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The focus in this project lies on the development of sparsity concepts in the context of optimal
control and inverse (control-in-the-coefficients) problems governed by partial differential (PDEs).
The interest in this topic is in part application-driven, including optimal actuator and sensor
placement. To the other part it lies in the mathematically challenge. Measure-valued formulations
and non-smooth structures naturally arise. They require tailored approaches from both the
theoretical and algorithmic point of view.

State of the art. In [15], a framework for controls from the space of bounded Borel measures in
the context of elliptic equations was introduced, which allows to formulate well-posed problems,
where the support of the optimal control can be of measure zero. Based on this framework, further
analytical and numerical results for linear elliptic [8], [24], parabolic [9], [14], [23], second order
hyperbolic equations [20], as well as for nonlinear PDEs [10, 7] were obtained. Within the previous
funding period the project ’Sparse Controls’ significantly contributed to these developments (see
the progress report for details). Another approach which leads to optimal controls supported on
small sets (not of measures zero), is based on L1 control cost terms with additional pointwise
control constraints and/or an L2 regularization terms. We refer to, e.g., [25, 28, 17, 13].

For the new funding period we proposes three thesis topics within this project. In the first one,
optimal control problems with BV control costs are investigated. The other two topics belong to
optimal experimental design for inverse problems involving PDEs. Here we seek for sparsity of
design parameters, describing the optimal location of observers or actuators. These parameters
must be chosen such that the modeling problems, which in our cases are inverse problems for
PDEs are as ’well-posed’ as possible.

With respect to the latter, we recall that inverse problems in general, and parameter estimation
problems in particular, are ill-posed or ill-conditioned, and as a consequence small errors in the
data can have a large effect on the numerically identified objects. This conditioning, however,
depends on observers and estimators whose location is optimized by sparsity techniques. While
this topic has received a considerable amount of attention in the case of ordinary differential
equation, see e.g. [5, 6, 22], it has only recently attracted attention in the context of PDEs, see
[1, 2, 3, 4].

First thesis project: Sparse control with respect to a differential operator to be supervised
by Karl Kunisch. Here we focus on control costs which involve the semi-norm of first order
spatial and/or temporal differential operators. Their use penalizes (directional) jumps and favors
piecewise constant controls. This approach can be used to optimize for values ūj of piecewise
constant control regimes. This can be desirable for technological applications, but is also of
interest in its own right. As a starting point we consider

minimize 1
2

∫ T

0

∫
Ω
|y − z|2 dxdt+ β

∫ T

0

∫
Ω
|Du| dxdt

subject to yt = Ay +Bu, u ∈ K,
(1)
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together with initial and boundary conditions, and β > 0. Here
∫ T

0
∫

Ω|Du| dxdt denotes the
BV semi-norm of the control u, A is an elliptic operator, B the control operator, and K is a
convex, not necessarily bounded, set in Lp((0, T )×Ω), with p ≥ 1. The case of separable controls
u(t, x) = u1(t)u2(x) with one of the two controls ui in BV and the other one in L2 (or even in
M(Ω)) are equally important and so are the cases u ∈ BV (Ω, L2(0, T )) and u ∈ L2([0, T ], BV (Ω)).
But at first, the student must study the existence of solutions to (1), obtain the optimality system
for (1), devise a finite element scheme for its approximation and an efficient semi-smooth Newton-
type scheme for its numerical realization. This will also require to find a structure preserving
regularization technique and to analyze its convergence. – The stationary case associated to (1)
was briefly addressed in [15], where optimal solutions obtained numerically possess the expected
characteristics with respect to sparsity. – Once the solution to (1) is numerically realized, averaged
constant values ūj of the optimal controls in flat regions of the optimal controls can be obtained
by a clustering algorithm.

These values can be used in a second stage which is given by

minimize 1
2

∫ T

0

∫
Ω
|y − z|2 dxdt+ β

∫ T

0

∫
Ω
|Du(t, ·)| dt+ γ

∫ T

0

∫
Ω

Πj |u− ūj | dxdt

subject to yt = Ay +Bu, u ∈ K,
(2)

with γ > 0. This formulation enhances the optimal controls to only take the predefined values ūj ,
with few jumps between them. Problem (2) is related to the multibang formulation in [16], but
differs due to the appearance of the BV-term. The latter also has an influence on the range of
γ-values for which pure switching is expected.

Concerning FE approximations of variational problems in BV with P 0 and P 1 elements, we refer
to [12] and [21], which consider this problem in the context of BV-regularized image reconstruction.
In [12] it was pointed out that for the approximation with piecewise constant functions, the choice
of the triangulation and the norm on Rn within the BV norm are of special importance.

To be successful with this and the two following thesis topics, the PhD candidates must have and
will further develop skills in the following areas: PDEs, convex analysis, calculus of variations,
numerical analysis and algorithm development.

Second thesis project: Optimal sensor placement in the context of optimum experimental
design in PDE models to be supervised by Boris Vexler. For models described by ODEs or
DAEs several optimization algorithms for optimal experimental design have been developed, see,
e.g., [6]. Much less is known in the context of PDEs, see [2]. The main goal of this project is to
propose a framework based on measure-valued sparse control formulations (see the description of
the state of the art above) to find the optimal positions of pointwise measurement sensors.

To this end, we will consider elliptic equations abstractly denoted by A(u, y) = f on the domain
Ω for the state variable y depending on a finite dimensional parameter u ∈ Rn and some data
f . The parameter variable u is involved, e.g., in the parametrization of the diffusion, reaction or
convection coefficients. For each set of parameters u, the state equation is assumed to possess a
unique solution y = S(u) in the space of continuous functions C0(Ω).
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To estimate the unknown parameters u, we formulate a parameter estimation problem with
pointwise measurements, the lower level problem:

minimize
(u,y)

J(u) = 1
2
〈

(y − ym)2, ω
〉

C0(Ω),M(Ω)
, subject to A(u, y) = f, (L)

where ω ≥ 0 is in the space of regular Borel measures M(Ω) = C0(Ω)∗. It describes the location
of measurement sensors and ym describes the corresponding measurements. The desired structure
of ω is a linear combination of Dirac functionals

ω =
N∑

i=1
αiδxi , αi ≥ 0, (3)

where the optimal choice of the number N , the positions xi and the coefficients αi is not a priori
known. Due to measurement errors, the solution to this optimization problem ū = ū(ω) for a
fixed experimental design described by ω is only an approximation of the true parameter value. In
order to improve the quality of this approximation we will formulate, analyze and solve a design
problem or upper level problem, where the goal is to minimize the size of a confidence region
F (ū, ω) around the estimated parameter ū.

We refer to, e.g., [6] for possible definitions of F corresponding to different optimality criteria
based on the inverse of the Fisher information matrix C(ū, ω) ∈ Rn×n, which is given here as

(C(ū, ω))ij =
〈
S′(ū)(ei)S′(ū)(ej), ω

〉
C0(Ω),M(Ω) .

In the above definition of C(ū, ω), S′(ū)(v) is the directional derivative of the solution operator S
in the direction v and ei, ej ∈ Rn are unit vectors. To obtain the desired sparse structure of ω,
the design problem will involve the total variation of the measure ω leading to

minimize
ω∈M(Ω),ω≥0

F (ū, ω) + α‖ω‖M(Ω) (U1)

or
minimize

ω∈M(Ω),ω≥0
F (ū, ω), subject to ‖ω‖M(Ω) ≤ γ. (U2)

We emphasize, that in the above formulated problems (U1) and (U2), the reference parameter ū
is fixed. Within an iterative approach used in the ODE or DAE case, see, e.g., [6], the problems
(L) and (U1) (or (U2)) are solved in an alternating manner, i.e., the problem (L) is solved for
a fixed experiment design ω0 obtaining a parameter ū0, then the problem (U1) is solved with
fixed ū0 providing a new experiment design ω1, etc. For this procedure, it is assumed, that the
measurements ym can be made available in the support of each iterate ωk. In practice, this
iterative approach involves new experiments (with new measurements) in each iteration.

In the first stage of the proposed project we will analyze problems (U1) and (U2) in this fashion,
i.e., without back coupling to the problem (L). This means, we take ū as a fixed solution of (L) for
a given set of measurements. Note that the upper level problem (U1) (or (U2)) does not explicitly
depend on the measurements ym. For this stage the goals of the project are the following:

(a) to establish a proper function space framework for the optimum experimental design problem
and to prove the existence of solutions to (U1) and (U2) as well as a relation between them.
Uniqueness can in general not be expected, since the functional is convex but in general not
strictly convex.

3



(b) to analyze the sparsity structure of the solution and to describe a set of general assumptions
leading to the existence of an optimal design ω consisting of a finite number of Dirac
functionals (3),

(c) to develop an appropriate structure-preserving regularization and efficient optimization
algorithms based on semi-smooth Newton methods,

(d) to provide and to analyze a suitable finite element discretization including adaptivity.

In a second stage of the project, we aim at providing a fully coupled formulation leading to a
two-level optimization problem. For this consideration we will first assume that the data ym is
known in the whole domain Ω. The corresponding problem will be non convex, and the iterative
procedure described above is a fix-point strategy to solve this problem. Based on an appropriate
regularization, we will work out a solution algorithm for the coupled problem and compare it to
the fix-point strategy. A further direction can include a treatment of the uncertainty in ym.

Third thesis project: Optimal actuator placement in the context of inverse problems for
PDE models to be supervised by Karl Kunisch In the context of systems theory for ordinary
differential equations, the choice of optimal input parameters has received a considerable amount
of attention. We mention the highly noted early work [22], the thesis [5], and selected recent
publications [1, 27, 26]. Very little attention has been paid so far to the problem of choosing
optimal inputs for inverse problems in the context of PDEs. Here we are only aware of [19]. In
all of these contributions the Fisher information matrix, involving the Jacobian of the output
with respect to unknown parameters to be identified, plays a central role. In the context of
nonlinear inverse problems - which is the case for parameter estimation problems - a choice must
be made, where to evaluate the Jacobian. Ideally this would be done at the "optimal" parameters.
Since they are unavailable, one typically resorts to educated initial guesses, [19, 22]. We propose
to improve this procedure by formulating the optimal input problem as a bilevel optimization
problem, while searching for optimal inputs with sparse support.

Let us consider the parameter dependent evolution equation

yt +A(y, u) = f in Q = (0, T )× Ω, (4)

together with initial and boundary conditions, where for fixed u ∈ Rm, the operator A is strongly
elliptic with respect to the state variable y, and the inputs are chosen as f ∈M(Q), the space
of regular Borel measures in Q. The choices of directionally sparse inputs f ∈ L2(0, T ;M(Ω)),
f ∈ M(Ω;L2(0, T )) or f ∈ M(0, T ;L(Ω)) are of equal importance. The a-priori unknown
parameter vector u can stand, e.g., for the coefficient vector of a piecewise constant diffusion or
convection coefficient a =

∑m
i=1 uiχΩi , with χΩi the characteristic functions of a partition of Ω

into subdomains Ωi. Given data ym, (for the sake of presentation here assumed to be distributed
data in Q), the regularized least-squares formulation for the inverse problem of identifying u from
ym is given by

min 1
2

∫ T

0

∫
Ω

1
σ2 |y(u)− ym|2 dxdt+ α

2 ‖u‖
2
Rm over u ∈ Rm, subject to (4), (LS)

where α > 0 and σ2 denotes the variation of the noise process. The conditioning of this inverse
problem significantly depends on the choice of the input (forcing function) f .
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For this purpose we introduce a sensitivity functional F(u, f), which typically involves the
determinant, the trace, or the largest eigenvalue, of the inverse of the Fischer information matrix
C, the latter implying that the maximal diameter of the asymptotic confidence ellipsoid of u is
minimized, see e.g. [3, 4]. Here C ∈ Rm×m is given by

Ci,j =
∫

Q

1
σ2 y

′
f (ū)(ei) y′f (ū)(ej) dxdt,

where y′f (ū)(ei) denotes the Fréchet derivative of the solution to (4) with respect to u at a reference
parameter ū in direction of the unit vector ei. The subscript f emphasizes the dependence of the
solution y on the forcing function f . Now we are prepared to formulate the optimal sparse input
problem: for β > 0 solve

minF(ū, f) + β‖f‖M(Q) over f ∈M(Q). (OPT-IN)

The PhD student will first investigate (OPT-IN) for a fixed ū. If data ym are available corre-
sponding to a reference value of f then ū can be chosen as a solution to (LS). The optimality
conditions for (OPT-IN) will be derived and the desired sparsity structure of the solutions will be
analyzed. Concerning diffusion equations with measure-valued forcing functions, the student can
rely, in part, on recent results in [23, 11]. Subsequently a numerical scheme for solving (OPT-IN)
must be developed and tested.

Subsequently, observing the fact that ū is not available in general, a bilevel optimization problem
will be investigated, consisting of the upper-level problem (OPT-IN) with ū replaced by u and the
lower level problem (LS). Here we assume availability of data ym which correspond to different
input parameters f . The bilevel problem will be investigated with respect to existence, first order
necessary conditions, and the categorization of the resulting complementarity conditions [18].
Finally, first steps towards solving the bilevel problem numerically will be taken.

The proposed third project shares certain common technical aspects with the second project, but
they are also sufficiently different: stationary/evolutionary, sparsity/directional sparsity, design
parameters enter into output/input space.
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