 + ϵ0

∫ τ

τ−t

e−λ(τ−s)∥v(s, τ − t, ω, vτ−t)∥2H1(Rn)ds

+
2

λ

∫ τ

τ−t

e−λ(τ−s)

∫
Rn

ρ(·)|g(s, x)|2dxds

+ c6ϵ0

∫ τ

τ−t

e−λ(τ−s)(1 + |z(θsω)|p)ds.

(3.30)
In (3.30), we replace ω by θ−τω and use the fact ρ|[0,1] = 0 and ρ ≥ 0 to obtain∫
|x|≥

√
2k

|v(τ, τ − t, θ−τω, vτ−t)|2dx

+ c5

∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥

√
2k

(|u(s, τ − t, θ−τω, uτ−t)|p + |∇v(s, τ − t, θ−τω, vτ−t)|2)dxds

≤ e−λt∥vτ−t∥2 + ϵ0

∫ τ

τ−t

e−λ(τ−s)∥v(s, τ − t, θ−τω, vτ−t)∥2H1(Rn)ds

+
2

λ

∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥k

|g(s, x)|2dxds

+ c6ϵ0

∫ τ

τ−t

e−λ(τ−s)(1 + |z(θs−τω)|p)ds.

(3.31)
We claim that all terms on the right hand side of (3.31) can be as small as

possible. Firstly, since vτ−t = uτ−t − hz(θ−tω), we have

e−λt∥vτ−t∥2 ≤ 2e−λt∥uτ−t∥2 + 2∥h∥2e−λt|z(θ−tω)|2 → 0 (3.32)

as t → +∞ because uτ−t ∈ D(τ − t, θ−tω) and |z(ω)| is tempered. Secondly, by
Proposition 3.1, we find that

ϵ0

∫ τ

τ−t

e−λ(τ−s)∥v(s, τ − t, θ−τω, vτ−t)∥2H1(Rn)ds ≤ ϵ0R(τ, ω).

Thirdly, from (1.7),

λ

2

∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥k

|g(s, x)|2dxds ≤ e−λτ

∫ τ

−∞
eλs
∫
|x|≥k

|g(s, x)|2dxds→ 0

(3.33)
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as k → +∞. Finally,

c6ϵ0

∫ τ

τ−t

e−λ(τ−s)(1 + |z(θs−τω)|p)ds

≤ c6ϵ0e
−λτ

∫ τ

−∞
eλsds+ c6ϵ0

∫ 0

−∞
eλs|z(θsω)|pds

≤ ϵ0
c6
λ

+ c6ϵ0

∫ 0

−∞
e

λ
2 sr(ω)ds

≤ ϵ0

(
c6
λ

+
2c6r(ω)

λ

)
(3.34)

From (3.31)-(3.34), we can get our desired estimates (3.21) and (3.22) by choosing
an appropriate small ϵ0. �

We are now going to show that it’s enough to consider solutions which start from
an absorbing set to prove the asymptotic compactness of the RDS.

Lemma 3.6. Assume that {B0(τ, ω)} ∈ Dλ is an absorbing set for Φ. Assume
also that for any τ ∈ R, ω ∈ Ω, tn → +∞ and xn ∈ B0(τ − tn, θ−tnω), the sequence
{Φ(tn, τ − tn, θ−tnω, xn)} is precompact. Then Φ is asymptotically compact.

Proof. Take an arbitrary random set {D(τ, ω)} ∈ Dλ, a sequence tn → +∞ and
yn ∈ D(τ − tn, θ−tnω). We have to prove that {Φ(tn, τ − tn, θ−tnω, yn)} is precom-
pact.

Since {B0(τ, ω)} is a random absorbing of Φ, then there exists T > 0 such that,
for all ω ∈ Ω,

Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊂ B0(τ, ω) for all t ≥ T. (3.35)

Because tn → +∞, we can choose n1 ≥ 1 such that tn1 − 1 ≥ T . In (3.35),
replace (t, τ, ω) by (tn1 − 1, τ − 1, θ−1ω), we find that

x1 := Φ(tn1 − 1, τ − tn1 , θ−tn1
ω, yn1)

∈ Φ(tn1 − 1, τ − tn1 , θ−tn1
ω,D(τ − tn1 , θ−tn1

ω)) ⊂ B0(τ − 1, θ−1ω).
(3.36)

Similarly, we can choose a subsequence {nk} of {n} such that n1 < n2 < . . . <
nk → +∞ such that

xk := Φ(tnk
− k, τ − tnk

, θ−tnk
ω, ynk

) ∈ B0(τ − k, θ−kω). (3.37)

Hence, by assumption of Φ, we conclude that

the sequence {Φ(k, τ − k, θ−kω, xk)} is precomact. (3.38)

On the other hand, by (3.37)

Φ(k, τ − k, θ−kω, xk) = Φ(k, τ − k, θ−kω,Φ(tnk
− k, τ − tnk

, θ−tnk
ω, ynk

))

= Φ(tnk
, τ − tnk

, θ−tnk
ω, ynk

), ∀k ≥ 1.
(3.39)

Combining (3.38), (3.39) we obtain that the sequence {Φ(tnk
, τ−tnk

, θ−tnk
ω, ynk

)}
is precompact, thus {Φ(tn, τ − tn, θtnω, yn)} is precompact. This completes the
proof. �

Making use of Lemma 3.6, from now on, we consider initial uτ−t ∈ B0(τ−t, θ−tω)
instead of uτ−t ∈ D(τ − t, θ−tω) for some {D(τ, ω)} ∈ Dλ. The following estimates
of f(u) and vt very useful to obtain the ”tail estimate” of solutions in H1.
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Lemma 3.7. Let τ ∈ R. Then, there exists T > 0 such that, for any t ≥ T∫ τ

τ−t

e−λ(τ−s)∥f(x, u(s, τ − t, θ−τω, uτ−t))∥2ds ≤ CR(τ, ω), (3.40)

for all uτ−t ∈ B0(τ − t, θ−tω).

Proof. Multiply (3.14) by eλt then integrate from τ − t to τ , we get

eλτ |v(τ, τ − t, ω, vτ−t)|pp + C

∫ τ

τ−t

eλs|v(s, τ − t, ω, vτ−t)|2p−2
2p−2ds

≤ eλ(τ−t)|vτ−t|pp + C

∫ τ

τ−t

eλs
(
1 + ∥g(s)∥2 + |z(θsω)|2p−2

)
ds

≤ eλ(τ−t)|vτ−t|pp + C

(
eλτ +

∫ τ

−∞
eλs∥g(s)∥2ds+

∫ τ

τ−t

eλs|z(θsω)|2p−2ds

)
.

(3.41)
Replacing ω by θ−τω, we find that

C

∫ τ

τ−t

e−λ(τ−s)|v(s, τ − t, θ−τω, vτ−t)|2p−2
2p−2ds

≤ e−λt|vτ−t|pp + C

(
1 + e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds+

∫ τ

τ−t

eλ(s−τ)|z(θs−τω)|2p−2ds

)
≤ e−λt|vτ−t|pp + C

(
1 + e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds+

∫ 0

−∞
eλs|z(θsω)|2p−2ds

)
≤ Ce−λt

(
|uτ−t|pp + |h|pp|z(θ−tω)|p

)
+ C

(
1 + r(ω) + e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds

)
.

(3.42)
Since uτ−t ∈ B0(τ − t, θ−tω) and |z(ω)| is tempered, when t→ +∞,

Ce−λt
(
|uτ−t|pp + |h|pp|z(ω)|p

)
= Ce−λt|uτ−t|pp + Ce−λt|z(ω)|p → 0. (3.43)

Hence, we can get from (3.42) a sufficient large T > 0 such that, for all t ≥ T ,∫ τ

τ−t

e−λ(τ−s)|v(s, τ − t, θ−τω, vτ−t)|2p−2
2p−2ds ≤ CR(τ, ω). (3.44)

We use (1.3) and (3.44) to deduce that∫ τ

τ−t

e−λ(τ−s)∥f(x, u(s, τ − t, θ−τω, uτ−t))∥2dxds

≤ C

∫ τ

τ−t

e−λ(τ−s)
(
|u(s, τ − t, θ−τω, uτ−t)|2p−2

2p−2 + ∥ψ2∥2
)
ds

≤ C

∫ τ

τ−t

e−λ(τ−s)
(
|v(s, τ − t, θ−τω, vτ−t)|2p−2

2p−2 + |h|2p−2
2p−2|z(θs−τω)|2p−2 + ∥ψ2∥2

)
ds

≤ C

∫ τ

τ−t

e−λ(τ−s)|v(s, τ − t, θ−τω, vτ−t)|2p−2
2p−2ds

+C|h|2p−2
2p−2

∫ 0

−t

eλs|z(θsω)|2p−2ds+
C∥ψ2∥2

λ

≤ CR(τ, ω).

(3.45)
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The proof is complete. �

Lemma 3.8. For any fixed τ ∈ R, there exists T > 0 satisfying∫ τ

τ−t

e−λ(τ−s)∥vt(s, τ − t, θ−τω, vτ−t)∥2ds ≤ CR(τ, ω), (3.46)

for all t ≥ T, vτ−t + hz(θ−tω) = uτ−t ∈ B0(τ − t, θ−tω).

Proof. We multiply equation (2.7) by vt then integrate over Rn to get

∥vt∥2 +
1

2

d

dt
∥∇v∥2 +

∫
R
vtf(x, v + hz(θtω))dx = (g(t, x) + z(θtω)∆h, vt). (3.47)

The Cauchy inequality gives us∣∣∣∣∫
Rn

vtf(x, u)dx

∣∣∣∣ ≤ 1

4
∥vt∥2 + ∥f(x, u)∥2, (3.48)

(g(t) + z(θtω)∆h, vt) ≤
1

4
∥vt∥2 + 2∥g(t)∥2 + 2|z(θtω)|2∥∆h∥2. (3.49)

From these above estimates, we obtain

d

dt
∥∇v∥2 + ∥vt∥2 ≤ 2∥f(x, u)∥2 + 4∥g(t)∥2 + 4|z(θtω)|2∥∆h∥2. (3.50)

Multiplying (3.50) by eλt then integrating from τ − t to τ and replacing ω by
θ−τω, we find that

∥∇v(τ, τ − t, θ−τω, vτ−t)∥2 +
∫ τ

τ−t

e−λ(τ−s)∥vt(s, τ − t, θ−τω, vτ−t)∥2ds

≤ e−λt∥∇vτ−t∥2

+2

∫ τ

τ−t

e−λ(τ−s)∥f(x, u(s, τ − t, θ−τω, uτ−t))∥2ds

+4e−λτ

∫ τ

τ−t

eλs∥g(s)∥2ds+ 4∥∆h∥2
∫ τ

τ−t

eλ(s−τ)|z(θs−τω)|2ds

≤ 2e−λt
(
∥∇uτ−t∥2 + ∥∇h∥2|z(θ−tω)|2

)
+2

∫ τ

τ−t

e−λ(τ−s)∥f(x, u(s, τ − t, θ−τω, uτ−t))∥2ds

+4e−λτ

∫ τ

−∞
eλs∥g(s)∥2ds+ 4∥∆h∥2

∫ 0

−∞
eλs|z(θsω)|2ds

≤ CR(τ, ω)

(3.51)

where we have employed Lemma 3.7, uτ−t ∈ B0(τ − tθ−tω) and the fact that |z(ω)|
is tempered. Thus, we can obtain (3.46) and complete the proof. �

We are now ready to prove the tail estimates of solutions in H1(Rn).

Proposition 3.9. For any fixed τ ∈ R and any ϵ > 0. There exists T > 0 and
K > 0 such that ∫

|x|≥K

|∇v(τ, τ − t, θ−τω, vτ−t)|2dx ≤ ϵ, (3.52)

for all t ≥ T and all vτ−t + hz(θ−tω) = uτ−t ∈ B0(τ − t, θ−tω).
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Proof. Multiplying (2.7) by −ρ(·)∆v, where ρ is the same as Lemma 3.5, then
integrating by parts, we get

1

2

d

dt

∫
Rn

ρ(·)|∇v|2dx+ λ

∫
Rn

ρ(·)|∇v|2dx+

∫
Rn

ρ(·)|∆v|2dx

=
−2

k2

∫
Rn

x∇vvtρ′(·)dx− 2λ

k2

∫
Rn

x∇vvρ′(·)dx

−
∫
Rn

∇u∂f
∂x

(x, u)ρ(·)dx−
∫
Rn

|∇u|2 ∂f
∂u

(x, u)ρ(·)dx

− 2

k2

∫
Rn

x∇uf(x, u)ρ′(·)dx+

∫
Rn

f(x, u)z(θtω)∆hρ(·)dx

−
∫
Rn

g(t)∆vρ(·)dx−
∫
Rn

z(θtω)∆h∆vρ(·)dx.

(3.53)

Notice that ρ′(·) ≤ C for k ≤ |x| ≤ k
√
2 and ρ′(·) = 0 for |x| < k or x > k

√
2.

Thus, we have ∣∣∣∣ 2k2
∫
Rn

x∇vvtρ′(·)dx
∣∣∣∣ ≤ C

k2

∫
k≤|x|≤k

√
2

|x||∇v||vt|dx

≤ C

k

∫
Rn

|∇v||vt|dx

≤ C

k

(
∥∇v∥2 + ∥vt∥2

)
.

(3.54)

Similarly, ∣∣∣∣2λk2
∫
Rn

x∇vvρ′(·)dx
∣∣∣∣ ≤ C

k

(
∥∇v∥2 + ∥v∥2

)
(3.55)

and∣∣∣∣ 2k2
∫
Rn

x∇uf(x, u)ρ′(·)dx
∣∣∣∣ ≤ C

k

(
∥∇u∥2 +

∫
Rn

|f(x, u)|2dx
)

≤ C

k

(
∥∇v∥2 + |z(θtω)|2∥∇h∥2 + ∥f(x, u)∥2

)
≤ C

k

(
∥∇v∥2 + |z(θtω)|2 + ∥f(x, u)∥2

)
.

(3.56)

Using assumption (1.5) and Cauchy’s inequality,∣∣∣∣∫
Rn

∇u∂f
∂x

(x, u)ρ(·)dx
∣∣∣∣ ≤ ∫

Rn

|∇u||ψ3|ρ(·)dx

≤
∫
Rn

ρ(·)|∇u|2dx+

∫
Rn

ρ(·)|ψ3|2dx

≤ 2

∫
Rn

ρ(·)(|∇v|2 + |z(θtω)|2|∇h|2)dx+

∫
Rn

ρ(·)|ψ3|2dx

≤ 2

∫
Rn

ρ(·)|∇v|2 + 2|z(θtω)|2
∫
Rn

ρ(·)|∇h|2dx+

∫
Rn

ρ(·)|ψ3|2dx.

(3.57)
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By (1.4), we find that

−
∫
Rn

|∇u|2 ∂f
∂u

(x, u)ρ(·)dx ≤ ℓ

∫
Rn

ρ(·)|∇u|2dx

≤ 2ℓ

∫
Rn

ρ(·)|∇v|2 + 2ℓ|z(θtω)|2
∫
Rn

ρ(·)|∇h|2dx.

(3.58)
Applying condition (1.3) and Young’s inequality, we obtain∫

Rn

f(x, u)z(θtω)∆hρ(·)dx

≤
∫
Rn

|f(x, u)||z(θtω)∆h|ρ(·)dx

≤ α2

∫
Rn

ρ(·)|u|p−1|z(θtω)∆h|dx+

∫
Rn

ρ(·)|ψ2||z(θtω)∆h|dx

≤ C

∫
Rn

ρ(·)|u|pdx+ C

∫
Rn

ρ(·)|z(θtω)∆h|pdx

+
1

2

∫
Rn

ρ(·)|ψ2|2dx+
1

2

∫
Rn

ρ(·)|z(θtω)∆h|2dx.

(3.59)

By Cauchy’s inequality, we get

−
∫
Rn

g∆vρ(·)dx ≤
∫
Rn

ρ(·)|g|2dx+
1

4

∫
Rn

ρ(·)|∆v|2dx (3.60)

and

−
∫
Rn

z(θtω)∆h∆vρ(·)dx ≤
∫
Rn

ρ(·)|z(θtω)∆h|2dx+
1

4

∫
Rn

ρ(·)|∆v|2dx. (3.61)

From (3.53)-(3.61), we obtain

d

dt

∫
Rn

ρ(·)|∇v|2dx+ λ

∫
Rn

ρ(·)|∇v|2dx

≤ C

k

(
∥v∥2H1(Rn) + ∥vt∥2 + |z(θtω)|2 + ∥f(x, u)∥2

)
+ C

∫
Rn

ρ(·)
(
|u|p + |∇v|2

)
dx+

∫
Rn

ρ(·)|g(t)|2dx

+ C|z(θtω)|2
∫
Rn

ρ(·)|∇h|2dx+ C|z(θtω)|p
∫
Rn

ρ(·)|∆h|pdx

+ C|z(θtω)|2
∫
Rn

ρ(·)|∆h|2dx+

∫
Rn

ρ(·)
(
|ψ2|2 + |ψ3|2

)
dx.

(3.62)

Since h ∈ H2(Rn) ∩W 2,p(Rn) and ψ2, ψ3 ∈ L2(Rn), we can choose K1 is large
enough to satisfy∫

Rn

ρ(·)
(
|∇h|2 + |∆h|2 + |∆h|p

)
dx ≤

∫
|x|≥k

(
|∇h|2 + |∆h|2 + |∆h|p

)
dx ≤ ϵ0,

(3.63)∫
Rn

ρ(·)(|ψ2|2 + |ψ3|2)dx ≤
∫
|x|≥k

(|ψ2|2 + |ψ3|2)ds ≤ ϵ0 and
C

k
≤ ϵ0 (3.64)

where ϵ0 =
ϵ

R(τ, ω)
, for all k ≥ K1.
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Inserting (3.63)-(3.64) into (3.62), we obtain, for k is large enough,

d

dt

∫
Rn

ρ(·)|∇v|2dx+ λ

∫
Rn

ρ(·)|∇v|2dx

≤ ϵ0

(
∥v∥2H1(Rn) + ∥vt∥2 + ∥f(x, u)∥2

)
+ C

∫
|x|≥k

(
|u|p + |∇v|2

)
dx+

∫
|x|≥k

|g(t)|2dx

+ Cϵ0(1 + |z(θtω)|p).

(3.65)

Multiplying (3.65) by eλt, integrating from τ − t to τ then replacing ω by θ−τω, we
obtain ∫

Rn

ρ(·)|∇v(τ, τ − t, θ−τω, vτ−t)|2dx ≤ e−λt

∫
Rn

ρ(·)|∇vτ−t|2dx

+ϵ0

∫ τ

τ−t

e−λ(τ−s)
(
∥v(s, τ − t, θ−τω, vτ−t)∥2H1(Rn) + ∥vt(s, τ − t, θ−τω, vτ−t)∥2

)
ds

+ϵ0

∫ τ

τ−t

e−λ(τ−s)∥f(x, u(s, τ − t, θ−τω, vτ−t))∥2ds

+C

∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥k

(
|u(s, τ − t, θ−τω, uτ−t)|p + |∇v(s, τ − t, θ−τω, vτ−t)|2

)
dxds

+

∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥k

|g(s, x)|2dxds

+Cϵ0

∫ τ

τ−t

e−λ(τ−s)(1 + |z(θs−τω)|p)ds.

(3.66)
We will estimate all terms on the right hand side of (3.66). Firstly,

e−λt

∫
Rn

ρ(·)|∇vτ−t|2dx ≤ e−λt∥vτ−t∥2H1(Rn)

≤ e−λt∥uτ−t − hz(θ−tω)∥2H1(Rn)

≤ 2e−λt(∥uτ−t∥2H1(Rn) + ∥h∥2H1(Rn)|z(θ−tω)|2)
≤ ϵ for all t ≥ T1

(3.67)

for some T1 > 0, since uτ−t ∈ B0(τ − t, θ−tω) and |z(ω)| is tempered. Secondly, by
Lemmas 3.1, 3.7 and 3.8, we can choose a large enough T2 > 0 such that, for all
t ≥ T2,

ϵ0

∫ τ

τ−t

e−λ(τ−s)
(
∥v(s, τ − t, θ−τω, vτ−t)∥2H1(Rn) + ∥vt(s, τ − t, θ−τω, vτ−t)∥2

)
ds

≤ ϵ0R(τ, ω) ≤ ϵ

(3.68)
and

ϵ0

∫ t

τ−t

e−λ(τ−s)∥f(x, u(s, τ − t, θ−τω, vτ−t))∥2ds ≤ ϵ0R(τ, ω) ≤ ϵ. (3.69)
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Thirdly, from Lemma 3.5, there are T3 > 0 and K2 > 0 satisfying

C

∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥k

(
|u(s, τ − t, θ−τω, uτ−t)|p + |∇v(s, τ − t, θ−τω, vτ−t)|2

)
dxds

≤ Cϵ

(3.70)
whenever t ≥ T3 and k ≥ K2. Fourthly, by assumption (G), we get K3 > 0 such
that, for all k ≥ K3,∫ τ

τ−t

e−λ(τ−s)

∫
|x|≥k

|g(s, x)|2dxds ≤
∫ τ

−∞
e−λ(τ−s)

∫
|x|≥k

|g(s, x)|2dxds ≤ ϵ.

(3.71)
Finally,

Cϵ0

∫ τ

τ−t

e−λ(τ−s) (1 + |z(θs−τω)|p) ds

≤ Cϵ0

∫ 0

−t

eλs (1 + |z(θsω)|p) ds

≤ Cϵ0

∫ 0

−t

(
eλs + eλse−

λ
2 sr(ω)

)
ds

≤ Cϵ0(1 + r(ω))

≤ Cϵ0R(τ, ω) ≤ Cϵ.

(3.72)

Now we set K = max{K1,K2,K3} and T = max{T1, T2, T3}, we obtain from
(3.66)-(3.72) that∫
|x|≥k

√
2

|∇v(τ, τ − t, θ−τω, vτ−t)|2dx ≤
∫
Rn

ρ(·)|∇v(τ, τ − t, θ−τω, vτ−t)|2dx ≤ Cϵ

(3.73)
for all t ≥ T , k ≥ K and vτ−t + hz(θ−tω) = uτ−t ∈ B0(τ − t, θ−tω). �

Now, we define a smooth function ψ = 1 − ρ, where ρ is the cut-off function in

Lemma 3.5, and for a given positive number k, define y(t, x) = ψ

(
|x|2

k2

)
v(t, x).

Then, y is a unique solution to the following initial Cauchy problem
yt −∆y + λy + ψ(·)f(x, v + z(θtω)) = v∆ψ + 2∇ψ∇v + ψ(·) (g + z(θtω)∆h)

y|∂Bk
√

2
= 0,

y(τ) = yτ := ψ

(
|x|2

k2

)
vτ ,

(3.74)

where ψ(·) = ψ

(
|x|2

k2

)
, Bk

√
2 is a ball centered at origin with radius k

√
2. Consider

the eigenvalue problem

−∆w = λw in Bk
√
2, with w|∂Bk

√
2
= 0.

It’s a classical result that the problem has a family of eigenfunctions {ej}j≥1 with
corresponding eigenvalues {λj}j≥1 such that {ej}j≥1 form a orthogonal basis of
H1

0 (Bk
√
2)and L

2
(
Bk

√
2

)
and 0 < λ1 ≤ λ2 ≤ . . . ≤ λn → ∞. For a given integer

m, we denote by Pm the canonical projector from H1
0 (Bk

√
2) onto the subspace
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span{e1, e2, . . . , em}. Let y ∈ H1
0 (Bk

√
2), then y has a unique decomposition y =

y1 + y2 = Pmy + (Id− Pm)y where Id is the identity of H1
0 (Bk

√
2).

To obtain the asymptotic compactness of Φ in bounded domains, we need an
Lemma which has a straightforward proof, so we omit it here. One can find in [21,
Lemma 3.6] for a similar result.

Lemma 3.10. Assume that there is λ > 0 such that, for all τ ∈ R,

sup
t≥0

∫ τ

τ−t

e−λ(τ−s)h(s, t)ds < +∞,

where h : R2 → R is a non-negative function. Then,

lim
γ→+∞

sup
t≥0

∫ τ

τ−t

e−γ(τ−s)h(s, t)ds = 0.

The following lemma shows the asymptotic compactness of solutions to (3.74), or
equivalently, the asymptotic compactness of solutions to (2.7) in bounded domains.

Lemma 3.11. Let k > 0 is fixed. Then, for τ ∈ R, ω ∈ Ω and any ϵ > 0, there
exist m0 ∈ N and T0 > 0 satisfying

∥(Id− Pm)y(τ, τ − t, θ−τω, yτ−t)∥2H1
0 (Bk

√
2)

≤ ϵ (3.75)

for all m ≥ m0 and for all t ≥ T0, where yτ−t = ψ(·)vτ−t with vτ−t + hz(θ−tω) =
uτ−t ∈ B(τ − t, θ−tω).

Proof. We rewrite (3.74) in short form

yt −∆y + λy + ψf(x, u) = (g + z(θtω)∆h)ψ + 2∇v∇ψ + v∆ψ (3.76)

and write y = Pmy + (Id − Pm)y = y1 + y2. Multiplying (3.76) by −∆y2 then
integrating over Bk

√
2, we get

1

2

d

dt
∥y2∥2H1

0 (Bk
√

2)
+ ∥∆y2∥2L2(Bk

√
2)
+ λ∥y2∥2H1

0 (Bk
√

2)
+

∫
Bk

√
2

ψf(x, u)(−∆y2)dx

=

∫
Bk

√
2

((g + z(θtω)∆h)ψ + 2∇v∇ψ + v∆ψ)(−∆y2)dx.

(3.77)
By Cauchy’s inequality, we have∫

Bk
√

2

ψf(x, u)(−∆y2)dx ≤
∫
Bk

√
2

|ψ||f(x, u)||∆y2|dx

≤ 1

10
∥∆y2∥2L2(Bk

√
2)
+

5

2

∫
Bk

√
2

|ψ|2|f(x, u)|2dx

≤ 1

10
∥∆y2∥2L2(Bk

√
2)
+

5

2
∥f(x, u)∥2dx.

(3.78)

Similarly, ∫
Bk

√
2

gψ(−∆y2)dx ≤ 1

10
∥∆y2∥2L2(Bk

√
2)
+

5

2
∥g∥2 (3.79)

and ∫
Bk

√
2

z(θtω)∆hψ(−∆y2)dx ≤ 1

10
∥∆y2∥2L2(Bk

√
2)
+

5

2
|z(θtω)|2. (3.80)
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By the definition of ψ, we have |ψ′| ≤ C, thus

2

∫
Bk

√
2

∇v∇ψ(−∆y2)dx =
2

k2

∫
Bk

√
2

x · ∇vψ′
(
|x|2

k2

)
(−∆y2)dx

≤ 2

k2

∫
Bk

√
2

|x||∇v||ψ′
(
|x|2

k2

)
||∆y2|dx

≤ C

k

∫
Bk

√
2

|∇v||∆y2|dx

≤ 1

10
∥∆y2∥2L2(Bk

√
2)
+ C∥∇v∥2.

(3.81)

Similarly, ∫
Bk

√
2

v∆ψ(−∆y2)dx ≤ 1

10
∥∆y2∥2L2(Bk

√
2)
+ C∥v∥2. (3.82)

From (3.77) - (3.82), and using Poincare inequality

∥∆y2∥2L2(Bk
√

2)
≥ λm+1∥y2∥2H1

0 (Bk
√

2)
,

we conclude that

d

dt
∥y2∥2H1

0 (Bk
√

2)
+ λm+1∥y2∥2H1

0 (Bk
√

2)

≤ C
(
∥f(x, u)∥2 + ∥g(t)∥2 + |z(θtω)|2 + ∥∇v∥2 + ∥v∥2

)
.

(3.83)

Multiplying (3.83) by eλm+1t, integrating on (τ − t, τ) then replacing ω by θ−τω,
we deduce that

∥y2(τ, τ − t, θ−τω, yτ−t)∥2H1
0 (Bk

√
2)

≤ e−λm+1t∥yτ−t∥2H1
0 (Bk

√
2)

+ C

∫ τ

τ−t

e−λm+1(τ−s)

(
∥f(x, u(s, τ − t, θ−τω, uτ−t))∥2

+ |z(θs−τω)|2 + ∥g(s)∥2 + ∥v(s, τ − t, θ−τω, vτ−t)∥2H1(Rn)

)
ds.

(3.84)

On the one hand,

e−λm+1t∥yτ−t∥2H1
0 (Bk

√
2)

≤ e−λm+1t∥vτ−t∥2H1(Rn)

≤ 2e−λm+1t
(
∥uτ−t∥2H1(Rn) + |z(θ−tω)|2∥h∥2H1(Rn)

)
−→ 0 as m, t→ +∞,

(3.85)
since uτ−t ∈ B0(τ − t, θ−tω), |z(ω)| is tempered and λm → +∞. Thus, there exist
T1 > 0 and m1 ≥ 1 such that

e−λm+1t∥yτ−t∥2H1
0 (Bk

√
2)

≤ ϵ

3
provided t ≥ T1 and m ≥ m1. (3.86)



22 T.Q. BAO

On the other hand, by (G), Lemmas 3.1, 3.10 and the fact that λm → +∞, we can
choose T2 > 0 and m2 ≥ 1 satisfying

C

∫ τ

τ−t

e−λm+1(τ−s)∥f(x, u(s, τ − t, θ−tω, uτ−t))∥2ds

+C

∫ τ

τ−t

e−λm+1(τ−s)∥v(s, τ − t, θ−tω, vτ−t)∥2H1(Rn)ds

+C

∫ τ

τ−t

e−λm+1(τ−s)∥g(s)∥2ds

≤ ϵ

3

(3.87)

whenever t ≥ T2 and m ≥ m2. Finally

C

∫ τ

τ−t

e−λm+1(τ−s)|z(θs−τω)|2ds = C

∫ 0

−t

eλm+1s|z(θsω)|2ds

≤ C

∫ 0

−∞
eλm+1se−

λ
2 sr(ω)ds ≤ Cr(ω)

λm+1 − λ
2

≤ ϵ

3

(3.88)

for any m ≥ m3 with some large enough m3 ≥ 1.
Set T = max{T1, T2} and m0 = max{m1,m2,m3}. We get from (3.84) that, for

all t ≥ T and m ≥ m0,

∥y2(τ, τ − t, θ−τω, yτ−t)∥2H1
0 (Bk

√
2)

≤ ϵ. (3.89)

This completes the proof. �

Lemma 3.12. For fixed τ ∈ R and ω ∈ Ω. For any tn → +∞ and vτ−tn =
xn − hz(θ−tnω), where xn ∈ B0(τ − tn, θ−tnω), we have {v(τ, τ − tn, θ−τω, vτ−tn)}
is precompact in H1(BK) for any K > 0.

Proof. Define

y(τ, τ − tn, θ−τω, yτ−tn) = ψ

(
|x|2

K2

)
v(τ, τ − tn, θ−τω, vτ−tn) (3.90)

with yτ−tn = ψ

(
|x|2

K2

)
vτ−tn . For the sake of brevity, we denote by yn = y(τ, τ −

tn, θ−τω, yτ−tn). From Lemma 3.1, since tn → +∞, we have

{v(τ, τ − tn, θ−τω, vτ−tn)} is bounded in H1(Rn). (3.91)

Thus

{yn}n≥1 is bounded in H1
0 (BK

√
2). (3.92)

Let ϵ > 0 be given. Using Lemma 3.11, there exists m > 0 and N1 > 0 such that

∥ (IdK − Pm) yn∥H1
0 (BK

√
2)

≤ ϵ (3.93)

for all n ≥ N1, where IdK := IdH1
0 (BK

√
2)
.

On the other hand, it follows from (3.92) that {Pm(yn)}n≥1 is bounded in
Pm(H1

0 (BK
√
2)). Hence {Pm(yn)}n≥1 is precompact since Pm(H1

0 (BK
√
2)) has a

finite dimension. Thus, we can take a subsequence {n′} of {n} and N2 satisfying

∥Pm(yn′)− Pm(yk′)∥H1
0 (BK

√
2)

≤ ϵ for all n′, k′ ≥ N2. (3.94)
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Now, set N = max{N1, N2}. We have

∥yn′ − yk′∥H1
0 (BK

√
2)

≤ ∥Pm(yn′)− Pm(yk′)∥H1
0 (BK

√
2)
+ ∥(IdK − Pm)yn′∥H1

0 (BK
√

2)

+ ∥(IdK − Pm)yk′∥H1
0 (BK

√
2)

≤ 3ϵ

(3.95)

due to (3.93) and (3.94). It follows from (3.90) and (3.95) that

∥v(τ, τ − tn′ , θ−τω, vτ−tn′ )− v(τ, τ − tk′ , θ−τω, vτ−tk′ )∥H1(BK)

≤ ∥yn′ − yk′∥H1
0 (BK

√
2)

≤ 3ϵ for all n′, k′ ≥ N.

(3.96)

This show that {v(τ, τ − tn, θ−τω, vτ−tn)}n≥1 is precompact in H1(BK) and thus
completes the proof. �

The main result of this work is now ready to be shown.

Theorem 3.13. Assume that hypothesis (F)− (G)− (H) hold. Then the RDS Φ
corresponding to equation (1.1) possesses a pullback attractor A1 = {A1(τ, ω) : τ ∈
R, ω ∈ Ω} in H1(Rn). Moreover, A1 and A2 concide, i.e.,

A1(τ, ω) = A2(τ, ω) for all τ ∈ R, ω ∈ Ω.

Proof. Theorem 2.3 tells us that Φ has a random attractor in L2(Rn). Then,
from Theorem 2.2 and Lemma 3.4, it remains to prove the pullback asymptotic
compactness of Φ.

Fix τ ∈ R and ω ∈ Ω. Let tn → +∞ and xn ∈ B0(τ − tn, θ−tnω), thanks to
Lemma 3.6, we have to prove that

{Φ(tn, τ − tn, θ−tnω, xn)}n≥1 is relative compact in H1(Rn). (3.97)

By (2.9),

Φ(tn, τ − tn, θ−tnω, xn) = v(τ, τ − tn, θ−τω, xn − hz(θ−tnω)) + hz(ω). (3.98)

Set vτ−tn = xn − hz(θ−tnω). Then it is sufficient to show that

{v(τ, τ − tn, θ−τω, vτ−tn)}n≥1 is relative compact in H1(Rn). (3.99)

For the sake of brevity, we denote by vn = v(τ, τ − tn, θ−τω, vτ−tn).
Let ϵ > 0 be given. Using Lemmas 3.5 and 3.9, we can choose N1 ≥ 1 and K > 0

such that ∫
|x|≥K

(|vn|2 + |∇vn|2)dx ≤ ϵ (3.100)

for all n ≥ N1. On the other hand, from Lemma 3.12, {vn}n≥1 is precompact
in H1(BK), i.e., there exists a subsequence of {vn} (not relabeled) and N2 ≥ 1
satisfying

∥vn − vm∥H1(BK) ≤ ϵ for all n,m ≥ N2. (3.101)
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Set N = max{N1, N2}. It follows from (3.100) and (3.101) that, for all n,m ≥ N ,

∥vn − vm∥H1(Rn) ≤ ∥vn − vm∥H1(BK) + 2

∫
|x|≥K

(|vn|2 + |∇vn|2)dx

+ 2

∫
|x|≥K

(|vm|2 + |∇vm|2)dx

≤ 5ϵ.

(3.102)

Hence (3.99) holds and the proof is complete. �

Acknowledgements. This work is supported by International Research Training
Group IGDK 1754.

References

[1] C.T. Anh, T.Q. Bao, N.V. Thanh, Regularity of random attractors for stochastic semilinear
degenerate parabolic equations, Electronic J. Diff. Eqs. 2012 (2012) 1-22.

[2] C.T. Anh, T.Q. Bao, L.T. Thuy, Regularity and fractal dimension of pullback attractors for
a non-autonomous semilinear degenerate parabolic equation, Glasgow Math. J. 55 (2013)

431-448.
[3] L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
[4] T.Q. Bao, Existence and upper semi-continuity of uniform attractors for non-autonomous

reaction diffusion equations on RN , Electronic J. Diff. Eqs. 2012 (2012), 1-18.

[5] P.W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical system, Stoch.
Dyn. 6 (2006) 1-21.

[6] P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equa-
tions on unbounded domains, J. Diff. Eqs. 246 (2009) 845 - 869.

[7] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Diff. Eqs 9 (1997)
307-341.

[8] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields,
100 (1994) 365-393.

[9] F. Flandoli and B. Schmalfuβ, Random attractors for the 3D stochastic Navier-Stokes equa-
tion with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.

[10] P.E. Kloeden, J.A. Langa and Flattening, Squeezing and the existence of random attractors,

Proc. R. Soc. Lond. Ser. A 463 (2007) 163-181.
[11] Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and

applications to stochastic reaction-diffusion equations, J. Diff. Eqs. 245 (2008) 1775 - 1800.
[12] J. Li, Y. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplica-

tive noise in Lp, Appl. Math. Comput. 215 (2010) 3399 - 3407.
[13] F. Morillas and J. Valero, Attractors for reaction-diffusion equations in Rn with continuous

nonlinearity, Asymptot. Anal. (2005) 111-130.
[14] H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations,

Nonlinearity 22 (2009) 667 - 681.
[15] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D 128

(1999) 41-52.
[16] B. Wang, Pullback attractors for non-autonomous Reaction-Diffusion equations on Rn, Fron-

tiers of Mathematics in China, 4 (2009), 563-583.
[17] B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on un-

bounded domains, J. Diff. Eqs., 246 (2009), 2506-2537.
[18] B.Wang and X. Gao Random attractors for wave equations on unbounded domains, Discrete

Contin. Dyn. Syst., (2009).
[19] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-

compact random dynamical systems J. Diff. Eqs., 253 (2012), 1544-1583.

[20] Z. Wang and S. Zhou, Random attractor for stochastic reaction-diffusion equation with mul-
tiplicative noise on unbounded domains, J. Math. Anal. Appl. 384 (2011) 160 - 172.



STOCHASTIC REACTION-DIFFUSION EQUATIONS ON UNBOUNDED DOMAINS 25

[21] Y. Wang and C.K. Zhong, On the existence of pullback attractors for non-autonomous reac-

tion diffusion, Dyn. Syst., (2008) 1-16.
[22] W. Zhao, H1 - random attractors for stochastic reaction diffusion equations with additive

noise, Nonlinear Anal. TMA. 84 (2013) 61-72.
[23] W. Zhao, H1 - random attractors and random equilibria for stochastic reaction diffusion

equations with multiplicative noises, Comm. Nonlinear Sci. Numer. Simulat. 18 (2013) 2707-
2721.

[24] W. Zhao, Y. Li, (L2, Lp)−random attractors for stochastic reaction-diffusion equation on
unbounded domains, Nonlinear Anal., (2011).

[25] C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak
continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Diff.
Eqs. 223 (2006) 367 - 399.

Tang Quoc Bao1,2

1 Institute of Mathematics and Scientific Computing, University of Graz,

36 Heinrichstrasse, 8010 Graz, Austria
2 School of Applied Mathematics and Informatics, Ha Noi University of Science and
Technology,
1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

E-mail address: quoc.tang@uni-graz.at


