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Abstract. We consider shape optimization problems governed by the unsteady Navier-Stokes
equations by applying the method of mappings, where the problem is transformed to a reference
domain Ωref and the physical domain is given by Ω = τ(Ωref) with a domain transformation τ ∈
W 1,∞(Ωref). We show the Fréchet-differentiability of τ 7→ (v, p)(τ) in a neighborhood of τ = id under
as low regularity requirements on Ωref and τ as possible. We propose a general analytical framework
beyond the implicit function theorem to show the Fréchet-differentiability of the transformation-
to-state mapping conveniently. It can be applied to other shape optimization or optimal control
problems and takes care of the usual norm discrepancy needed for nonlinear problems to show
differentiability of the state equation and invertibility of the linearized operator. By applying the
framework to the unsteady Navier-Stokes equations, we show that for Lipschitz domains Ωref and
arbitrary r > 1, s > 0 the mapping τ ∈ (W1,∞ ∩W1+s,r)(Ωref) 7→ (v, p)(τ) ∈ (W (0, T ;V ) +
W (0, T ; H1

0))× (L2(0, T ;L2
0) +W 1,1(0, T ; cl(H1)∗ (L2

0))∗) is Fréchet-differentiable at τ = id and the

mapping τ ∈ (W1,∞ ∩W1+s,r)(Ωref) 7→ (v, p)(τ) ∈ (L2(0, T ; H1
0) ∩ C([0, T ]; L2) × (L2(0, T ;L2

0) +
W 1,1(0, T ; cl(H1)∗ (L2

0))∗) is Fréchet-differentiable on a neighborhood of id, where V ⊂ H1
0(Ωref) is

the subspace of solenoidal functions and W (0, T ;V ) is the usual space of weak solutions. A crucial
role in the analysis plays the handling of the incompressibility condition and the low time regularity
of the pressure for weak solutions.
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1. Introduction. In this paper, we analyse the Fréchet differentiability proper-
ties of the velocity field and the corresponding pressure component of viscous incom-
pressible unsteady Navier-Stokes flows with respect to domain variations. Our aim is
to keep the required regularity of the reference domain and the domain variations as
low as possible. The setting includes, e.g., optimum shape design of a body exposed
to Navier-Stokes flow. The results provide a rigorous analytical framework for the
application of derivative- and adjoint-based optimization methods.

We use the approach of transformation to a reference domain, called method of
mappings, to formulate the optimization problem on a fixed domain. The method
of mappings goes back to Murat and Simon [20, 22] and is well suited for deriving
rigorous Fréchet differentiability results with respect to domain variations. It also
forms the basis of the proofs of many concepts in shape differential calculus. Moreover,
it provides a suitable foundation for numerical implementations, cf. [6, 7].

The incompressible Stokes and Navier-Stokes equations include the condition
div ṽ = 0 on Ω, where ṽ denotes the velocity field. In the analysis of the Navier-
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Stokes equations it is usually built directly into the function space setting by choosing
solenoidal (i.e., divergence-free) spaces. We use the tilde “̃ ” here to indicate that ṽ
lives on Ω to distinguish it from v(x) = ṽ(τ(x)), the pullback of ṽ onto Ωref via the
transformation Ωref 3 x 7→ x̃ = τ(x) ∈ Ω. If div ṽ = 0 a.e. on Ω, then in general div v
is not zero a.e. on Ω. Thus, divergence-free spaces are not mapped to divergence-free
spaces. As we will see, this causes difficulties, especially in the unsteady case due
to the low time regularity of the pressure. An alternative would be to use the Piola
transform [9, sec. 1.7], which preserves divergence-freeness, but introduces additional
nonlinearity and would require higher regularity requirements on τ , since it involves
first derivatives of τ . In the case of the stationary Navier-Stokes equations there are
further possibilities to surmount this difficulty. In [26], Simon uses a variant of the
implicit function theorem to show Fréchet differentiability w.r.t. transformations for
stationary Stokes flow when Ω is a W 2,∞-domain. Bello, Fernández-Cara, and Simon
[2, 3] showed Fréchet differentiability of the drag in the case of stationary Navier-
Stokes equations when Ω is a W 2,∞-domain; Bello, Fernández-Cara, Lemoine, and
Simon [4] extended this result to Lipschitz domains under W 1,∞-transformations. To
treat the incompressibility condition, Bello et al. introduced in [2, 3] a family of iso-
morphisms to rewrite the equation div(v ◦ τ) = 0 appropriately. In [4], Bello et al.
state the incompressibility condition explicitly as we will do in this paper. For m ≥ 2
the directional differentiability of the velocity and pressure field in Hm × Hm−1 for
Cm+2-variations of a Cm+1-domain was shown in [5].

In the context of the unsteady Navier-Stokes equations additional complications
are caused by the fact that under standard regularity assumptions on the data the
time regularity of the pressure and of the time derivative of the velocity is very
low. Therefore we have to impose more regularity on the data to get stronger
state spaces. As a consequence, for the linearized equation it is not clear how to
choose the image space of the corresponding operator such that it defines an iso-
morphism as needed to apply the implicit function theorem as used in [4]. How-
ever, we show in this paper that using more regularity for the data and the slighty
stronger space τ ∈ W 1,∞ ∩ W 1+s,r for the transformations with arbitrary r >
1, s > 0, for Lipschitz domains Ωref the mapping τ ∈ (W1,∞ ∩W1+s,r)(Ωref) 7→
(v, p)(τ) ∈ (W (0, T ;V ) + W (0, T ; H1

0)) × (L2(0, T ;L2
0) + W 1,1(0, T ; cl(H1)∗(L

2
0))∗) is

Fréchet-differentiable at τ = id and the mapping τ ∈ (W1,∞ ∩W1+s,r)(Ωref) 7→
(v, p)(τ) ∈ (L2(0, T ; H1

0) ∩ C([0, T ]; L2) × (L2(0, T ;L2
0) + W 1,1(0, T ; cl(H1)∗(L

2
0))∗) is

Fréchet-differentiable on a neighborhood of id. Since the implicit function theorem
is not applicable, we propose a general analytical framework beyond the implicit
function theorem to show the Fréchet-differentiability of the transformation-to-state
mapping in a systematic and convenient way. It can be applied to other choices of
spaces as well as other shape optimization or optimal control problems and takes care
of the usual norm discrepancy needed for nonlinear problems to show differentiabil-
ity of the state equation and invertibility of the linearized operator. When applying
this framework to shape optimization of the unsteady Navier-Stokes equations, we
will handle the nonhomogeneous divergence condition in the linearized Navier-Stokes
equations on the reference domain by using Bogovskĭı’s operator. This allows us to
treat inhomogeneities of the divergence condition in L2(I;L2

0(Ω)) ∩H1(I; (H3/2−ε)∗)
on Lipschitz domains. For C2-domains the Navier-Stokes equations with nonhomoge-
neous divergence condition in L2(I;Hs−1/2(Ω)) ∩Hs(I;H−1/2(Ω)) for s > 1/2 have
been considered recently by Raymond [25].

Shape derivatives for the unsteady Navier-Stokes equations have been calculated
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formally e.g. in Pironneau [23, 24], and have been used in many applications, e.g.
[19]. The existence of the weak Piola material and the shape derivative, i.e. the
weak directional differentiability of the pull back of the velocity field and the velocity
field, respectively, with respect to C2-perturbations of C2-domains has been shown in
Gao et al. [13] for time independent domains and in [11], see also [12], by using the
Piola transform and the speed method. Moreover, the boundary representation of the
shape gradient according to the Hadamard-Zolésio structure theorem [10, 28] has been
derived for several objective functions. In [27] Sokolowski and Stebel have proven the
existence of the material derivative and thus the directional differentiability of the
pull back of the velocity field with respect to C2-perturbations of C2,1-domains for
unsteady incompressible non-Newtonian flows. Moreover, they derive the boundary
representation of the shape gradient of an averaged drag functional.

The present paper focuses on the Fréchet differentiability of the pull back of ve-
locity and pressure with respect to W 1,∞ ∩ W 1+s,r-perturbations of C0,1-domains
and leads to Fréchet differentiability results for objective functionals, in particular
averaged drag funtionals. This yields a rigorous foundation for derivative-based opti-
mization methods.

The paper is organized as follows. In section 2 we recall the method of mappings
by Murat and Simon in the abstract setting and apply it to the unsteady Navier-
Stokes equations. Furthermore we state some regularity results for the solutions of
the Navier-Stokes equations. In section 3 we introduce an abstract differentiability
theorem, which provides a convenient framework to prove the Fréchet differentiability
of the solution operator of nonlinear optimal control problems. In section 4 we apply
this framework to shape optimization of the Navier-Stokes equations and show Fréchet
differentiability of the solution with respect to domain transformations in a suitable
Banach space framework. Finally in section 5 the results from section 4 are used to
prove the Fréchet differentiability of a wide class of reduced objective functions in a
neighbourhood of the identity.

2. Shape optimization for the unsteady Navier-Stokes equations.

2.1. Shape optimization via the mapping method. Consider a shape op-
timization problem of the general form

min J̃(ỹ,Ω) s.t. Ẽ(ỹ,Ω) = 0, Ω ∈ Oad.(2.1)

Here, Ω ⊂ Rd is the domain to be optimized and Oad is the set of admissible domains.
The state ỹ lives on Ω × I, I = (0, T ), and satisfies the state equation Ẽ(ỹ,Ω) = 0,
in our case the unsteady Navier-Stokes equations on Ω with initial and boundary
conditions. We assume that the admissible shapes can be described by

Oad = {τ(Ωref) : τ ∈ Tad},

where Tad is a set of admissible transformations and Ωref ⊂ Rd is a bounded reference
domain with Lipschitz boundary. Hence, admissible domains Ω ∈ Oad are interpreted
as images of Ωref under suitable transformations τ : Rd → Rd, d = 2 or 3. Our
minimum requirements that will be slightly strengthened later are that τ : Ωref →
τ(Ωref) is invertible, τ(Ωref) is a bounded Lipschitz domain and τ ∈ W 1,∞(Ωref)

d,
τ−1 ∈W 1,∞(τ(Ωref))

d.
For functions w̃ defined on Ω× I, we introduce the pullback to Ωref by

w := w̃ ◦x̃ τ, w(x, t) = w̃(τ(x), t).
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This is well defined if w̃ is L1 in space. We also write w(t) = w(·, t) = w̃(t) ◦ τ .
Similarly, if w̃ is defined on Ω, we set w := w̃ ◦ τ , w(x) = w̃(τ(x)).

Let now y = ỹ ◦x̃ τ be the pullback of ỹ to Ωref . We abbreviate the variational
form of the state equation by

(2.2) 〈Ẽ(ỹ,Ω), ϕ̃〉Ω = 0 ∀ ϕ̃ ∈ Φ(Ω),

where Φ(Ω) is a suitable space of test functions. Since τ−1 exists, we can write
y = ỹ ◦x̃ τ and ϕ = ϕ̃ ◦x̃ τ also in the equivalent form ỹ = y ◦x τ−1 and ϕ̃ = ϕ ◦x τ−1.

Next, we define E(y, τ) via

〈E(ỹ ◦x τ, τ), ϕ̃ ◦x̃ τ〉Ωref
:= 〈Ẽ(ỹ,Ω), ϕ̃〉Ω ∀ ỹ ∈ Y (Ω), ∀ ϕ̃ ∈ Φ(Ω), ∀ τ ∈ Tad.

Assumption 2.1. Assume that we can choose Yref and Φref such that for all
τ ∈ Tad and Ω = τ(Ωref), there holds:

1. Φref = {ϕ̃ ◦x̃ τ : ϕ̃ ∈ Φ(Ω)}
2. Yref ⊂ {ỹ ◦x̃ τ : ỹ ∈ Y (Ω)}
3. the solution ỹ(Ω) of (2.2) satisifies ỹ(Ω) ◦x̃ τ ∈ Yref .

Then the transformed state equation in variational form reads

(2.3) 〈E(y, τ), ϕ〉Ωref
= 0 ∀ ϕ ∈ Φref .

It is equivalent to (2.2) in the sense that ỹ = ỹ(Ω), with Ω = τ(Ωref), solves (2.2) if
and only if y(τ) := ỹ(Ω) ◦x̃ τ ∈ Yref solves (2.3). Conversely, y(τ) ∈ Yref solves (2.3)
if and only if ỹ = ỹ(Ω) := y(τ) ◦x τ−1 solves (2.2) with Ω = τ(Ωref).

We thus can rewrite (2.1) on the fixed domain Ωref as follows:

min J(y, τ) s.t. E(y, τ) = 0, τ ∈ Tad.(2.4)

Usually, the concrete variational form of the state equation on the reference domain
is obtained by using the transformation rule for integrals and for derivatives. This
will be carried out for the unsteady Navier-Stokes equations in the following. By
convention, we denote all quantities on the physical domains τ(Ωref) by ˜.

2.2. The unsteady Navier-Stokes equations. Now we apply the presented
method of mappings to shape optimization problems governed by the unsteady Navier-
Stokes equations for a viscous, incompressible fluid on a bounded domain Ω = τ(Ωref)
⊂ Rd with Lipschitz boundary. To avoid technicalities in the formulation of the
equations, we consider homogeneous Dirichlet boundary conditions. The analysis
can, however, be extended also to the inhomogeneous case and to other types of
boundary conditions. We then would have to require that a neighborhood of that
part of the boundary where inhomogeneous Dirichlet conditions are posed remains
pointwise fixed for all admissibe transformations. We thus consider the problem

(2.5)

ṽt − ν∆ṽ + (ṽ · ∇)ṽ +∇p̃ = f̃ on Ω× I,
div ṽ = 0 on Ω× I

ṽ = 0 on ∂Ω× I,
ṽ(·, 0) = ṽ0 on Ω

where ṽ : Ω × I → Rd denotes the velocity and p̃ : Ω × I → R is the pressure of the
fluid. Here I = (0, T ), T > 0, is the time interval, ν > 0 is the kinematic viscosity
and ∇ṽ(x̃, t) = ṽx̃(x̃, t)T denotes the transpose of the spatial Jacobian matrix of ṽ.
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We use bold face notation for Rd-valued standard function spaces, e.g., Lq(Ω) :=
Lq(Ω)d, H1

0(Ω) := H1
0 (Ω)d, H−1(Ω) := H−1(Ω)d and H−1

0 (Ω) := (H1(Ω)∗)d etc., and
define the spaces

V(Ω) := {ṽ ∈ C∞0 (Ω) : div ṽ = 0}, V (Ω) := clH1
0(Ω)(V(Ω)),

H(Ω) := clL2(Ω)(V(Ω)), L2
0(Ω) := {p̃ ∈ L2(Ω) :

∫
Ω

p̃ = 0}.

We note that L2
0(Ω) can be identified with L2(Ω)/R, where

‖p̃‖L2(Ω)/R := inf
c∈R
‖p̃+ c‖L2(Ω).

In fact, we have ‖p̃‖L2
0(Ω) = ‖p̃‖L2(Ω)/R for all p̃ ∈ L2

0(Ω).
It will be convenient to introduce the projection

(2.6) P0(Ω) ∈ L(L2(Ω), L2
0(Ω)), P0(Ω)p̃ = p̃−

∫
Ω
p̃(x) dx∫
Ω

1 dx
.

The Bochner spaces of r-integrable X-valued functions are denoted by Lr(I;X). We
use the usual norms on the spaces Lr(Ω) and Lr(I;X) and the inner products

(ṽ, w̃)H(Ω) := (ṽ, w̃)L2(Ω), (ṽ, w̃)V (Ω) := (ṽ, w̃)H1
0(Ω) =

d∑
i=1

(ṽxi , w̃xi)L2(Ω).

Moreover, let V (Ω) ↪→ H(Ω) = H(Ω)∗ ↪→ V (Ω)∗ denote the corresponding Gelfand
triple and define

W (I;V (Ω)) := {ṽ ∈ L2(I;V (Ω)) : ṽt ∈ L2(I;V (Ω)∗)}.

In the same way, the space W (I; H1
0(Ω)) used later is defined.

The weak formulation of (2.5) is: Find ṽ ∈W (I;V (Ω)) such that

(2.7)

〈ṽt(t), w̃〉V (Ω)∗,V (Ω) + ν(∇ṽ(t),∇w̃)L2(Ω) +

∫
Ω

[(ṽ(t) · ∇)ṽ(t)] · w̃ dx̃

= 〈f̃(t), w̃〉V (Ω)∗,V (Ω) ∀ w̃ ∈ V (Ω) and a.a. t ∈ I,

ṽ(·, 0) = ṽ0 in H(Ω).

It is well known that so far the question of existence and uniqueness is answered
satisfactorily only in the case d ≤ 2. In fact for d = 2, there holds

Proposition 2.1. Let d = 2 and assume

(2.8) f̃ ∈ L2(I;V (Ω)∗), ṽ0 ∈ H(Ω).

Then there exists a unique weak solution ṽ of (2.5) according to (2.7). It satisfies

(2.9) ṽ ∈ C(I;H(Ω)), ṽ ∈W (I;V (Ω)).

If f̃ has additional regularity, for example f̃ ∈ L2(I; H−1(Ω)) or f̃ ∈ L2(I;V (Ω)∗) ∩
(L2(I; H−1(Ω)) + (W 1,1(I; L2(Ω)))∗) then the pressure p̃ can be introduced as a dis-
tribution on Ω× (0, T ).

For a proof see e.g. [30, Ch. III], cf. also Lemma 4.12 for the pressure regularity.
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A weak solution ṽ ∈W (I;V (Ω)) can equivalently be characterized by
(2.10)

− (ṽ, w̃t)L2(Ω×I) − (ṽ0, w̃(0))L2(Ω) + ν(∇ṽ,∇w̃)L2(Ω×I) +

∫ T

0

∫
Ω

[(ṽ · ∇)ṽ] · w̃ dx̃ dt

=

∫ T

0

〈f̃(t), w̃(t)〉V (Ω)∗,V (Ω) dt ∀ w̃ ∈ C∞0 (Ω× [0, T )), div(w̃(t)) = 0 ∀ t ∈ [0, T ).

If the data f̃ and ṽ0 are more regular then the solution has further regularity.
Proposition 2.2. Let d = 2 and assume

(2.11) f̃ , f̃t ∈ L2(I; H−1(Ω)), f̃(·, 0) ∈ H(Ω), ṽ0 ∈ V (Ω) ∩H2(Ω).

Then the weak solution (ṽ, p̃) of the Navier-Stokes equations satisfies

(2.12) ṽ ∈ C(I;V (Ω)), ṽt ∈ L2(I, V (Ω)) ∩ L∞(I;H(Ω)), p̃ ∈ L∞(I;L2
0(Ω))

Furthermore there exists a constant c(Ω) > 0 with

‖p̃‖L∞(I;L2
0(Ω)) ≤ c(Ω)(‖ṽt‖L∞(I;H(Ω)) + ν‖ṽ‖L∞(I;V (Ω))+

‖ṽ‖2L∞(I;V (Ω)) + ‖f̃‖L∞(I;H−1(Ω)))
(2.13)

Proof. The regularity results for the velocity can be found in [30, Ch. III.3.5]. To
study the pressure we use H1

0 (Ω) ↪→ L4(Ω), L4/3(Ω) ↪→ H−1(Ω) and obtain

‖(ṽ · ∇)ṽ‖H−1(Ω) ≤ c1‖(ṽ · ∇)ṽ‖L4/3(Ω) ≤ c2‖ṽ‖L4(Ω)‖∇ṽ‖L2(Ω) ≤ c3‖ṽ‖2V (Ω)

with constants c1, c2, c3. Hence, introducing A(ṽ)(t) := ν(∇ṽ(t),∇·)L2(Ω) ∈ H−1(Ω)
for a.a. t ∈ I we have

‖(ṽ · ∇)ṽ‖L∞(I;H−1(Ω)) ≤ c3‖ṽ‖2L∞(I,V (Ω)), ‖A(ṽ)‖L∞(I;H−1(Ω)) ≤ ν‖ṽ‖L∞(I,V (Ω)).

Now ṽt ∈ L∞(I;H(Ω)) ↪→ L∞(I; H−1(Ω)), since H(Ω) ↪→ L2(Ω) ↪→ H−1(Ω). Fur-

thermore, f̃ ∈ L∞(I; H−1(Ω)), since f̃ , f̃t ∈ L2(I; H−1(Ω)) (see e.g. [30, Lem.
III.1.1]). Hence,

g := −ṽt − (ṽ · ∇)ṽ −A(ṽ) + f̃ ∈ L∞(I; H−1(Ω))

Using 〈g, w̃〉H−1(Ω),H1
0(Ω) = 0 for all w̃ ∈ V (Ω) and a.a. t ∈ I, there exists by [30,

Rem. I.1.4] for a.a. t a unique p̃(t) ∈ L2
0(Ω) with ∇p̃(t) = g(t), where ‖p̃(t)‖L2

0(Ω) ≤
c4‖g(t)‖H−1(Ω) by [30, Prop. I.1.2] with a constant c4 > 0. Hence there exists a
unique pressure p̃ ∈ L∞(I;L2

0(Ω)) which satisfies (2.13)
Remark 2.3. The same regularity results for ṽ but only p̃ ∈ L2(I;L2

0(Ω)) would
follow if we suppose instead of (2.11) that

f̃ ∈ L2(I; H−1(Ω)), f̃t ∈ L2(I;V (Ω)∗), f̃(·, 0) ∈ H(Ω), ṽ0 ∈ V (Ω) ∩H2(Ω).

Also a similar estimate as (2.13) holds.
For the three-dimensional case, an existence and uniqueness result holds for ex-

ample under the additional assumption
Assumption 2.2. Let

d1(Ω) := ‖f̃(0)‖L2(Ω) + νc0‖ṽ0‖H2(Ω) + c1‖ṽ0‖2H2(Ω),
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where c0, c1 are constants such that ‖∆v‖L2(Ω) ≤ c0‖v‖H2(Ω) for all v ∈ H2(Ω) and
|((u · ∇)u, v)L2(Ω)| ≤ c1‖u‖H1

0(Ω)‖u‖H2(Ω)‖v‖L2(Ω) for all u ∈ H2(Ω), v ∈ L2(Ω).

Moreover, let d2(Ω) := ‖f̃‖2L∞(I;V (Ω)∗). We assume that there exists c∗(Ω) such that

d2(Ω)

ν
+ (1 + d1(Ω)2)

(
‖ṽ0‖2L2(Ω) +

Td2(Ω)

ν

) 1
2

e‖f̃t‖L1(I;L2(Ω)) ≤ c∗(Ω) <
ν3

c2
.

Here c denotes a constant with |((u · ∇)v, w)L2(Ω)| ≤ c‖u‖H1
0(Ω)‖v‖H1

0(Ω)‖w‖H1
0(Ω) for

all u, v, w ∈ H1
0(Ω).

This assumption is satisfied if ν is large enough or if f̃ and ṽ0 are small enough.
Proposition 2.4. Let d = 3 and assume

(2.14) f̃ ∈ L∞(I;H(Ω)), f̃t ∈ L1(I;H(Ω)), ṽ0 ∈ V (Ω) ∩H2(Ω), Assumption 2.2.

Then the solution (ṽ, p̃) of the Navier-Stokes equations is unique and satisfies

(2.15) ṽ ∈ C(I;V (Ω)), ṽt ∈ L2(I, V (Ω)) ∩ L∞(I;H(Ω)), p̃ ∈ L∞(I;L2
0(Ω)).

Proof. The part for the velocity can be found in [30, Thm. III.3.7]. The pressure
regularity and uniqueness can be obtained in the very same way as in Proposition 2.2
because f̃ ∈ L∞(I;H(Ω)) implies f̃ ∈ L∞(I; H−1(Ω)).

2.3. Transformation to the reference domain.

2.3.1. Admissible transformations and notations. We will work under the
following regularity assumptions on the domain transformations and the data.

Assumption 2.3. Ωref ⊂ Rd is a bounded Lipschitz domain. Moreover for
arbitrary but fixed 1 < r < 2 and 0 < s < 1/r let Oad = {τ(Ωref) : τ ∈ Tad}, where

Tad = {τ ∈ (W1,∞ ∩W1+s,r)(Ωref) : τ−1 ∈ (W1,∞ ∩W1+s,r)(τ(Ωref)),

τ(Ωref) is a bounded Lipschitz-domain, det(τ ′(x)) ≥ δ > 0 for a.a. x ∈ Ωref}

with a constant δ > 0. Here, τ ′(x) = ∇τ(x)T denotes the Jacobian of τ .

Moreover, the data ṽ0, f̃ are given such that

f̃ ∈ L∞(I; C1(Ω)), f̃t ∈ L2(I; H−1(Ω)), f̃(0) ∈ H(Ω), ṽ0 ∈ V (Ω) ∩H2(Ω) ∩C1(Ω)

for all Ω ∈ Oad and they are used on all Ω ∈ Oad. For d = 3 we furthermore assume
that Assumption 2.2 holds.

Remark 2.5. Note that a bi-Lipschitzian image τ(Ωref) of a bounded Lipschitz
domain Ωref is not always a bounded Lipschitz domain, see [16, 1.2], but for ‖τ −
id‖W1,∞(Ωref ) small enough, this is ensured. The latter follows from [4, Lem. 3]
and the fact that there exists a linear bounded extension operator W1,∞(Ωref) →
W1,∞(Rd) for the bounded Lipschitz domain Ωref , see e.g. [29, Thm. 5, p. 181].

In the following, we will use the following functions defined on Tad to abbreviate
the τ -dependent terms that result from the transformation to the reference domain.

(2.16) g1(τ) := det(τ ′), g2(τ) := τ ′−1τ ′−T g1(τ), g3(τ) := τ ′−T g1(τ).

We note that these functions are Fréchet differentiable from W1,∞(Ωref) to L∞(Ωref).
Lemma 2.6. Let Assumption 2.3 hold. Then the mappings

g1 : (Tad, ‖·‖W1,∞(Ωref ))→ L∞(Ωref), g2, g3 : (Tad, ‖·‖W1,∞(Ωref ))→ L∞(Ωref)
d×d
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defined in (2.16) are continuously Fréchet differentiable with derivatives

g′1(τ)ψ = tr(τ ′−1ψ′)g1(τ),

g′2(τ)ψ = −τ ′−1(ψ′τ ′−1 + τ ′−Tψ′T − tr(τ ′−1ψ′)I)τ ′−T g1(τ),

g′3(τ)ψ = −(τ ′−Tψ′T − tr(τ ′−1ψ′)I)τ ′−T g1(τ).

For τ = id we have

g′1(id)ψ = tr(ψ′), g′2(id)ψ = −ψ′ − ψ′T + tr(ψ′)I, g′3(id)ψ = −ψ′T + tr(ψ′)I.

Proof. Since for all τ ∈ Tad we have g1(τ) ≥ δ > 0 a.e., we know that τ ′ is
invertible a.e. on Ωref . The differentiability and the formula for the derivative now
follow from elementary pointwise arguments.

Finally, we introduce the trilinear forms b(u, v, w) and b̂(u, v, w,M) to abbre-
viate the convection terms in the classical and later on in the transformed Navier-
Stokes equations, respectively. To this end, we define for u ∈ Lru(I; Lqu(Ωref)), v ∈
L1(I; L1(Ωref)) with ∇v ∈ Lrv (I;Lqv (Ωref)

d×d), w ∈ Lrw(I; Lqw(Ωref)), qu, qv, qw ∈
[1,∞], 1

qu
+ 1

qv
+ 1

qw
= 1, ru, rv, rw ∈ [1,∞], 1

ru
+ 1

rv
+ 1

rw
, and M ∈ L∞(Ωref)

d×d:

b(u(t), v(t), w(t)) :=

∫
Ωref

[(u(t) · ∇)v(t)] · w(t) dx,

bI(u, v, w) :=

∫ T

0

b(u(t), v(t), w(t)) dt,

(2.17)

b̂(u(t), v(t), w(t),M) :=

∫
Ωref

[((MTu(t)) · ∇)v(t)] · w(t) dx,

b̂I(u, v, w,M) :=

∫ T

0

b̂(u(t), v(t), w(t),M) dt.

(2.18)

Lemma 2.7. Let u, v, w ∈ H1
0(Ωref) and M ∈ L∞(Ωref)

d×d. Then with a constant
C = C(d) we have

|b(u, v, w)| ≤ C‖u‖1−
d
4

L2 ‖u‖
d
4

H1
0
‖v‖H1

0
‖w‖1−

d
4

L2 ‖w‖
d
4

H1
0
,

|̂b(u, v, w,M)| ≤ C‖u‖1−
d
4

L2 ‖u‖
d
4

H1
0
‖v‖H1

0
‖w‖1−

d
4

L2 ‖w‖
d
4

H1
0
‖M‖L∞ ,

for d ∈ {2, 3}.
Proof. The estimate for b for d = 2 can be found in [30][Lem. III.3.4] and in

slightly different form also for d = 3. Now the results for b̂ are easily obtained.

2.3.2. Transformation of the Navier-Stokes equations to the reference
domain. Since solenoidality is not preserved by the pullback operation, the spaces
τ∗V (Ω) := {ṽ ◦ τ : ṽ ∈ V (Ω)} and τ∗H(Ω), Ω = τ(Ωref), would depend on τ . We
avoid this by working with the spaces H1

0(Ω) and L2(Ω) instead of V (Ω) and H(Ω),
reintroduce the pressure, and formulate the divergence-free condition explicitly. This
results in the following weak velocity-pressure formulation of problem (2.7), where
the divergence-freeness of the velocity is not included in the trial and test spaces.
In view of a subsequent transformation to the reference domain, the time derivative
of the velocity is required to have some additional regularity. To keep the required
regularity for the transformations low, we assume that the weak solution satisfies

(2.19) ṽ ∈ L2(I;V (Ω)), ṽt ∈ L2(I; L2(Ω)), p̃ ∈ L2(I;L2
0(Ω)).
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Note that a better regularity than (2.19) is ensured if the data ṽ0 and f̃ satisfy the
requirements of Proposition 2.2 and 2.4, respectively.

Under the above reguarity assumptions (2.19) together with f̃ ∈ H−1(Ω), the
weak formulation (2.7) is equivalent to

〈ṽt(t) + (ṽ(t) · ∇)ṽ(t), w̃〉H−1(Ω),H1
0(Ω) + ν(∇ṽ(t),∇w̃)L2(Ω) − (p̃(t),div w̃)L2

0(Ω)

= 〈f̃(t), w̃〉H−1(Ω),H1
0(Ω) ∀ w̃ ∈ H1

0(Ω) for a.a. t ∈ I,(2.20)

(q̃,div ṽ(t))L2
0(Ω) = 0 ∀ q̃ ∈ L2

0(Ω) for a.a. t ∈ I,

ṽ|t=0 = ṽ0.

Remark 2.8. The regularity requirement on ṽt can be weakened if the time
derivative is written in very weak form, i.e., with a time-dependent test function and
the time derivative on the test function. However, since later we need higher regularity
to prove Fréchet differentiability of τ 7→ ṽ(τ), we use the setting (2.19).

If τ enjoys higher regularity than we want to assume here, e.g., τ ∈W 2,∞(Ωref),
then the standard W (I;V (Ω)) framework can be used.

Next, we apply the transformation rule for integrals and the identities

∇x̃ṽ ◦x̃ τ = (τ ′)−T∇v, (divx̃ ṽ) ◦x̃ τ = tr(τ ′−T∇v)

to obtain a variational formulation on the domain Ωref that is equivalent to (2.20).
To handle the source term, we assume

f̃ ∈ L1(I; Lν(Ω)) with ν > 1 if d = 2, ν = 6/5 if d = 3.

We set ν′ = ν/(ν − 1). We obtain the

Navier-Stokes equations transformed to the reference domain. Find
(v, p) ∈W (I; H1

0(Ωref))× L2(I;L2
0(Ωref)) with vt ∈ L2(I; L2(Ωref)) such that

(2.21)

〈(w, q, w0), E((v(t), p(t)), τ)〉(H1
0×L2

0×L2)(Ωref ),(H1
0×L2

0×L2)(Ωref )∗

:= (vt(t), wg1(τ))L2(Ωref ) + ν(∇v(t), g2(τ)∇w)L2(Ωref ) + b̂(v(t), v(t), w, g3(τ))

− (p(t), tr(g3(τ)∇w))L2
0(Ωref ) − 〈f̃(t) ◦x̃ τ, wg1(τ)〉Lν(Ωref ),Lν

′ (Ωref )

+ (q, tr(g3(τ)∇v(t)))L2
0(Ωref ) + (v(·, 0)− ṽ0(τ(·)), w0)L2(Ωref )

= 0, ∀(w, q, w0) ∈ (H1
0 × L2

0 × L2)(Ωref) for a.a. t ∈ I.

For τ = id we recover directly the weak formulation (2.20) on the domain Ω = Ωref ,
for general τ ∈ Tad we obtain an equivalent form of (2.20) on the domain Ω = τ(Ωref).
This follows from the fact that for τ ∈ Tad the map ṽ 7→ ṽ ◦ τ is a homeomorphism
between the spaces Lr(Ω) and Lr(Ωref), W1,r(Ω) and W1,r(Ωref), as well as W1,r

0 (Ω)
and W1,r

0 (Ωref), respectively, for all r ≥ 1, see [21, Lemma 4.1]. Moreover, the
pressures p(t) ∈ L2

0(Ωref) and p̃(t) ∈ L2
0(τ(Ωref)) are related via the homeomorphism

p̃(t) ∈ L2
0(τ(Ωref)) 7→ p(t) := P0(Ωref)p̃(t, τ(·)) ∈ L2

0(Ωref)

with the projection P0(Ωref) according to (2.6). Note that not necessarily p̃(t, τ(·)) ∈
L2

0(Ωref), but p(t) = P0(Ωref)p̃(t, τ(·)) is its corresponding representative in L2
0(Ωref)

and we have ‖p̃(t, τ(·))‖L2(Ωref )/R = ‖p(t)‖L2
0(Ωref ).
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3. Differentiability theorem. The following Theorem 3.1 provides a frame-
work to show Fréchet differentiability of u ∈ U 7→ y(u) ∈ Y at u0 ∈ U, where
y(u) ∈ Y + ↪→ Y denotes the unique solution of E(y, u) = 0. Here, we take care of
the fact that for nonlinear problems often Ey(y(u0), u0) ∈ L(Y +, Z) only admits an
inverse Ey(y(u0), u0)−1 ∈ L(Z0, Y ) for a subspace Z0 ( Z. For the application to
shape differentiability of the Navier-Stokes equations we will choose Y as a sum of a
space with solenoidal velocity fields with corresponding pressure and an image space
of Bogovskĭı’s operator. While for the first space we can apply standard theory for
the linearized Navier-Stokes equations, the second space deals with the inhomogenity
in the divergence equation.

The basic framework is motivated by typical norm gap differentiability results
for nonlinear problems, see e.g. [32, Thm. 2.1], but incorporates different regularity
requirements for the directions and the point of linearization in the definition of
the Fréchet derivative. This procedure turns out to be very useful, since the higher
regularity is usually only needed in the point of linearization, such that much weaker
continuity requirements on the solution operator are neccessary.

Theorem 3.1. Let u0 ∈ U and let Z, Y +, Yi be Banach spaces (possibly depending
on the fixed u0) with Y + ↪→ Yi for i = 1, 2. Let E : Y + × U → Z be a given operator
and y0 ∈ Y + such that E(y0, u0) = 0.

Moreover, we assume the existence of a unique locally bounded solution map
S : U → Y + in a neighbourhood U ⊂ U of u0, i.e., E(S(u), u) = 0 for all u ∈ U
and ‖S(u)‖Y + ≤ Cy uniformly in u ∈ U for a constant Cy > 0.

Furthermore, with functions Ki : R+ → R+, i = 1, 2, Ki(x)→ 0 as x ∈ R+ → 0,
let E satisfy the following assumptions.

1. E(y, ·) : U → Z is Fréchet differentiable at u0 ∈ U uniformly (i.e., the remain-
der term can be estimated uniformly) for all y ∈ Y + satisfying ‖y‖Y + ≤ Cy.

2. There exists an operator Ey : Y +×U → L(Y +, Z), such that for all u ∈ U ⊂
U and all y0, y ∈ Y + with ‖y0‖Y + , ‖y‖Y + ≤ Cy, it holds

‖E(y, u)− E(y0, u)− Ey(y0, u)[y − y0]‖Z ≤ CK1(‖y − y0‖Y2
)‖y − y0‖Y1

with a constant C > 0 independent of y0, y, u.
3. For all e ∈ Y + with ‖e‖Y + ≤ 2Cy it holds for ‖h‖U → 0 that

‖(Ey(y0, u0 + h)− Ey(y0, u0)) e‖Z ≤ C
(
‖h‖U‖e‖Y2

+K2(‖h‖U )‖e‖Y1

)
.

4. For i = 1, 2 the solution operator S is continuous at u0 in Yi, i.e., it holds
‖S(u0 + h)− S(u0)‖Yi → 0 as ‖h‖U → 0.

Finally, let there exist Banach spaces Y with Y + ↪→ Y ↪→ Y1 and Z0 ⊂ Z equipped
with the norm of Z (Y,Z0 may again depend on the fixed u0) such that

5. The partial derivative Ey(y0, u0) ∈ L(Y +, Z) from 2. admits an inverse
Ey(y0, u0)−1 ∈ L(Z0, Y ). Moreover, Eu(y0, u0) ∈ L(U,Z0) and Ey(y0, u0)(y−
y0) ∈ Z0 for all y ∈ Y +.

Then S : U → Y is Fréchet differentiable at u0 and the derivative is given by

S′(u0)h = −Ey(y0, u0)−1Eu(y0, u0)h(3.1)

for all h ∈ U .
Proof. For all h ∈ U we define S′(u0)h via (3.1) and in the following we will show

that S′(u0) is indeed the Fréchet derivative of S : U → Y at u0. To this end, we define
(·) := (y0, u0) with y0 = S(u0) and y = S(u0 + h). Using 5., we have

S(u0 + h)− S(u0) = y − y0 = Ey(·)−1Ey(·)[y − y0]
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and thus by the definition of S′(u0)h

‖S(u0 + h)− S(u0)− S′(u0)h‖Y

≤ ‖Ey(y0, u0)−1 (Ey(y0, u0)[y − y0] + Eu(y0, u0)[h])
∥∥∥
Y

≤ C‖Ey(y0, u0)[y − y0] + Eu(y0, u0)[h]‖Z ,

where we have used assumption 5. and that Z0 is equipped with the Z-norm. After
inserting some terms adding up to 0, the previous estimate yields

‖S(u0 + h)− S(u0)− S′(u0)h‖Y

≤ C
(
‖E(y0, u0 + h)− E(·)− Eu(·)[h]‖Z

+ ‖E(S(u0 + h), u0 + h)− E(y0, u0 + h)− Ey(y0, u0 + h)[S(u0 + h)− S(u0)]‖Z

+ ‖ (Ey(y0, u0 + h)− Ey(·)) [S(u0 + h)− S(u0)]‖Z
)
.

Now the assumptions 1., 2. and 3. on E yield

(3.2)

‖S(u0 + h)− S(u0)− S′(u0)h‖Y

≤ o(‖h‖U ) + C
(
‖S(u0 + h)− S(u0)‖Y1K1 (‖S(u0 + h)− S(u0)‖Y2)

+ ‖h‖U‖S(u0 + h)− S(u0)‖Y2 +K2(‖h‖U )‖S(u0 + h)− S(u0)‖Y1

)
.

Since Eu(y0, u0) ∈ L(U,Z0) by 5. and

‖S(u0 + h)− S(u0)‖Y1
≤ ‖S(u0 + h)− S(u0)− S′(u0)h‖Y1

+
∥∥Ey(·)−1Eu(·)[h]

∥∥
Y1
,

we obtain by assumption 5. and Y ↪→ Y1

‖S(u0 + h)− S(u0)‖Y1 ≤ C‖S(u0 + h)− S(u0)− S′(u0)h‖Y + C‖h‖U
with a constant C > 0. By using (3.2) and

‖S(u0 + h)− S(u0)‖Y2
,K1 (‖S(u0 + h)− S(u0)‖Y2

) ,K2(‖h‖U )→ 0,

as ‖h‖U → 0, this implies

‖S(u0 + h)− S(u0)− S′(u0)h‖Y ≤ o(‖S(u0 + h)− S(u0)− S′(u0)h‖Y ) + o(‖h‖U ),

which immediately results in

‖S(u0 + h)− S(u0)− S′(u0)h‖Y = o(‖h‖U ).

The following lemma shows that the continuity assumptions on S in 4. are auto-
matically satisfied if the assumptions on E are slightly extended.

Lemma 3.2 (Continuity of the solution operator). Let all the assumptions of
Theorem 3.1 except 4. be satisfied and assume that instead of 5. it holds

6. The mapping y ∈ Y + 7→ Ey(y, u0) ∈ L(Y +, Z) is continuous and the averaged
partial derivative

A(y, y0) :=

∫ 1

0

Ey(y0 + t(y − y0), u0) dt ∈ L(Y +, Z)

admits an inverse A(y, y0)−1 ∈ L(Z0, Y ) that is uniformly bounded for all
y ∈ Y + with ‖y‖Y + ≤ Cy. Moreover, A(y, y0)[y − y0] ∈ Z0 for all y ∈ Y +

and Eu(y0, u0) ∈ L(U,Z0).
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If in addition

‖S(u0 + h)− S(u0)‖Y1
→ 0 =⇒ ‖S(u0 + h)− S(u0)‖Y2

→ 0(3.3)

as ‖h‖U → 0, then the solution operator S : U → Y + is continous in Yk, i.e.

‖S(u0 + h)− S(u0)‖Yk → 0

for k = 1, 2 as ‖h‖ → 0.
Proof. For all h ∈ U with ‖h‖U small enough, we have u0 + h ∈ U and for

abbreviation we again define y := S(u0 + h) and y0 := S(u0). Since E(y, u0 + h) =
E(y0, u0) = 0, we have

E(y, u0)− E(y0, u0) =−
(
E(y, u0 + h)− E(y, u0)− Eu(y, u0)[h] + Eu(y, u0)[h]

)
and the uniform Fréchet differentiability with respect to u by 1. thus gives

‖E(y, u0)‖Z = ‖E(y, u0)− E(y0, u0)‖Z ≤ C‖h‖U(3.4)

for sufficiently small ‖h‖U > 0.
By assumptions 2. and 6. the mapping t ∈ [0, t] 7→ E(y0 + t(y − y0), u0) ∈ Z is

continuously differentiable with derivative Ey(y0 + t(y − y0), u0)[y − y0]. Hence, by
the definition of A(y, y0) we have with 6.

A(y, y0)[y − y0] = E(y, u0)− E(y0, u0) = E(y, u0) ∈ Z0,

and thus again by 6.

S(u0 + h)− S(u0) = y − y0 = A(y, y0)−1A(y, y0)[y − y0] = A(y, y0)−1E(y, u0).

Now, A(y, y0)−1 ∈ L(Z0, Y ) and Y ↪→ Y1 yield immediately

‖S(u0 + h)− S(u0)‖Y1
≤ C‖E(y, u0)‖Z ≤ C‖h‖U .

Using (3.3), this implies ‖S(u0 + h)− S(u0)‖Yk → 0, as ‖h‖U → 0 for k = 1, 2.

4. Application to the Navier-Stokes shape optimization problem.

4.1. Shape differentiability of the solution operator. Since solenoidality
is not preserved under transformations, it is clear that the velocity v(τ), given as the
solution of (2.21) for τ 6= id, is not necessarily divergence free. If S(τ) := (v(τ), p(τ))
denotes the full solution of (2.21), it turns out that the non-solenoidality of v(τ)
also transfers to d

dτ v(τ)|τ=id. Thus, in order to obtain d
dτ S(τ)|τ=id one has to solve a

linearized Navier-Stokes type equation with non zero right hand side in the divergence
equation. To show the existence of a bounded inverse of this linearized Navier-Stokes
operator, we Bogovskĭı’s operator B to deal with the inhomogeneous right hand side
of the divergence equation and can then solve a standard linearized Navier-Stokes
equation in the space of solenoidal velocity fields.

In the following we want to apply Theorem 3.1 and Lemma 3.2 to show Fréchet
differentiability of τ 7→ (v(τ), p(τ)) at τ = id in a suitable Banach space setting. To
this end, we have to choose suitable Banach spaces Y +, Y and Yi, i = 1, 2 for the
solutions, Z,Z0 for the image spaces of the differential operator and U for the control
variables. A possible choice of Banach spaces for the solution and image spaces, which
we will use in the following, is given in Table 4.1.
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v p

Y W (I;V ) +W (I; H1
0) L2(I;L2

0) +
(
W 1,1

(
I; clH−1

0
(L2

0)
))∗

Y1 L∞(I; L2) ∩ L2(I; H1
0) ∩H1(I;V ∗) L2(I;L2

0) +
(
W 1,1

(
I; clH−1

0
(L2

0)
))∗

Y2 L∞(I; L3) ∩ L2(I; H1
0) ∩H1(I; H1−ε

0 ) L2(I;L2
0)

Y + H1(I; H1
0) L2(I;L2

0)

Z
(
L2(I;V ∗) ∩ P (I; H1

0,L
2)∗
)
×
(
L2(I;L2

0) ∩H1(I; (H
3
2−ε)∗)

)
× L2

Z0 {(z1, zdiv, z0) ∈ Z : zdiv(0) = div(z0)} ‖ · ‖Z0
= ‖ · ‖Z

Table 4.1
Possible choice of spaces for the application of Theorem 3.1

Here, we use the abbreviation P (I;X,Y ) := L2(I;X)∩(W 1,1(I;Y )) with its dual
P (I;X,Y )∗ = L2(I;X∗) + (W 1,1(I;Y ))∗ for reflexive Banach spaces X,Y such that
X ∩ Y is dense in X,Y . We note that Z0 is well defined, since for (z1, zdiv, z0) ∈ Z
we have zdiv ∈ C([0, T ]; (H

3
2−ε)∗).

Finally, we choose as the space for the domain variations

U := (W1,∞ ∩W1+s,r)(Ωref)

and equip it with its natural norm

‖ · ‖U := ‖ · ‖W1,∞(Ωref ) + ‖ · ‖W1+s,r (Ωref)

for arbitrary but fixed 1 < r < 2 and 0 < s < 1
r from Assumption 2.3.

For the rest of the paper, ε from the definition of Y2 is strictly connected to s, r
via

ε =
3sr

2(sr + 3)
∈ (0,

3

8
).(4.1)

We start with the following observation.
Lemma 4.1. Let Assumption 2.3 hold. Then for any τ̄ ∈ Tad there exists ρ > 0,

such that τ ∈ Tad holds for all τ ∈ U with ‖τ − τ̄‖U < ρ.
Proof. Let τ̄ ∈ Tad and τ ∈ U with ‖τ − τ̄‖U < ρ. We have to show that for ρ > 0

small enough τ(Ωref) is a bounded Lipschitz domain, τ−1 ∈ (W1,∞∩W1+s,r)(τ(Ωref))
and g1(τ) > δ a.e. on Ωref .

Ω := τ̄(Ωref) is a bounded Lipschitz domain by the definition of Tad. By [4,
Lem. 3] there exists ρ′ > 0 such that ‖hτ‖W1,∞(Rd) < ρ′ implies that (id + hτ )(Ω)
is a bounded Lipschitz domain. The same holds after reducing ρ′ > 0 also for
‖hτ‖W1,∞(Ω) < ρ′, since there exists a linear bounded extension operator W1,∞(Ω)→
W1,∞(Rd) for the bounded Lipschitz domain Ω, see e.g. [29, Thm. 5, p. 181].

We have τ(Ωref) = (id + (τ − τ̄) ◦ τ̄−1)(Ω) and hτ := (τ − τ̄) ◦ τ̄−1 satisfies
‖hτ‖W1,∞(Ω) ≤ (1+‖τ̄−1‖W1,∞(Ω))ρ. For ρ > 0 small enough we have ‖hτ‖W1,∞(Ω) <

ρ′ and thus τ(Ωref) is a bounded Lipschitz domain.
Since g1(τ̄) > δ′ a.e. for a δ′ > 0, continuity yields the existence of δ > 0, such

that g1(τ) > δ a.e. after a possible reduction of ρ > 0. Moreover, we have

‖τ(x)−τ(y)‖ ≥ ‖τ̄(x)−τ̄(y)‖−2‖τ−τ̄‖W1,∞(Ωref )‖x−y‖ ≥ (‖τ̄−1‖−1

W1,∞(Ω)
−2ρ)‖x−y‖.
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Hence, possible after reducing ρ > 0 the inverse mapping τ−1 exists and satisfies
τ−1 ∈W1,∞(τ(Ωref)).

Finally, we show that (τ−1)′ ∈Ws,r(τ(Ωref)). Since (τ−1)′(τ(x)) = τ ′(x)−1 and

‖(τ−1)′(τ(x))− (τ−1)′(τ(y))‖ = ‖τ ′(x)−1(τ ′(y)− τ ′(x))τ ′(y)−1‖
≤ ‖τ−1‖2W1,∞(τ(Ωref ))

‖τ ′(x)− τ ′(y)‖

we obtain by using ‖x− y‖ ≤ ‖τ−1‖W1,∞(τ(Ωref ))‖τ(x)− τ(y)‖∫
τ(Ωref )2

‖(τ−1)′(x)− (τ−1)′(y)‖r

‖x− y‖d+sr
dx dy

≤ C‖τ−1‖2rW1,∞(τ(Ωref ))

∫
Ωref

2

‖τ ′(x)− τ ′(y)‖r

‖τ(x)− τ(y)‖d+sr
g1(τ) dx dy

≤ C‖τ−1‖2r+d+sr
W1,∞(τ(Ωref ))

∫
Ωref

2

‖τ ′(x)− τ ′(y)‖r

‖x− y‖d+sr
dx dy

≤ C‖τ−1‖2r+d+sr
W1,∞(τ(Ωref ))

‖τ‖rW1+s,r(Ωref )
.

Remark 4.2.
1. Since in the current section we will only work with the operator formulation

(2.21) on the reference domain Ωref , we will omit Ωref in scalar products,
norms and integrals.

2. Instead of updating constants in every step of an estimate, we will simply use
a generic constant C > 0 and write C(A1, A2, ...), whenever the dependence
on A1, A2, ... is relevant.

With the help of the previously defined spaces we are now able to proof the
following main theorem of this paper.

Theorem 4.3. Let d ∈ {2, 3} and let Assumption 2.3 hold true. Then the
following holds.

i): There exists a neighborhood U ⊂ U of id such that the mapping

τ ∈ U ⊂ U 7→ (v(τ), p(τ)) ∈ Y ↪→
(
L2(I; H1

0(Ωref)) ∩ C(I; L2(Ωref))
)

×
(
L2(I;L2

0(Ωref)) +
(
W 1,1

(
I; clH−1

0
(L2

0(Ωref))
))∗)

is well defined and Fréchet differentiable at τ = id.
ii): For any τ̄ ∈ Tad there exists a neighborhood U ⊂ U of τ̄ such that the mapping

τ ∈ U ⊂ U 7→ (v(τ), p(τ)) ∈ (L2(I; H1
0(Ωref)) ∩ C(I; L2(Ωref)))

×
(
L2(I;L2

0(Ωref)) +
(
W 1,1

(
I; clH−1

0
(L2

0(Ωref))
))∗)

is well defined and Fréchet differentiable at τ = τ̄ .
In i) and ii) the remainder estimate on U depends only on supτ∈U ‖(v(τ), p(τ))‖Y + .

Proof. For i) we apply Theorem 3.1 and Lemma 3.2. The assumptions will be
verified for the spaces in Table 4.1 in Lemmas 4.7–4.15.

For ii) we apply i) on Ω := τ̄(Ωref) instead of Ωref . Since Ω is a bounded Lipschitz
domain by the definition of Tad, we can apply i) with Ω instead of Ωref as reference
domain. Hence, let U(Ω) = (W1,∞∩W1+s,r)(Ω), U(Ω) ⊂ U(Ω) be a sufficiently small
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neighborhood of id and denote by τ̃ ∈ U(Ω) 7→ (v(τ̃ ; Ω), p(τ̃ ; Ω)) ∈ (L2(I; H1
0(Ω)) ∩

C(I; L2(Ω)))×P (I;L2
0(Ω), clH−1

0
(L2

0(Ω)))∗ the mapping in i) with Ω instead of Ωref as

reference domain, which is Fréchet differentiable at τ̃ = id. By the following Lemma
4.5, we find a neighborhood U ⊂ U of τ̄ such that τ ◦ τ̄−1 ∈ U(Ω) for all τ ∈ U and

(v(τ), p(τ)) = (v(τ ◦ τ̄−1; Ω) ◦x τ̄ , P0(Ωref)(p(τ ◦ τ̄−1; Ω) ◦x τ̄))

with the projection P0(Ωref) in (2.6), since both, (v(τ), p(τ)) ◦x τ−1 as well as (v(τ ◦
τ̄−1; Ω), p(τ ◦ τ̄−1; Ω))◦x (τ̄ ◦τ−1), are the same solution of the Navier-Stokes equations
on τ(Ωref) modulo a constant in the pressure. Furthermore, the mapping τ ∈ U 7→
τ ◦ τ̄−1 ∈ U(Ω) is in L(U,U(Ω)) and

v ∈ L2(I; H1
0(Ω)) ∩ C(I; L2(Ω)) 7→ v ◦x τ̄ ∈ L2(I; H1

0(Ωref)) ∩ C(I; L2(Ωref))

is obviously linear and bounded. Finally, the mapping

p ∈ P (I;L2
0(Ω), clH−1

0
(L2

0(Ω)))∗ 7→ Ap ∈ P (I;L2
0(Ωref), clH−1

0
(L2

0(Ωref)))
∗,

〈Ap,w〉P (I;L2
0(Ωref ),cl

H
−1
0

(L2
0(Ωref )))∗,P (I;L2

0(Ωref ),cl
H
−1
0

(L2
0(Ωref )))

:= lim
k→∞

〈p, g1(τ̄−1)wk ◦x τ̄−1〉P (I;L2
0(Ω),cl

H
−1
0

(L2
0(Ω)))∗,P (I;L2

0(Ω),cl
H
−1
0

(L2
0(Ω))),

where (wk)k∈N ∈W 1,1(I;L2
0(Ωref)) denotes an arbitrary sequence satisfying

‖wk − w‖P (I;L2
0(Ωref ),cl

H
−1
0

(L2
0(Ωref ))) → 0 as k →∞,

is also linear and bounded and by construction p(τ ◦ τ̄−1; Ω) ∈ L2(I;L2
0(Ω)) yields

Ap(τ ◦ τ̄−1; Ω) = P0(Ωref)(p(τ ◦ τ̄−1; Ω) ◦x τ̄) = p(τ).

Thus, the concatenation of Fréchet differentiable and linear continous mappings yields
the Fréchet differentiability of τ 7→ (v(τ), p(τ)) at τ = τ̄ in the correct spaces.

Remark 4.4. For technical reasons in the proof of Lemma 4.9 we restrict our-
selves to prove Theorem 4.3 for 0 < s < 1

r with 1 < r < 2, since this immediately
yields Theorem 4.3 for arbitrary s > 0, r > 1.

Lemma 4.5. Let Assumption 2.3 hold and let τ̄ ∈ Tad. Then there exists a
constant C > 0 such that for all v ∈ (W1,∞ ∩W1+s,r)(Ωref)

‖v ◦ τ̄−1‖(W1,∞∩W1+s,r)(τ̄(Ωref )) ≤ C‖v‖(W1,∞∩W1+s,r)(Ωref ).

Proof. By the definition of Tad the set Ω := τ̄(Ωref) is a bounded Lipschitz domain
and τ̄ ∈ (W1,∞ ∩W1+s,r)(Ωref), τ̄

−1 ∈ (W1,∞ ∩W1+s,r)(Ω). Therefore it is easy to
see that there exists C > 0 such that for all v ∈ (W1,∞ ∩W1+s,r)(Ωref)

‖v ◦ τ̄−1‖(W1,∞∩W1,r)(τ̄(Ωref )) ≤ C‖v‖(W1,∞∩W1,r)(Ωref ).

We have ∇(v ◦ τ̄−1)T = v′ ◦ τ̄−1 · (τ̄−1)′ and therefore

‖∇(v ◦ τ̄−1)(x)−∇(v ◦ τ̄−1)(y)‖ ≤ ‖τ̄−1‖W1,∞(Ω)‖v
′ ◦ τ̄−1(x)− v′ ◦ τ̄−1(y)‖

+ ‖v‖W1,∞(Ωref )‖(τ̄
−1)′(x)− (τ̄−1)′(y)‖.
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Hence,∫
Ω

2

‖∇(v ◦ τ̄−1)(x)−∇(v ◦ τ̄−1)(y)‖r

‖x− y‖d+sr
dx dy ≤ C

(
‖v‖rW1,∞(Ωref )

‖τ̄−1‖rW1+s,r(Ωref )

+ ‖τ̄−1‖r
W1,∞(Ω)

∫
Ωref

2

g1(τ̄)
‖v′(x)− v′(y)‖r

‖τ̄(x)− τ̄(y)‖d+sr
dx dy

)
≤ C

(
‖v‖rW1,∞(Ωref )

‖τ̄−1‖rW1+s,r(Ωref )
+ ‖τ̄−1‖r+d+sr

W1,∞(Ω)
‖v‖rW1+s,r(Ωref )

)
,

where we have used that

‖x− y‖ = ‖τ̄−1(τ̄(x))− τ̄−1(τ̄(y))‖ ≤ ‖τ̄−1‖W1,∞(Ω)‖τ̄(x)− τ̄(y)‖.

4.2. Uniform boundedness of the state variables. We start by showing
that v(τ) and p(τ) are uniformly bounded in a neighborhood of τ = id with respect
to ‖ · ‖Y + .

Lemma 4.6. Let d ∈ {2, 3} and let Assumption 2.3 hold. Let (v, p) be the solution
of (2.21) for τ ∈ Tad. Then there exist ρ, Cy > 0 with

‖τ − id‖W1,∞(Ωref ) < ρ =⇒
‖v‖C(I;H1

0) + ‖vt‖L2(I;H1
0) + ‖vt‖L∞(I;L2) + ‖p‖L2(I;L2

0) ≤ Cy,
(4.2)

i.e. it holds ‖(v(τ), p(τ))‖Y + ≤ Cy uniformly for all τ ∈ Tad with ‖τ − id‖U ≤ ρ.
Proof. The assertion for the velocity can be verified by analyzing the proofs of the

regularity of the states (see e.g. [30]) because the bounds of the norms depend only on

the data f̃ , ṽ0, ν and the dimension d. From this also the bound for the pressure can
be obtained as in the proof of Lemma 2.2 (even the boundedness of ‖p‖L∞(I;L2

0) can
be shown) and by using the fact that the inverse of the gradient operator is uniformly
bounded with respect to small W1,∞-perturbations of Lipschitz domains.

4.3. Differentiability of E with respect to domain variations. In the
following we will prove assumption 1 of Theorem 3.1, i.e. the Fréchet differentiability
of E((v, p), ·) : U → Z at τ = id.

Lemma 4.7. Let d ∈ {2, 3} and let Assumption 2.3 hold. Then there exists a
linearized operator Eτ (·, id) : Y + → L(U,Z), such that

‖E((v, p), τ)− E((v, p), id)− Eτ ((v, p), id)[τ − id]‖Z = o(‖τ − id‖W1,∞(Ωref ))

holds true for ‖τ − id‖W1,∞(Ωref ) → 0 uniformly for all (v, p) ∈ Y + with ‖(v, p)‖Y + ≤
Cy.

Proof. Formal linearization yields for Eτ ((v, p), id)[hτ ] with arbitrary hτ ∈ U and
(v, p) ∈ Y + the candidat

〈(w, q, w0), Eτ ((v(t), p(t)), id)[hτ ]〉H1
0×L2

0×L2,(H1
0×L2

0×L2)∗

:= (vt(t), g
′
1(id)[hτ ]w)L2 + ν(∇v(t), g′2(id)[hτ ]∇w)L2 + b̂(v(t), v(t), w, g′3(id)[hτ ])

+ (p(t), tr(g′3(id)[hτ ]∇w))L2
0
−
(
d
dτ (f̃(t) ◦x τ det τ ′)|τ=id[hτ ], w

)
H−1,H1

0

(4.3)

+ (q, tr(g′3(id)[hτ ]∇v(t)))L2
0
−
(
d
dτ (ṽ0(τ(·)))|τ=id[hτ ], w0

)
L2 ,
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for all w ∈ H1
0(Ωref), q ∈ L2

0(Ωref), w0 ∈ L2(Ωref) and for a.a. t ∈ I. Thus, with
S(t) := (v(t), p(t)) and ri(τ, id) := gi(τ) − gi(id) − g′i(id)[τ − id] for i = 1, 2, 3, the
remainder is given by〈

(w, q, w0), E(S(t), τ)− E(S(t), id)− Eτ (S(t), id)[τ − id]
〉
H1

0×L2
0×L2,(H1

0×L2
0×L2)∗

= (vt(t), r1(τ, id)w)L2 + ν(∇v(t), r2(τ, id)∇w)L2 + b̂(v(t), v(t), w, r3(τ, id))

+ (p(t), tr(r3(τ, id)∇w))L2
0

+ (q, tr(r3(τ, id)∇v(t)))L2
0

−
(
f̃(t) ◦x τ det τ ′ − f̃(t)− d

dτ (f̃(t) ◦x τ det τ ′)|τ=id(τ − id), w
)
H−1,H1

0

−
(
ṽ0(τ(·))− ṽ0 − d

dτ (ṽ0(τ(·)))|τ=id(τ − id), w0

)
L2 .

for all w ∈ H1
0(Ωref), q ∈ L2

0(Ωref), w0 ∈ L2(Ωref) and for a.a. t ∈ I.
Since L2(I; H−1) ↪→ L2(I;V ∗) ∩ P (I; H1

0,L
2)∗, it is sufficient to estimate each

term involved in the left hand side of the momentum equation in L2(I; H−1). Using
‖ri(τ, id)‖L∞ = o(‖τ − id‖W1,∞(Ωref )) for i = 1, 2, 3 and L2 ↪→ H−1, we obtain

‖vtr1(τ, id)‖L2(I;L2) ≤ ‖vt‖L2(I;L2)o(‖τ − id‖W1,∞(Ωref )),

‖ν(∇vi, r2(τ, id)∇(·))‖L2(I;H−1) ≤ ν‖v‖L2(I;H1
0)o(‖τ − id‖W1,∞(Ωref )),

‖b̂I(v, v, ·, r3(τ, id))‖L2(I;H−1) ≤ ‖v‖L∞(I;H1
0)‖v‖L2(I;H1

0)o(‖τ − id‖W1,∞(Ωref )),

‖(p, tr(r3(τ, id)∇·))‖L2(I;H−1) ≤ ‖p‖L2(I;L2
0)o(‖τ − id‖W1,∞(Ωref )),

where we have made use of Hölder’s inequality and Lemma 2.7. Because of the
regularity of f̃ in Assumption 2.3 we have∥∥∥f̃ ◦x τ det τ ′ − f̃ − d

dτ (f̃ ◦x τ det τ ′)|τ=id(τ − id)
∥∥∥
L2(I;H−1)

= o(‖τ − id‖W1,∞(Ωref )),

which overall shows the differentiability of the terms involved in the momentum equa-
tion in the correct space.

Concerning the term arising from the divergence equation it holds

‖ tr(r3(τ, id)∇v)‖L2(I;L2
0) ≤ ‖v‖L2(I;H1

0)o(‖τ − id‖W1,∞(Ωref ))

‖ tr(r3(τ, id)∇vt)‖L2(I;(H3/2−ε)∗) ≤ C‖ tr(r3(τ, id)∇vt)‖L2(I;L2)

≤ ‖vt‖L2(I;H1
0)o(‖τ − id‖W1,∞(Ωref )).

Due to the regularity assumptions of ṽ0 we have

‖ṽ0(τ(·))− ṽ0 − d
dτ (ṽ0(τ(·)))|τ=id(τ − id)‖L2 = o(‖τ − id‖W1,∞(Ωref )),

which finally proves

‖E((v, p), τ)− E((v, p), id)− Eτ ((v, p), id)[τ − id]‖Z = o(‖τ − id‖W1,∞(Ωref ))

for ‖τ − id‖W1,∞(Ωref ) → 0 uniformly for all (v, p) ∈ Y + with ‖(v, p)‖Y + ≤ Cy.
By using exactly the same estimates as in the above estimate of the remainder,

but with o(‖τ − id‖W1,∞(Ωref )) replaced by O(‖hτ‖W1,∞(Ωref )), we obtain also the
continuity result ‖Eτ ((v̄, p̄), id)hτ‖Z = O(‖hτ‖W1,∞(Ωref )).
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4.4. Differentiability property of E with respect to the state variables.
Next we prove that the linearization of E with respect to the state variables satisfies
the remainder estimate of assumption 2 of Theorem 3.1.

Lemma 4.8. For d ∈ {2, 3} there exists a linearized operator Ey : Y + × U →
L(Y +, Z), such that for all τ ∈ U with ‖τ − id‖W1,∞(Ωref ) sufficiently small and all
ȳ := (v̄, p̄), y := (v, p) ∈ Y + with ‖ȳ‖Y + , ‖y‖Y + ≤ Cy it holds

‖E(y, τ)− E(ȳ, τ)− Ey(ȳ, τ)[y − ȳ]‖Z ≤ C‖y − ȳ‖Y2‖y − ȳ‖Y1 ,

with a constant C > 0 independent of y, ȳ, τ.
Proof. Clearly, for an arbitrary direction h := (hv, hp) ∈ Y + the candidat for the

linearization Ey(ȳ, τ)[h] is given by

(4.4)

〈(w, q, w0), Ey((v̄(t), p̄(t)), τ)[h]〉H1
0×L2

0×L2,(H1
0×L2

0×L2)∗

:= ((hv(t))t, g1(τ)w)L2 + ν(∇hv(t), g2(τ)∇w)L2 + b̂(hv(t), v̄(t), w, g3(τ))

+ b̂(v̄(t), hv(t), w, g3(τ)) + (hp(t), tr(g3(τ)∇w))L2
0

+ (q, tr(g3(τ)∇hv(t)))L2
0

+ (w0, h
v(·, 0))L2

for all w ∈ H1
0(Ωref), q ∈ L2

0(Ωref), w0 ∈ L2(Ωref) and for a.a. t ∈ I.
The boundedness of the linearized operator Ey(ȳ, τ) from Y + to Z is easily

checked, such that we only show the remainder estimate. Since E is linear with
respect to the state variables in every term except the nonlinearity b̂, the only non-
vanishing term in the remainder is given by

b̂I(v, v, ·, g3(τ))− b̂I(v̄, v̄, ·, g3(τ))− b̂I(v − v̄, v̄, ·, g3(τ))− b̂I(v̄, v − v̄, ·, g3(τ))

= b̂I(v − v̄, v − v̄, ·, g3(τ)).

By utilizing Hölder’s inequality with 5
6 = 1

3 + 1
2 and L

6
5 ↪→ H−1 we obtain

‖b̂I(v − v̄, v − v̄, ·, g3(τ))‖L2(I;H−1) ≤ C‖g3(τ)‖L∞‖v − v̄‖L∞(I;L3)‖∇(v − v̄)‖L2(I;L2)

≤ C‖v − v̄‖L∞(I;L3)‖v − v̄‖L2(I;H1
0),

which concludes the proof, since L2(I; H−1) ↪→ L2(I;V ∗) ∩ P (I; H1
0,L

2)∗.

4.5. Lipschitz estimate of Ey. In this subsection, we prove the Lipschitz type
estimate of Ey stated in assumption 3 of Theorem 3.1.

Lemma 4.9. Let d ∈ {2, 3} and let Assumption 2.3 hold. Denote by ȳ := (v̄, p̄)
the solutions of (2.21) for τ = id. Then for all e = (ev, ep) ∈ Y + with ‖e‖Y + ≤ 2Cy
the linearized operator Ey(ȳ, id) ∈ L(Y +, Z) from (4.4) satisfies

‖(Ey(ȳ, τ)− Ey(ȳ, id))[e]‖Z ≤ C‖τ − id‖(W1,∞∩W1+s,r)(Ωref )‖e‖Y2
,

as ‖τ − id‖(W1,∞∩W1+s,r)(Ωref ) → 0.
Proof. By (4.4), (Ey(ȳ, τ)− Ey(ȳ, id))[e] is given by

(4.5)

〈(w, q, w0), (Ey(ȳ(t), τ)− Ey(ȳ(t), id))[e(t)]〉H1
0×L2

0×L2,(H1
0×L2

0×L2)∗

= ((ev(t))t, (g1(τ)− g1(id))w)L2 + ν(∇ev(t), (g2(τ)− g2(id))∇w)L2

+ b̂(ev(t), v̄(t), w, (g3(τ)− g3(id))) + b̂(v̄(t), ev(t), w, (g3(τ)− g3(id)))

+ (ep(t), tr((g3(τ)− g3(id))∇w))L2
0

+ (q, tr((g3(τ)− g3(id))∇ev(t)))L2
0
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for all w ∈ H1
0(Ωref), q ∈ L2

0(Ωref), w0 ∈ L2(Ωref) and for a.a. t ∈ I.
Since L2(I; H−1) ↪→ L2(I;V ∗) ∩ P (I; H1

0,L
2)∗, it is again sufficient to estimate

the terms of the momentum equation in L2(I; H−1). By using ‖gi(τ) − gi(id)‖L∞ =
O(‖τ − id‖W1,∞(Ωref )) for i = 1, 2, 3 and L2 ↪→ H−1, we have for the first two terms
on the right hand side of (4.5)

‖(evt , (g1(τ)− g1(id))·)‖L2(I;H−1) + ‖ν(∇ev, (g2(τ)− g2(id))∇(·))‖L2(I;H−1)

≤ C
(∥∥(g1(τ)− g1(id))T evt

∥∥
L2(I;L2)

+
∥∥ν(g2(τ)− g2(id))T∇ev

∥∥
L2(I;L2)

)
≤ C‖τ − id‖W1,∞(Ωref )

(
‖evt ‖L2(I;H1−ε

0 ) + ‖ev‖L2(I;H1
0)

)
,

where ε ∈ (0, 3
8 ) is given by (4.1). Furthermore, by using H1

0 ↪→ L6, L
6
5 ↪→ H−1 and

Hölder’s inequality with 5
6 = 1

3 + 1
2 + 1

∞ the trilinear terms satisfy∥∥∥b̂I(ev, v̄, ·, (g3(τ)− g3(id))) + b̂I(v̄, e
v, ·, (g3(τ)− g3(id)))

∥∥∥
L2(I;H−1)

≤ C
(
‖∇v̄‖L∞(I;L2)‖ev‖L2(I;L3) + ‖v̄‖L∞(I;L3)‖∇ev‖L2(I;L2)

)
‖g3(τ)− g3(id)‖L∞

≤ C‖v̄‖L∞(I;H1
0)‖ev‖L2(I;H1)‖τ − id‖W1,∞(Ωref ).

The remaining term arising from the momentum equation can be estimated via

‖(ep, tr((g3(τ)− g3(id))∇·))‖L2(I;H−1) ≤ C‖τ − id‖W1,∞(Ωref ) ‖e
p‖L2(I;L2

0) .

In order to conclude the proof, we have to estimate the term arising from the
divergence equation. To this end, we start with the obvious estimate

‖ tr((g3(τ)− g3(id))∇ev)‖L2(I;L2
0) ≤ C‖τ − id‖W1,∞(Ωref ) ‖e

v‖L2(I;H1
0) ,

such that it remains to consider ‖ tr((g3(τ)− g3(id))∇evt )‖L2(I;(H3/2−ε)∗).

Fix i ∈ {1, . . . , d} and let aT := (ei)T (g3(τ) − g3(id)), with ei denoting the i-
th unit vector. If evi denotes the i-th component of ev we thus have to estimate
‖aT∇(evi )t‖L2(I;(H3/2−ε)∗).

The divergence operator div ∈ L(H1(Ωref), L
2(Ωref)) can be extended to the

bounded operator div ∈ L(L2(Ωref), H
−1(Ωref)) via

〈divv, w〉H−1(Ωref ),H1
0 (Ωref ) = −(v,∇w)L2(Ωref ),L2(Ωref ) ∀w ∈ H1

0 (Ωref).

Using the characterization of Bessel potential spaces via complex interpolation, cf.
[15, Thm 3.1], one obtains

Hε = [L2,H1]ε, H1−ε
0 = [L2, H1

0 ]1−ε

and [31, Section 1.11.3 and 1.9.3] yield

H−1+ε =
(
H1−ε

0

)∗
= [L2, H−1]1−ε = [H−1, L2]ε.

Hence, complex interpolation gives

div ∈ L
(
[L2,H1]ε, [H

−1, L2]ε
)

= L
(
Hε, H−1+ε

)
.
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Since ev and thus evt vanish on the boundary, and ∇evt ∈ L2(I; L2) we obtain

(4.6)
〈w, aT∇(evi )t〉H 3

2
−ε,(H

3
2
−ε)∗

= (wa,∇(evi )t)L2 ≤ ‖div(wa)‖H−1+ε‖(evi )t‖H1−ε
0

≤ C‖wa‖Hε‖(evi )t‖H1−ε
0

∀w ∈ H3/2−ε(Ωref).

Since Ωref is a bounded Lipschitz domain, the extension by zero operator E0 :
Wα,q(Ωref) → Wα,q(Rd) is bounded for 0 ≤ α < 1

q , 1 < q < ∞, see e.g. [1, Section

14.5]. Furthermore, since on the bounded Lipschitz domain Ωref the Bessel potential
spaces Hα(Ωref) and the Sobolev Slobodeckij spaces Wα,2(Ωref) are equivalent for all
α > 0, cf. [31, Thm. 2.3.2 (d) and Rem. 4.4.2.2], and also Wα,2(Rd) = Hα(Rd), the
definition of the Sobolev Slobodeckij norm immediately yields

(4.7) ‖wa‖Hε(Ωref ) ≤ C‖wa‖Wε,2(Ωref ) ≤ C‖E0wE0a‖Wε,2(Rd) ≤ C‖E0wE0a‖Hε(Rd).

Now let 1 < r < 2 and 0 < s < 1
r as in Assumption 2.3 and define ε ∈ (0, 3

8 ) according

to (4.1). Then ε = θs ∈ (0, 3
8 ) with θ :=

3
2 r

sr+3 ∈ ( 3
8 , 1). By the Sobolev embedding

theorem we have for d = 2, 3

H
3
2−ε(Ωref) ↪→ Lη(Ωref) with η :=

3

ε
.

Since 1
η + θ

r = 1
2 , the Runst-Sickel Lemma [8, Lem. 6] yields

‖E0wE0a‖Hε(Rd)

≤ C(‖E0a‖L∞(Rd)‖E0w‖Hε(Rd) + ‖E0w‖Lη(Rd)‖E0a‖θWs,r(Rd)‖E0a‖1−θL∞(Rd)
)

≤ C‖w‖H3/2−ε(Ωref )(‖a‖L∞(Ωref ) + ‖a‖Ws,r(Ωref )),

where we have used ε < 1
2 and thus ‖E0w‖Hε(Rd) ≤ C‖w‖Hε(Ωref ) ≤ C‖w‖H 3

2
−ε(Ωref )

.

Combining this with (4.6) and (4.7) we have shown that

‖aT∇(evi )t‖L2(I;(H3/2−ε)∗) ≤ C(‖a‖L∞ + ‖a‖Ws,r )‖(evi )t‖L2(I;H1−ε
0 ).

Finally, there exists ρ > 0 such that |a(x)− a(y)| = |g3(τ)(x)− g3(τ)(y)| ≤ L‖τ ′(x)−
τ ′(y)‖ on ‖τ − id‖W1,∞(Ωref ) < ρ with Lipschitz constant L for all x, y ∈ Ωref . Hence,

‖a‖rWs,r = ‖g3(τ)− g3(id)‖rWs,r

= ‖g3(τ)− g3(id)‖rLr +

∫
Ω2

ref

|g3(τ(x))− g3(τ(y))|r

|x− y|d+sr
dx dy

≤ C‖τ − id‖rW1,r + Lr
∫

Ω2
ref

‖τ ′(x)− τ ′(y))‖r

|x− y|d+sr
dx dy ≤ C‖τ − id‖rW1+s,r ,

and with ‖a‖L∞ ≤ ‖g3(id) − g3(τ)‖L∞ ≤ C‖τ − id‖W1,∞ as ‖τ − id‖W1,∞(Ωref ) → 0
we arrive at

‖ tr((g3(τ)− g3(id))∇evt )‖L2(I;(H3/2−ε)∗)

≤ C‖τ − id‖(W1,∞∩W1+s,r)(Ωref )‖e
v
t ‖L2(I;H1−ε

0 ),

which concludes the proof.
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4.6. Bogovskĭı’s operator. In order to verify assumption assumption 5 of
Theorem 3.1 or more generally assumption 6 of Lemma 3.2, we have to show that
Ey(ȳ, id) ∈ L(Y +, Z) admits a bounded inverse Ey(ȳ, id)−1 ∈ L(Z0, Y ) and that
the averaged derivative A(y, ȳ) ∈ L(Y +, Z) admits a bounded inverse A(y, ȳ)−1 ∈
L(Z0, Y ), respectively. Thus, we have to invert a linearized Navier-Stokes equation
with nonhomogeneous right hand side in the divergence equation.

In order to deal with low domain and data regularities, we use Bogovskĭı’s operator
to obtain a particular solution of the divergence equation and obtain then a standard
linearized Navier-Stokes equations for solenoidal velocity fields that can be handled
by standard techniques. Bogovskĭı’s operator is an antiderivative of the divergence
operator and admits the following useful stability estimates that have been shown by
Geissert, Heck and Hieber [14].

Lemma 4.10. Let d ∈ {2, 3} and Ω ⊂ Rd be a bounded Lipschitz domain. Then
there exists a continuous linear operator B : L2

0(Ω)→ H1
0 (Ω)d such that div(Bf) = f

for all f ∈ L2
0(Ω). Moreover, B can be extended continuously to a bounded operator

B : Hα
0 (Ω) → Hα+1

0 (Ω)d for −3/2 < α < 0. Here, for α > 0 the space H−α0 (Ω) is
defined by H−α0 (Ω) = Hα(Ω)∗.

Proof. The proof is given in [14].
To deal now with the divergence equation in the construction of Ey(ȳ, id)−1 ∈

L(Z0, Y ) or more generally of A(y, ȳ)−1 ∈ L(Z0, Y ) we will use the operator

D : Z → Y, D(z1, zdiv, z0) := (Bzdiv, 0) ,(4.8)

where B denotes the Bogovskĭı operator of Lemma 4.10.
Lemma 4.11. Let d ∈ {2, 3} and let Assumption 2.3 hold. Then the operator D

in (4.8) is bounded, i.e. D ∈ L(Z, Y ), and for all z = (z1, zdiv, z0) ∈ Z the image
(v, p) = Dz ∈ Y satisfies div v = zdiv.

Proof. Recall that for z = (z1, zdiv, z0) ∈ Z we have Dz = (Bzdiv, 0). Then
Lemma 4.10 immediately yields

‖Bzdiv‖L2(I;H1
0) ≤ C‖zdiv‖L2(I;L2

0)

and due to (H
1
2−ε)∗ ↪→ (H1)∗ ↪→ H−1, we also have

‖(Bzdiv)t‖L2(I;H−1) ≤ C‖B(zdiv)t‖
L2(I;(H

1
2
−ε)∗)

≤ C‖(zdiv)t‖
L2(I;(H

3
2
−ε)∗)

,

which proves D ∈ L(Z,W (I; H1
0) × {0}) and thus D ∈ L(Z, Y ). Finally divBzdiv =

zdiv follows from Lemma 4.10.

4.7. Invertibility of Ey. In the following Lemmas 4.12 and 4.14 we show as-
sumption 6 of Lemma 3.2, which also directly implies assumption 5 of Theorem 3.1.

Lemma 4.12. Let d ∈ {2, 3} and let Assumption 2.3 hold. Let ȳ := (v̄, p̄) be the
solution of (2.21) for τ = id and let Ey(·, id) : Y + → L(Y +, Z) denote the partial
derivative from (4.4). Then y ∈ Y + 7→ Ey(y, id) ∈ L(Y +, Z) is continuous and the
averaged partial derivative

A(y, ȳ) :=

∫ 1

0

Ey(ȳ + t(y − ȳ), id) dt ∈ L(Y +, Z)

admits an inverse A(y, ȳ)−1 ∈ L(Z0, Y ) that is uniformly bounded for all y ∈ Y + with
‖y‖Y + ≤ Cy.
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To prove this lemma, we have to consider an equation of the form

A(y, ȳ)(hv, hp) = (z1, zdiv, z0)

with z = (z1, zdiv, z0) ∈ Z0. We now make the ansatz

(hv, hp) = Dz + (hv0, h
p) = (Bzdiv, 0) + (hv0, h

p),

which leads to a standard linearized Navier-Stokes equation

A(y, ȳ)(hv0, h
p) = (id−A(y, ȳ)D)z ∈ Z0,h := {(z̃1, 0, z̃0) ∈ Z0 : z̃0 ∈ H}

that can be handled by standard techniques. In other words, we show that A(y, ȳ)−1 ∈
L(Z0, Y ) can be obtained by

A(y, ȳ)−1 = D +A(y, ȳ)−1(id−A(y, ȳ)D),

where A(y, ȳ)−1 on the right hand side is the standard solution operator for the
linearized Navier-Stokes equation with solenoidal velocity field.

To prepare the proof of Lemma 4.12, we start with the following auxiliary result.
Lemma 4.13. Let the assumptions of Lemma 4.12 hold and define the Banach

space

Z0,h := {(z1, 0, z0) ∈ Z0 : z0 ∈ H}, ‖ · ‖Z0,h
:= ‖ · ‖Z0 .

Then the operators id−Ey(y, id)D ∈ L(Z0, Z0,h) and id−A(y, ȳ)D ∈ L(Z0, Z0,h) are
uniformly bounded for all y ∈ Y + with ‖y‖Y + ≤ Cy, where Cy denotes the constant
from Lemma 4.2.

Proof. Choose an arbitrary Cy > ‖ȳ‖Y + . Since Ey(·, id) depends only linearly
on v we have A(y, ȳ) = Ey((y + ȳ)/2, id) for all y ∈ Y +. It is therefore enough to
consider Ey(y, id) for any y ∈ Y + with ‖y‖Y + ≤ Cy.

We have Z = Z1 × Z2 × L2 with Z1 =
(
L2(I;V ∗) ∩ P (I; H1

0,L
2)∗
)
, Z2 =(

L2(I;L2
0) ∩H1(I; (H

3
2−ε)∗)

)
, see Table 4.1.

We show first that Ey(y, id)D ∈ L(Z,Z) is uniformly bounded and start to
consider the divergence component of z 7→ Ey(y, id)Dz., which is given by z 7→
div(Bzdiv) = zdiv and is thus clearly in L(Z,Z2). For the initial condition component
z ∈ Z 7→ (Bzdiv)(·, 0) we obtain the estimate

‖(Bzdiv)(·, 0)‖L2 ≤ ‖Bzdiv‖C(I;L2) ≤ C‖Dz‖W (I;H1
0)×{0} ≤ C‖z‖Z ,

since D ∈ L(Z, Y ) by Lemma 4.11 and thus this component is in L(Z,L2).
It remains to consider the momentum component of z 7→ Ey(y, id)Dz. Since

L2(I; H−1) ↪→ L2(I;V ∗) ∩ P (I; H1
0, L

2)∗ = Z2, it is sufficient to estimate each term

in the L2(I; H−1)-norm. Using H
− 1

2 +ε
0 ↪→ H−1 we obtain

‖(Bzdiv)t −∆(Bzdiv) + bI(v,Bzdiv, ·) + bI(Bzdiv, v, ·)‖L2(I;H−1)

≤ C ·
(
‖(Bzdiv)t‖

L2(I;H
− 1

2
+ε

0 )
+ ‖Bzdiv‖L2(I;H1

0) + ‖v‖L∞(I;H1
0)‖Bzdiv‖L2(I;H1

0)

)
≤ C ·

(
‖(zdiv)t‖

L2(I;H
− 3

2
+ε

0 )
+
(
1 + ‖v‖L∞(I;H1

0)

)
‖zdiv‖L2(I;L2

0)

)
≤ C‖z‖Z
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with a constant C > 0 depending only on ‖y‖Y + . Hence, this component is uni-
formly bounded in L(Z,L2(I; H−1)) ↪→ L(Z,Z2) and thus the uniform boundedness
of Ey(y, id)D ∈ L(Z,Z) is shown.

It remains to show that id−Ey(y, id)D ∈ L(Z0, Z0.h). Let z = (z1, zdiv, z0) ∈ Z0

be arbitrary and set z̃ = (z̃1, z̃div, z̃0) := (id− Ey(y, id)D)z. Then

z̃div = zdiv − divBzdiv = zdiv − zdiv = 0

z̃0 = z0 − (Bzdiv)(0), div z̃0 = div z0 − zdiv(0) = 0,

where the last equality follows from z ∈ Z0. This shows that z̃ ∈ Z0,h.
Proof. (of Lemma 4.12) As observed in the previous proof we have A(y, ȳ) =

Ey((y + ȳ)/2, id). Hence, A(y, ȳ) ∈ L(Y +, Z) is obvious and it is enough to consider
Ey(y, id) for any y ∈ Y + with ‖y‖Y + ≤ Cy.

We proceed as sketched above. Consider

Ey(y, id)(hv, hp) = (z1, zdiv, z0)

for arbitrary z = (z1, zdiv, z0) ∈ Z0. With D ∈ L(Z, Y ) in Lemma 4.11 we make the
ansatz

(hv, hp) = Dz + (hv0, h
p),

which leads to

Ey(y, id)(hv0, h
p) = (id− Ey(y, id)D)z =: z̃ = (z̃1, 0, z̃0) ∈ Z0,h,

since id− Ey(y, id)D ∈ L(Z0, Z0,h) by Lemma 4.13.
Hence, we have to show that Ey(y, id)−1 ∈ L(Z0,h, Y ). This can be obtained by

standard techniques, since z̃0 ∈ H and z̃1 ∈ L2(I;V ∗)∩P (I; H1
0,L

2)∗ by the definition
of Z0,h. In fact, by using solenoidal test functions and the incompressibility condition,
the existence of a unique hv0 ∈W (I;V ) with hv0(0) = z̃0 is well known. More precisely,
the proof of [17, Proposition 2.1] also holds true for dimension d = 3, since ‖y‖Y + ≤ Cy
implies that the velocity component is uniformly bounded in L∞(I; L3) ∩ L4(I; H1

0).
Hence, the proof of [17, Proposition 2.1] yields the invertibility of Ey(y, id) with the
estimate ‖hv0‖W (I;V ) ≤ C‖z̃‖Z0,h

≤ C‖z‖Z0
for the velocity component.

The uniqueness and P (I;L2
0, clH−1

0
(L2

0))∗-regularity of the pressure component

hp can be obtained similarly as in [30, p. 307-308] by utilizing that the linearized
equation holds in the sense of distributions. In fact, for ϕ ∈ C∞0 (Ω × [0, T )) with
divϕ(t) = 0, t ∈ [0, T ), an analogue of (2.10) holds for hv. Using a test function
ϕ ∈ C∞0 (Ω × [0, T ]) in the momentum equation yields by using hv ∈ W (I;V ) ↪→
C([0, T ];H) after integration by parts in time

〈hp,divϕ〉P (I;L2
0,cl

H
−1
0

(L2
0))∗,P (I;L2

0,cl
H
−1
0

(L2
0))

= −〈hv0, ϕt〉L∞(I;L2),L1(I;L2) + (hv0(T ), ϕ(T ))L2 − (z̃0, ϕ(0))L2 + ν(∇hv0,∇ϕ)L2(I;L2)

+ bI(v, h
v
0, ϕ) + bI(h

v
0, v, ϕ)− 〈z̃1, ϕ〉P (I;H1

0,L
2)∗,P (I;H1

0,L
2)

≤ C(‖v‖Y +)(‖hv0‖W (I;V ) + ‖z̃‖Z0
)‖ϕ‖P (I;H1

0,L
2) ≤ C‖z‖Z0

‖ϕ‖P (I;H1
0,L

2).

For ϕ ∈ C∞0 (Ω × I) this follows by the calculus of distributions. The extension to
ϕ ∈ C∞0 (Ω× [0, T ]) can be shown by using hv ∈W (I;V ) ↪→ C([0, T ];H).

By the above estimate the right hand side of the equality can be extended uniquely
to an element in P (I; H1

0,L
2)∗ and thus to test functions ϕ ∈ P (I; H1

0,L
2), since
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C∞0 (Ω×[0, T ]) is dense in P (I; H1
0,L

2). Since div : P (I; H1
0,L

2)→ P (I;L2
0, clH−1

0
(L2

0))

is bounded and surjective (see below), we see that hp ∈ P (I;L2
0, clH−1

0
(L2

0))∗ is

uniquely determined and ‖hp‖P (I;L2
0,cl

H
−1
0

(L2
0))∗ ≤ C‖z‖Z0 .

It remains to show that div : P (I; H1
0,L

2)→ P (I;L2
0, clH−1

0
(L2

0)) is bounded and

surjective. For the boundedness we note that C1([0, T ]; H1
0) is dense in P (I; H1

0,L
2)

and div : (C1([0, T ]; H1
0), ‖ · ‖P (I;H1

0,L
2)) 7→ (C1([0, T ];L2

0), ‖ · ‖P (I;L2
0,cl

H
−1
0

(L2
0))) is

bounded. The surjectivity follows by the choice ϕ(t) = Bq(t) and thus divϕ = q with
q ∈ P (I;L2

0, clH−1
0

(L2
0)) and the Bogovskĭı operator B ∈ L(H−1

0 ,L2)∩L(L2,H1
0) from

Lemma 4.10.
For the proof of the continuity of y ∈ Y + 7→ Ey(y, id) ∈ L(Y +, Z) we observe that

in Ey(y1, id) − Ey(y2, id) only the trilinar forms give a contribution, since all linear
terms cancel out. Therefore, let v1, v2 ∈ H1(I; H1

0) ↪→ L∞(I; H1
0) and v0 ∈W (I; H1

0)
be arbitrarily given. Since L2(I; H−1) ↪→ L2(I;V ∗) ∩ P (I; H1

0, L
2)∗ and

‖bI(v1 − v2, v0, ·) + bI(v0, v1 − v2, ·)‖L2(I;H−1) ≤ C‖v1 − v2‖L∞(I;H1
0)‖v0‖L2(I;H1

0),

the continuity of y ∈ Y + 7→ Ey(y, id) ∈ L(Y +, Z) follows.
To complete the proof of assumption 6 of Lemma 3.2 we show finally
Lemma 4.14. Let the assumptions of Lemma 4.12 hold. Then we have Eτ (ȳ, id) ∈

L(U,Z0) and A(y, ȳ)(y − ȳ) ∈ Z0 for all y ∈ Y +.
Proof. The action of Eτ (ȳ, id) is given in (4.3). The Fréchet differentiability of

τ ∈ U 7→ E(ȳ, τ) ∈ Z at τ = id yields Eτ (ȳ, id) ∈ L(U,Z). Now let hτ ∈ U be
arbitrary and consider z = (z1, zdiv, z0) := Eτ (ȳ, id)hτ . Then

zdiv(0) = tr (g′3(id)[hτ ]∇v̄(0)) = tr (g′3(id)[hτ ]∇ṽ0) = − tr (∇hτ∇ṽ0) + div(hτ ) div(ṽ0)

and on the other hand z0 = − d
dτ ṽ0(τ)|τ=id[hτ ]. Hence,

div z0 = −div
(
d
ds ṽ0(id + shτ )|s=0

)
= − d

dsdiv (ṽ0(id + shτ )) |s=0

and therefore

div z0 = − d
ds tr

(
∇ṽ0(id + shτ )T (I + shτ ′)

)
|s=0

= − d
ds (div(ṽ0) ◦ (id + shτ )) |s=0 − tr (∇hτ∇ṽ0) = − tr (∇hτ∇ṽ0) ,

since div(ṽ0) = 0 on (id+shτ )(Ωref) for all hτ ∈ U with sufficiently small s‖hτ‖W1,∞ >
0. This shows that zdiv(0) = div z0 and thus Eτ (ȳ, id)hτ ∈ Z0 for all hτ ∈ U , i.e.,
Eτ (ȳ, id) ∈ L(U,Z0) as asserted.

To show that (z1, zdiv, z0) := A(y, ȳ)(y − ȳ) = Ey((y + ȳ)/2, id)(y − ȳ) ∈ Z0, we
note that by (4.4)

zdiv(0) = div(y(0)− ȳ(0)), z0 = y(0)− ȳ(0)

and thus zdiv(0) = div z0 which shows A(y, ȳ)(y − ȳ) ∈ Z0 as required.

4.8. Continuity of the solution operator with respect to domain varia-
tions. We now show that under our regularity assumptions on the data the continuity
requirements from Theorem 3.1 are satisfied, i.e. the mapping

τ ∈ U ⊂ U 7→ (v(τ), p(τ)) ∈ Yi
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is continuous at τ = id for i = 1, 2. To this end, according to Lemma 3.2, it sufficies
to show property (3.3), since 7. and 8. are already proven.

Lemma 4.15. Let d ∈ {2, 3} and let Assumption 2.3 hold. Let (v̄, p̄) be the
solution of (2.21) for τ = id and let (v(τ), p(τ)) be the solution for an arbitrary τ
with sufficiently small ‖τ − id‖W1,∞(Ωref ). Then we have

‖(v(τ)− v̄, p(τ)− p̄)‖Y1
→ 0 =⇒ ‖(v(τ)− v̄, p(τ)− p̄)‖Y2

→ 0,

as ‖τ − id‖W1,∞(Ωref ) → 0.
Proof. We set ev := v(τ)− v̄, ep = p(τ)− p̄.
Concerning the convergence of ev in L∞(I; L3) we recall that for sufficiently

small displacements ‖τ − id‖W1,∞(Ωref ) the velocities v(τ) are uniformly bounded in
L∞(I; H1

0) ↪→ L∞(I; L6) by Lemma 4.6. Thus, interpolation yields

‖ev‖L∞(I;L3) ≤ C‖ev‖
1
2

L∞(I;L6)‖e
v‖

1
2

L∞(I;L2) ≤ C‖e
v‖

1
2

L∞(I;L2),

such that ‖(ev, ep)‖Y1
→ 0 implies ‖ev‖L∞(I;L3) → 0 as ‖τ − id‖W1,∞(Ωref ) → 0.

In order to finish the proof we have to show ‖evt ‖L2(I;H1−ε
0 ), ‖ep‖L2(I;L2

0) → 0, as

‖(ev, ep)‖Y1
→ 0 and ‖τ − id‖W1,∞(Ωref ) → 0. Therefore, let ṽ := v+v̄

2 , ȳ := (v̄, p̄) and
y := (v, p). Using the linearization (4.4), a short calculation shows that subtracting the
equations (2.21) for (v, p) and (v̄, p̄) yields with Di(τ) := gi(id)− gi(τ) for i = 1, 2, 3
(4.9)
〈(w, q, w0), Ey((ṽ(t), p̄(t)), id)[(ev(t), ep(t))]〉H1

0×L2
0×L2,(H1

0×L2
0×L2)∗

= ((f̃(t) ◦x τ)g1(τ)− f̃(t), w)L2 + (vt(t), D1(τ)w)L2

+ ν(∇v(t), D2(τ)∇w)L2 + b̂(v(t), v(t), w,D3(τ))− (p(t), tr(D3(τ)∇w))L2
0
,

+ (tr(D3(τ)∇v(t)), q)L2
0

+ (w0, ṽ0 ◦ τ − ṽ0)

for all w ∈ H1
0, q ∈ L2

0, w0 ∈ L2 and for a.a. t ∈ I.
For the estimate of the time derivative we test (4.9) with q = 0, w0 = 0 and

arbitrary w ∈ L2(I; H1
0). We show that all other terms in (4.9) tend to zero as

functionals w.r.t. w ∈ L2(I; H1
0). We estimate the right hand side of (4.9) as follows.∣∣((f̃ ◦x τ)g1(τ)− f̃ , w)L2(I;L2)

∣∣ ≤ ‖(f̃ ◦x τ)g1(τ)− f̃‖L2(I;L2)‖w‖L2(I;L2)∣∣(vt, D1(τ)w)L2(I;L2)

∣∣ ≤ ‖vt‖L2(I;L2)‖w‖L2(I;L2)‖D1(τ)‖L∞ .

Furthermore, by using Lemma 2.7 and Hölder’s inequality we get∣∣ν(∇v,D2(τ)∇w)L2(I;L2)

∣∣ ≤ ν‖v‖L2(I;H1
0)‖w‖L2(I;H1

0)‖D2(τ)‖L∞

|̂bI(v, v, w,D3(τ))| ≤ C‖v‖2L4(I;H1
0)‖w‖L2(I;H1

0)‖D3(τ)‖L∞ .

For the last term we have∣∣(p, tr(D3(τ)∇w))L2(I;L2
0)

∣∣ ≤ C‖p‖L2(I;L2
0)‖D3(τ)‖L∞‖w‖L2(I;H1

0).

We now estimate the other terms on the left hand side of (4.9). We obtain∣∣ν(∇e,∇w)L2(I;L2)

∣∣ ≤ ν‖ev‖L2(I;H1
0)‖w‖L2(I;H1

0)

and by using Lemma 2.7 and Hölder’s inequality∣∣bI(ev, ṽ, w) + bI(ṽ, e
v, w)

∣∣ ≤ C · (‖ṽ‖L∞(I;H1
0)‖ev‖L2(I;H1

0)‖w‖L2(I;H1
0)

)
.
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Hence, for ‖τ − id‖W1,∞(Ωref ) small enough we obtain from (4.9)∣∣(evt , w)L2(I;L2)

∣∣ ≤ C‖w‖L2(I;H1
0)(‖τ − id‖W1,∞ + ‖ev‖L2(I;H1

0))

+ ‖ep‖L2(I;L2
0)‖ tr(∇w)‖L2(I;L2

0)

+ ‖(f̃ ◦x τ)g1(τ)− f̃‖L2(I;L2)‖w‖L2(I;L2)

(4.10)

for all w ∈ L2(I; H1
0), where

C = C(‖v‖L∞(I;H1
0), ‖v‖2L4(I;H1

0), ‖p‖L2(I;L2
0), ‖vt‖L2(I;L2), ‖v̄‖L∞(I;H1

0))

is a constant, which is uniformly bounded due to the Y + regularity of the state
variables, cf. Lemma 4.6.

Moreover, we have from the incompressibility condition

tr(∇ev) = tr(D3(τ)∇v)

and therefore with a constant C > 0

‖ tr(∇evt )‖L2(I;L2
0) = ‖ tr(D3(τ)∇vt)‖L2(I;L2

0) ≤ C‖vt‖L2(I;H1
0)‖τ − id‖W1,∞ .

Testing (4.10) with w = evt we thus arrive for sufficiently small ‖τ − id‖W1,∞(Ωref ) at

‖evt ‖2L2(I;L2) ≤ C‖vt − v̄t‖L2(I;H1
0)(‖τ − id‖W1,∞ + ‖ev‖L2(I;H1

0))

+ C‖p− p̄‖L2(I;L2
0)‖vt‖L2(I;H1

0)‖τ − id‖W1,∞

+ ‖(f̃ ◦x τ)g1(τ)− f̃‖L2(I;L2)‖evt ‖L2(I;L2)

and thus

‖evt ‖2L2(I;L2) ≤ C · (‖τ − id‖W1,∞ + ‖ev‖L2(I;H1
0)) + ‖(f̃ ◦x τ)g1(τ)− f̃‖2L2(I;L2),

with another constant

C =C(‖v‖L∞(I;H1
0), ‖v‖2L4(I;H1

0), ‖p‖L2(I;L2), ‖p̄‖L2(I;L2
0),

‖vt‖L2(I;H1
0), ‖v̄‖L∞(I;H1

0), ‖v̄t‖L2(I;H1
0)).

Therefore, using the uniform Y + boundedness of the state variables from Lemma
4.6 and the regularity assumptions on f̃ , we have shown

‖evt ‖L2(I;L2) → 0,

as ‖(ev, ep)‖Y1 → 0 and ‖τ − id‖W1,∞(Ωref ) → 0. Since ‖et‖L2(I;H1
0) ≤ C, interpolation

yields

‖evt ‖L2(I;H1−ε
0 ) → 0,(4.11)

as ‖(ev, ep)‖Y1
→ 0 and ‖τ − id‖W1,∞(Ωref ) → 0.

For ‖τ − id‖W1,∞(Ωref ) sufficiently small the pressure term on the left hand side
of (4.9) satisfies exactly as in (4.10) the estimate∣∣(∇ep, w)L2(I;L2)

∣∣ =
∣∣(ep, tr(∇w))L2(I;L2

0)

∣∣
≤ C · (‖τ − id‖W1,∞ + ‖ev‖L2(I;H1

0))‖w‖L2(I;H1
0)

+ (‖evt ‖L2(I;L2) + ‖(f̃ ◦x τ)g1(τ)− f̃‖L2(I;L2))‖w‖L2(I;L2),

which shows ‖∇ep‖L2(I;H−1) → 0 as ‖(ev, ep)‖Y1
→ 0 and ‖τ − id‖W1,∞(Ωref ) → 0. By

[30, Prop. I.1.2] we have ‖ep(t)‖L2
0
≤ C(Ωref)‖∇ep(t)‖H−1 for all t ∈ I. Hence we

conclude that ‖ep‖L2(I;L2
0) → 0 as ‖(ev, ep)‖Y1

→ 0 and ‖τ − id‖W1,∞(Ωref ) → 0.
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5. Differentiability of the reduced objective function. We deduce finally
from Theorem 4.3 differentiability properties of objective functionals with respect
to domain transformations τ ∈ U(Ωref). To this end, consider as in 2.1 a shape
optimization problem

min J̃(ỹ,Ω) s.t. Ẽ(ỹ,Ω) = 0, Ω ∈ Oad,(2.1)

where ỹ = (ṽ, p̃) and Ẽ(ỹ,Ω) = 0 are the Navier-Stokes equations (2.5). By applying
the mapping method, we obtain the equivalent problem on the reference domain Ωref

min J(y, τ) s.t. E(y, τ) = 0, τ ∈ Tad,(2.4)

where y = (v, p) and E(y, τ) = 0 is given by (2.21) and Tad is a set as given in
Assumption 2.3 or a closed subset of it.

We state now sufficient conditions for an objective function J : Y +(Ωref) ×
U(Ωref)→ R such that the reduced objective function

τ ∈ U ⊂ U 7→ j(τ) := J((v, p)(τ), τ) ∈ R(5.1)

is Fréchet differentiable in a neighbourhood U ⊂ U of id. We note that

τ1, τ2 ∈ Tad with τ1(Ωref) = τ2(Ωref) =⇒ j(τ1) = j(τ2),

since by (2.1) the objective function depends only on the domain.
Theorem 4.3, i) shows the differentiability of τ ∈ U 7→ (v(τ), p(τ)) ∈ Y at

τ = id as well as the differentiability to the slightly weaker space
(
L2(I; H1

0(Ωref)) ∩
C(I; L2(Ωref))

)
×
(
L2(I;L2

0(Ωref)) + (W 1,1(I; clH−1
0

(L2
0(Ωref))))

∗) at τ = τ̄ for any

τ̄ ∈ Tad. We can therefore apply the chain rule.
For practical computations it is most convenient to evaluate the derivative on the

physical domain Ω := τ̄(Ωref) at id. On the other hand, for optimization methods it
is preferable to work on a fixed reference domain Ωref and to evaluate the derivative
at arbitrary τ̄ ∈ Tad. Both can easily be accomplished, as the next theorem will show.

To state the theorem, let τ̄ ∈ Tad be arbitrary, let Ω = τ̄(Ωref) and denote by
J(ỹ, τ̃ ; Ω) and E(ỹ, τ̃ ; Ω) = 0 the objective function and state equation in (2.4), if Ω
instead of Ωref is used as reference domain. Finally, let U(Ω) = (W1,∞∩W1+s,r)(Ω),
U(Ω) ⊂ U(Ω) be a sufficiently small neighborhood of id and denote by

(5.2) τ̃ ∈ U(Ω) 7→ y(τ̃ ; Ω) = (v(τ̃ ; Ω), p(τ̃ ; Ω)) ∈ Y +(Ω)

the bounded solution map of E(ỹ, τ̃ ; Ω) = 0 according to Lemma 4.6.
Theorem 5.1. Let with the previous notations τ̄ ∈ Tad be arbitrary, Ω = τ̄(Ωref)

and let ȳ ∈ Y +(Ω) be the physical state on Ω, i.e., E(ȳ, id; Ω) = 0. Finally, let

(ỹ, τ̃) ∈ (Y, ‖ · ‖Y (Ω))× U(Ω) 7→ J(ỹ, τ̃ ; Ω)

be Fréchet-differentiable at (ȳ, id) on bounded sets ȳ 3 Y ⊂ Y +(Ω) with Jy(ȳ, id; Ω) ∈
Y ∗. Then the following holds.

i) The reduced objective function

τ̃ ∈ U(Ω) ⊂ U(Ω) 7→ j̄(τ̃) := J(y(τ̃ ; Ω), τ̃ ; Ω)

corresponding to the reference domain Ω is Fréchet-differentiable at τ̃ = id
and the derivative is given by the chain rule.
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ii) With a sufficiently small neighborhood U(Ωref) ⊂ U(Ωref) of τ̄ the reduced
objective function

τ ∈ U(Ωref) ⊂ U(Ωref) 7→ j(τ) := J(y(τ), τ)

corresponding to reference domain Ωref is Fréchet-differentiable at τ = τ̄ and

j′(τ̄)[hτ ] = j̄′(id)[hτ ◦ τ̄−1] ∀hτ ∈ U(Ωref).

Proof. i): As observed above, the solution map (5.2) is bounded and thus we find
a bounded neighborhood Y ⊂ Y +(Ω) of ȳ with y(τ̃ ; Ω) ∈ Y for all τ̃ ∈ U(Ω).

Moreover, by Theorem 4.3, i) (see the proof of Theorem 4.3, ii)), the solution
map (5.2) is Fréchet-differentiable at τ̃ = id as a map τ̃ ∈ U(Ω) 7→ y(τ̃ ; Ω) ∈ Y (Ω).
This yields as in the proof of the chain rule for ‖τ̃ − id‖U(Ω) → 0

j̄(τ̃)− j̄(id)− J ′(ȳ, id)[y′(id; Ω)(τ̃ − id), τ̃ − id]

= J(y(τ̃ ; Ω), τ̃ ; Ω)− J(ȳ, id; Ω)− J ′(ȳ, id)[y′(id; Ω)(τ̃ − id), τ̃ − id]

= o(‖y(τ̃ ; Ω)− ȳ‖Y (Ω) + ‖τ̃ − id‖U(Ω))

+ Jy(ȳ, id)[y(τ̃ ; Ω)− ȳ − y′(id; Ω)(τ̃ − id)]

= o(‖τ̃ − id‖U(Ω)).

ii): Since τ ◦ τ̄−1 ∈ U(Ω) for all τ ∈ U(Ωref) with ‖τ − τ̄‖U(Ωref ) ≤ ρ, ρ > 0 small

enough, and τ(Ωref) = τ ◦ τ̄−1(Ω), we have

j(τ)− j(τ̄) = j̄(τ ◦ τ̄−1)− j̄(id) = j̄′(id)[(τ − τ̄) ◦ τ̄−1] + o(‖(τ − τ̄) ◦ τ̄−1‖U(Ω))

= j̄′(id)[(τ − τ̄) ◦ τ̄−1] + o(‖τ − τ̄‖U(Ωref )),

where we have used Lemma 4.5 in the last step.
Remark 5.2. A direct application of the chain rule togther with Theorem 4.3

would require stronger differentiabilty properties for J(·; Ω). The additional bound-
edness of the state in Y +(Ω) makes it possible to require the differentiabilty only on
bounded sets in Y +(Ω).

5.1. Example: Mean drag of a body. We consider the mean drag around a
simply connected body B. Let ΓB ⊂ ∂Ω be the boundary B and φ ∈ Rd be a unit
vector in the mean flow direction. Then the mean value of the drag on ΓB is given by

cd :=
1

T

∫ T

0

∫
ΓB

n · σ(ṽ, p̃) · φdS dt

with the unit outer normal n and the stress tensor σ(ṽ, p̃) = ν(∇ṽ +∇ṽT )− p̃I. Let
Φ ∈ C1(Rd)d be a function with

(5.3) Φ|ΓB = φ, Φ|∂Ω\ΓB = 0 ∀Ω ∈ Oad.

Then the mean drag can alternatively be computed by the formula

J((ṽ, p̃); Ω) :=
1

T

∫ T

0

∫
Ω

(
((ṽ · ∇)ṽ − f̃)TΦ− p̃ div Φ + ν∇ṽ : ∇Φ

)
dx̃ dt

+
1

T

∫
Ω

(ṽ(x̃, T )− ṽ0(x̃))Φ dx̃,
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see e.g. [18], where we have integrated the time derivative. Transformation to the
reference domain yields finally

J((v, p), τ) =
1

T

∫ T

0

(
b̂(v(t), v(t),Φ ◦ τ, g3(τ)) + ν(∇v, g2(τ)∇(Φ ◦ τ))L2(Ωref )

− (p(t), tr(g3(τ)∇(Φ ◦ τ)))L2
0(Ωref ) −

∫
Ωref

(f̃(t) ◦x̃ τ)T (Φ ◦ τ)g1(τ)dx
)
dt

+
1

T
(v(T )− ṽ0 ◦ τ, (Φ ◦ τ)g1(τ))L2(Ωref ).

Let τ̄ ∈ Tad be arbitrary. To show the Fréchet-differentiability of the reduced objective
function j(τ) at τ = τ̄ , we could apply Theorem 5.1, but we can also immediately use
Theorem 4.3, ii) and the chain rule. In fact, since Φ ∈ C1(Rd)d, (5.3) yields div Φ ∈
L2

0(τ(Ωref)) and thus tr(g3(τ)∇(Φ ◦ τ)) ∈ L2
0(Ωref), we also have tr(g3(τ)∇(Φ ◦ τ)) ∈

L2(I;L2
0(Ωref)) ∩W 1,1(I;L2

0(Ωref)). Now, it is easy to verify that

J : (v, p, τ) ∈ (L2(I; H1
0(Ωref)) ∩ C(I; L2(Ωref)))

×
(
L2(I;L2

0(Ωref)) + (W 1,1(I;L2
0(Ωref)))

∗)× U 7→ R

is Fréchet-differentiable. Hence, the chain rule and Theorem 4.3 yield the Fréchet-
differentiability of τ ∈ U 7→ j(τ) ∈ R at τ = τ̄ .

An adjoint representation of the reduced derivative j′(τ) can now be derived by
standard techniques and integration by parts leads for sufficiently regular problems
to the Hadamard-Zolésio boundary representation, see for example [6, 7].

REFERENCES

[1] M. Agranovich. Sobolev spaces, their generalizations and elliptic problems in smooth and
Lipschitz domains. Springer Monographs in Mathematics, Springer, 2015

[2] J. A. Bello, E. Fernandez-Cara, and J. Simon, Variation par rapport au domiane de l’énergie
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168, Birkhäuser, Basel, pp. 113–121, 2006
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